"Optimized Reference-Dependent Utility" by Peter Wikman

Discussion prepared by Daniel L. Chen

June 2018

Koszegi Rabin (QJE 2006)

Personal Equilibrium

- Consider an option x
- What would I choose if x was my reference point?
- If it is x, then I will call x a personal equilibrium
- If I expect to buy x, then it should be my reference point
- If it is my reference point, then I should actually buy it

Example: Utility of earmuffs is 1, Price is p, Utility linear in money

- What would I do if my reference point was to buy earmuffs?
 - Utility from buying earmuffs is 0
 - Utility from not buying earmuffs is $p \lambda$
 - Buy earmuffs if $p < \lambda$
- What would I do if my reference point was to not buy?
 - Utility from not buying earmuffs is 0
 - ullet Utility from buying earmuffs is $1-\lambda p$
 - Would buy the earmuffs if $p < 1/\lambda$

Koszegi Rabin (QJE 2006)

Personal Equilibrium

- Consider an option x
- What would I choose if x was my reference point?
- If it is x, then I will call x a personal equilibrium
- If I expect to buy x, then it should be my reference point
- If it is my reference point, then I should actually buy it

Example: Utility of earmuffs is 1, Price is p, Utility linear in money

- What would I do if my reference point was to buy earmuffs?
 - Utility from buying earmuffs is 0
 - Utility from not buying earmuffs is $p \lambda$
 - Buy earmuffs if $p < \lambda$
- What would I do if my reference point was to not buy?
 - Utility from not buying earmuffs is 0
 - Utility from buying earmuffs is $1 \lambda p$
 - Would buy the earmuffs if $p < 1/\lambda$

Koszegi Rabin (QJE 2006)

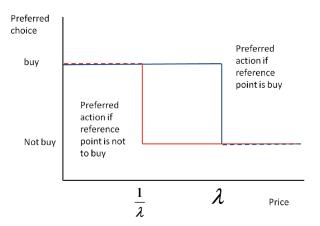
Personal Equilibrium

- Consider an option x
- What would I choose if x was my reference point?
- If it is x, then I will call x a personal equilibrium
- If I expect to buy x, then it should be my reference point
- If it is my reference point, then I should actually buy it

Example: Utility of earmuffs is 1, Price is p, Utility linear in money

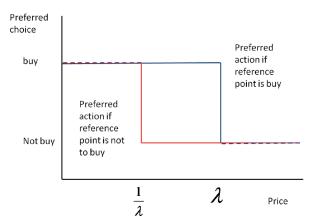
- What would I do if my reference point was to buy earmuffs?
 - Utility from buying earmuffs is 0
 - Utility from not buying earmuffs is $p \lambda$
 - Buy earmuffs if $p < \lambda$
- What would I do if my reference point was to not buy?
 - Utility from not buying earmuffs is 0
 - Utility from buying earmuffs is $1 \lambda p$
 - Would buy the earmuffs if $p < 1/\lambda$

Example



Between the two prices, personal equilibria depend on expectations

Example



Between the two prices, personal equilibria depend on expectations

KR Utility Function

- Consumption utility: u(c)
- Gain loss utility: $\mu((u(c) u(r))$
- $U(F|G) = \int \int u(c|r)dG(r)dF(c)$
- Gain loss utility μ
 - continuous, \nearrow , twice differentiable away from 0, $\mu(0) = 0$
- Loss aversion 1:

•
$$y > x > 0$$
 implies that $\mu(y) + \mu(-y) < \mu(x) + \mu(-x)$

- Loss aversion 2:
 - $\frac{\lim_{x\to 0}\mu'(-|x|)}{\lim_{x\to 0}\mu'(|x|)} = \lambda > 1$
- Diminishing sensitivity:
 - $\mu''(x) \le 0$ for x > 0 and $\mu''(x) \ge 0$ for x < 0
- What is G? Agent's recent expectations about F.
 - Agents form these expectations rationally.

