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Abstract

Recent work highlights that identification of present bias using task-completion

data is problematic. In this note, we add to the literature in two ways. First, whereas

prior work considers single-deadline tasks, we consider tasks for which there is a series

of deadlines, with incremental penalties for missing each deadline. Second, we also

consider identification of forgetting from the same type of data. Using numerical

examples, we demonstrate that identification of present bias is still problematic even

when there are multiple deadlines. Identification of forgetting perhaps holds more

promise theoretically, although in practice we suspect it too is problematic.
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1 Introduction

Recent work by Heidhues and Strack (2021) and Martinez et al. (2017) addresses whether one

can identify present bias from data on task completion in a fixed environment. Specifically,

both papers consider a fixed environment with a single deadline: a task must be completed

by some deadline, with a penalty (possibly infinite) if it is not. They further assume that

there is day-to-day variation in the (immediate) cost of carrying out the task, and thus there

is reason to delay so as to complete the task on a low-effort-cost day. The identification

question is whether one can separately identify present bias and the effort-cost distribution.

In a theoretical analysis, Heidhues and Strack (2021) prove that, even if one can ob-

serve the exact stopping probability in each period, one cannot separately identify present

bias and the effort-cost distribution unless one imposes some structure on that effort-cost

distribution. In an empirical analysis, Martinez et al. (2017) attempt to estimate present

bias using income-tax-completion data, where they assume different functional forms for the

distribution of effort costs and assess how sensitive the estimates are to those assumptions.

In this note, we add to the literature in two ways. First, we consider a multiple-deadline

task: a task must be completed, but instead of there being a single deadline, there is a

series of deadlines, with incremental penalties for missing each deadline. Such situations are

common—for instance, in the domain of New York City parking tickets studied in Heffetz

et al. (2022). Moreover, the constructive proof used by Heidhues and Strack (2021) does not

directly extend to this domain. Hence, we study to what extent the existence of multiple

deadlines can aid in identification of present bias.

Second, we consider the possibility of forgetting, which has also been studied as a reason

for delay in task completion (Holman and Zaidi (2010), Taubinsky (2014), Ericson (2017),

and Altmann et al. (2022)). We study to what extent one can use task-completion data

to separately identify forgetting and the effort-cost distribution, again within a multiple-

deadline environment.

In this note, we do not provide any formal proofs. Rather, we shed some initial insight

on these questions using numerical examples. These numerical examples demonstrate that

identification of present bias is still problematic even when there are multiple deadlines.
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Identification of forgetting perhaps holds more promise, in part because forgetting can gen-

erate patterns that cannot emerge from a model without forgetting. Nonetheless, we argue

that, given the type of variation likely to be available in actual datasets, in practice it too is

problematic.

2 Model

We consider a variant of the McCall (1970) job-search model. It is similar in structure to

that used in Heidhues and Strack (2021), except that we permit multiple deadlines and

forgetting.

2.1 Environment: A Multiple-Deadline Task

We consider a fixed environment with multiple deadlines. On each day d ∈ {1, 2, ...}, a

person decides whether to complete a task. There is a series of N deadlines, D1, ..., DN ,

where missing deadline Dn leads to a monetary penalty an. Hence, if for instance there are

three deadlines (N = 3), the net monetary penalty that must be paid as a function of the

day d on which the person completes the task is

Ad ≡



0 if d ∈ {1, ..., D1}

a1 if d ∈ {D1 + 1, ..., D2}

a1 + a2 if d ∈ {D2 + 1, ..., D3}

a1 + a2 + a3 if d ∈ {D3 + 1, ...}.

The person seeks a convenient (low-effort-cost) day to complete the task. Let cd denote

the effort cost on day d, drawn i.i.d. from distribution F . The person knows F in advance,

and learns the realization cd on day d before deciding whether to complete the task that

day. Hence, the total cost of completing the task on day d includes both the monetary cost

Ad and the effort cost cd. We assume that the effort cost cd is experienced on day d (i.e.,

it is effort exerted now), while the monetary cost Ad is experienced on day d + 1 (i.e., it

requires forgone future consumption). For the examples below, where we make the natural
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assumption (given daily decisions) of δ = 1, it is irrelevant when exactly in the future Ad is

experienced.

