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Abstract. What assumptions justify two-stage least-squares (TSLS) as an estimator of

causal effects when there are covariates? We argue that an natural assumption—in addition

to constant and linear effects—is one that we call partial mean-independence, and further

that other seemingly natural restrictions that rationalize TSLS have various deficiencies.

We then analyze this assumption from a semiparametric efficiency perspective and derive

efficient and locally efficient estimators. These estimators take the form of plugging in an

estimated optimal instrument, which is constrained to be linear in the covariates but may

be non-linear in the instrumental variables. Under the TSLS-justifying assumptions that we

propose, our approach amounts to allowing a more flexible first stage, thereby strengthening

the relevance of instruments and delivering improvements to TSLS that we argue are user-

friendly and mostly harmless.
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1. Introduction

Two-stage least-squares (TSLS) is often used to estimate some causal effect in empirical

work. Over 30% of all NBER working papers and top journal publications considered by

Currie, Kleven and Zwiers (2020) include some discussion of instrumental variables, and

TSLS is the workhorse estimator for research designs involving instruments. Almost a third

of papers using TSLS, surveyed by Blandhol, Bonney, Mogstad and Torgovitsky (2022),

explicitly interpret the resulting estimate as one for some treatment effect parameter.

However, there is considerable recent interest in the minimal set of assumptions under

which TSLS actually has a causal interpretation. Of course, TSLS is justified under a

linear structural model, which places stringent functional-form assumptions on the joint

distribution of potential outcomes. The celebrated result by Angrist and Imbens (1995)

shows that TSLS is in a sense “model-free”: TSLS, even without assumptions on the potential

outcomes, estimates a local average treatment effect. However, recent work (Blandhol et al.,

2022; S loczyński, 2022) has pointed out that in empirical implementations that commonly

arise—which are often more complex than in Angrist and Imbens (1995), TSLS often does

not have reasonable model-free interpretations. In particular, when covariates are included

linearly and when the covariates are thought to be necessary for identification, TSLS can

estimate weighted averages of treatment effects with negative weights.

Therefore, if one would like to continue to use TSLS or to interpret existing TSLS estimates

causally, then one should impose—and assess—functional form restrictions on the potential

outcomes. What restrictions do justify TSLS with covariates? One could retreat to a

textbook-style linear structural model, where the “structural errors” are either assumed to

be uncorrelated with or mean-independent of the instruments. However, as we shall see,

depending on which error assumption is imposed, such a model either allows nonlinear

functions of covariates as valid instruments or disallows nonlinear functions of instruments

as valid instruments. Neither is a reasonable feature.

This paper provides assumptions that justify TSLS with covariates and do not exhibit

the above deficiencies of the classical structural equation assumptions. We show that a

minimal assumption under these considerations is that the baseline potential outcome is

partially mean-independent of the instrument given covariates—meaning that a partially

linear regression of the potential outcome on nonlinear functions of the instruments and

linear functions of the covariates returns a linear function of the covariates.

Having identified such an assumption, we then study the semiparametric properties of

this model, applying the general analysis of sequential moment models (Chamberlain, 1992).
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This analysis implies efficient and locally efficient1 estimation procedures which provide effi-

cency improvements over TSLS under the partial mean-independence assumption. Notably,

it is possible that the instrument does not linearly predict the endogenous treatment well—

leading to a weak instruments problem for TSLS—but nonlinear functions of the instrument

do predict the endogenous treatment. Machine learning methods thus hold promise for ef-

fectively finding these nonlinear functions and rescuing otherwise weak instruments. Indeed,

we show that implementations of these estimators—which may leverage complex machine

learning methods—have the usual appealing asymptotic properties under notably weaker

assumptions than are typical in semiparametric econometrics. Our Monte Carlo simulations

and empirical application confirm that there are some efficiency benefits.

If we view practitioners who use TSLS as implicitly accepting the assumption that we have

identified, then such efficient procedures provide a free-lunch—or at least, mostly harmless—

improvement for these practitioners. Owing to the overwhelming popularity of TSLS meth-

ods in both applied work in causal inference and applied work in structural econometrics,

we argue that our analysis is valuable, if at least to clarify the assumptions needed and to

suggest “minimally invasive” improvements.

