
This article was downloaded by: [67.247.39.192] On: 17 September 2017, At: 20:12
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Course Match: A Large-Scale Implementation of
Approximate Competitive Equilibrium from Equal Incomes
for Combinatorial Allocation
Eric Budish, Gérard P. Cachon, Judd B. Kessler, Abraham Othman

To cite this article:
Eric Budish, Gérard P. Cachon, Judd B. Kessler, Abraham Othman (2017) Course Match: A Large-Scale Implementation of
Approximate Competitive Equilibrium from Equal Incomes for Combinatorial Allocation. Operations Research 65(2):314-336.
https://doi.org/10.1287/opre.2016.1544

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2016, The Author(s)

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2016.1544
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

OPERATIONS RESEARCH
Vol. 65, No. 2, March–April 2017, pp. 314–336

http://pubsonline.informs.org/journal/opre/ ISSN 0030-364X (print), ISSN 1526-5463 (online)

Course Match: A Large-Scale Implementation of
Approximate Competitive Equilibrium from
Equal Incomes for Combinatorial Allocation
Eric Budish,a Gérard P. Cachon,b Judd B. Kessler,b Abraham Othmanb

aUniversity of Chicago, Chicago, Illinois 60637; bUniversity of Pennsylvania, Philadelphia, Pennsylvania 19104
Contact: eric.budish@chicagobooth.edu (EB); cachon@wharton.upenn.edu (GPC); judd.kessler@wharton.upenn.edu (JBK);
abrahamo@wharton.upenn.edu (AO)

Received: July 23, 2015
Revised: April 11, 2016
Accepted: June 2, 2016
Published Online in Articles in Advance:
October 28, 2016

Subject Classifications: computers/computer
science: system design/operation; education
systems: operations; economics
Area of Review: OR Practice

https://doi.org/10.1287/opre.2016.1544

Copyright: © 2016 The Author(s)

Abstract. Combinatorial allocation involves assigning bundles of items to agents when the
use of money is not allowed. Course allocation is one common application of combinatorial
allocation, in which the bundles are schedules of courses and the assignees are students.
Existing mechanisms used in practice have been shown to have serious flaws, which lead to
allocations that are inefficient, unfair, or both. A recently developed mechanism is attractive
in theory but has several features that limit its feasibility for practice. This paper reports on
the design and implementation of a new course allocation mechanism, Course Match, that is
suitable in practice. To find allocations, Course Match performs a massive parallel heuristic
search that solves billions of mixed-integer programs to output an approximate competitive
equilibrium in a fake-money economy for courses. Quantitative summary statistics for two
semesters of full-scale use at a large business school (the Wharton School of Business, which
has about 1,700 students and up to 350 courses in each semester) demonstrate that Course
Match is both fair and efficient, a finding reinforced by student surveys showing large gains
in satisfaction and perceived fairness.

Open Access Statement: This work is licensed under a Creative Commons Attribution 4.0 International
License. You are free to copy, distribute, transmit and adapt this work, but you must attribute this work
as “Operations Research. Copyright © 2016, The Author(s). https://doi.org/10.1287/opre.2016.1544,
used under a Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/.”

Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2016.1544.

Keywords: course allocation • mechanism design • parallel search • tabu search • competitive equilibrium

1. Introduction
There are numerous settings in which resources must
be allocated but markets with money are not permit-
ted. Prominent examples include assigning kidneys
to patients (Roth et al. 2004, 2005), medical residents
to hospitals (Roth and Peranson 1999, Roth 2002), or
students to public schools (Abdulkadiroğlu and Sönmez
2003). In many of these applications, each participant
seeks one item: one kidney, one residency position, or
one school. However, there are also settings in which
the allocation problem is combinatoric because each
participant requires a bundle of items, which increases
the economic and computational complexity of the
allocation problem. Workforce scheduling is a prime
example; airline crews have preferences over a bundle of
flights that they might be assigned, and nurses have
preferences over bundles of shifts they might work.
Other examples include the allocation of players to
sports teams, shared scientific resources to users, and
airport takeoff and landing slots to airlines.
The combinatorial allocation problem also arises

in the context of student course scheduling, i.e., the
course allocation problem. Each student generally wants

more than one course, students have heterogeneous
preferences across courses, students cannot attend
courses that meet at the same time (or courses that they
have already taken or for which they lack prerequisites),
and courses have capacity limits, thereby making the
seats in some courses scarce resources. To solve the
course allocation problem, this paper describes a new
mechanism, Course Match, and reports on its successful
implementation at the Wharton School of Business at the
University of Pennsylvania (“Wharton”), a large business
school with approximately 1,700 students and up to 350
courses in each semester. In addition to quantitative
measures of the quality of the Course Match solution,
we are able to confirm directly, with actual “before and
after” survey data from Wharton students, real and
substantial improvement in satisfaction and perceived
fairness.
Roughly speaking, Course Match works as follows.

Shortly before a semester begins, students report their
preferences across the set of offered courses, and each
student is given an endowment of fake money. Next,
using the reported preferences, endowments, course
capacities, and course timetable, Course Match conducts

314

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

http://pubsonline.informs.org/journal/opre/
mailto:eric.budish@chicagobooth.edu
mailto:cachon@wharton.upenn.edu
mailto:judd.kessler@wharton.upenn.edu
mailto:abrahamo@wharton.upenn.edu
https://doi.org/10.1287/opre.2016.1544
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1287/opre.2016.1544

Budish et al.: Course Match
Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s) 315

a massive parallel heuristic search that solves billions
of mixed-integer programs to find a price for each
course such that (i) each student receives the best
feasible schedule he or she can afford given reported
preferences, endowment, and course prices; and (ii) all
course capacity constraints are satisfied.

The primary goal of a course allocation mechanism is
to maximize student satisfaction. To achieve this, market
designers often focus on two criteria: efficiency and
fairness. In an efficient course allocation, it is not possible
to make some students better off while leaving all other
students equally well off. Fairness can be defined in a
number of ways, but roughly speaking, a fair course
allocation avoids outcomes in which some students
greatly envy the course schedule of others, such as when
some students have all of their most preferred courses
while other students have none. Fairness is desirable in
the context of course allocation because schools generally
want to provide students with equal access to all courses.
Although not generally emphasized in the theoretical
literature, the successful implementation of an allocation
mechanism also depends on its ease of use. For example,
the mechanism should not require students to complete
an overly complex decision task nor require an excessive
amount of time.
Most existing course allocation mechanisms—in-

cluding both those described by theory and implemented
in practice—can deliver either fair or efficient outcomes
but not both, and many deliver neither. For example, in
the serial dictatorship mechanism emphasized in some
of the extant matching theory, students select their entire
bundle of courses sequentially, generally with a random
sequence. The lucky first student is ensured her best
schedule while the unlucky last student is relegated
to select seats from a limited set of the least popular
courses. Hence, while this mechanism is efficient, it
scores poorly in terms of fairness. The draft mechanism
used by the Harvard Business School, in which students
take turns choosing courses one at a time rather than all
at once (as in the drafting of professional sports teams),
improves on the fairness of the dictatorship but has
efficiency problems because of incentives to misreport
preferences strategically (Budish and Cantillon 2012).
Auctions are used by a number of schools, including
Wharton before the implementation of Course Match.
With an auction, students are endowed with fake money
and then bid, generally over multiple rounds, for course
seats. Although auctions can be both efficient and fair in
markets that use real money (e.g., selling a painting or
allocating wireless spectrum), it has been shown that
auctions with fake money have incentive problems that
do not arise when the money is real, ultimately leading to
allocations that are neither efficient nor fair (Sönmez and
Ünver 2010, Krishna and Ünver 2008). Furthermore, and
evenmore important for our purposes, students reported
low satisfaction with Wharton’s auction mechanism.

Budish (2011) proposes a new mechanism for the com-
binatorial allocation problem, called the approximate
competitive equilibrium from equal incomes mechanism
(A-CEEI), and demonstrates that it has desirable prop-
erties of efficiency, fairness, and incentives. However,
there are three major concerns with respect to its imple-
mentation in practice. First, because of the nature of the
approximation errors, it may (and is likely to) violate
course capacity constraints. This renders the solution
infeasible for practice—a school may be required to
abide strictly by capacity constraints. Second, the com-
putational procedure in Othman et al. (2010) only finds
solutions to the A-CEEI mechanism for “small” simu-
lated problems, leaving open the question of whether
it can be solved for an actual problem of Wharton’s
size in sufficient time. Third, the A-CEEI mechanism
assumes students are able to report their preferences
accurately. If a student is unable to report her preferences
correctly, then A-CEEI would solve the “wrong” prob-
lem, which could lead to unsatisfied students. Therefore,
it is unknown whether A-CEEI is sufficiently robust to
errors in reported preferences. Course Match addresses
each of these issues. First, it adds two additional stages
to the Budish (2011) mechanism so that a high-quality,
feasible solution is constructed. Second, Course Match
implements a software architecture that allows it to
scale sufficiently to solve a Wharton-sized problem
in a reasonable amount of time. Third, Course Match
includes a rich preference reporting language and user
interface to assist students in reporting preferences.

2. The Course Allocation Problem
The course allocation problem is to assign a set of courses
to each student while satisfying capacity constraints and
maximizing some notion of overall well-being. To be
specific, there is a set of M courses, indexed by j, with
integer capacities (the supply) (q j)Mj�1, and a set of N
students. The capacity, q j , is referred to as the “target
capacity” for course j, or, for short, just the “capacity,”
because it is the desired (or target) maximum enrollment
for the course. In practice, there also exists a maximum
capacity, q̂ j , for each course, such that a course allocation
is not feasible (i.e., it cannot be implemented) if there are
more than q̂ j students in a course, where clearly q j 6 q̂ j .
For example, a course could have a desired maximum
enrollment of 36 students, q j � 36, but meet in a room
that has 40 seats. The school has the option to set q̂ j � 36,
meaning that absolutely no more than 36 students can be
enrolled in this course for a feasible solution. However,
the school might also choose q̂ j � 40, meaning that it
is strongly preferred that there be no more than 36
students in the course, but a solution is feasible as long
as there are no more than 40 students enrolled. Earlier
work on the course allocation problem assumes q j � q̂ j ,
but for practical implementation, as discussed later, it is

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
316 Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s)

important to consider q j < q̂ j as an option. That said,
Course Match can solve problems with q j � q̂ j .
Each student i has a set Ψi ⊆ 2M of permissible

course bundles, with each bundle containing at most
k 6M courses. In the Wharton application, students
are allowed to choose their own k , but for ease of
exposition, we assume, without loss of generality, that
there is a common k. The setΨi encodes both scheduling
constraints (e.g., courses that meet at the same time) and
any constraints specific to student i (e.g., prerequisites).
Note that throughout the paper we use the term “course”
to refer to what is sometimes in practice called a “section”
or a “course section.” In practice, sometimes the same
class material (i.e., listing in the course catalog) is offered
at multiple times and/or by multiple professors; we
refer to each section as a unique “course.”

3. The A-CEEI Mechanism and
Implementation Concerns

The A-CEEI mechanism has the following four steps.
First, students report their preferences over schedules of
courses. The theory assumes that student i reports her
complete ordinal preferences over permissible sched-
ules, denoted by 4i . Second, the mechanism randomly
assigns to each student i a budget βi of fake money
(or “tokens”), which she uses to purchase courses. The
theory allows for budgets to be approximately, but not
exactly, equal; budgets can be arbitrarily close together,
but no two budgets can be exactly the same. Third, a
computer finds approximate market-clearing prices,
i.e., a price p∗j for each course j such that when each
student i purchases the bundle of courses x∗i that she
likes best out of all schedules she can afford, the market
approximately clears (we describe the nature of the
approximation in detail below). Fourth, each student is
allocated her most preferred affordable bundle given
the preferences, budgets, and prices, i.e., student i is
assigned the bundle x∗i , which solves the problem

x∗i � arg max
4i

[
xi ∈Ψi :

∑
j

xi j p
∗
j 6 βi

]
. (1)

Note that the language we implement for reporting
preferences, i.e., reporting 4i , allows this problem to be
represented as a mixed-integer program (MIP).