The person seeks to minimize her expected discounted total cost, where the person has

β, δ discounting as in Laibson (1997) and O’Donoghue and Rabin (1999). Specifically, if γd′ is

the (monetary or effort) cost incurred on day d′, the expected discounted total cost from the

perspective of day d is Γd ≡ E
[
γd + β

∑∞
d′=d+1 δ

d′−dγd′
]
. For instance, if on day d the person

completes the task at an effort cost cd, then Γd = cd + βδAd. Alternatively, if on day d the

person commits to complete the task on day d′ > d, then Γd = βδd
′−dE(cd′) + βδd

′+1−dAd′ .

β, δ discounting permits both standard exponential discounting (captured by δ ≤ 1) and

time-inconsistent present bias (captured by β ≤ 1). If β < 1, it matters what the person

believes about her own future present bias. Following O’Donoghue and Rabin (2001), we let

β̂ ∈ [β, 1] denote the person’s belief about her future present bias. With this formulation,

β̂ = β implies the person is fully sophisticated and has correct beliefs, β̂ = 1 implies the

person is fully naive and believes she’ll have no future present bias, and β̂ ∈ (β, 1) implies

the person is partially naive.

The person might also forget about the need to complete the task. On day d, the person

can be in one of two states, sd = Y or sd = N . The state sd = Y represents that the task is

on the person’s mind, in which case the person actively decides whether to complete it. The

state sd = N represents that the task is not on the person’s mind—i.e., she has forgotten

about it—in which case the person necessarily does not complete the task.

The day-d state sd depends on the day-(d− 1) state sd−1 according to Pr(sd = Y |sd−1 =

Y ) = λY and Pr(sd = Y |sd−1 = N) = λN . This structure nests several special cases. First,

λY = λN = 1 is the case of no forgetting. Second, 0 < λY = λN < 1 is the simple case where

there is an i.i.d. probability of remembering on each day. Third, 0 ≤ λN < λY ≤ 1 is perhaps

the main case of interest where the likelihood of thinking about the task today is larger if

the person also thought about the task yesterday. We assume an exogenous probability ΛY
1

that the task is on the mind on day 1.

This model of forgetting is similar in structure to that used in Holman and Zaidi (2010),

Taubinsky (2014), Ericson (2017), and Altmann et al. (2022). An important issue highlighted

in that literature is whether the person is aware versus unaware of her future propensity
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to forget. We let λ̂Y and λ̂N denote the person’s beliefs about her future λY and λN .

Hence, λ̂Y = λY and λ̂N = λN implies full awareness and understanding of future forgetting,

λ̂Y = λ̂N = 1 implies full unawareness, and λ̂Y ∈ (λY , 1) and λ̂N ∈ (λN , 1) implies partial

awareness.

Finally, we close the model by assuming that if a person delays beyond (the last) deadline

DN , there is an exogenous continuation cost Z ≡ a1+ ...+aN+z. In words, this continuation

cost includes the monetary penalties (a1 + ... + aN) as well as all expected effort and other

costs that might occur in the further future (z).

2.2 Solving for Behavior

Consider first the case of full awareness about both present bias (β̂ = β) and forgetting

(λ̂Y = λY and λ̂N = λN). On each day d, there will be a cutoff cost c̄d such that a person

with sd = Y completes the task for any cd ≤ c̄d, and thus the probability that a person with

sd = Y will complete the task on day d is F (c̄d).
1

One can solve for the c̄d’s by working backward. Specifically, the c̄d’s for all d ∈

{1, ..., DN} can be derived recursively using the following equations:

c̄d = βδ [Wd+1 − Ad] for all d ∈ {1, ..., DN} (1)

Wd+1 = λYW Y
d+1 + (1− λY )WN

d+1 for all d ∈ {1, ..., DN} (2)

W Y
d = F (c̄d) [E(c|c ≤ c̄d) + δAd] + (1− F (c̄d))δWd+1 for all d ∈ {1, ..., DN} (3)

WN
d = δ

[
λNW Y

d+1 + (1− λN)WN
d+1

]
for all d ∈ {1, ..., DN} (4)

W Y
DN+1 = WN

DN+1 = Z (5)

In these equations, the W ’s denote various “long-run” (without β) expected continuation

costs. First, Wd+1 represents expected continuation costs starting on day d+ 1 for a person

on day d with sd = Y . Hence, on day d, a person with sd = Y will complete the task

1While the equations assume that the person completes the task when indifferent, in our numerical
examples there is zero probability of being indifferent.
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when cd + βδAd ≤ βδWd+1, from which equation (1) follows. Next, W Y
d and WN

d represent

expected continuation costs starting on day d conditional on sd = Y and sd = N , respectively.