KR Utility Function

- Consumption utility: u(c)
- Gain loss utility: $\mu((u(c) u(r))$
- $U(F|G) = \int \int u(c|r)dG(r)dF(c)$
- Gain loss utility μ
 - continuous, \nearrow , twice differentiable away from 0, $\mu(0) = 0$
- Loss aversion 1:
 - y > x > 0 implies that $\mu(y) + \mu(-y) < \mu(x) + \mu(-x)$
- Loss aversion 2:

$$\frac{\lim_{x\to 0}\mu'(-|x|)}{\lim_{x\to 0}\mu'(|x|)} = \lambda > 1$$

- Diminishing sensitivity:
 - $\mu''(x) \le 0$ for x > 0 and $\mu''(x) \ge 0$ for x < 0
- What is G? Agent's recent expectations about F.
 - Agents form these expectations rationally.

KR Utility Function

- Consumption utility: u(c)
- Gain loss utility: $\mu((u(c) u(r))$
- $U(F|G) = \int \int u(c|r)dG(r)dF(c)$
- Gain loss utility μ
 - continuous, \nearrow , twice differentiable away from 0, $\mu(0) = 0$
- Loss aversion 1:
 - y > x > 0 implies that $\mu(y) + \mu(-y) < \mu(x) + \mu(-x)$
- Loss aversion 2:
 - $\frac{\lim_{x\to 0}\mu'(-|x|)}{\lim_{x\to 0}\mu'(|x|)} = \lambda > 1$
- Diminishing sensitivity:
 - $\mu''(x) \le 0$ for x > 0 and $\mu''(x) \ge 0$ for x < 0
- What is G? Agent's recent expectations about F.
 - Agents form these expectations rationally.

Reference Point and Personal Equilibrium

Personal Equilibrium

- An action inducing F is a Personal Equilibrium if $EU(F|F) \ge EU(F'|F)$ for any F
- Preferred Personal Equilibrium is the PE that maximizes utility

Reference Point and Personal Equilibrium

Personal Equilibrium

- An action inducing F is a Personal Equilibrium if $EU(F|F) \ge EU(F'|F)$ for any F
- Preferred Personal Equilibrium is the PE that maximizes utility

- A risk neutral agent offered a lottery $\begin{cases} X & \frac{1}{2} \\ -Y & \frac{1}{2} \end{cases}$, where X > Y
- What is EU if agent expects to accept the lottery?

If X occurs,
$$U = X + 0.5\mu(X+Y)$$
 If -Y occurs,
$$U = -Y + 0.5\mu(-(X+Y))$$

- $EU(a|a) = 0.5(X Y) + 0.5[\mu(X + Y) + \mu(-(X + Y))]$ • + from consumption and - from loss aversion
- What is EU of reject if expects to accept lottery?

•
$$EU(na|a) = 0 + 0.5[\mu(0-X) + \mu(0-(-Y))] < 0$$

- Accept is PE \iff $EU(a|a) \ge EU(na|a)$
 - Accept may not be credible given the expectations it generates

- A risk neutral agent offered a lottery $\begin{cases} X & \frac{1}{2} \\ -Y & \frac{1}{2} \end{cases}$, where X > Y
- What is EU if agent expects to accept the lottery?

If X occurs,
$$U = X + 0.5\mu(X + Y)$$

If -Y occurs, $U = -Y + 0.5\mu(-(X + Y))$

- $EU(a|a) = 0.5(X Y) + 0.5[\mu(X + Y) + \mu(-(X + Y))]$ • + from consumption and - from loss aversion
- What is EU of reject if expects to accept lottery?

•
$$EU(na|a) = 0 + 0.5[\mu(0-X) + \mu(0-(-Y))] < 0$$

- Accept is PE \iff $EU(a|a) \ge EU(na|a)$
 - Accept may not be credible given the expectations it generates

- A risk neutral agent offered a lottery $\begin{cases} X & \frac{1}{2} \\ -Y & \frac{1}{2} \end{cases}$, where X > Y
- What is EU if agent expects to accept the lottery?