Budish (2011) reports that A-CEEI has several attrac-
tive properties for large problems and approximately so
for finite-sized problems. First, it is Pareto efficient—no
student can be made better off without making another
student worse off. This property arises because the
mechanism finds an allocation that is (approximately) a
competitive equilibrium. Second, the allocation from A-
CEEI satisfies a desirable fairness property. To explain, a
mechanism is envy-free if there do not exist two different
students, i and i′, such that student i prefers student i′’s
schedule to her own. Although A-CEEI cannot guarantee

an envy-free solution (indeed, no mechanism can), it
does yield a solution that is “envy bounded by a single
good,” meaning that if student i envies student i′’s
schedule, then it is possible to remove a single course
from student i′’s schedule to eliminate the envy. Hence,
the degree of envy with A-CEEI is limited; this property
arises from the fact that the budgets are approximately,
but not exactly, equal. (Using exactly equal budgets
would be more attractive for fairness but could make
it impossible to find prices that clear the market even
approximately.) Finally, A-CEEI is strategy-proof, which
means that it is in a student’s best interest to report his
or her true preferences, no matter how other students
choose to report their preferences. This comes from the
fact that student i’s allocation x∗i is her most preferred
bundle given her budget and the prices, and the student
cannot affect either her budget (which is assigned ran-
domly) or the prices (which depend on the preferences
of all students, so in a large market, prices are exogenous
from the perspective of each individual student). As a
result, a student does not need to consider the behavior
or preferences of other students, which greatly simplifies
the student’s decision task, which in turn can help to
increase satisfaction with the mechanism. Furthermore,
given that the institution can assume preferences are
reported truthfully, this mechanism provides useful data
to better understand students, such as which courses,
time slots, or instructors they find desirable.

A-CEEI significantly improves on other mechanisms
described in theory and used in practice. However,
as noted above, there are three important concerns
with the actual implementation of A-CEEI: (i) it is not
guaranteed to find a price vector and course allocation
that satisfies all capacity constraints, (ii) it may not find a
solution quickly enough for a real-world–sized problem,
and (iii) it finds a solution that maximizes reported
preferences but is not guaranteed to find a desirable
solution if students misreport or are unable to report
their true preferences.
To understand the first concern with A-CEEI, fea-

sibility, let z j be the clearing error for course j with
price p j :

z j �


∑

i
x∗i j − q j if p∗j > 0;

max
[(∑

i
x∗i j − q j

)
, 0

]
if p∗j � 0.

If the course is assigned a positive price, then the clearing
error is the difference between the number of students
assigned to the course (i.e., total demand) and the
course’s capacity. A course is oversubscribed if its demand
exceeds its capacity, ∑i x∗i j > q j , and it is undersubscribed
if its demand is less than its capacity, ∑i x∗i j < q j , and
its price is strictly positive. If a course’s price is zero,
i.e., p∗j � 0, then it can have ∑

i x∗i j < q j without counting

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s) 317

as clearing error, as is standard in the definition of
competitive equilibrium. A price vector is said to clear
the market (i.e., it is a clearing price vector) if it has no
clearing error; i.e., α � 0, where

α ≡
√∑

j
z2

j .

Unfortunately, a price vector with zero error may
not exist and has been shown not to exist for some
problems. However, Budish (2011) shows that as long
as no two students have precisely the same budget
(i.e., there do not exist students i and j, i , j, such that
βi � β j), there exists a price vector with market-clearing
error of no more than α �

√
kM/2. Students generally

take four or five courses per semester, but some take
as many as eight, so for the purpose of the worst-case
bound, say k � 8, and say an MBA program offers 300
courses, so M � 300. In that case, the bound is achieved
with a solution that has a squared clearing error no
greater than 1,200� (

√
8× 300/2)2; e.g., all 300 courses

with a clearing error of two seats, or 48 courses with
a clearing error of five seats and 252 courses with no
clearing error. As course capacities are not included in
the bound,

√
kM/2, the clearing error as a fraction of the

total number of available seats converges to zero quite
fast as total capacity increases. But this is not sufficient
for the solution to be considered feasible as is.
A clearing error resulting from undersubscription is

not desirable (because a seat in a popular course is left
unassigned), but this error is viewed as less problematic
than an oversubscription error. In particular, Wharton
simply cannot implement a solution in which, as a result
of oversubscription, ∑i x∗i j > q̂ j .

The second concernwith A-CEEI, computational effort,
is primarily due to the complexity of the task. Recentwork
by Othman et al. (2014) has proved that the combinatorial
allocation problem is PPAD-complete, even with access to
an oracle that can solve the student demand problem
in constant time. PPAD is a complexity class that was
originally developed andmotivated in Papadimitriou
(1994); in brief, it represents search problems in which an
algorithm can only follow successive steps down a path
of indeterminate length.Many other search problems
are PPAD-complete, including solving for Nash equilib-
ria, finding many kinds of market equilibria, finding
repeated game equilibria, finding Brouwer fixed points,
and detecting a completely colored node in the Sperner’s
lemma setting (Papadimitriou 1994, Abbott et al. 2005,
Codenotti et al. 2006, Huang and Teng 2007, Borgs et al.
2008, Chen and Teng 2009, Daskalakis et al. 2009, Kintali
et al. 2009, Pálvölgyi 2009, Chen and Teng 2011, Vazirani
and Yannakakis 2011, Chen et al. 2013, Rubinstein 2014).
An algorithm that could solve course allocation to the
theoretical bound in polynomial time would be able
to solve all of these problems in polynomial time, too.

However, the consensus among computer scientists is
that, just like for the better-known complexity class NP,
there do not exist polynomial-time worst-case algorithms
to solve PPAD problems (Papadimitriou 1994, Daskalakis
et al. 2009).
Although the theoretical results on computational

effort are not encouraging, Othman et al. (2010) report
on a tabu-search heuristic algorithm that finds, with
reasonable effort, price vectors that yield clearing error
even lower than the bound in simulated problems. That
algorithm examines many candidate price vectors, and
it uses the resulting degree of oversubscription and
undersubscription to guide the search of additional price
vectors. However, a real-sized problem is considerably
larger than the problems solved in Othman et al. (2010).

The third concern with A-CEEI, preference reporting,
is not discussed in the theoretical literature because it is
simply assumed that the preference reporting language
is sufficiently rich so as to capture a student’s full set
of preferences and that students are able to correctly
“speak” this language (i.e., they do not make errors
reporting their preferences). These assumptions are
unlikely to hold in practice. A real-sized problem may
have 300 courses offered by 150 professors in 14 time
slots, meaning that by necessity a real-world preference
reporting language must be simpler than asking students
to rank complete schedules ordinally from most to least
preferred. Any simplification risks preventing students
from reporting their actual preferences if their prefer-
ences cannot be expressed using the language provided.
Furthermore, given the size of real problems, even a
student whose preferences in principle can be expressed
using the provided language may find it nontrivial to
do so, perhaps especially if the provided language is
rich. Hence, while A-CEEI might yield a solution that
maximizes each student’s reported preference given
her budget, it might not maximize the student’s actual
preference, which jeopardizes student satisfaction (i.e., a
student may blame herself for the error, or, quite possibly,
she could blame the mechanism).

4. The Course Match Solution
Shortly before a semester begins, Course Match elicits
preferences from students. Course Match also requires
a number of other inputs, including (i) each student’s
budget; (ii) each course’s target, q j , and maximum
capacity, q̂ j ; (iii) the meeting times for each course
(a student cannot be registered for two courses that have
overlapping meeting times); and (iv) the set of courses
each student has already taken (because he or she cannot
take the same course twice). Next, Course Match uses a
computational engine to derive a course allocation that
is reported to students about a week before classes start.
A few days before classes begin, a drop/add period
opens in which students, on a first-come-first-serve
basis, can drop a course, add a course with an open

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
318 Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s)

seat, or add themselves to a course waiting list that
automatically advances if seats become available in the
course. The primary purpose of the drop/add period is
to enable students to make adjustments to their schedule
in case their preferences change, especially once they
start taking classes.
As described later in this section, Course Match

implements a refinement of the A-CEEI mechanism.
Consequently, because of the theoretical properties of A-
CEEI, student budgets are set equal to a base budget plus
a small idiosyncratic tie-breaking subsidy. At Wharton,
the MBA students are divided into several groups: all
second-year students are one group, and the first-year
students are divided into groups based on the semester
and the number of core courses they have tested out of.
(The Wharton MBA is a two-year program.) Each of the
Ng students in group g is randomly assigned to a distinct
tie-breaking budget surplus in {0.1, 0.2, . . . ,Ng/10}. This
amount is sufficiently small such that even the largest
tie-breaking budget surplus is unable to increase a
student’s budget above the base budget of the next higher
group—with 800 second-year students, the maximum
tiebreaker is 80, which is 1.6% of their base budget
of 5,000. Unused budgets from one semester do not
carry over to subsequent semesters because doing so
would introduce incentives to misreport preferences
and increase decision complexity (students would have
to think about how much of their budget they want to
reserve for future use).
The remainder of this section is divided into three

parts. The first part describes the Course Match prefer-
ence language used to elicit preferences from students.
The second part details the computational engine used
to derive an implementable course allocation (i.e., a
solution in which none of the maximum capacity con-
straints are violated) for a Wharton-sized problem
(computational performance is covered in Section 5). The
third part discusses alternative approaches considered,
and rejected, for addressing undersubscription and
oversubscription.

4.1. Preference Elicitation
Although the theory of A-CEEI assumes that students
report a complete ordering i over their set of valid
schedulesΨi , in practice, it is not possible for students to
enumerate their preferences fully because the cardinality
ofΨi is large. Hence, Course Match requires a simple
preference language that students can understand and
use to report their preferences with reasonable accuracy.
Furthermore, the language must result in preferences
that can be solved quickly and reliably by a computer. For
our purposes, this means that they must be translatable
into a MIP that finds a student’s most preferred schedule
at a given price vector (i.e., the student’s most preferred
affordable bundle). Course Match’s elicitation procedure
of translating complex human utilities into MIPs is

similar to the process used in practice to elicit preferences
in combinatorial auctions (Sandholm and Boutilier 2006,
Sandholm 2007).
The reporting language in Course Match allows

students to report a (cardinal) utility value for each
course as well as for pairs of courses (i.e., “extra” utility
value, positive or negative, associated with getting the
two courses together in a schedule). Utilities for both
individual courses and course pairs are weighted by
credit units (CUs), the measure of how much a course
counts toward a Wharton degree. Most courses are
worth either 1.0 or 0.5 CUs. The student’s utility for a
schedule is then taken to be the (CU-weighted) sum of
the student’s utilities for the courses in that schedule,
plus (or minus) any reported utilities for course pairs in
that schedule. Schedules can be rank-ordered by their
utilities to determine the student’s best schedule given
a price vector and his or her budget, i.e., to solve (1).
Observe that this language transforms problem (1) into
a MIP. Following are more details on the data student
input:

4.1.1. Course Utilities. Students report their utility (i.e.,
preference) for each course on a 0 to 100 integer scale:
0 means the student does not want the course, and
100 means the course is the most preferred. While it is
not strictly necessary to place a cap on the utility for
each course, the cap provides an intuitive focal point
for students. Given that the utility of a schedule is
the CU-weighted sum of the reported utilities, a 0.5
CU course can contribute at most 50 to the utility of
a schedule, even though the student can still report
utilities up to 100. This is done so that the sum of the
maximum utilities for two 0.5 CU courses cannot be
greater than the sum of the maximum utility for a 1.0
CU course. It was found that students preferred this
approach over summing utilities without adjusting for
credit units. Figure 1 displays a screenshot of the student
preference reporting interface.