Equations (3) and (4) derive these from the c̄d’s, and then equation (2) uses them to derive

Wd+1. Finally, equation (5) reflects our assumption that if the person delays beyond the last

deadline DN then the cost will be Z.2

Finally, whereas F (c̄d) is the probability that a person with sd = Y will complete the

task on day d, data would contain only the unconditional (without knowing the person’s

state sd) probability. Let Λ
Y
d be the likelihood that a person who has not completed the task

before day d has sd = Y , where ΛY
1 is exogenous. Then for all d > 1

ΛY
d =

ΛY
d−1(1− F (c̄d−1))λ

Y + (1− ΛY
d−1)λ

N

ΛY
d−1(1− F (c̄d−1)) + (1− ΛY

d−1)
. (6)

The unconditional probability of completing the task on day d is hd ≡ ΛY
d F (c̄d). Equation

(6) is relevant only when there is forgetting; if there is no forgetting (λY = λN = Λ1
1 = 1),

then ΛY
d = 1 for all d, and thus hd ≡ F (c̄d).

Again, everything above assumes full awareness about both present bias (β̂ = β) and

forgetting (λ̂Y = λY and λ̂N = λN). If there is unawareness on either dimension, then

we must distinguish perceived continuation costs, which we denote by Ŵ ’s, from actual

continuation costs. Solving the model for this case is analogous, except that we proceed in

two steps: (i) we solve for perceived future behavior and perceived continuation costs using

beliefs β̂, λ̂Y , and λ̂N instead of β, λY , and λN ; and (ii) given the perceived continuation

costs, we solve for actual behavior.

Step (i) is analogous to before, except that we use beliefs. In other words, we again use

equations (1)–(5), except in all equations we replace β, λY , λN , c̄d, W
Y
d , WN

d , and Wd with

perceptions β̂, λ̂Y , λ̂N , ĉd, Ŵ
Y
d , ŴN

d , and Ŵd.

For step (ii), given perception Ŵd+1, a person with sd = Y will complete the task on day

2The backward induction starts from equation (5), which can be combined with equations (2) and (1) to
generate WDN+1 and c̄DN

. Given WDN+1 and c̄DN
, equations (1)–(4) can be used to generate WY

DN
, WN

DN
,

WDN
, and c̄DN−1

. The recursion can then continue to generate the remaining c̄d’s.
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d when cd + βδAd ≤ βδŴd+1. Thus the actual cutoff cost is

c̄d = βδ
[
Ŵd+1 − Ad

]
.

Hence, the probability that a person with sd = Y will complete the task on day d is F (c̄d).

Finally, the unconditional probability of completing the task on day d is hd ≡ ΛY
d F (c̄d), where

ΛY
d is defined by equation (6) (using the actual λY , λN , and c̄d’s because ΛY

d is tracking the

actual proportion of the remaining population that has sd = Y ).

3 Numerical Examples

We now present some numerical examples that shed insight on the identification of present

bias and forgetting in this domain. For the examples in Figures 1-4 below, we consider a

task with three deadlines (N = 3), with D1 = 20, D2 = 40, D3 = 60, and we assume

δ = 1. In the text, we consider two combinations of (a1, a2, a3). Additional examples appear

in the Appendix; these consider an additional combination of (a1, a2, a3), and also consider

an example with two deadlines (N = 2) and an example with four deadlines (N = 4). All

examples assume endgame continuation costs z = 10 and therefore Z = a1 + a2 + a3 + 10.3

For the cost distribution F , the examples assume a simple two-parameter functional form

F (c) = v+ c/w, defined for c ∈ [0, (1− v)w]. This functional form is convenient because the

two parameters capture two key aspects of the cost distribution: v captures the mass at (or,

more generally, near) zero, which has a major impact on the level of hazard rates, while w

captures the spread of possible costs, which plays a major role in determining the magnitude

of the slope leading up to a deadline.