This paper proceeds as follows. Section 2 revisits linear IV specifications and consid-

ers several assumptions that relate to TSLS and finds that partial mean-independence is a

natural one that satisfies three desiderata. Section 3 then studies efficiency and efficient esti-

mation under the partial mean-independence assumption that we propose. Finally, Section 4

illustrates our theory with a Monte Carlo study and an empirical application.

2. Linear IV specifications

Consider some outcome variable Yi, treatment variable Wi, covariates Xi, and instrument

Zi. We let Di = [1,W ′
i , X

′
i]
′ and Zi = [Z ′

i, X
′
i]
′ collect the second stage variables and the first

stage variables, respectively. To distinguish observed and counterfactual values of Yi, we let

the random variable Yi(w) denote a potential outcome if individual i is assigned treatment

level w, and think of Yi as the observed outcome Yi(Wi).
2 Similarly, we let Wi(z) denote

a potential treatment level, where Wi(·) describes the compliance pattern for unit i.3 We

assume a cross-sectional setting where the structural variables are sampled according to some

1An estimator is locally efficient for a given model P0 at some restriction of the model P1 ⊂ P0 if it is
consistent and asymptotically normal at all P ∈ P0 and its asymptotic variance matches the efficiency
bound for P0 at all P ∈ P1. See Newey (1990); Graham, de Xavier Pinto and Egel (2012) for related
discussions. Note, however, this is distinct from efficiency for P1, because the efficiency bound for P1 is in
general higher than the efficiency bound for P0 at a given P ∈ P1.
2Note that doing so imposes the exclusion restriction that Z has no direct effect on Y .
3If Z is binary, then (W (1),W (0)) characterizes whether an individual is a complier, always-taker, never-
taker, or defier (Angrist and Imbens, 1995).
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unknown joint distribution

(Yi(·),Wi(·), Xi, Zi)
i.i.d.∼ P ∗.

We observe (Yi,Wi, Xi, Zi)
i.i.d.∼ P where Wi = Wi(Zi) and Yi = Yi(Wi). Throughout, we

assume (Yi(w),Wi(z), Xi, Zi) has finite second moments for all w, z.

To estimate causal effects of W on Y , many researchers use the two-stage least-squares

(TSLS) specification:4

Yi = α + W ′
iβ + X ′

iη + Ui, E[UiZi] = 0. (1)

Blandhol et al. (2022) construct a sample of journal articles in economics using instrumental

variable designs, published in one of the five journals: American Economic Review, Econo-

metrica, Quarterly Journal of Economics, Journal of Political Economy, and Review of Eco-

nomic Studies. The vast majority of those (i) estimate (1) with some covariates Xi, (ii) deem

having Xi as important for causal identification, and (iii) fail to saturate the covariate term

X ′
iη. Blandhol et al. (2022) point out that, in such cases, β from (1) typically does not cor-

respond to any reasonable aggregate of conditional local average treatment effects, under the

standard nonparametric potential outcomes model and even under additional restrictions.

This paper gives (1)—in settings with (i)–(iii)—some benefit of doubt and asks what

structural restrictions rationalize (1) as an estimator of causal or structural parameters. We

find that intuitive structural restrictions have certain undesirable properties, and we propose

a new restriction that rationalizes TSLS. We then consider efficient estimation of β0 under

this new restriction. This restriction is indeed stronger than those considered by Blandhol

et al. (2022). However, since TSLS specifications are very popular in practice and often

interpreted as estimating causal effects, there is an argument that practitioners are revealed

to prefer this assumption and implicitly operate under it.

To have some hope that (1) estimates a treatment effect parameter, it is natural to at

least restrict to a constant and linear treatment effects model so that we can define β0 as

the slope of the treatment acting on the potential outcomes. In some cases, the procedures

we recommend have LATE interpretations under heterogeneous treatment effects, which we

return to in Section 3.3.