4.1.2. Pairwise Adjustments. Students can select any
pair of courses and apply either a positive or negative
utility adjustment to the pair between −200 and 200. This
allows students to express the preference that taking
two courses is either more desirable than the sum of
the courses individually (with a positive adjustment) or
less desirable than the sum of the courses individually
(with a negative adjustment). For instance, if a student
really wants to take an entrepreneurship and a venture
capital course together, then the student can assign a
high utility to each of them individually and a positive
adjustment for the pair to indicate that the bundle is
particularly desirable (worth more than the sum of the
two individual utilities). Or, if the student wants to
take either the entrepreneurship class or the venture
capital class, but not both, the student can assign a
negative adjustment to lower the value of the bundle in

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s) 319

Figure 1. (Color online) Main utility entry interface students use to input their preferences

Notes. The first column lists the course number. (When a course is cross-listed in multiple departments, the student can choose which department
she wants to take it from in the fifth column, e.g., to satisfy requirements for a major.) The second column provides the course name and other
course details. The third column lists the number of CUs of the course. The fourth column indicates whether the course is the full semester or
whether it meets for only the first or second quarter of the semester (a semester is made of two quarters). The fifth column is where students enter
their utilities. All inputs are defaulted at 0 and can be set to any integer between 0 and 100. The “My Utility Distribution” tab shows the course
numbers ranked by the student’s reported utilities.

the schedule. This adjustment can be chosen so that the
bundle’s utility is nonpositive, ensuring that the bundle
is never selected. While it is not necessary to have an
upper bound of 200 for adjustments, it was found that
unbounded adjustments created confusion with some
students in preliminary tests. In particular, some students
thought they could use adjustments to circumvent the
upper bound on the utility for each course without
realizing that utilities are relative, so the absolute scale
does not matter. The upper bound on adjustments
avoids this misunderstanding by a few students while
not significantly limiting the ability of students to
report their preferences. Allowing for adjustments
on sets of three or more classes was discussed but
rejected; ultimately, the potential benefits from increased
preference expression were judged not to be worth the
additional complexity. Figure 2 shows the utility entry
page with the “Adjustment” tab shown on the right-hand
side.

4.1.3. Capacity Constraints. Students can specify the
maximum number of credit units they wish to take in a
semester.

Although students are able to think about their pref-
erences over courses and pairs of courses intuitively,
their ultimate preference is over the course schedule
they receive. However, even ignoring the price vector
and budgets, it is nontrivial for students to map their
reported preferences to a rank order over permissible
schedules. Hence, the user interface also provides stu-
dents with a way to view their “top schedules” given
their reported utilities, as shown in Figure 3. This feature
enables students to see, using a calendar view, the rank
order of their schedules and the differences in utility
values across schedules. For example, in Figure 3 there
are relatively large gaps in utility between the first,
second, and third schedules but a small gap between
the third and fourth. Students are told that they will
receive the highest-ranked schedule that they can afford
once course prices are determined. Consequently, if they
do not like the ranking of schedules as seen through
this feature, they can refine their inputted course values
and adjustments to better reflect their preferences over
schedules.
The Course Match preference reporting language

was initially pilot tested in the laboratory (Budish and

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
320 Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s)

Figure 2. (Color online) Alternate tab of utility placement screen showing interface for adjusting utilities placed on combinations
of courses

Notes. The right panel illustrates pairwise adjustments. For the left panel, see the notes to Figure 1. The lock in the fifth column indicates that the
student is ineligible to take the course, e.g., because the student has already taken it or lacks a prerequisite.

Kessler 2015), as part of an experimental test of the
overall suitability of the Budish (2011) mechanism for
real-world use at Wharton.

4.2. Computational Engine
Course Match finds a solution to the course allocation
problem with an algorithm divided into three stages.
Stage 1, price vector search, uses an enhanced version of
the Othman et al. (2010) computational procedure to
find a price vector p∗ that is an approximate competitive
equilibrium in the sense defined by Budish (2011). This
allocation may have both oversubscription and under-
subscription errors. Stage 2, eliminate oversubscription,
modifies the prices from Stage 1 so as to eliminate all
oversubscription errors that cause violations of the strict
capacity constraints (the q̂ j capacities); at this stage, the
solution is feasible. Stage 3, reduce undersubscription,
then attempts to reduce, to the extent possible, any
undersubscription errors, without too much compromise
of fairness considerations.

4.2.1. Stage 1: Price Vector Search. Stage 1 in Course
Match computes the A-CEEI mechanism. To obtain a
solution with minimal price clearing error below the
theoretical bound, it follows a tabu search heuristic origi-
nally developed in Othman et al. (2010). The pseudocode
for this stage is displayed in Algorithm 1.
The heuristic search is performed over the price

space and is composed of a series of search starts
until the allotted time for searching is reached (e.g.,
48 hours). A search start proceeds through a series of
steps, each with a candidate price vector, the first of

which is a randomly generated price vector (line 3). With
each step, a set of neighbor price vectors is generated
(line 8). Each neighbor is an intuitive permutation of the
candidate price vector. Neighbors that yield a course
allocation identical to one of the previous candidate
price vectors are dropped. This “tabu” component of
the search prevents visiting the same effective spot
in the search space multiple times (i.e., even if two
price vectors are not identical, if they generate identical
course allocations, then they are effectively identical).
The remaining neighbor with the lowest clearing error,
based on the target capacities q j , is selected as the
new candidate (line 20), even if its clearing error is
greater than the clearing error of the previous candidate
price vector. This allows the search process to explore
other regions of what is presumed to be a rugged
landscape. However, the search start terminates if there
is no improvement in the best clearing error across five
consecutive steps (i.e., candidate price vectors) or if the
allotted time is reached. If a search start terminates and
time remains, another search start is initiated. Search
starts are independent of each other in the sense that
they might adopt equivalent price vectors; i.e., the tabu
list of visited price vectors is cleared with each search
start (line 5).

As in Othman et al. (2010), neighbors are composed of
the union of two distinct sets of neighborhoods:

Gradient Neighbors. In a gradient neighbor, the price
of every course is adjusted proportionally to its number
of seats of undersubscription or oversubscription. So a
course that is oversubscribed by four seats will see its
price raised twice as much as a course oversubscribed by

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s) 321

Figure 3. (Color online) A student’s top schedules are generated from his or her reported preferences and shown in a separate
step before the input is saved

two seats, and the neighborhood is formed by consider-
ing a number of potential step sizes along this gradient
vector (we used up to 12). These steps can be thought of
as a tâtonnement performed by a Walrasian auctioneer.
Individual Adjustment Neighbors. Each neighbor of

this type is the product of changing the price of a small
set of courses. Let C be the number of under- or over-
subscribed courses. To limit the number of neighbors,
min{C, 40} neighbors are created. If C 6 40, then each of
the C neighbors adjusts the price of a single course. If
40 < C, then the C courses are evenly (and randomly)
assigned to 40 neighbors.1 With each neighbor, the price
of an oversubscribed course slated for adjustment is
increased to reduce its demand by exactly one student,
while the price of an undersubscribed course slated for
adjustment is dropped to zero.

There exists a time constraint in Course Match because
both administrators and students expect to see schedules
for a semester produced within a few days of submit-
ting preferences. However, an enormous amount of

computational work is required to find an approximate
equilibrium in the heuristic search. To give a sense of
the computational effort required in a Wharton-sized
problem, evaluating the clearing error at each candidate
price vector requires solving approximately 1,700 MIPs
(one for each student), each iteration requires evaluat-
ing approximately 50 neighbors, a typical search start
may take 100 steps (i.e., candidate price vectors), and
an entire Course Match run may perform 500 search
starts. So in total, solving a Wharton-sized problem
requires computing solutions to about 4.25 billion MIPs.
If it takes one millisecond to solve each MIP—an opti-
mistic assumption in practice—finding an approximate
competitive equilibrium would still take about seven
weeks.

To reduce the time needed to find a solution in Stage 1,
it is possible to parallelize some of the work. The natural
point to parallelize is the evaluation of each of the
neighbor price vectors with each step of a search start
because given a price vector, each student’s MIP is

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
322 Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s)

Algorithm 1 (Heuristic search algorithm through price space, originally developed in Othman et al. 2010)
Input: β̄ themaximum student budget, d: p 7→úM course demands at a price vector, N : p 7→ (p̃k)Kk�1 function that

generates the set of neighbors of a price vector sorted by clearing error α2 ascending, t overall time limit
Output: p∗ price vector corresponding to approximate competitive equilibrium with lowest clearing error.
1: besterror←∞ . besterror tracks the best error found over every search start
2: repeat
3: p←(U[0, 1] · β̄)Mj�1 . Start the search from a random, reasonable price vector
4: searcherror← α(d(p)) . searcherror tracks the best error found in this search start
5: τ←� . τ is the tabu list
6: c← 0 . c tracks the number of steps taken without improving error
7: while c < 5 do . Restart the search if we have not improved our error in five steps
8: î←N(p) . This requires evaluating the clearing error of each neighbor
9: foundnextstep← false

10: repeat
11: p̃←î .pop() . Remove the front of the neighbor list
12: d← d(p̃)
13: if d < τ then. If p̃ does not induce demands found in our tabu list, it becomes the next step in our search
14: foundnextstep← true
15: end if
16: until foundnextstepor î .empty()
17: if î .empty() then
18: c← 5 . All neighbors are in the tabu list; force a restart
19: else . p̃ has the next step of the search
20: p← p̃
21: τ .append(d)
22: currenterror← α2(d)
23: if currenterror < searcherror then
24: searcherror← currenterror
25: c← 0 .We improved our search solution, so reset the step counter
26: else .We did not improve our solution from this search start, so add to the step counter
27: c← c + 1
28: end if
29: if currenterror < besterror then
30: besterror← currenterror
31: p∗← p
32: end if
33: end if
34: end while
35: until current time > t.

independent of all the other MIPs that need to be solved.
Thus, at each step approximately 85,000 independent
MIPs need to be solved (1,700 MIPs per price vector and
50 price vectors). In the software architecture described
in Othman et al. (2010), those MIPs are solved on a single
compute server consisting of distinct cores. In Course
Match each compute server has 32 cores. About three
cores are needed to perform non-MIP solving tasks,
leaving about 29 cores dedicated to solving MIPs. Hence,
with each search step, those 29 cores can simultaneously
solve MIPs, with each assigned approximately 2,931
MIPs (85,000/29). This approach does not scale linearly,
but Othman et al. (2010) show scaling at 90% efficiency
on multiple cores of the same compute server; i.e., using
n cores is 0.9n times faster than one core. Nevertheless,

when we ran computational experiments to evaluate this
single-server architecture, we found significant potential
gains in solution quality from using more computational
power than a single server could provide in the 48
hours allotted. (A single compute server can complete
about 60 search starts in 48 hours, and we found in our
experiments that market-clearing error continued to
go down with additional search well beyond 60 search
starts.)
We explored two ways to add additional computa-

tional capacity to improve on the performance of the
Othman et al. (2010) architecture. The first, which we call
the integrated architecture, extends Othman et al. (2010)
in an intuitive way from one compute server to a cluster
of compute servers—maintain a few cores to perform

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s) 323

non-MIP-solving tasks and dedicate the remaining cores,
across different compute servers, to solving MIPs. With
the integrated architecture, all of the cores within the
cluster are working on the same search step of the same
search start; i.e., at any given moment, the cluster is
working on a single search start. The second approach,
which we call the independent architecture, operates
multiple compute servers independently within a cluster.
In this case, a cluster of n compute servers works on
n different and independent search starts at the same
time. Furthermore, each compute server must dedicate
several cores to non-MIP-solving tasks, leaving fewer
cores within the cluster to work on MIPs relative to the
integrated architecture. However, with the independent
architecture, there is no need for communication across
compute servers because they operate independently. By
contrast, with the integrated architecture, communica-
tion must occur across compute servers because they are
working on the same search start.