Importantly, by assuming a specific functional form for the cost distribution, we are

in principle making identification easier. As we shall see, however, even when we assume

this simple functional form, identification is problematic, and thus would be even more

problematic without any functional-form assumptions.

3Changes in z and changes in aN have the same impact on behavior, and thus we do not consider different
values of z.
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Figure 1: Hazard Rates in Baseline Model

(a) Hazard rates when w = 1500 (b) Hazard rates when v = 0.01

Notes: Both figures assume no present bias (β = β̂ = 1) and no forgetting (λY = λN = ΛY
1 = 1);

both figures assume δ = 1, z = 10, deadlines at days 20, 40, and 60, and penalties
a1 = a2 = a3 = 20; and both figures assume cost distribution F (c) = v + c/w. Panel (a) reflects
hazard rates when w = 1500 for various values of v, while panel (b) reflects hazard rates when
v = 0.01 for various values of w.

3.1 Baseline model

Consider first a “Baseline” model in which there is no present bias (β = 1) and no forgetting

(λY = λN = ΛY
1 = 1). For this case, we can apply known results from similar optimal-

stopping problems (e.g., Bertsekas (2005)) to conclude that, for any F (not just the functional

form above), the effort-cost cutoffs satisfy c̄d+1 ≥ c̄d for all d /∈ {D1, ..., DN}, where the

inequality is strict whenever F (c̄d) ∈ (0, 1). Intuitively, the person faces a trade-off: she

would like to complete the task before the next deadline to avoid the penalty, however, she

would also like to find a convenient time. Well in advance of a deadline, it is safe to wait for

a future low-cost day, but as that deadline approaches, the incentive to complete the task

rises. Once that deadline passes, however, the incentive has a sudden drop, but then rises

again toward the subsequent deadline. Figure 1 illustrates this behavior for several different

combinations of v and w (the parameters of the cost distribution).
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3.2 Identification of Present Bias

We now consider whether one can separately identify present bias and the parameters of

the effort-cost distribution in this domain; for this analysis we assume no forgetting (i.e.,

λY = λN = ΛY
1 = 1).

For this case, Heidhues and Strack (2021) prove for single-deadline tasks that, even if

one could observe the stopping probabilities, one cannot identify present bias separately

from the cost distribution. Their proof proceeds in two steps. First, they prove that, for

single-deadline tasks, stopping probabilities for any β and δ are (weakly) monotonically

increasing up to the last day (the deadline). Second, they prove that, for any observed

sequence of (weakly) increasing stopping probabilities, for any β and δ one can construct

a cost distribution that rationalizes that sequence. Their proof of the second step takes

advantage of the first step: when constructing F , because the observed stopping probability

increases from day d to day d+1, one gets to construct F over a new interval in its support

for which there are no restrictions.

Because for multiple-deadline tasks stopping probabilities are not (weakly) monotonically

increasing up to the last day (as illustrated in Figure 1), the proof from Heidhues and Strack

(2021) does not directly extend to this domain. However, we now illustrate via numerical

examples that their result is in fact likely to extend.

In Figure 2, the solid red line labelled “Baseline” reflects hazard rates in the Baseline

model when v = 0.01 and w = 1500. Panels (ai) and (aii) illustrate the impact of instead

assuming β = 0.8 with (ai) naivete and (aii) sophistication when a1 = a2 = a3 = 20. The

short-dashed green line labelled “Direct impact” reflects hazard rates for β = 0.8 while

maintaining the same cost distribution as for the Baseline hazard rates. Ceteris paribus, the

introduction of present bias leads to lower hazard rates, but does not change the qualitative

pattern of hazard rates increasing up to each deadline and then dropping immediately after

each deadline. Intuitively, present bias implies a person overly weights immediate effort costs

and is thus less willing to act now, but the person is still reacting to deadlines. Interestingly,

being aware of future present bias has very little impact on behavior—sophistication does

have an impact, but it is sufficiently small that it is not visible in Figure 2.
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Figure 2: Joint Identification of Present Bias and Cost Parameters