Assumption 2.1 (Constant and linear treatment effects). Fix some baseline level w0. The

mean treatment effect is constant and linear in the treatment level w, regardless of compliance

pattern Wi(·) and covariate value Xi:

E[Yi(w) − Yi(w0) | Xi,Wi(·)] = (w − w0)
′β0. (2)

4Here, we do not think of (1) as a well-specified structural equation. What we mean by (1) is not a
substantively restrictive model on P ∗ or P ; rather, it defines an estimand and estimator through the moment
condition E[(Yi − α −W ′

iβ −X ′
iη)Zi] = 0. When dimW = dimZ, this moment condition is just-identified

and a solution always exists subjected to some rank condition. When dimZ > dimW , TSLS corresponds to
some weighted GMM objective.
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Moreover, the instrument does not select on heterogeneous treatment effects:

E[Yi(w) − Yi(w0) | Wi(·), Xi, Zi] = (w − w0)
′β0. (3)

The restriction (2) is the same as Assumption CLE in Blandhol et al. (2022) and imposes that

the treatment effects are constant and linear, at least on average, within each covariate-by-

compliance-pattern cell. The additional restriction (3) imposes that the instrument similarly

does not select on the treatment effect heterogeneity. It is guaranteed by (2) and random

assignment (Zi y (Yi(·),Wi(·)) | Xi). Here, we impose (3) as a high-level restriction.

Given Assumption 2.1, we consider three reasonable requirements for structural restric-

tions that rationalize (1):

(a) TSLS (1) should estimate β0 consistently in settings with features (i)–(iii) above.

(b) Nonlinear functions of Xi should not be valid external instruments.

(c) Nonlinear functions of Zi can be valid external instruments.

The requirement (a) states that adjusting for Xi linearly in TSLS is sufficient to recover β0.

Imposing (b) is reasonable: Since Xi is typically not saturated, such nonlinear variation is

usually available. Practitioners sensibly do not use such variation for identification of (β0, η0)

and instead opt for an instrument that is exogenous in some sense. Similarly, imposing (c)

also conforms with our intuition on sources of causal identification: If researchers believe

they have found a good instrument, then they ought to be able to use any transformation

of it to identify β0.

The restriction that satisfies all three requirements is the following. Define the partially

linear projection of a random variable Y ∗ onto (Z∗;X∗) as the minimizer of the squared

error prediction loss (assuming a unique minimizer exists) over functions f1(Z
∗) + η′X∗:

PL[Y ∗ | Z∗;X∗] ≡ arg min
{f(z,x)=f1(z)+x′η}

E
[
(Y ∗

i − f(Z∗;X∗))2
]
.

Similarly, define the linear projection L[Y ∗ | X∗] as the solution to the linear least-squares

problem (again, assuming a unique minimizer exists):

L[Y ∗ | X∗] = arg min
{f(x)=α+x′η}

E
[
(Y ∗ − f(X∗))2

]
. (4)

Definition 2.1. We say that Z∗ is partially mean-independent of Y ∗ given X∗ if E[Y ∗ |
Z∗;X∗] = L[Y ∗ | X∗].

We propose the following restriction in terms of partial mean-independence of the instru-

ment Z on the baseline potential outcome Y (w0) given the covariates X:

Assumption 2.2 (Partial mean independence). Yi(w0) is partially mean independent of Zi

given Xi.
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This assumption means that practitioners choose Xi judiciously so that a partially linear

regression of Yi(w0) on Zi and Xi is solely an affine function of Xi, with the nonlinear part

of Zi being a constant function.

This restriction is equivalent to a structural equation model with a partially mean-zero

restriction, as the following lemma makes precise.

Lemma 2.2. Any P ∗ that satisfies Assumptions 2.1 and 2.2 implies a distribution P for

observed variables that satisfies the structural equation

Yi = α0 + W ′
iβ0 + X ′

iη0 + Ui PL[Ui | Zi;Xi] = 0 (5)

for some (α0, η0). Conversely, any P that satisfies (5) can be rationalized by some P ∗ that

satifies Assumptions 2.1 and 2.2. Moreover, the restriction PL[Ui | Zi;Xi] = 0 is equivalent

to the restriction that E[UiXi] = E[Ui | Zi] = 0.