The additional communication overhead with the
integrated architecture is substantial and significantly
decreases the ability to use additional compute servers
to speed up the process. To illustrate, we compared
both the integrated and independent architectures by
performing the Course Match search for a half hour on
each of a progressively increasing number of Amazon
cc2.8xlarge compute servers. Figure 4 shows the
relative speedup (measured in terms of the number
of MIPs solved in a half hour) using each approach.
The independent architecture is able to achieve a linear
speedup in the number of compute servers used—it
runs 16.0 times faster when 16 compute servers are
used. By contrast, the integrated architecture appears
to plateau at 3.8 times the speed of a single compute
server when using eight or more servers. This finding is
consistent with other results on the relative performance
of increasing the number of compute servers when
parallelizing complex algorithms (e.g., Sun and Rover
1994). Thus, Course Match adopts the independent

Figure 4. (Color online) Comparison of horizontal scalability
between running a distinct search on each compute server (an
independent architecture) vs. running a single search using all
compute servers (an integrated architecture)

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

Independent architecture

Integrated architectureR
el

at
iv

e
sp

ee
du

p

Number of compute servers

architecture to achieve the required computational
speed.

4.2.2. Stage 2: Eliminate Oversubscription. The heuris-
tic search in Stage 1 outputs a price vector that has
market-clearing error below the theoretical bound. How-
ever, this error may consist of both oversubscription
and undersubscription, and oversubscription can cause
a solution to be infeasible. That is, it is possible that
the price vector from Stage 1 results in an allocation in
which some course’s maximum capacity constraint q̂ j is
violated. The goal of Stage 2 is to transform the Stage 1
solution into one that does not violate any maximum
capacity constraint, i.e., a solution that can feasibly be
implemented in practice.
In the context of the Stage 2 algorithm, a course is

said to be oversubscribed if it is assigned strictly more
than q̂ j students. To eliminate oversubscription, Stage 2
relies on the property that starting from any given price
vector, demand for any single course j is monotonically
decreasing in course j’s price. To be specific, Stage 2
iteratively identifies the most oversubscribed course
and then raises its price to eliminate half of its over-
subscription. It finds the necessary price increase via a
binary search. Pseudocode for Stage 2 is given below as
Algorithm 2.

Although a course’s oversubscription always decreases
when its price is raised, its oversubscription can increase
again at a later step in the algorithm when another
course’s price is increased. Nevertheless, because prices
are only increased and there exists a vector of suitably
high prices at which no courses are oversubscribed,
Algorithm 2 eventually terminates with a solution that
has no oversubscription.
The choice to eliminate half of the oversubscrip-

tion with each iteration is somewhat arbitrary but was
selected to balance the runtime and efficiency concerns
that emerged from the choices at each extreme. For
instance, at one extreme, only a single student could
be removed from the most oversubscribed course; i.e.,
line 3 of Algorithm 2 could be d∗← d̂ j′(p∗) − 1. In our
exploratory analysis, this was found to be very slow
in practice, requiring a huge number of iterations, as
prices were slowly raised between sets of desirable
complementary courses. At the other extreme, oversub-
scription could be eliminated entirely from the most
oversubscribed course; i.e., line 3 of Algorithm 2 could be
d∗← 0. While this raises the price of courses quickly and
produces a feasible solution in fewer iterations, we found
that it produced allocations with very high clearing
error, because it can make price adjustments that are
too large and therefore yield higher course prices than
necessary to get a solution without oversubscription.

4.2.3. Stage 3: Reduce Undersubscription. After Stage 2
eliminates oversubscription, the solution is feasible,
but it is now likely to have a considerable amount

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
324 Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s)

of undersubscription error, i.e., demand in positively
priced courses less than the target capacity, ∑i x∗i j < q j .
If this solution were adopted, then the empty seats in
positively priced courses are likely to be acquired quickly
in the drop/add period at the start of the semester.
There are several reasons why it is not desirable to
have undersubscribed seats acquired that way. First, a
student with a strong preference for a seat in a popular
course may lose the seat to a student with less of an
interest in the course, which works against the goal
of trying to allocate courses in such a way that the
seats in each course are assigned to the students with
the strongest preference for the course. Second, as the
Course Match budgets are no longer relevant in the
drop/add period, a student may be able to acquire a
seat in a popular course for essentially zero cost. In that
case, the student obtains a better schedule than would
have been affordable within Course Match, creating
concerns around actual and perceived fairness. Third,
the drop/add period rewards students who are able
to participate at the time it opens, and at least some
students are likely to be unable to participate at any
selected time in the days before the semester begins.
The goal of Stage 3 is to provide a better solution

to undersubscription than the drop/add period (or a
similar aftermarket). Ideally, empty seats in positively
priced courses would be assigned to the students with
the strongest preferences for those seats, while not
creating an incentive for students to misrepresent their
initial preferences to Course Match. With that guiding

Algorithm 2 (Iterative oversubscription elimination algorithm, reducing by half the excess demand of the most oversubscribed
course with each pass)

Input: p∗ heuristic search solution price vector from Algorithm 1, p̄ scalar price greater than any budget, ε smaller
than budget differences, excess demand function d̂(p) that maps a price vector to the demand of a course
beyond its maximum capacity.

Output: Altered p∗ without oversubscription
1: j′← arg max j d̂ j(p∗) . j′ is the most oversubscribed course
2: while d̂ j′(p∗) > 0 do
3: d∗← bd̂ j′(p∗)/2c . Perform binary search on the price of course j′ until oversubscription equals (at most) d∗

4: pl← p∗j′
5: ph← p̄
6: repeat . Our target price is always in the interval [pl , ph], which we progressively shrink in

half in each iteration of this loop
7: p∗j′←(pl + ph)/2
8: if d̂ j′(p∗) > d∗ then
9: pl← p∗j′

10: else
11: ph← p∗j′
12: end if
13: until ph − pl < ε
14: p∗j′← ph . Set to the higher price to be sure oversubscription is at most d∗

15: j′← arg max j d̂ j(p∗) . Find the most oversubscribed course with the new prices
16: end while.

precept in mind, the Stage 3 algorithm appears in
pseudocode below as Algorithm 3. To simplify notation
in the pseudocode, we define a special choice function
for each student i, x̆∗i . This choice function takes as
arguments the student’s initial budget, βi , and the set of
courses formed by taking the union of the courses in the
student’s initial allocation and the courses that currently
have open seats, denoted as øi . The choice function then
returns the student’s most preferred affordable schedule
out of the courses in this setøi , using the prices p∗ found
in Stage 2, the student’s original reported preferences 4i ,
and the student’s new budget β̆i (updated from βi by
increasing the budget in a way described below). Since
the student’s new budget will be higher than his or
her original budget, the student can always afford the
schedule as of the end of Stage 2; i.e., the student’s
allocation can only improve fromwhat he or she received
in Stage 2. Formally, the choice function is defined as
follows:

x̆∗i (øi , β̆i) ≡ arg max
4i

[
xi ∈Ψi :

∑
j

xi j p
∗
j 6 β̆i , xi j ∈øi

]
.

Stage 3 iteratively selects students and assigns a
selected student the best schedule the student can afford
from the set of seats that are in the student’s current
schedule and in courses with open seats (i.e., enrollments
less than target capacity). After a student selects these
seats, they are no longer available for other students.
By definition, a student’s schedule after Stage 2 is best

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s) 325

Algorithm 3 (Automated aftermarket allocations with increased budget and restricted allocations)
Input: Input allocations xi j � 1 if student i is taking course j, restricted demand functions x̆∗i (øi , β̆i), S students

ordered by class year descending and then by budget surplus ascending.
Output: Altered allocations xi j .
1: repeat
2: done← true
3: õ←[Course j ∈M: ∑

j xi j < q j]. . õ is the set of currently undersubscribed courses
4: for Student i ∈ S do . Iterate over the students in a fixed order
5: x′i← x̆∗i (õ∪ xi , 1.1× βi) . Reoptimize over a restricted set of courses with 10% more budget
6: if xi , x′i then
7: done← false
8: xi← x′i
9: break . Break out of the for loop, so that only one student changes his or her allocation in each pass

10: end if
11: end for
12: until done. . Done only if we do a pass without any students changing their allocation

for the student within his or her current budget. Hence,
if there were no change in budgets, there would be no
change in the allocated courses. Consequently, in Stage 3
each student is awarded a 10% increase in his or her
budget. The objective of this budget subsidy is to allow
many students to receive a reasonable improvement in
their schedules rather than to have a few students receive
large improvements. Furthermore, it is important to
emphasize that students are not allowed to acquire seats
in full courses even if their extra budget would allow
them to afford such seats at the current prices. In sum,
Stage 3 sacrifices some equity (because students early in
the selection process have a wider selection of courses
on which to spend their new higher budget) to improve
upon efficiency (reduce undersubscription) while using
the rich preference data to allocate those seats in a
rational manner. Note as well that the addition of Stage 3
does not affect the conclusion that the mechanism is
strategy-proof in the large.2
A student’s course allocation after Stage 3 may cost

more than the student’s initial budget, meaning that
students may “receive schedules that are even better than
what they could afford.” However, this is not viewed as
a concern for four reasons:
1. Not every student uses the extra budget, nor do

students use the entire budget (e.g., a 1% increase in
their budget may be sufficient to get their most preferred
schedule).
2. The Stage 2 prices are in some sense too high

(because there is only undersubscription and no over-
subscription), so adding small amounts to budgets helps
to compensate for this pricing error.
3. The 10% increase in a student’s budget in Stage 3

is not worth the same as a 10% budget increase in the
earlier stages because this budget increase can only be
used to acquire courses with empty seats.
4. Wharton administrators viewed a 10% increase as

a tolerably small adjustment to budgets relative to the
efficiency gains achieved.

The students selected early in the Stage 3 sequence
have an advantage—they can receive access to desirable
courses before other students. Hence, Course Match
sequences students in the following manner:

1. All second-year students come before any first-year
student.

2. Within a year, students are ordered in increasing
order of the tie-breaking budget subsidy; i.e., those with
the smallest tie-breaking budgets act first.
The second-year-first ordering reflects the cultural

expectation at Wharton that second-year students should
have preferential access to courses relative to first-
year students. Within a year, however, the ordering
has an intuitive fairness quality. Students with the
smallest budget subsidies lose the tiebreaker in the
previous stages of Course Match and are compensated
by having a better position in the final stage of Course
Match. Exploring the theoretical fairness and efficiency
properties of our ordering scheme and alternatives is an
open question for future work.