(a) Hazard rates when a1 = 20, a2 = 20, and a3 = 20

(b) Hazard rates when a1 = 10, a2 = 20, and a3 = 30

Notes: All four figures assume no forgetting (λY = λN = ΛY
1 = 1), δ = 1, z = 10, and deadlines at

days 20, 40, and 60. Panels (a) and (b) differ in the penalties a1, a2, and a3 for missing the three
deadlines; within each panel, (i) assumes naivete (β̂ = 1) while (ii) assumes sophistication
(β̂ = β). In each of the four figures, Baseline reflects hazard rates when β = 1, v = 0.01, and
w = 1500; Direct impact reflects hazard rates when β = 0.8, v = 0.01, and w = 1500; and Impact
after costs adjusted reflects hazard rates when β = 0.8 and v and w are chosen to minimize the
sum of squared differences of daily hazard rates from Baseline hazard rates. The chosen (v, w) are
(ai) (0.009, 1100), (aii) (0.009, 1110), (bi) (0.011, 1180), and (bii) (0.010, 1150).

Although present bias does have a direct impact on behavior, separate identification

of present bias (β) and effort costs (F ) requires that a profile of observed hazard rates is

consistent with only one combination of β and F . To highlight the identification challenge,

the long-dashed blue line in panels (ai) and (aii) labelled “Impact after costs adjusted”

presents hazard rates for β = 0.8 after adjusting the parameters of the cost distribution (v
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and w) to minimize the sum of squared differences of daily hazard rates from Baseline hazard

rates. In other words, if hbase
d is the day-d hazard rate under the Baseline model and hnew

d is

the day-d hazard rate under the model with present bias, we choose v and w to minimize4

60∑
d=1

(
hnew
d − hbase

d

)2
.

In both panels (ai) and (aii), we cannot perfectly replicate the solid red line. It follows

that, with enough data, we could conclude that β = 1 is separately identified from β = 0.8.

In practice, however, the differences are so small that we could not reasonably identify β

separately from the cost distribution in this domain. Moreover, even what little identification

there is relies on assuming our specific two-parameter cost distribution. If, like Heidhues and

Strack (2021), we did not impose any restrictions on F , we could make the long-dashed blue

line even closer to the solid red line, and perhaps could even replicate it.

Panels (bi) and (bii) of Figure 2 perform an analogous analysis when a1 = 10, a2 = 20,

and a3 = 30, Appendix Figure 5 panels (ai) and (aii) do so for a1 = 30, a2 = 20, and

a3 = 10. For both cases, the message is much the same. The conclusion from Heidhues and

Strack (2021) that present bias is not identified from task-completion data alone seems to

extend—at least in practice—to multiple-deadline tasks.

3.3 Identification of Forgetting

While there is theoretical work applying forgetting to single-deadline tasks, there is no iden-

tification analysis analogous to what Heidhues and Strack (2021) do for present bias. There

is also little work on forgetting in the context of multiple-deadline tasks. Here, we use a

numerical analysis to shed some initial insight on whether one can separately identify for-

getting and the parameters of the effort-cost distribution in this domain; for this analysis we

assume no present bias (i.e., β = 1).

Panels (a) and (b) of Figure 3 are analogous to panels (a) and (b) of Figure 2, except they

apply to the cases of forgetting with unawareness (ai and bi) and forgetting with awareness

4We use a grid-search approach where the grid has a step size of .001 for v and 5 for w.
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Figure 3: Joint Identification of Forgetting and Cost Parameters

(a) Hazard rates when a1 = 20, a2 = 20, and a3 = 20

(b) Hazard rates when a1 = 10, a2 = 20, and a3 = 30

Notes: All four figures assume no present bias (β = β̂ = 1), δ = 1, z = 10, and deadlines at days
20, 40, and 60. Panels (a) and (b) differ in the penalties a1, a2, and a3 for missing the three
deadlines; within each panel, (i) assumes forgetting with unawareness (λ̂Y = λ̂N = 1) while (ii)
assumes forgetting with awareness (λ̂Y = λY and λ̂N = λN ). In each of the four figures, Baseline
reflects hazard rates when λY = λN = ΛY

1 = 1, v = 0.01, and w = 1500; Direct impact reflects
hazard rates when λY = .98, λN = .05, ΛY

1 = .7, v = 0.01, and w = 1500; and Impact after costs
adjusted reflects hazard rates when λY = .98, λN = .05, ΛY

1 = .7, and v and w are chosen to
minimize the sum of squared differences of daily hazard rates from Baseline hazard rates. The
chosen (v, w) are (ai) (0.023, 735), (aii) (0.024, 860), (bi) (0.026, 720), and (bii) (0.019, 725).