If X occurs,
$$U = X + 0.5\mu(X + Y)$$

If -Y occurs, $U = -Y + 0.5\mu(-(X + Y))$

- $EU(a|a) = 0.5(X Y) + 0.5[\mu(X + Y) + \mu(-(X + Y))]$
 - + from consumption and from loss aversion
- What is EU of reject if expects to accept lottery?

•
$$EU(na|a) = 0 + 0.5[\mu(0-X) + \mu(0-(-Y))] < 0$$

- Accept is PE \iff $EU(a|a) \ge EU(na|a)$
 - Accept may not be credible given the expectations it generates

- A risk neutral agent offered a lottery $\begin{cases} X & \frac{1}{2} \\ -Y & \frac{1}{2} \end{cases}$, where X>Y
- What is EU if agent expects to accept the lottery?

If X occurs,
$$U = X + 0.5\mu(X + Y)$$

If -Y occurs, $U = -Y + 0.5\mu(-(X + Y))$

- $EU(a|a) = 0.5(X Y) + 0.5[\mu(X + Y) + \mu(-(X + Y))]$
 - + from consumption and from loss aversion
- What is EU of reject if expects to accept lottery?

•
$$EU(na|a) = 0 + 0.5[\mu(0-X) + \mu(0-(-Y))] < 0$$

- Accept is PE \iff $EU(a|a) \ge EU(na|a)$
 - Accept may not be credible given the expectations it generates

- A risk neutral agent offered a lottery $\begin{cases} X & \frac{1}{2} \\ -Y & \frac{1}{2} \end{cases}$, where X > Y
- What is EU if agent expects to accept the lottery?

If X occurs,
$$U = X + 0.5\mu(X + Y)$$

If -Y occurs, $U = -Y + 0.5\mu(-(X + Y))$

- $EU(a|a) = 0.5(X Y) + 0.5[\mu(X + Y) + \mu(-(X + Y))]$
 - + from consumption and from loss aversion
- What is EU of reject if expects to accept lottery?

•
$$EU(na|a) = 0 + 0.5[\mu(0-X) + \mu(0-(-Y))] < 0$$

- Accept is PE
 ⇔ EU(a|a) ≥ EU(na|a)
 - Accept may not be credible given the expectations it generates

The Uncertainty Effect (Gneezy, List, and Wu QJE 2006)

TABLE II
SUMMARY STATISTICS FOR REAL-STAKES PRICING STUDIES

	Willingness-to-pay (dollars)					
Good	Mean	Median	Standard deviation	N		
Book Store						
\$100 gift certificate (GC)	66.15	69.00	24.28	20		
50 percent chance at \$100 GC,						
50 percent chance at \$50						
GC	28.00	25.00	16.73	20		
\$50 gift certificate (GC)	38.00	40.00	9.86	20		

These agents really dislike uncertainty

 Kőszegi Rabin (2007) show that if an agent has time to plan and if gain-loss utility is sufficiently important relative to consumption utility, an agent can choose a dominated lottery

The Uncertainty Effect (Gneezy, List, and Wu QJE 2006)

TABLE II SUMMARY STATISTICS FOR REAL-STAKES PRICING STUDIES

	Willingness-to-pay (dollars)					
Good	Mean	Median	Standard deviation	N		
Book Store						
\$100 gift certificate (GC)	66.15	69.00	24.28	20		
50 percent chance at \$100 GC,						
50 percent chance at \$50						
GC	28.00	25.00	16.73	20		
\$50 gift certificate (GC)	38.00	40.00	9.86	20		

- These agents really dislike uncertainty
- Kőszegi Rabin (2007) show that if an agent has time to plan and if gain-loss utility is sufficiently important relative to consumption utility, an agent can choose a dominated lottery