At the conclusion of Stage 3 we have our final course
allocation. In this final allocation all maximum capacity
constraints are satisfied, and each student receives (at
least) the best schedule he or she can afford given the
student’s initial budget and the final prices from Stage 2.
4.2.4. Alternative Approaches to Market-Clearing Error.
We considered a number of alternative approaches to
the problems of oversubscription and undersubscription
resulting from Stage 1 that we ultimately rejected in
favor of Stages 2 and 3 described above:
Drop Students from Oversubscribed Courses. If after
Stage 1 there are more students assigned to course j,∑

i x∗i j , than its capacity (either q j or q̂ j), then a sufficient
number of students could simply be dropped from the
course. This could be done with a lottery that randomly
selected students to dropwith equal likelihood. However,
such an approach might drop students who have the
strongest interest in the course, which reduces both

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
326 Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s)

efficiency and fairness. Alternatively, the drop process
could be based on some observable data—for example,
dropping the students who assigned the lowest utility to
the course (or, to be more sophisticated, the students
who would have the smallest percentage reduction in
utility if they were dropped from the course). However,
such rules create an incentive for students to misreport
their preferences because they treat each student’s
reported preferences similar to bids in an auction (i.e., the
highest q j bids win) and would introduce the problems
associated with strategic bidding present in auction
mechanisms, which Course Match seeks to eliminate.
Furthermore, as a result of a random approach for
dropping students, it would no longer be true that each
student “receives the best schedule they can afford,”
which was considered to be a valuable claim for gaining
student acceptance of the program.
Artificially Lower Target Capacities. The capacity as-
signed to course j, q j , need not equal the maximum
capacity, q̂ j . One option is to set the target capacity,
q j , such that there is a sufficient buffer between it and
the maximum capacity; i.e., q̂ j − q j is “large enough.”
For instance, if a course is held in a room with 50
seats (q̂ j � 50), then instead of choosing 50 as the target
capacity, choose something like 40 seats (q j � 40). If the
Stage 1 solution has fewer than 10 oversubscribed seats,
then the solution is actually feasible for the real problem.
There are several issues with this approach:
1. It is not possible a priori to know which courses

need a buffer or how large that buffer should be. One
could attempt to design an algorithm to determine the
buffer quantities, but this is likely to be a challenging,
nonlinear, probabilistic search problem.
2. This approach is likely to leave empty seats in

popular courses (i.e., courses with positive prices).
Although such a solution could be implemented, it
would not be well received by students.

3. There is no guarantee that this approach actually
yields a feasible solution, because if the buffer is not
chosen to be large enough, then it remains possible that∑

i x∗i j > q̂ j for some j.
4. Finally, artificially lowering the target capacities

reduces the amount of slack in the allocation problem,
which makes the Stage 1 search problem harder. To see
why, first note that with enough slack the allocation
problem is trivial: price all courses at zero and give
each student his or her most preferred schedule. But as
capacity becomes more restrictive, fewer courses have a
zero price, which makes the effective dimension of the
search problem larger. In our exploratory analysis, large
reductions in course capacity made the search problem
substantially harder, producing low-quality solutions.
Weighted Search. Given that oversubscription is costlier
than undersubscription, a reasonable remedy is to
penalize oversubscription by a greater amount than

Table 1. Stage 1 price vector search summary statistics for the
spring 2014 Course Match production run

Compute servers 7
Hours 48
Number of courses 351
Number of search starts 418
Search paths performing a strict hill climb 20
Price vectors explored 2.0 million
Total MIPs solved 4.5 billion

Note. A “strict hill climb” is a search path that does not improve its
best-found solution by temporarily moving to a price vector with a
higher clearing error.

undersubscription (e.g., penalize oversubscription five
times as much as undersubscription) in the Stage 1 price
vector search.

We found that this approach resulted in substantially
worse overall search performance, producing results
that, much to our surprise, actually increased over-
subscription. We conjecture that this counterintuitive
result is because the error function plays two roles in
the Stage 1 price vector search process. The first role
is straightforward: is the candidate solution a good
solution (i.e., low clearing error)? The second role is
subtle: the clearing error score guides the search from a
random initial starting point to a good solution (line 11
of Algorithm 1). When the weighting vector of the search
is altered, the hope is to affect only the former role
(solution quality) and produce solutions more skewed
toward undersubscription. But we believe it also detracts
from the second role, which is to guide the search
process to a better solution. This may occur because the
search problem is very challenging, with many local
minima. As shown in Table 1, the path toward a good
solution almost always involves taking steps through
bad solutions. Informally stated, in challenging search
problems, you need to enter a valley before you can
climb a different hill. By weighting the search vector, the
search is far less likely to enter intermediate solutions
with oversubscription and hence more likely to get stuck
in a local minimum.

5. Computational Results
This section reports on the output of a production run of
Course Match for the spring 2014 semester. The run used
seven Amazon EC2 cc2.8xlarge instances for 48 hours
and was conducted in December 2013. In Section 5.1 we
discuss the performance of the Stage 1 heuristic search,
and in Section 5.2 we present results on solution quality
across all three stages of Course Match. Section 5.3
discusses analogous results for nonproduction runs
conducted to assess robustness; full details of these
robustness runs are presented in Online Appendix A.

5.1. Search Results
Table 1 reports summary statistics of the Stage 1 price
vector search process of the spring 2014 Course Match
production run.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s) 327

Two observations fromTable 1 are of particular interest.
First, fewer than 5% (20/418) of the search starts followed
a strict hill climb, meaning that the search improved
until it found a local minimum that was the best-found
solution in that start. Put another way, in more than 95%
of search paths, the best-performing solution was found
on a path that at some point moved to neighbors that
temporarily decreased the solution quality. (Recall that
Algorithm 1 allows the search to take up to five of these
steps before terminating the search start.) This suggests
that the search space is challenging and filled with local
minima. The success that our tabu search achieved in
this setting is in line with past successful applications of
tabu search in challenging domains (Watson et al. 2003).

Second, even with the large amount of computational
power behind it, only a vanishingly small fraction of the
potential search space was actually explored. Consider a
dramatically simpler version of our search problem, in
which courses can be assigned only one of two prices,
0 or 1. The number of price vectors explored in this
run could exhaustively enumerate only a 21-course
allocation problem, far smaller than the 351 courses
under consideration. In fact, the actual problem is much
larger. If we discretized the price space by unit prices up
to 5,000 (a second year’s base budget) for each course,
an exhaustive enumeration of potential price vectors
would have cardinality 5,000351 ≈ 101,300, of which we
explore 2× 106. For context, 101,300 is much larger than
the number of atoms in the universe, and 2× 106 is much
smaller than the number of atoms in a grain of sand.
Our heuristic search procedure is powerful enough
to produce practical solutions despite the size of the
problem.
Figure 5 shows a plot of the average squared error

of the best solution found on each search start, plotted
against the number of steps taken in a search start
(i.e., the number of times through the inner loop of

Figure 5. (Color online) The squared error of the best-found
solution in each step of the Stage 1 price vector search (i.e.,
line 24 of Algorithm 1), averaged over all search starts, in the
spring 2014 Course Match production run

100

1,000

10,000

100,000

10 20 30 40 50 60 70 80 90 100

E
rr

or
 o

f b
es

t n
od

e
fo

un
d

Step number

Notes. The theoretical error bound is given by the dotted line. The y
axis is log scaled.

Figure 6. (Color online) The average fraction of search steps
that selected a gradient neighbor (i.e., p̃ is of the gradient
neighbor type in line 20 of Algorithm 1) at a given number of
steps in the spring 2014 Course Match production run

0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
se

le
ct

in
g

gr
ad

ie
nt

 s
te

p

10 20 30 40 50 60 70 80 90 100

Step number

Algorithm 1). The error falls quickly for about the first
10 steps before the rate of decrease tapers off. The straight
line on the plot represents the theoretical bound on
clearing error. Since the number of courses in spring
2014 was M � 351, and the largest requested bundle was
k � 8 courses, there exists at least one solution to the
allocation problem with total squared clearing error of
at most Mk/2 � 1,404. The average search start crossed
this bound after taking 21 steps.
Figure 6 provides a hint as to why the error falls so

quickly in the early stages of the search. Recall that at
a given price vector the search can step to a member
of one of two neighborhoods: either one that adjusts
only the price of a single course or a gradient step
that simultaneously adjusts the price of every course.
The figure shows that early in the search, gradient
steps are selected almost exclusively, and then there
is a steep drop-off in their frequency of selection after
approximately 20 steps. Observe that this matches the
drop in squared error, suggesting that squared error
drops quickly when gradient steps are being taken but
much slower when they are of limited use. However,
the gradient steps are not ignored at later stages of
the search. Our results indicate that gradient steps are
selected about 15% of the time after 50 steps of a search
start.

Recall from Algorithm 1 that the search restarts when
a series of five sequential steps do not improve its
squared error. Figure 7 shows the fraction of search starts
that survive taking a given number of steps without
restarting. It shows that the pace of restart begins to
quicken around the 50th step.

5.2. Stage Comparison
Table 2 presents measures of solution quality for each of
the seven compute servers for each stage of the Course
Match algorithm. It reports squared market-clearing
error α2, broken separately into error arising from over-
subscription and error arising from undersubscription;

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
328 Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s)

Figure 7. (Color online) The average fraction of search starts
surviving to a given number of steps (i.e., we have not broken
out of the intermediate loop begun on line 7 of Algorithm 1) in
the spring 2014 Course Match production run

F
ra

ct
io

n
of

 s
ea

rc
he

s
on

go
in

g

10 20 30 40 50 60 70 80 90 100

Step number

0

0.2

0.4

0.6

0.8

1.0

the total error in seats; and a measure of deadweight
loss, defined as the value of the undersubscribed seats
divided by the total value of all seats. As each compute
server operates independently, each compute server
yields a distinct solution after each stage. There are
several interesting results from Table 2.

• The compute server with the best solution changes
across stages andmetrics. Server 2 has the lowest squared
error after the Stage 1 price vector search; server 1
after the Stage 2 oversubscription elimination; and
server 7 had the lowest deadweight loss and fewest
undersubscribed seats following the conclusion of the
Stage 3 undersubscription reduction. This result strongly
suggests the value of running the entire search process
in parallel across many different compute servers.

• The amount of squared error increased on each
server as a result of the Stage 2 oversubscription elimi-
nation process. Because squared error is symmetric, in
general, the solutions at the end of the Stage 1 price vector
search will have total error approximately equal between
oversubscription and undersubscription. Consequently,

Table 2. Stagewise results from the spring 2014 Course Match production run

Stage 1: Price vector Stage 2: Oversubscription Stage 3: Undersubscription
search α2 elimination α2 reduction α2

Compute server + − Seats Loss (%) + − Seats Loss (%) + − Seats Loss (%)

1 51 40 32 0.19 0 141 67 0.80 0 31 17 0.07
2 23 28 24 0.20 0 205 97 1.26 0 30 16 0.07
3 75 35 25 0.31 0 138 74 0.96 0 21 17 0.07
4 36 125 71 0.68 0 228 106 1.00 0 83 33 0.33
5 59 48 36 0.28 0 201 87 1.15 0 52 24 0.09
6 53 48 32 0.22 0 186 86 0.87 0 32 22 0.07
7 47 56 42 0.54 0 202 86 1.13 0 17 13 0.02

Notes. Each column refers to the solution after that stage completes. Squared clearing error, α2, is provided for oversubscription (+) and
undersubscription (−) separately, with oversubscription in all cases measured relative to maximum capacity, q̂ j , and undersubscription measured
relative to target capacity, q j . “Loss” is the percent deadweight loss from undersubscribed seats in positive-price courses (i.e., the total value of
those seats, based on their price, relative to the total value of all seats).

we should expect squared error to increase when we
move to a solution without oversubscription.

• The number of empty seats does not strictly corre-
spond to the total deadweight loss. In some solutions
the unallocated seats are in low-price courses, while
in others they are in high-price courses. In the server 4
solution each seat in the average undersubscribed course
is worth 0.01% of the economy, while in the server 7
solution undersubscribed seats are worth about a sixth
of that.

• In Stage 3 undersubscription reduction, there is on
average a 77% reduction in the number of positive-price
undersubscribed seats and a 90% reduction in dead-
weight loss. This is a significant increase in efficiency
from a relatively small adjustment in budgets (10%).