(aii and bii). In each panel, the solid red line labelled “Baseline” reflects the same Baseline

model used in Figure 2. The short-dashed green line labelled “Direct impact” reflects hazard

rates for λY = 0.98, λN = 0.05, and ΛY
1 = 0.7 while maintaining the same cost distribution

as for the Baseline hazard rates. Ceteris paribus, the introduction of forgetting leads to
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lower hazard rates, but does not change the qualitative pattern of hazard rates increasing up

to each deadline and then dropping immediately after each deadline. Intuitively, forgetting

means a person might not have the task on the mind and thus is less likely to act now, but

anyone with the task on the mind is still reacting to deadlines. In addition, much like being

aware of future present bias, being aware of future forgetting makes a person more likely to

pay now, but also does not change qualitatively how a person reacts to deadlines.

Of course, separate identification of forgetting (λY , λN ,ΛY
1 ) and the effort-cost distribu-

tion (F ) requires that a profile of observed hazard rates is consistent with only one com-

bination of (λY , λN ,ΛY
1 ) and F . In each panel, the long-dashed blue line labelled “Impact

after costs adjusted” presents hazard rates for λY = 0.98, λN = 0.05, and ΛY
1 = 0.7 after

adjusting the parameters of the cost distribution (v and w) to minimize the sum of squared

differences of daily hazard rates from Baseline hazard rates. In general, we cannot perfectly

replicate the solid red line, and there is perhaps more scope for identification of forgetting

than for present bias. In practice, though, we suspect that even the more noticeable differ-

ences between the long-dashed blue line and the solid red line in Figure 3 would be too small

to detect in any practical data set.

Figure 3 is perhaps misleading because we chose forgetting parameters that still generate

the same pattern of hazard rates that we get from the Baseline model. If instead we chose

parameters that permit more rapid forgetting (λY enough smaller than one), there can be

zones far from deadlines where hazard rates decline over time due to the task falling off

people’s minds (as emphasized in Taubinsky (2014)). This pattern is illustrated in Figure 4,

which uses λY = 0.8, λN = 0.2, and ΛY
1 = 0.7.

If the underlying parameters were such that observed hazard rates exhibit zones of de-

creasing hazard rates, one could perhaps rely on such zones to identify the existence of

forgetting. Here, however, one runs into the practical issue that we also need to deal with

the possibility of unobserved heterogeneity, and it has long been emphasized how unobserved

heterogeneity can generate zones of decreasing aggregate hazard rates. Hence, even when

observed hazard rates exhibit such zones, we suspect it will still be difficult in practice to

convincingly identify forgetting from task-completion data.

12



Figure 4: Joint Identification of Forgetting and Cost Parameters Revisited

Notes: Both figures assume no present bias (β = β̂ = 1), δ = 1, z = 10, deadlines at days 20, 40,
and 60, and a1 = a2 = a3 = 20. Panel (i) assumes forgetting with unawareness (λ̂Y = λ̂N = 1)
while panel (ii) assumes forgetting with awareness (λ̂Y = λY and λ̂N = λN ). In each of the two
figures, Baseline reflects hazard rates when λY = λN = ΛY

1 = 1, v = 0.01, and w = 1500; Direct
impact reflects hazard rates when λY = .8, λN = .2, ΛY

1 = .7, v = 0.01, and w = 1500; and Impact
after costs adjusted reflects hazard rates when λY = .8, λN = .2, ΛY

1 = .7, and v and w are chosen
to minimize the sum of squared differences of daily hazard rates from Baseline hazard rates. The
chosen (v, w) are (i) (0.005, 425) and (ii) (0.021, 705).

4 Concluding Thoughts

Using numerical examples, we have demonstrated that identification of present bias is still

problematic even when there are multiple deadlines, reinforcing the conclusion from Hei-

dhues and Strack (2021). Identification of forgetting perhaps holds more promise, in part

because forgetting can generate patterns that cannot emerge from a model without forget-

ting. Nonetheless, in practice, we suspect it too is problematic.