The moment condition (5) immediately shows that Assumption 2.2 satisfies the require-

ment (a)–(c). For (a), since (5) implies that E[UiZi] = 0, β0 from TSLS is consistent

subjected to a rank condition (strong first-stage). For (b), since E[UiXi] = 0 does not nec-

essarily imply E[Uif(Xi)] = 0, nonlinear functions of Xi are not valid instruments without

further assumption. For (c), since E[Ui | Zi] = 0 implies that E[Uif(Zi)] = 0 for any f ,

nonlinear functions of Zi do provide identifying variation for β0.
5

We can view Assumption 2.2 as a different independence restriction on Z and Y (w0).

Recall that statistical independence restrictions can be recast as prediction problems. A

(scalar) random variable Y ∗ is independent of Z∗ conditional on X∗ if for all (bounded)

functions f , Z∗ generates no additional predictive power:6 E[f(Y ∗) | Z∗, X∗] = E[f(Y ∗) |
X∗]. Y ∗ is mean-independent of Z∗ given X∗ if the above holds for the identity map f(t) = t:

E[Y ∗ | Z∗, X∗] = E[Y ∗ | X∗]. Similarly, Y ∗ is partially uncorrelated with Z∗ given X∗ if

controlling for X∗ in a linear regression removes the coefficient on Z∗: For L defined as the

linear projection operator, L[Y ∗ | Z∗, X∗] = L[Y ∗ | X∗]. Viewed in this light, Assumption 2.2

is simply replacing these independence restrictions with partial mean-independence.

2.1. Alternative restrictions and why they do not satisfy (a)–(c). To further see

why Assumption 2.2 is a natural restriction given the requirements (a)–(c), it is helpful to

consider several other restrictions that may appear natural.

The simplest restriction such that (1) is consistent for some causal effect is the model

where we assume the following outcome model along with Assumption 2.1:

E[Yi(w0) | Xi, Zi] = α0 + η′0Xi (6)

5To the best of our knowledge, the restriction (5)—and hence Assumption 2.2—is novel, and first proposed
by the first draft of this article (https://arxiv.org/abs/2011.06158v1).
6To prove this, we can, for instance, let f(y) = 1(y ≤ t).
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Under random assignment of Zi, (6) is equivalent to an outcome model where the conditional

expectations of the potential outcomes are linear in the covariates (Assumption LIN in

Blandhol et al. (2022)):

E[Yi(w0) | Xi] = α0 + η′0Xi.

This restriction is equivalent—in the sense similar to Lemma 2.2—to the familiar linear IV

structural equation model, ubiquitous in both classical econometrics and modern structural

econometrics7

Yi = α0 + W ′
iβ0 + X ′

iη0 + Ui E[Ui | Zi] = 0. (7)

As pointed out by, among others, Abadie (2003); Blandhol et al. (2022); Angrist and Pischke

(2008), this restriction allows for “backdoor identification” through nonlinear functions of

Xi, violating requirement (b). Compared to this model, the requirement (5) is a weakening

of (7) by removing nonlinear functions of Xi as valid instruments.

The outcome model (6) is too strong to satisfy (b). Weakening the outcome model (6) to

allow for nonlinear covariates8

E[Yi(w0) | Xi, Zi] = f0(Xi) (8)

yields, in structural equation form, the partially linear IV model (e.g., (4.5) in Chernozhukov,

Chetverikov, Demirer, Duflo, Hansen, Newey and Robins (2018)):9

Yi = W ′
iβ0 + f0(Xi) + Ui E[Ui | Zi] = 0.

Although nonlinear functions of Xi no longer have identifying power for β0, linear TSLS (1)

is in general inconsistent for β0 in this model; thus, this model would fail the requirement

(a).

Further restrictions on the design can restore consistency. If the instrument Zi is fully

randomized (i.e., Zi y (Yi(·),Wi(·)) unconditionally), then TSLS is consistent and can be

improved by finding better transformations g(Z) as instruments (Coussens and Spiess, 2021).

However, many empirical papers in Blandhol et al. (2022)’s sample explicitly or implicitly

deem controlling for Xi as important for identification.