• Since the Stage 1 price vector search utilizes an
enhanced version of the prior state-of-the-art algorithm
(Othman et al. 2010), comparison of solution quality
after Stage 1 to solution quality after Stage 3 gives a
sense of the improvement Course Match makes to the
prior state of the art. Since Othman et al. (2010) uses
a single-server architecture and Course Match uses a
multiserver architecture, the most relevant comparison
is between the average performance of the Stage 1 search
and the best performance of the Stage 3 search. Course
Match improved total squared error from 103 to 17 (84%
reduction), improved error in seats from 37 to 13 (65%
reduction), and improved deadweight loss from 0.54% to
0.02% (94% reduction). If instead we used the best Stage 1
performance as the benchmark (essentially moving
Othman et al. (2010) to our independent architecture),
the improvements would be 67% for total squared error,
46% for seats, and 89% for deadweight loss. Perhaps
more importantly, the prior state of the art yielded a
solution that was infeasible because of a violation of
capacity constraints, whereas Course Match yields a
feasible solution. A disadvantage relative to the prior
state of the art is the extra budget inequality needed in
Stage 3 to achieve these results.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s) 329

Of the seven solutions, the server 7 solution was
advanced for implementation by the Wharton program
administrators because it had the lowest deadweight loss.
There were then last-minute course modifications by
Wharton administrators that necessitated rerunning the
search (with less computational time); the best solution
in this rerun had deadweight loss of 0.07%. In future
production runs, Wharton plans to continue to select the
solution with the lowest deadweight loss after Stage 3.

5.3. Robustness
In Online Appendix A, as a robustness check, we perform
the analyses of Sections 5.1 and 5.2 for the fall 2013
semester. The detailed computational performance data
had not been maintained from the original production
run, so we reran CourseMatch on the fall 2013 preference
and capacity data in early 2016. To get an apples-to-
apples comparison, we also reran Course Match on the
spring 2014 data in early 2016.

At a high level, results from fall 2013 are substantially
similar to results from spring 2014. However, a few
interesting differences and observations emerged:

• While the pattern depicted in Figure 6 obtains
for fall 2013 as well, the fall 2013 search consistently
relied more heavily on the individual adjustment neigh-
bors than on the gradient steps. The individual search
starts went on for longer without getting stuck but
also improved more slowly (see Figures A-7 and A-5,
respectively, in the online appendix).

• The overall solution quality in fall 2013 was worse
than that for spring 2014, with the difference becoming
particularly evident after oversubscription is eliminated
in Stage 2. See Table A-2 in the online appendix. We
hypothesize that this difference may be because included
in fall is a large set of courses of which students are
required to take exactly one from the set, where each
course in the set has a small target capacity (10 or
fewer seats) and student preferences across the set are
primarily driven only by when the course is offered
(rather than topic or instructor). Consequently, adding
or removing a student from one of these courses has a
relatively large impact on enrollment, which makes fine-
tuned pricing adjustments challenging. Nevertheless,
the overall amount of error for fall 2013 is quite small in
absolute terms: 27 seats and deadweight loss of 0.16%.

• To our surprise, the performance of Course Match
on the spring 2014 data was noticeably better in our early
2016 analysis versus the December 2013 production run
reported in the body of the paper. The number of price
vectors explored and MIPs solved increased by about
60%, from 2.0 million and 4.5 billion to 3.2 million and
7.1 billion, respectively. The final solution had error of
just three seats and deadweight loss of less than 0.01%.
This difference is attributable to an improvement in the
computational performance of the Amazon cloud. This

appears to be the first documentation of Amazon increas-
ing the performance of identical compute instances over
time.

In addition to these robustness results reported in the
online appendix, we note as well that Course Match has
been running successfully at Wharton since fall 2013 (six
semesters as of the present writing). The computational
performance and solution quality reported in the present
paper are representative of the performance and quality
in subsequent semesters.

6. Economic Results
In this section we summarize the economic performance
results from the fall 2013 and spring 2014 semester runs
of Course Match at Wharton. We begin by describing the
quantitative properties of the allocations themselves and
then provide survey data demonstrating that students
were very satisfied with those allocations.

6.1. Efficiency
Table 3 shows quantitative summary statistics from
the fall 2013 and spring 2014 runs. The two semesters
had similar inputs and outputs. One salient difference
between the two semesters was that spring 2014 had
many more courses with maximum capacities above
target capacities. The quality of the final allocation
in spring 2014 also appears to have been higher; its
deadweight loss was about one-third of the deadweight
loss of the fall term, although both semesters had very
low deadweight loss in absolute terms—less than one-
fifth of 1% of the total economy in each semester.
Figure 8, panels (a) and (b) show the relationship

between course capacities and prices in the fall 2013
and spring 2014 allocations. Each circle represents
a course. The color of a circle is determined by the
allocation of the course relative to its target capacity. Red
circles are courses with low allocation relative to target
capacity, white circles are courses that exactly match
target capacity, and blue circles are courses that exceed
target capacity (but do not exceed maximum capacity).
The saturation of the colors reflects the absolute error
relative to target capacities: a class with no students
would be dark red, and a class that fills its maximum
capacity would be dark blue. In each semester there is a
weak relationship between course price and capacity.
Furthermore, while most (but not all) of the courses
with allocations below target capacity have a zero or
low price, courses with allocations above target capacity
(blue) occur at all prices and are not concentrated just in
the high-priced courses.
Figure 9, panels (a) and (b) plot the number of seats

over or under target capacity for courses with positive
prices and undersubscription (red circles) or allocations
above their target capacities (blue circles). There is a weak
relationship between the absolute clearing error and
course price. Absolute clearing error is also somewhat

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
330 Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s)

Table 3. Quantitative summary statistics from the fall 2013 and spring 2014 allocations

Fall 2013 Spring 2014

Students 1,650 1,700
Courses 285 344
Courses with maximum above target capacity, i.e., q j < q̂ j 78 262
Total capacity overhead (∑ j(q̂ j − q j)/

∑
j q j) 0.8% 2.1%

Number of courses with demand above target capacity 13 49
Fraction of total capacity allocated 71% 74%
Number of courses with a positive price 154 199
Number of undersubscribed positive price courses 15 18
Deadweight loss as percentage of economy 0.19% 0.07%
Highest course price as fraction of average budget 1.31 0.88

Figure 8. Course capacities and prices

(a) Fall 2013

0 1,000 2,000 3,000 4,000 5,000

Course price

0 1,000 2,000 3,000 4,000 5,000

Course price

0

50

100

150

200

T
ar

ge
t c

ou
rs

e
ca

pa
ci

ty

0

50

100

150

200

T
ar

ge
t c

ou
rs

e
ca

pa
ci

ty

(b) Spring 2014

Notes. Each circle represents a course. The color of a circle is determined by the allocation of the course relative to its target capacity. Red circles are
courses with low allocation relative to target capacity, white circles are courses that exactly match target capacity, and blue circles are courses that
exceed target capacity (but do not exceed maximum capacity). The saturation of the colors reflects the absolute error relative to target capacities: a
class with no students would be dark red, and a class that fills its maximum capacity would be dark blue.

Figure 9. Course market-clearing errors and prices

Notes. Courses in fall 2013 and spring 2014 that either exceeded their target capacities (i.e., they made use of additional max capacity) or had
positive price but were undersubscribed (i.e., they contributed to deadweight loss) are shown. The saturation of the colors reflects allocations
relative to target capacities: a class with no students would be dark red, and a class that fills its maximum capacity would be dark blue.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s) 331

Table 4. The degree of effect of oversubscription elimination
and automated aftermarket on courses and students

Fall 2013 Spring 2014

Courses 285 344
Courses changing price in 98 97

oversubscription elimination
Students 1,650 1,700
Students changing allocation in 381 327

oversubscription elimination
Students changing allocation in 222 147

undersubscription reduction

limited—never more than five seats. Furthermore, as one
would hope, oversubscription (based on target capacity)
is more common relative to undersubscription with
high-priced courses and less so with low-priced courses.

Table 4 shows how Stage 2 (oversubscription elimina-
tion) and Stage 3 (undersubscription reduction) affect
the solution. In fall 2013, about 34% of course prices are
changed to eliminate oversubscription, while in spring
2014, about 28% of course prices are changed. As a result
of these price changes, about 23% of students in the fall
and 19% of students in the spring change their course
allocations to eliminate oversubscription. Finally, with
undersubscription reduction, only about 13% of students
in the fall and 9% of students in the spring change their
allocations.
Figure 10, panels (a) and (b) show the budget expen-

diture by students over the three stages for the fall
2013 and spring 2014 semesters. Each figure consists
of three subplots. The top subplot buckets students by
the amount of their initial budget spent after Stage 1
(price vector search). The middle subplot shows these

Figure 10. (Color online) Percentage of budget spent by stage
(a) Fall 2013, Stages 1–3

0
0.05
0.10
0.15
0.20
0.25
0.30

0
0.05
0.10
0.15
0.20
0.25
0.30

F
ra

ct
io

n
of

 s
tu

de
nt

s

0 20 40 60 80 100 120

Percentage of budget spent

0
0.05
0.10
0.15
0.20
0.25
0.30

(b) Spring 2014, Stages 1–3

0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

F
ra

ct
io

n
of

 s
tu

de
nt

s

0 20 40 60 80 100 120

Percentage of budget spent

0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Notes. The percentage of initial budget spent by students after (Stage 1 price vector search (top panel), Stage 2 over Subscription elimination
(middle panel), and Stage 3 undersubscription reduction (bottom panel). For clarity, students spending less than 50% of their budget are grouped
into a single bucket.

buckets after Stage 2 (oversubscription elimination),
and the bottom subplot shows these buckets after the
completion of Stage 3 (undersubscription reduction).
In Stages 1 and 2, students cannot spend more than
100% of their initial budget, and while most students
spend most of their budget (say, 90% or more), there
remains a large number of students who spend a smaller
portion of their budget. In Stage 3, students are able
to spend an additional 10% of their initial budget on
undersubscribed courses. Nevertheless, fewer than 15%
of students actually spendmore than their budget, which
suggests that possible equity concerns associated with
Stage 3 are not significant.

6.2. Fairness
One measure of fairness is envy—when a student prefers
the allocation received by another student over her
own. We already know that there should be some
envy in the Course Match allocations because Course
Match divides students into groups with significantly
different budgets (e.g., all second-year students get
larger budgets than all first-year students), and even
within the same group there can be envy as a result
of variations in the tie-breaking subsidy (though, as
mentioned earlier, that envy is bounded by a single
course). As it is mathematically impossible to design
a mechanism that is completely free of envy, it is not
clear how much envy is tolerable and how much is too
much. To provide a benchmark, it would be ideal to
compare the envy in the Course Match allocation to the
envy produced by a competing mechanism, such as the
auction Wharton previously used. However, because
bids are unlikely to represent true preferences in the
Wharton auction, it is not possible to use previous

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
332 Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s)

Table 5. Percentages of second-year students with S courses
among the N highest-priced courses

S � 0 S � 1 S � 2 S � 3+
Mechanism Semester N (%) (%) (%) (%)

Auction Fall 2012 20 32 43 20 5
Course Match Fall 2013 20 13 71 15 0
Auction Fall 2012 40 14 34 31 20
Course Match Fall 2013 40 4 44 50 2
Auction Spring 2013 20 54 38 8 0
Course Match Spring 2014 20 32 65 4 0
Auction Spring 2013 40 20 42 29 9
Course Match Spring 2014 40 6 52 42 0

auction data to determine levels of envy. (However,
see Budish and Kessler 2015 for experimental evidence
comparing envy between these two mechanisms.)
As we cannot use envy to measure fairness, we pro-

vide two alternative, but related, measures of fairness
that enable us to compare Course Match to Wharton’s
previous auction mechanism. The first focuses on how
evenly seats in the most expensive courses are dis-
tributed among the students, and the second, called the
Gini index, measures how evenly the “wealth” in this
economy is distributed, where the value of a seat equals
its price.