Problem

- KR's stochastic reference point does not satisfy FOSD
- DM has rational expectations (no surprise or changing mind)
 - expectations can be self-fulfilling
 - time inconsistent

ORD Model

- DM ex ante chooses reference point
- Higher the reference point, the more anticipation utility
- Lower the reference point, the less likely to be disappointed (i.e. suffer extra due to loss aversion)
- Autoregressive law of motion for reference points

- status quo bias
- ex ante preference for increasing consumption profiles
- asymmetric reference point adaptation that is more sensitive to gains than to losses

Problem

- KR's stochastic reference point does not satisfy FOSD
- DM has rational expectations (no surprise or changing mind)
 - expectations can be self-fulfilling
 - time inconsistent

ORD Model

- DM ex ante chooses reference point
- Higher the reference point, the more anticipation utility
- Lower the reference point, the less likely to be disappointed (i.e. suffer extra due to loss aversion)
- Autoregressive law of motion for reference points

- status quo bias
- ex ante preference for increasing consumption profiles
- asymmetric reference point adaptation that is more sensitive to gains than to losses

Problem

- KR's stochastic reference point does not satisfy FOSD
- DM has rational expectations (no surprise or changing mind)
 - expectations can be self-fulfilling
 - time inconsistent

ORD Model

- DM ex ante chooses reference point
- Higher the reference point, the more anticipation utility
- Lower the reference point, the less likely to be disappointed (i.e. suffer extra due to loss aversion)
- Autoregressive law of motion for reference points

- status quo bias
- ex ante preference for increasing consumption profiles
- asymmetric reference point adaptation that is more sensitive to gains than to losses

Problem

- KR's stochastic reference point does not satisfy FOSD
- DM has rational expectations (no surprise or changing mind)
 - expectations can be self-fulfilling
 - time inconsistent

ORD Model

- DM ex ante chooses reference point
- Higher the reference point, the more anticipation utility
- Lower the reference point, the less likely to be disappointed (i.e. suffer extra due to loss aversion)
- Autoregressive law of motion for reference points

- status quo bias
- ex ante preference for increasing consumption profiles
- asymmetric reference point adaptation that is more sensitive to gains than to losses

- A.2: Time Consistency
 - $W(F,r) \ge W(G,r) \Longleftrightarrow \Phi(F|r) \ge \Phi(G|r)$
- A.3: Acclimation

•
$$\frac{W(\delta_x,r)}{\partial r} \ge 0$$
 if $r < x$, $\frac{W(\delta_x,r)}{\partial r} \le 0$ if $r > x$, $\frac{W(\delta_x,r)}{\partial r} = 0$ if $r = x, \lambda = 1$

- Say a bit more on what is ruled out in the KR space
 - Gneezy et al. 2006?
 - What else?
 - Is it something wrong with LA1, or relaxing rational expectations?
- Probabilities are exogenous in all models?
 - Agents can take actions to affect the probabilities?

- A.2: Time Consistency
 - $W(F,r) \ge W(G,r) \Longleftrightarrow \Phi(F|r) \ge \Phi(G|r)$
- A.3: Acclimation

•
$$\frac{W(\delta_x, r)}{\partial r} \ge 0$$
 if $r < x$, $\frac{W(\delta_x, r)}{\partial r} \le 0$ if $r > x$, $\frac{W(\delta_x, r)}{\partial r} = 0$ if $r = x, \lambda = 1$

- Say a bit more on what is ruled out in the KR space
 - Gneezy et al. 2006?
 - What else?
 - Is it something wrong with LA1, or relaxing rational expectations?
- Probabilities are exogenous in all models?
 - Agents can take actions to affect the probabilities?