To connect our assumption to the partially linear model, we note that under random

assignment of Zi, our Assumption 2.2 is equivalent to an additional restriction on f0(·):
7In Berry, Levinsohn and Pakes (1995), for instance, (7) is present as a model of mean consumer utility Yi

(typically denoted δ), where Ui (typicalled denoted ξ) is a notion of unobserved characteristics of a product
(Berry and Haile, 2021).
8Under random assignment, (8) does not impose any actual restrictions on the outcomes.
9To estimate β0 in this model, one could work with the double/debiased machine learning moment condition
in Chernozhukov et al. (2018). One could also let Vi = f0(Xi) + Ui and note that it is orthogonal to any
recentered instrument g(x, z) − E[g(X,Z) | X = x] (Borusyak and Hull, 2023):

E[Vi · (g(Xi, Zi) − E[g(Xi, Zi) | Xi])] = 0.
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Proposition 2.3. Under random assignment Zi y Yi(·) | Xi,
10 the following are equivalent:

(1) Assumption 2.2

(2) Zi does not predict the nonlinearity of the mean potential outcome given Xi: For

f0(Xi) ≡ E[Yi(w0) | Xi],

E[f0(Xi) − L[f0(Xi) | Xi] | Zi] = 0.

and PL[Yi(w0) | Zi;Xi] = L[f0(Xi) | Xi].

Proposition 2.3 states that Assumption 2.2 is equivalent to adding the restriction that the

nonlinearity of f0(Xi) is not predicted by Zi, which is indeed intuitively necessary for (a) to

hold.

The specification (8) weakens (6) too much to satisfy (a)–(c). A different way to weaken

(6) is by requiring simply that the linear projection of Y (w0) on Zi, Xi is α0 + η′0Xi:

L[Yi(w0) | Zi, Xi] = α0 + X ′
iη0 where L[Y ∗ | X∗] = arg min

{f(x)=α+x′η}
E
[
(Y ∗ − f(X∗))2

]
. (9)

This restriction again allows TSLS to estimate β0.
11 It disallows nonlinear functions of

Xi from being used as instruments. However, such a restriction also potentially disallows

nonlinear functions of Zi—which we commonly think of as exogenous—as instruments, thus

violating (c). Compared to (4), Assumption 2.2 is exactly equivalent to the version of (9)

that holds for all nonlinear functions g(Zi):

Proposition 2.4. Assumption 2.2 is equivalent to the following: For any function g(·),

L[Yi(w0) | g(Zi), Xi] = α0 + X ′
iη0.

All three alternative models we consider are unsatisfying for TSLS in that they violate

one of (a)–(c). In each of the cases, Assumption 2.2 is a natural strengthening or weakening

of the model to rescue the failed requirements.

It is a fair critique that Assumption 2.2 can be knife-edge. For instance, exactly what is

meant by Assumption 2.2 depends—necessarily so—on the vector of Xi that practitioners

choose. Then again, we conduct this exercise presuming that TSLS is innocent, and so the

fact that Assumption 2.2 is knife-edge reflects difficulties thinking of TSLS as a “model-

free” estimator. Nevertheless, we think there is value in studying Assumption 2.2, given

that TSLS—and linear IV structural models like (7)—are popular in both causal inference

and structural econometrics. Assumption 2.2 clarifies the nature of functional-form assump-

tions one would have to defend if one uses TSLS, and gives vast amount of existing work

interpretation.

10The proof only uses mean-independence: E[Yi(·) | Xi, Zi] = E[Yi(·) | Xi].
11If Z is binary and randomly assigned, then one way to ensure (9) for all Y (w0) is if the propensity score
is linear: E[Zi | Xi] = L[Zi | Xi]. This is the “rich covariate” restriction in Blandhol et al. (2022).
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Accepting Assumption 2.2, our next section on efficient estimation yields free-lunch im-

provements over TSLS—in the sense that under reasonable settings where TSLS estimates

a causal efect, the estimators we propose improve on TSLS.