Table 5 shows the percentage of second-year students
with S courses among the most expensive N courses.
(We focus on second-year students because first-year
students vary significantly in the number of courses they
desire because of course requirements and waivers.) Two
values of N are reported, 20 and 40, because the number
of seats among the top 20 courses is approximately equal
to the number of second-year students, and the number
of seats among the top 40 courses is approximately equal
to the total number of MBA students. Because the spring
and fall semesters differ in the types of courses offered
and student needs, each Course Match semester is
compared against the same semester in the previous year
that used the Wharton auction. If all students want a seat
among the top N courses (which is unlikely to be true,
but most students probably have some preference for at
least one of these courses), then an equitable solution
would concentrate the distribution in the S � 1 and
S � 2 columns. In all cases, Course Match concentrates
substantially more of its distribution in those desirable
columns than the auction. For example, comparing the
auction in fall 2012 to Course Match in fall 2013, 63% of
students received one or two courses among the top
20 with the auction, while 86% did with Course Match.
Consequently, with the auction, 32% of students were
excluded from the top 20 courses (S � 0)whereas only
13% were absent from the top 20 courses with Course
Match. And while no student with Course Match was
allocated more than three seats among the top 20 courses,
with the auction, a lucky 5% of students received three

or more seats in that set. The same pattern emerges
when we consider the 40 highest-priced courses and the
spring semesters. In sum, with Course Match, relative to
the auction, fewer students are excluded from the most
expensive courses, and very few (if any) students are
able to acquire many seats among those courses.

Instead of focusing on the distribution of seats in the
most expensive courses, it is also possible to measure
the distribution of seats overall. If the value of a seat
is taken to be its price, then the sum of the prices of
the seats in a student’s schedule can be taken as a
measure of the wealth the student has earned from
the allocation. Fairness suggests that wealth should be
evenly distributed. The Gini coefficient measures the
inequality of a distribution and is typically used for
measuring income inequality. The Gini coefficient ranges
between 0 and 1: if every person has identical wealth,
the Gini coefficient is 0; if a single person controls all of
the wealth, the Gini coefficient is 1. Hence, wealth is
more concentrated among a few as the Gini coefficient
increases.

The interpretation of the Gini coefficient in the context
of income inequality is clear—because it is reasonable to
assume that everyone prefers more income to less, an
increase in the Gini coefficient implies that more of the
valuable resource (income) is assigned to fewer people,
which means less equality. With course allocation, the
interpretation of the Gini coefficient is not as straight-
forward. It is possible that a student receives her most
preferred schedule even though the schedule has zero
total cost—it just so happens that the student values
courses that are not capacity constrained. Thus, the Gini
coefficient probably overstates the degree of income
inequality. Nevertheless, popular courses are likely to
have higher prices, and so the total cost of a student’s
schedule is a reasonable proxy of the value the economy
places on her schedule.
Table 6 reports the Gini coefficients for the fall and

spring semesters, one with the prices generated by
the auction in the last year it was implemented and
the other with the prices generated by Course Match
in its first year of implementation. The coefficients
are calculated for three different student groupings:
only first-year students, only second-year students, and
all students. Recall from Section 4.1 that students are
granted roughly equal budgets within a year but unequal

Table 6. Gini coefficients of student allocations

First-year Second-year All
Mechanism Semester students students students

Auction Fall 2012 0.33 0.36 0.54
Course match Fall 2013 0.13 0.22 0.32
Auction Spring 2013 0.25 0.39 0.34
Course match Spring 2014 0.10 0.12 0.15

Note. Fall 2012 allocations are taken as round 5 of the auction.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s) 333

budgets between years (and that was true with the
auction as well). This systematic unfairness is considered
natural in the course allocation setting at business
schools. Consequently, intrayear Gini coefficients are
a better measure of fairness in this setting than the
Gini coefficients of allocations including both years. By
design (and therefore, as expected), the Gini coefficient
for the whole student body is higher than the intrayear
Gini coefficients.
As is evident, Course Match in all pairwise com-

parisons with the auction reduces the Gini coefficient,
meaning that Course Match produces an allocation that
more evenly distributes wealth among the students. To
calibrate these scores somewhat (and with the under-
standing that the Gini coefficient with course allocation
likely overstates income inequality), the auction’s fall
2012 intrayear Gini coefficients are roughly in line with
the United Kingdom’s post-transfer income distribu-
tion (0.34), while both the fall 2013 and spring 2014
Course Match allocations have intrayear Gini values
lower or much lower than the country with the lowest
post-transfer income distribution, Denmark (0.24). The
spring 2014 schedule, in particular, has intrayear Gini
coefficients that are very low, approximately 0.1.

6.3. Student Perception
Although Course Match has desirable results in terms of
various efficiency and fairness measures, the ultimate
metric of its success is student satisfaction. Prior to 2013,
Wharton measured satisfaction with the auction course
registration system with a single question on an annual
stakeholder survey given to MBA students. The last
year in which the auction was implemented for course
allocation was 2013. In anticipation of the auction’s
retirement, two additional questions were added to the
survey in 2013—one directed toward satisfaction with
the course schedule a student received and the other on
a student’s impression of the fairness of the auction. The
same questions were asked in 2014 with “Course Match”
replacing “the auction” in the wording of the question.

Table 7 reports the percentage of students responding
with one of the top two scores (6 or 7). With respect to
“effectiveness,” student satisfaction had been decreasing
over time, with the lowest score occurring in the last
year of the auction, but then this measure improved

Table 7. Percentage of 6 or 7 responses on three questions related to course allocation at Wharton

2010 2011 2012 2013 2014

Effectiveness of the course registration system (1� poor, 7� excellent) 43% 43% 34% 24% 53%
I was satisfied with my schedule from {the auction, Course Match} — — — 45% 64%

(1� very unsatisfied, 7� very satisfied)
{The auction, Course Match} allows for a fair allocation of classes — — — 28% 65%

(1� strongly disagree, 7� strongly agree)

Notes. “Year” refers to the end of the academic year in the spring semester; e.g., 2014 is the academic year covering fall 2013 and spring 2014. Only
the “effectiveness” question was asked in 2012 and earlier. The 2013 results apply to the auction, the last year of its use. The 2014 results apply to
Course Match.

considerably in 2014, the year Course Match was imple-
mented. Course Match performed very well on the other
two measures as well—“satisfied with my schedule”
increased from 45% to 64%, and “fairness” experienced
an even larger increase, from 28% to 65%. These dramatic
improvements also provide indirect evidence suggesting
that students were able to report their preferences to the
Course Match system successfully—if they were not
successful in doing so, either because the language was
too limiting or because they had difficulty “speaking”
it, then it is unlikely that satisfaction scores would be
high. In sum, the student survey results provide strong
evidence that Course Match is effective at providing
efficient solutions and increasing perceptions of fairness.

7. Conclusion
Course Match is a large-scale implementation of the
approximate competitive equilibrium from equal in-
comes mechanism for course allocation that is capable
of producing implementable (i.e., feasible) solutions
within a sufficiently small lead time by cost-effectively
harnessing the power of cloud computing. The resulting
allocation was attractive on quantitative measures of eco-
nomic efficiency and fairness, such as deadweight loss
and the equality of the distribution of popular courses.
Perhaps most importantly, relative to the previously
used auction mechanism, Course Match substantially
increased student perceptions of effectiveness, satisfac-
tion, and fairness.

A critical feature for the success of Course Match is its
“strategy-proof” property—a student’s best strategy is to
report her true preferences no matter what preferences
other students report or what capacities are assigned
to each course. This greatly simplifies the student’s
reporting task because the student need not form beliefs
about how other students will “play” or what clearing
prices might be for courses. By contrast, the Wharton
auction (as well as all other course-allocation mecha-
nisms implemented in practice) was not strategy-proof.
For example, if a student desires a course but believes
that it will have a zero clearing price, then the student
should rationally submit a low bid and save tokens to
bid on other courses. However, the student may make
a mistake and not receive the course she desires if the

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
334 Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s)

clearing price turns out to be higher than expected. This
bidding mistake is not trivial, and it could even lead
a student with ample tokens to receive zero courses.
Such errors do not happen with Course Match, because
Course Match effectively bids on behalf of students after
all of the clearing prices have been revealed. Hence,
Course Match never “bids more” than the clearing price
(which would waste budget tokens) nor “bids less” than
the clearing price for a desired course (thereby losing
the seat). Furthermore, although Course Match is able to
solve the MIP that yields a student’s best schedule given
the reported preferences and price vector, it is highly
unlikely a student would be able to identify the best
schedule with the same information consistently; i.e.,
computers are better than humans at solving MIPs. In
sum, Course Match performs all of the tasks that are best
performed by a computer (e.g., finding a price vector
and assigning seats to students given that price vector)
while leaving the students the one task the computer
cannot do, i.e., reporting their own preferences. Conse-
quently, a substantial amount of human computation
effort (e.g., forming beliefs, choosing bids) is eliminated
and replaced with cloud-based computing power.
The cliché “garbage in, garbage out” applies with

Course Match—while the Course Match mechanism has
many desirable theoretical properties, if the preference
language given to students is not sufficiently rich (i.e., it
does not allow students to express critical preferences)
or if students are not able to “speak” this language (i.e.,
they cannot use the language to correctly report their
preferences), then Course Match may not yield desirable
results. We are not able to provide direct evidence of
the quality of the Course Match preference reporting
language and user interface, but the high overall student
satisfaction scores provide indirect evidence that the
Course Match language is sufficiently rich and easy to
use. See also Budish and Kessler (2015) for laboratory
evidence on the efficacy of the reporting language.
We are able to document that Course Match is a

superior mechanism for taking a given set of courses
and allocating them to students. Another approach
to improve student satisfaction is to change the set of
course offerings, i.e., which courses are offered, which
classrooms they are offered in, and when they are offered.
Given that students report their true preferences to
Course Match, it is possible to observe the demand for
each course that would occur if there were no capacity
constraints. This enables the school administration to
distinguish between two courses, each with 60 seats
and 60 students enrolled but one that would have 200
students and the other that would have 20 students in
the absence of capacity constraints. The course with the
higher demand is far more popular, even though it has
the same enrollment as the less popular class, which
must have full enrollment only because some students
were not able to get into their more preferred courses

(i.e., 40 of the 60 students enrolled would not have
included the course in their most preferred schedule). It
is plausible that the effective use of the preference data
available through Course Match could lead a school
to make smarter decisions about its course offerings,
which could lead to further substantial gains in student
satisfaction.

We do not claim that the Course Match computational
architecture is “optimal.” Indeed, an important ques-
tion left for future research is whether there are better
approaches to finding approximate market-clearing
prices than that described here. We do show, however,
that the Course Match computational architecture works
at Wharton. To borrow a common analogy (e.g., Roth
2002), ours is an exercise of engineering rather than
physics. Additionally, some back-of-the-envelope calcu-
lations suggest that even the largest course allocation
problems are within reach of the Course Match architec-
ture. For example, The Ohio State University has about
60,000 students at its main campus, compared with 1,700
students at Wharton, and thousands of courses each
semester compared with up to 350 courses at Wharton.
However, whether students are at a large school or
a small school, they are likely to report preferences
for approximately 15–30 courses each semester, given
that they are likely interested in taking about -four to
five courses each semester. Because a MIP solver can
immediately discard all courses that a student has no
interest in taking, the difficulty of solving a student’s
MIP is likely to be no more difficult at Ohio State than at
Wharton. There are 60,000/1,700 ≈ 35 times as many
students at Ohio State than at Wharton, however, and
thus 35 times as many MIPs to solve at each price vector.
It is unclear whether the price search problem is harder
or easier at Ohio State—it could be harder because there
are considerably more courses, but it could be easier
because there is likely to be less overlap in demand
for those courses (e.g., courses at the dental school
are effectively a separate market from courses at the
liberal arts school) and maybe because fewer courses are
likely to be capacity constrained. If we assume that the
search problem at Ohio State is the same difficulty as
the search problem at Wharton, and incorporate the
60% speedup of Amazon Web Services we observed
between late 2013 and early 2016, we would need on
the order of 35/1.6≈ 20 times as much computational
time to solve the Ohio State problem as was used for the
spring 2014 Wharton production run. This is a lot of
computational power but is certainly feasible given the
current scale of Amazon Web Services. Thus, even the
largest realistic problems are within reach of the Course
Match architecture. Furthermore, other applications of
the combinatorial allocation problem, such as workforce
scheduling, are likely to be much smaller and therefore
easily handled by the Course Match architecture.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s) 335

Acknowledgments
A committee of faculty (Sigal Barsade, Gérard Cachon—chair,
Dean Foster, Robert Holthausen, and Jagmohan Raju), staff
(Peggy Bishop-Lane, Frank Devecchis, Stephan Dieckmann,
Howie Kaufold, Alec Lamon, Jason Lehman, Nathan Mische,
John Piotrowski, and Naomi Tschoegl), and students (Pardon
Makumbe, Paul Nolen, Kathryn Scarborough, and Jessica
Stoller) were responsible for the initial design and development
of Course Match. Thanks are extended, too, for comments and
feedback to the participants at the Marketplace Innovation
Workshop (Columbia University, June 2015), the AMMA
Conference on Auctions, Market Mechanisms and Their
Applications (University of Chicago, August 2015), and the
Microsoft Research conference on Designing the Digital
Economy (October 2015).