- A.2: Time Consistency
 - $W(F,r) \ge W(G,r) \iff \Phi(F|r) \ge \Phi(G|r)$
- A.3: Acclimation

•
$$\frac{W(\delta_x,r)}{\partial r} \ge 0$$
 if $r < x$, $\frac{W(\delta_x,r)}{\partial r} \le 0$ if $r > x$, $\frac{W(\delta_x,r)}{\partial r} = 0$ if $r = x, \lambda = 1$

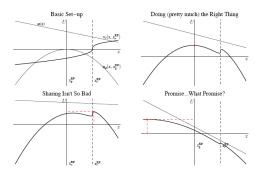
- Say a bit more on what is ruled out in the KR space
 - Gneezy et al. 2006?
 - What else?
 - Is it something wrong with LA1, or relaxing rational expectations?
- Probabilities are exogenous in all models?
 - Agents can take actions to affect the probabilities?

- A.2: Time Consistency
 - $W(F,r) \ge W(G,r) \iff \Phi(F|r) \ge \Phi(G|r)$
- A.3: Acclimation

•
$$\frac{W(\delta_x,r)}{\partial r} \ge 0$$
 if $r < x$, $\frac{W(\delta_x,r)}{\partial r} \le 0$ if $r > x$, $\frac{W(\delta_x,r)}{\partial r} = 0$ if $r = x, \lambda = 1$

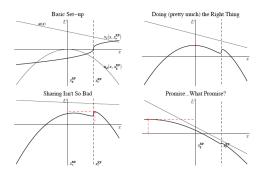
- Say a bit more on what is ruled out in the KR space
 - Gneezy et al. 2006?
 - What else?
 - Is it something wrong with LA1, or relaxing rational expectations?
- Probabilities are exogenous in all models?
 - Agents can take actions to affect the probabilities?

- Normative reference points
 - fairness and justice
 - are these also endogenous and optimal?



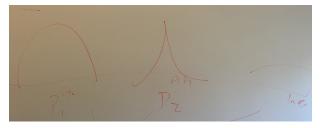
Justice: equal treatment before the law $(y = f(X) + \varepsilon, a \to X)$ equality based on recognition of difference $(y \perp W, var(\varepsilon) \perp W, a \nrightarrow W)$

- Normative reference points
 - · fairness and justice
 - are these also endogenous and optimal?



Justice: equal treatment before the law $(y = f(X) + \varepsilon, a \rightarrow X)$ equality based on recognition of difference $(y \perp W, var(\varepsilon) \perp W, a \nrightarrow W)$

- How to measure reference points
 - lab experiments typically vary reference points
 - not cheap talk
 - loss aversion with respect to the reference point



Identify curvature by randomly varying the cost of votes

- How to measure reference points
 - lab experiments typically vary reference points
 - not cheap talk
 - loss aversion with respect to the reference point

Identify curvature by randomly varying the cost of votes

- Protest = "spend"
- Organize = "save/invest"
 - expect future to be better = "anticipation utility"
 - civil rights law change = "increasing consumption profile"
- Police brutality affects today's consumption, and tomorrow's reference points
 - Have past governments used optimal reference point formation policies?
- Sexual harassment and reference points
 - Optimal reference point policies: Gradual or sharp?
- Disintegration / detachment from civic institutions = "disappointment"
 - Expect future to be better = "optimism"
 - stop trying = "pessimism or acclimation"

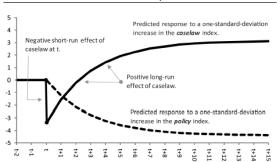
- Protest = "spend"
- Organize = "save/invest"
 - expect future to be better = "anticipation utility"
 - civil rights law change = "increasing consumption profile"
- Police brutality affects today's consumption, and tomorrow's reference points
 - Have past governments used optimal reference point formation policies?
- Sexual harassment and reference points
 - Optimal reference point policies: Gradual or sharp?
- Disintegration / detachment from civic institutions = "disappointment"
 - Expect future to be better = "optimism"
 - stop trying = "pessimism or acclimation"