3. Efficiency, estimation, and inference

The rest of the paper is concerned with efficient estimation of β0 given Assumptions 2.1

and 2.2. We first discuss efficient estimation in population in Section 3.1. Like conventional

instrumental variable settings, efficient estimation of β0 can be viewed as deriving an op-

timal instrument—that is, a choice of Υ(Zi) that delivers the smallest possible asymptotic

variance—and running TSLS with this optimal instrument. In general, the optimal instru-

ment depends on unknown population quantities that need to be estimated—Section 3.2

then discusses estimating this optimal instrument. Like conventional settings, fully efficient

estimation requires weighting by inverse of the conditional heteroskedasticity. However, the

form of the optimal instrument under homoskedasticity is considerably simpler and have

some additional appealing properties, which we discuss in Section 3.3. Finally, Section 3.4

discusses an implementation of the estimation procedure in Section 3.2.

3.1. Efficiency. Define σ2(Zi) = E[U2
i | Zi] as the conditional variance of the moment

condition given Zi and

X̃i = Xi −
E[XiU

2
i | Zi]

σ2(Zi)

as the residual of Xi from a weighted projection onto Zi. Following Chamberlain (1992), the

following dim(Di)-vector is the optimal instrument for (5):

Υ⋆(Zi) =
E[Di | Zi]

σ2(Zi)
+ E[DiX̃

′
i]E[U2

i X̃iX̃
′
i]
−1X̃i. (10)

Given a sample (Yi, Xi, Zi,Wi)
N
i=1, an (infeasible) efficient estimator of θ0 = (α0, β

′
0, η

′
0)

′ for

(5) is obtained by

θ̂⋆N =

(
1

n

N∑
i=1

Υ⋆(Zi)D
′
i

)−1

1

n

N∑
i=1

Υ⋆(Zi)Yi. (11)

Feasible estimators can be constructed by estimating Υ⋆(·) in a first step. We collect these

efficiency results in the following theorem.

Theorem 3.1. The semiparametric efficiency bound for the sequential moment restrictions

(5) is

V ⋆ =

(
E
[

1

σ2(Zi)
E[Di | Zi]E[Di | Zi]

′
]

+ E[DiX̃
′
i]E[UiX̃iX̃

′
i]
−1E[X̃iD

′
i]

)−1

.

Under the assumptions that (i) Var(Υ⋆(Zi)Ui) < ∞ and (ii) E[Υ⋆(Zi)D
′
i] < ∞ and is full

rank,
√
n(θ̂⋆N − θ0)

d−→ N (0, V ⋆) as N → ∞.
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The intuition for the optimal instrument (10) is the following. The two sequential moment

conditions

E[Ui | Zi] = 0 E[UiXi] = 0

are correlated, in the sense that Cov (Ui, UiXi | Zi) ̸= 0. We note that if we project the

second moment onto the first moment, we obtain

UiXi −
Cov(Ui, UiXi | Zi)

Var(Ui | Zi)
UiXi = UiX̃i.

This transformation decorrelates the moments: E[Ui | Zi] = 0 and E[X̃iUi] = 0 are uncor-

related since Cov(Ui, X̃iUi | Zi) = 0 by construction. The insight of Chamberlain (1992) is

that when sequential moment restrictions are uncorrelated in this sense, their information

bounds (that is, the inverse of the efficiency bound) can be directly summed. Efficient esti-

mation then amounts to adding up the individual moment conditions, where each individual

moment condition is transformed to an unconditional moment condition by plugging in its

optimal instrument.

The optimal instrument for E[Ui | Zi] = 0 is Υ⋆
1(Zi) = E[Di|Zi]

Var(Ui|Zi)
and the optimal instrument

for E[UiX̃i] is Υ⋆
2 = E[DiX̃

′
i]E[U2

i X̃iX̃
′
i]
−1.12 Thus the sum of the transformed moments is

indeed the moment condition obtained by using Υ⋆:

E[Υ⋆
1(Zi)Ui + Υ⋆

2X̃iUi] = E[Υ⋆(Zi)Ui] = 0.