Statement of Disclosure: The market design theory in Budish
(2011) and computational procedure in Othman et al. (2010)
are in the public domain. The software implementation of
Course Match was funded by and is owned by Wharton. If
Course Match is commercialized, then royalties could accrue
to Othman and to a market design research lab overseen by
Budish. The Wharton administration had no right of prior
review of the present paper.

Endnotes
1The original Othman et al. (2010) procedure did not limit the number
of neighbors in this way (i.e., instead of creating min{C, 40} neighbors,
it created C neighbors). Our exploratory analysis suggested that on
Wharton-sized problems, bundling neighbors yielded more search
starts that lowered error faster and terminated faster. Bundling
neighbors provides two ways to accelerate a search in its intermediate
stages: reducing the computation required at each candidate price
vector and making several steps simultaneously.
2The argument that Course Match formally satisfies the incentives
criterion of strategy-proof in the large (Azevedo and Budish 2015)
is as follows. In the limit as the market grows large, each student i
regards both the prices p∗ from Stage 2 and his or her initial budget βi

as exogenous to their own report. Moreover, in the limit, as the market
grows large, the probability that Stage 3 affects student i’s allocation
goes to zero, because market-clearing error goes to zero as a fraction of
the economy as the economy grows large. Therefore, in a large market,
the student can do no better than to act as a price taker and report
her preferences truthfully. We also believe that Stage 3 is unlikely
to affect students’ incentives to report truthfully in small markets,
because it seems extremely unlikely (if not impossible) that a student
could predict which courses will have market-clearing error, and even
with this information it is not obvious how, if at all, to strategically
misreport.

References
Abbott T, Kane D, Valiant P (2005) On the complexity of two-player win-

lose games. Proc. 46th Annual IEEE Sympos. Foundations Comput.
Sci. (FOCS 2005), (IEEE Computer Society Press, Los Alamitos,
CA), 113–122.

Abdulkadiroğlu A, Sönmez T (2003) School choice: A mechanism
design approach. Amer. Econom. Rev. 93(3):729–747.

Azevedo E, Budish E (2015) Strategy-proofness in the large. Working
paper, Wharton School of Business, University of Pennsylvania,
Philadelphia.

Borgs C, Chayes J, Immorlica N, Kalai AT, Mirrokni V, Papadimitriou
C (2008) The myth of the folk theorem. Proc. 40th Annual ACM
Sympos. Theory Comput. (STOC ’08) (ACM, New York), 365–372.

Budish E (2011) The combinatorial assignment problem: Approximate
competitive equilibrium from equal incomes. J. Political Econom.
119(6):1061–1103.

Budish E, Cantillon E (2012) The multi-unit assignment problem:
Theory and evidence from course allocation at Harvard. Amer.
Econom. Rev. 102(5):2237–2271.

Budish E, Kessler J (2015) Experiments as a bridge from market design
theory to market design practice: Changing the course allocation
mechanism at Wharton. Working paper, University of Chicago,
Chicago.

Chen X, Teng S-H (2009) Spending is not easier than trading: On the
computational equivalence of Fisher and Arrow-Debreu equilibria.
Algorithms and Computation: Proc. 20th Internat. Sympos. Algorithms
Comput., Lecture Notes in Computer Science, Vol. 5878 (Springer,
Berlin), 647–656.

Chen X, Teng S-H (2011) A complexity view of markets with social influ-
ence. Proc. 2011 Internat. Conf. Supercomputing (ACM, New York),
141–154.

Chen X, Paparas D, Yannakakis M (2013) The complexity of non-
monotone markets. Proc. 45th Annual ACM Sympos. Theory Com-
puting (STOC ’13) (ACM, New York), 181–190.

Codenotti B, Saberi A, Varadarajan K, Ye Y (2006) Leontief economies
encode nonzero sum two-player games. Report TR05-055, Elec-
tronic Colloquium on Computational Complexity, Potsdam,
Germany.

Daskalakis C, Goldberg PW, Papadimitriou CH (2009) The complexity
of computing a Nash equilibrium. Comm. ACM 52(2):89–97.

Huang L-S, Teng S-H (2007) On the approximation and smoothed
complexity of Leontief market equilibria. Preparata FP, Fang Q,
eds. Proc. 1st Annual Internat. Conf. Frontiers Algorithmics, Lec-
ture Notes in Computer Science, Vol. 4613 (Springer, Berlin),
96–107.

Kintali S, Poplawski LJ, Rajaraman R, Sundaram R, Teng S-H (2009)
Reducibility among fractional stability problems. Proc. 2009 50th
Annual IEEE Sympos. Foundations Comput. Sci. (FOCS ’09) (IEEE
Computer Society, Washington, DC), 283–292.

Krishna A, ÜnverMU (2008) Improving the efficiency of course bidding
at business schools: Field and laboratory studies.Marketing Sci.
27(2):262–282.

Othman A, Budish E, Sandholm T (2010) Finding approximate
competitive equilibria: Efficient and fair course allocation. Luck
M, Sen S, eds. Internat. Conf. Autonomous Agents and Multi-Agent
Systems (AAMAS) (International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC), 873–880.

Othman A, Papadimitriou C, Rubinstein A (2014) The complexity
of fairness through equilibrium. Proc. 15th ACM Conf. Econom.
Comput. (EC ’14) (ACM, New York), 209–226.

Pálvölgyi D (2009) 2D-Tucker is PPAD-complete. Leonardi S, ed. Proc.
5th Internat. Workshop Internet Network Econom. (Springer, Berlin),
569–574.

Papadimitriou CH (1994) On the complexity of the parity argument
and other inefficient proofs of existence. J. Comput. System Sci.
48(3):498–532.

Roth AE (2002) Economist as engineer: Game theory, experimentation,
and computation as tools for design economics. Econometrica 70(4):
1341–1378.

Roth AE, Peranson E (1999) The redesign of the matching market for
American physicians: Some engineering aspects of economic
design. Amer. Econom. Rev. 89(4):748–780.

Roth AE, Sönmez T, Ünever MU (2004) Kidney exchange. Quart. J.
Econom. 119(2):457–488.

Roth AE, Sönmez T, Ünever MU (2005) Pairwise kidney exchange.
J. Econom. Theory 125(2):151–188.

Rubinstein A (2014) Inapproximability of Nash equilibrium. Working
paper, University of California, Berkeley, Berkeley.

Sandholm T (2007) Expressive commerce and its application to sourc-
ing: How we conducted $35 billion of generalized combinatorial
auctions. AI Magazine 28(3):45–58.

Sandholm T, Boutilier C (2006) Preference elicitation in combinatorial
auctions. Cramton P, Shoham Y, Steinberg R, eds. Combinatorial
Auctions (MIT Press, Cambridge, MA), 233–263.

Sönmez T, Ünver MU (2010) Course budding at business schools.
Internat. Econom. Rev. 51(1):99–123.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Budish et al.: Course Match
336 Operations Research, 2017, vol. 65, no. 2, pp. 314–336, ©2016 The Author(s)

Sun XH, Rover DT (1994) Scalability of parallel algorithm-machine
combinations. IEEE Trans. Parallel Distributed Systems 5(6):599–613.

Vazirani VV, Yannakakis M (2011) Market equilibrium under separable,
piecewise-linear, concave utilities. J. ACM 58(3):10.

Watson JP, Beck J, Howe AE, Whitley L (2003) Problem difficulty
for tabu search in job-shop scheduling. Artificial Intelligence
143(2):189–217.

Eric Budish is professor of economics and the David G.
Booth Faculty Fellow at the University of Chicago, Booth
School of Business. His research is on market design: designing
the “rules of the game” in a market so that self-interested
behavior bymarket participants leads to economically attractive
outcomes. Dr. Budish’s research has spanned a wide variety
of market design contexts. His research on high-frequency
trading and the design of financial exchanges received the
AQR Insight Award and the Leo Melamed Award and has been
discussed in major policy addresses by the New York attorney
general and the U.S. Securities and Exchange Commission chair.
His dissertation research concerned the matching problem
of assigning students to schedules of courses, or workers to
schedules of shifts; his proposed design, which applies price-
theoretic competitive equilibrium ideas to a matching market,
was recently adopted for use in practice by the Wharton
School for MBA course allocation. His research on patent
design and cancer research and development received the
Kauffman/iHEA Award for Health Care Entrepreneurship
and Innovation Research and the Arrow Award for the best
paper in health economics. His honors include the Marshall
Scholarship and the Sloan Research Fellowship.

Gérard P. Cachon is professor of marketing and Fred R. Sulli-
van Professor of Operations, Information and Decisions at The
Wharton School of the University of Pennsylvania. He studies
supply chain management and operation strategy with a focus
on how new technologies transform competitive dynamics and
enable novel business models. He is an INFORMS fellow, a
fellow and former president of the Manufacturing and Service
Operations Management Society of INFORMS.

Judd B. Kessler is an assistant professor of business eco-
nomics and public policy at The Wharton School of the Univer-
sity of Pennsylvania. He uses a combination of laboratory and
field experiments to answer questions in public economics and
market design. He investigates the economic and psychological
forces that motivate individuals to contribute to the public
with applications including organ donation, worker effort,
and charitable giving. He also investigates market design
innovations, placing particular emphasis on bringing market
design from theory to practice, with applications including
course allocation and priority systems for organ allocation.
In 2012 he was named one of Forbes’ “30 under 30” in law
and policy.

Abraham Othman is a visiting scholar in the Operations,
Information and Decisions Department of The Wharton School
of the University of Pennsylvania. He researches the practical
applications of artificial intelligence, optimization, numerical
methods, and computational economics. In 2015 he was named
one of Forbes’ “30 under 30” in energy for his mathematical and
computational work on the next generation of LEED scores
that dynamically assess the carbon emissions from buildings.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

67
.2

47
.3

9.
19

2]
 o

n
17

 S
ep

te
m

be
r

20
17

, a
t 2

0:
12

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

	Introduction
	The Course Allocation Problem
	The A-CEEI Mechanism and Implementation Concerns
	The Course Match Solution
	Preference Elicitation
	Course Utilities.
	Pairwise Adjustments.
	Capacity Constraints.

	Computational Engine
	Stage 1: Price Vector Search.
	Stage 2: Eliminate Oversubscription.
	Stage 3: Reduce Undersubscription.
	Alternative Approaches to Market-Clearing Error.

	Computational Results
	Search Results
	Stage Comparison
	Robustness

	Economic Results
	Efficiency
	Fairness
	Student Perception

	Conclusion