- Protest = "spend"
- Organize = "save/invest"
 - expect future to be better = "anticipation utility"
 - civil rights law change = "increasing consumption profile"
- Police brutality affects today's consumption, and tomorrow's reference points
 - Have past governments used optimal reference point formation policies?
- Sexual harassment and reference points
 - Optimal reference point policies: Gradual or sharp?
- Disintegration / detachment from civic institutions = "disappointment"
 - Expect future to be better = "optimism"
 - stop trying = "pessimism or acclimation"

- Protest = "spend"
- Organize = "save/invest"
 - expect future to be better = "anticipation utility"
 - civil rights law change = "increasing consumption profile"
- Police brutality affects today's consumption, and tomorrow's reference points
 - Have past governments used optimal reference point formation policies?
- Sexual harassment and reference points
 - Optimal reference point policies: Gradual or sharp?
- Disintegration / detachment from civic institutions = "disappointment"
 - Expect future to be better = "optimism"
 - stop trying = "pessimism or acclimation"

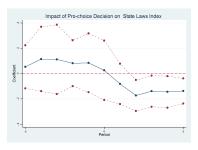
Backlash and Legitimization (Ura AJPS 2014)

FIGURE 2 Predicted Responses in Mood to One Standard Deviation Increases in Caselaw and Policy



Instantaneous backlash, then countervailing long-run effect that follows the law

Policies Affect Preferences (r?)



	Republicans					
	OLS	Naive IV	LIML	LASSO	N	
Z-score index	0.110	0.456	0.127	0.176	2000	
P-value	0.038	0.016	0.023	0.009		
Simple average index	0.048	0.216	0.056	0.089	2000	
P-value	0.041	0.014	0.025	0.004		

Republicans strongly increase pro-life attitudes in response to pro-choice decisions, especially for "Should it be illegal for a woman to obtain abortion for (any reason)?" Results on Democrats not as sharp, perhaps because pro-life decisions are not perceived as morally repugnant (i.e., smoother gain-loss curvature)

Abortion Attitudes 2 Years Later

	Republicans				
	OLS	Naive IV	LIML	LASSO	N
Z-score index	-0.012	-0.333	-0.012	-0.028	2004
P-value	0.824	0.025	0.829	0.768	
Simple average index	-0.006	-0.154	-0.006	-0.008	2004
P-value	0.804	0.021	0.811	0.836	

- Reject hypothesis of persistent backlash
- (Ura (2014)) also finds instantaneous backlash and immediate decay (acclimation?)

2 periods, actions at t = 0 that may result in abortion at t = 1

- $U(no_abortion) = 0$; $U(abortion) = -u_a < 0$
- After an abortion, no subsequent change to utility from additional abortions ("What the hell", concave cost to deviating from duty, diminishing sensitivity)
- $q \rightarrow \uparrow Pr(abortion)$ exogenous laws/access to abortion
- $p \rightarrow \downarrow Pr(abortion)$ endogenous attitudes, donations
- $c(p) \ge 0$, c' > 0, c'' > 0
- P(q-p), P'>0, P''>0

$$\max_{p} \{ (P(q-p))(-u_{a}) - c(p) \}$$

$$\max_{p} \{ -P(q-p) - c(p) \}$$

2 periods, actions at t = 0 that may result in abortion at t = 1

- $U(no_abortion) = 0$; $U(abortion) = -u_a < 0$
- After an abortion, no subsequent change to utility from additional abortions ("What the hell", concave cost to deviating from duty, diminishing sensitivity)
- $q \rightarrow \uparrow Pr(abortion)$ exogenous laws/access to abortion
- $p \rightarrow \downarrow Pr(abortion)$ endogenous attitudes, donations
- $c(p) \ge 0$, c' > 0, c'' > 0
- P(q-p), P'>0, P''>0

$$\max_{p} \{ (P(q-p))(-u_{a}) - c(p) \}$$

$$\max_{p} \{ -P(q-p) - c(p) \}$$

2 periods, actions at t=0 that may result in abortion at t=1

- $U(no_abortion) = 0$; $U(abortion) = -u_a < 0$
- After an abortion, no subsequent change to utility from additional abortions ("What the hell", concave cost to deviating from duty, diminishing sensitivity)
- $q \rightarrow \uparrow Pr(abortion)$ exogenous laws/access to abortion
- $p \rightarrow \downarrow Pr(abortion)$ endogenous attitudes, donations