These conclusions perhaps should not be surprising. Typically, when economists look

for sources of identification, we look for variation in the environment that primarily impacts

behavior through a single mechanism. The premise of identifying present bias or forgetting

from task-completion data alone is that one can treat distance to deadlines as the analogue

of an exogenous shift to the environment. The problem is that the distance to the deadline

also impacts hazard rates via the effort-cost distribution (and the incentive to delay to find

a low-effort-cost day). Hence, variation in distance to deadlines is not a good means to

distinguish present bias or forgetting from effort costs (or to distinguish present bias and
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forgetting from each other, an issue that we have ignored).

A better approach is to combine task-completion data with other sources of (ideally

exogenous) variation that operate more uniquely through one of the focal mechanisms. As

one clear example, in Heffetz et al. (2022), there is an exogenous shift in the timing of

reminder letters. Because such letters should only impact behavior if people have forgotten

about a ticket, they represent a relatively clean way to identify the existence of forgetting.

Applying this logic to present bias, a natural approach is to look for task-completion data

in which there is independent variation in effort costs versus monetary costs. A key marker

of present bias is then that people should react asymmetrically to the two different types of

costs (since one is immediate and the other is delayed). Unfortunately, because effort costs

can be an internal (hard-to-observe) variable, such independent variation might be hard in

practice to find.
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Appendix: Additional Figures

Figure 5: Figures 2 and 3 with Declining Penalties (a1 = 30, a2 = 20, and a3 = 10)

(a) Joint identification of present bias and cost parameters

(b) Joint identification of forgetting and cost parameters

Notes: Except for assuming penalties a1 = 30, a2 = 20, and a3 = 10, panel (a) is otherwise
identical to Figure 2, while panel (b) is otherwise identical to Figure 3. See notes from those
figures for further details. Here, the chosen (v, w) for Impact after costs adjusted are (ai)
(0.009, 1105), (aii) (0.010, 1160), (bi) (0.018, 700), and (bii) (0.020, 810).
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Figure 6: Joint Identification of Present Bias and Costs with Two or Four Deadlines

(a) Hazard rates with two deadlines where a1 = a2 = 30

(b) Hazard rates with four deadlines where a1 = a2 = a3 = a4 = 15

Notes: All four figures assume no forgetting (λY = λN = ΛY
1 = 1), δ = 1, and z = 10. Panel (a)

assumes two deadlines, at days 30 and 60, with a1 = a2 = 30. Panel (b) assumes four deadlines,
at days 15, 30, 45, and 60, with a1 = a2 = a3 = a4 = 15. Within each panel, (i) assumes naivete
(β̂ = 1) while (ii) assumes sophistication (β̂ = β). In each of the four figures, Baseline reflects
hazard rates when β = 1, v = 0.01, and w = 1500; Direct impact reflects hazard rates when
β = 0.8, v = 0.01, and w = 1500; and Impact after costs adjusted reflects hazard rates when
β = 0.8 and v and w are chosen to minimize the sum of squared differences of daily hazard rates
from Baseline hazard rates. The chosen (v, w) are (ai) (0.011, 1180), (aii) (0.010, 1150), (bi)
(0.009, 1100), and (bii) (0.009, 1110).
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Figure 7: Joint Identification of Forgetting and Costs with Two or Four Deadlines

(a) Hazard rates with two deadlines where a1 = a2 = 30

(b) Hazard rates with four deadlines where a1 = a2 = a3 = a4 = 15

Notes: All four figures assume no present bias (β = β̂ = 1), δ = 1, and z = 10. Panel (a) assumes
two deadlines, at days 30 and 60, with a1 = a2 = 30. Panel (b) assumes four deadlines, at days
15, 30, 45, and 60, with a1 = a2 = a3 = a4 = 15. Within each panel, (i) assumes forgetting with
unawareness (λ̂Y = λ̂N = 1) while (ii) assumes forgetting with awareness (λ̂Y = λY and
λ̂N = λN ). In each of the four figures, Baseline reflects hazard rates when λY = λN = ΛY

1 = 1,
v = 0.01, and w = 1500; Direct impact reflects hazard rates when λY = .98, λN = .05, ΛY

1 = .7,
v = 0.01, and w = 1500; and Impact after costs adjusted reflects hazard rates when λY = .98,
λN = .05, ΛY

1 = .7, and v and w are chosen to minimize the sum of squared differences of daily
hazard rates from Baseline hazard rates. The chosen (v, w) are (ai) (0.029, 790), (aii) (0.021, 760),
(bi) (0.018, 680), and (bii) (0.024, 880).
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