•
$$c(p) \ge 0$$
, $c' > 0$, $c'' > 0$

•
$$P(q-p)$$
, $P'>0$, $P''>0$

$$\max_{p} \{ (P(q-p))(-u_{a}) - c(p) \}$$

$$\max_{p} \{ -P(q-p) - c(p) \}$$

2 periods, actions at t=0 that may result in abortion at t=1

- $U(no_abortion) = 0$; $U(abortion) = -u_a < 0$
- After an abortion, no subsequent change to utility from additional abortions ("What the hell", concave cost to deviating from duty, diminishing sensitivity)
- $q \rightarrow \uparrow Pr(abortion)$ exogenous laws/access to abortion
- $p \rightarrow \downarrow Pr(abortion)$ endogenous attitudes, donations
- $c(p) \ge 0$, c' > 0, c'' > 0
- P(q-p), P'>0, P''>0

$$\max_{p} \{ (P(q-p))(-u_{a}) - c(p) \}$$

$$\max_{p} \{ -P(q-p) - c(p) \}$$

2 periods, actions at t = 0 that may result in abortion at t = 1

- $U(no_abortion) = 0$; $U(abortion) = -u_a < 0$
- After an abortion, no subsequent change to utility from additional abortions ("What the hell", concave cost to deviating from duty, diminishing sensitivity)
- $q \rightarrow \uparrow Pr(abortion)$ exogenous laws/access to abortion
- $p \rightarrow \downarrow Pr(abortion)$ endogenous attitudes, donations
- $c(p) \ge 0$, c' > 0, c'' > 0
- P(q-p), P'>0, P''>0

$$\max_{p} \{ (P(q-p))(-u_{a}) - c(p) \}$$

$$\max_{p} \{ -P(q-p) - c(p) \}$$

Dynamics of Law and Norms

- P'(q-p)=c'(p)
 - unless already had an abortion, $p^* = 0$
- s_0 share of the population have not had an abortion
- Assume share of abortions in the society is at steady-state
 - s = P(q p) will have an abortion at t = 1
 - share α of new people enter; β exit
 - $s_0(1-s)(1-\beta) + \alpha$ is share without abortion at t=1
 - A steady state obtains if:

$$s_0(1-s)(1-\beta) + \alpha = s_0$$

Dynamics of Law and Norms

- P'(q-p) = c'(p)
 - unless already had an abortion, $p^* = 0$
- s_0 share of the population have not had an abortion
- Assume share of abortions in the society is at steady-state
 - s = P(q p) will have an abortion at t = 1
 - share α of new people enter; β exit
 - $s_0(1-s)(1-\beta) + \alpha$ is share without abortion at t=1
 - A steady state obtains if:

$$s_0(1-s)(1-\beta) + \alpha = s_0$$

Dynamics of Law and Norms

- P'(q-p) = c'(p)
 - unless already had an abortion, $p^* = 0$
- s_0 share of the population have not had an abortion
- Assume share of abortions in the society is at steady-state
 - s = P(q p) will have an abortion at t = 1
 - share α of new people enter; β exit
 - $s_0(1-s)(1-\beta) + \alpha$ is share without abortion at t=1
 - A steady state obtains if:

$$s_0(1-s)(1-\beta) + \alpha = s_0$$

Equilibrium Effect of Laws

Implicit Function Theorem yields:

$$\frac{\partial p^*(q)}{\partial q} = \frac{P''(q-p^*)}{P''(q-p^*) + c''(p^*)}$$

• Since P'' > 0, and c'' > 0:

$$0<\frac{\partial p^*(q)}{\partial q}<1$$

- Pro-choice decision at t = 0 stimulates p: initial backlash
 - Overall anti-abortion attitude is: s₀p
- At t = 1, both p^* and s_0 change, so anti-abortion attitude is:

$$s_0 p^* = \frac{\alpha p^*}{s^* + \beta - s^* \beta} = \frac{\alpha p^*}{P(q - p^*) + \beta - P(q - p^*) \beta}$$

Equilibrium Effect of Laws

Implicit Function Theorem yields:

$$\frac{\partial p^*(q)}{\partial q} = \frac{P''(q-p^*)}{P''(q-p^*) + c''(p^*)}$$

• Since P'' > 0, and c'' > 0:

$$0<\frac{\partial p^*(q)}{\partial q}<1$$

- Pro-choice decision at t = 0 stimulates p: initial backlash
 - Overall anti-abortion attitude is: s₀p
- At t = 1, both p^* and s_0 change, so anti-abortion attitude is:

$$s_0 p^* = \frac{\alpha p^*}{s^* + \beta - s^* \beta} = \frac{\alpha p^*}{P(q - p^*) + \beta - P(q - p^*)\beta}$$

Equilibrium Effect of Laws

Implicit Function Theorem yields:

$$\frac{\partial p^*(q)}{\partial q} = \frac{P''(q-p^*)}{P''(q-p^*) + c''(p^*)}$$

• Since P'' > 0, and c'' > 0:

$$0<\frac{\partial p^*(q)}{\partial q}<1$$

- Pro-choice decision at t = 0 stimulates p: initial backlash
 - Overall anti-abortion attitude is: sop
- At t = 1, both p^* and s_0 change, so anti-abortion attitude is:

$$s_0p^* = \frac{\alpha p^*}{s^* + \beta - s^*\beta} = \frac{\alpha p^*}{P(q - p^*) + \beta - P(q - p^*)\beta}$$

Backlash or Expressive?

q increases both the numerator and the denominator

$$s_0 p^* = \frac{\alpha p^*}{P(q-p^*) + \beta - P(q-p^*)\beta}$$

- Overall effect depends on relative increase of p in numerator compared to increase of $P(q-p^*)$ in denominator
- If large increase in p^* offsets increase in probability of abortions $P(q-p^*)$, then long-term equilibrium also backlash
 - Otherwise, at t=1, the overall effect of a pro-choice decision reduces negative attitudes, i.e. expressive
- Too big of a backlash becomes permanent
 - asymmetric reference point adaptation?
 - r doesn't respond to large enough losses?
 - autoregressive reference points seems more apt than stochastic

Backlash or Expressive?

q increases both the numerator and the denominator

$$s_0 p^* = \frac{\alpha p^*}{P(q-p^*) + \beta - P(q-p^*)\beta}$$

- Overall effect depends on relative increase of p in numerator compared to increase of $P(q-p^*)$ in denominator
- If large increase in p^* offsets increase in probability of abortions $P(q-p^*)$, then long-term equilibrium also backlash
 - Otherwise, at t=1, the overall effect of a pro-choice decision reduces negative attitudes, i.e. expressive
- Too big of a backlash becomes permanent
 - asymmetric reference point adaptation?
 - r doesn't respond to large enough losses?
 - autoregressive reference points seems more apt than stochastic

Backlash or Expressive?

q increases both the numerator and the denominator

$$s_0 p^* = \frac{\alpha p^*}{P(q-p^*) + \beta - P(q-p^*)\beta}$$

- Overall effect depends on relative increase of p in numerator compared to increase of $P(q-p^*)$ in denominator
- If large increase in p^* offsets increase in probability of abortions $P(q-p^*)$, then long-term equilibrium also backlash
 - Otherwise, at t = 1, the overall effect of a pro-choice decision reduces negative attitudes, i.e. expressive
- Too big of a backlash becomes permanent
 - asymmetric reference point adaptation?
 - r doesn't respond to large enough losses?
 - autoregressive reference points seems more apt than stochastic