3.2. Estimation and inference. We now consider feasible estimators in the form of (11),

where we replace the unknown instrument Υ⋆(·) with some feasible estimate Υ̂N(·). To allow

for a wide array of estimators and to avoid empirical process arguments, we consider cross-

fitting (Chernozhukov et al., 2018).13 A cross-fitted estimation procedure splits the sample

into K folds, such that, for i in fold k and fixing Zi, Υ̂n(Zi) depends solely on observations

from folds other than fold k. This procedure does introduce additional variability into the

final estimates, but this variability can be mitigated by the procedure proposed by Ritzwoller

and Romano (2023).

Since our theoretical results generalize immediately to any constant K, we let K = 2 and

consider a partition I1 ∪ I2 = {1, . . . , N}. For convenience, assume N is even.

12Recall that for a conditional moment restriction

E[m(Ai, ϑ0) | Bi] = 0,

Chamberlain (1987) shows that the optimal instrument is

−E

[
∂m

∂ϑ

∣∣∣∣
ϑ=ϑ0

| Bi

]′
Var (m(Ai, ϑ0) | Bi)

−1
.

13If we restrict estimation to a sufficiently restrictive class of functions (e.g. a class with well-behaved
metric entropy), empirical process arguments would allow for similar results without cross-fitting (Vaart and
Wellner, 2023).
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Theorem 3.2. For a cross-fitted and partially linear estimate Υ̂N(Zi), assume that

(1) (Convergence in L2(Z) to a limiting instrument) Υ̂N converges to some partially linear

Υ0(Zi) = f1(Zi) + X ′
iγ0 in the following out-of-sample sense

lim
N→∞

E
[
∥Υ̂N(Z∗

i ) − Υ0(Z
∗
i )∥2

]
= lim

N→∞
E
[
∥Υ̂N − Υ0∥2L2(Z)

]
= 0.

Here, the expectation integrates over a distribution where Υ̂N depends on N/2 iid copies of

(Yi, Xi,Wi, Zi) and Z∗
i is an additional iid copy of Zi.

(2) (Finite moments) The following moments are finite: E[DiD
′
i] ≤ ∞, E[|Ui|3∥Υ0(Zi)∥3] <

∞, Var(Ui | Zi) ≤ M uniformly over Zi.

(3) (Limiting instrument is strong) E[Υ0(Zi)D
′
i] is full rank.

Let

θ̂N =

(
1

N

∑
i

Υ̂N(Zi)D
′
i

)−1
1

N

∑
i

Υ̂N(Zi)Yi (12)

and let θ̂0,N =
(

1
N

∑
i Υ0(Zi)D

′
i

)−1 1
N

∑
i Υ0(Zi)Yi.

14 Then:

(1) θ̂N and θ̂0,N are asymptotically equivalent
√
N(θ̂N − θ̂0,N)

p−→ 0.

and both are asymptotically normal.

(2) The asymptotic variance of θ̂N is equal to the efficiency bound in Theorem 3.1 if Υ̂N

is consistent for the optimal instrument: i.e., Υ0 = Υ⋆.

(3) Assuming additionally that Di and Υ̂N(Zi) has a uniformly bounded fourth moment

conditional on Υ̂N(·) almost surely, the asymptotic variance is consistently estimated by its

empirical counterpart

V̂N =

(
1

N

∑
i

Υ̂N(Zi)D
′
i

)−1(
1

N

∑
i

(Yi − θ̂′NDi)
2Υ̂N(Zi)Υ̂N(Zi)

′

)(
1

N

∑
i

DiΥ̂N(Zi)
′

)−1

.

Theorem 3.2 verifies that a plug-in estimator, using an estimated instrument, is asymp-

totically equivalent to an estimator that uses the limit of the estimated instrument. When

that limit equals the optimal instrument, the resulting estimator for θ0 is also efficient.

Theorem 3.2 shows additional robustness in the sense that even if Υ̂N is inconsistent for

Υ⋆—but so long as it converges to some strong instrument Υ0—we still obtain a consistent

and asymptotically normal estimator for θ0.

14Since we assume E[Υ0D
′
i] is full rank, with probability tending to 1 both 1

N

∑
i Υ̂N (Zi)D

′
i and

1
N

∑
i Υ̂0(Zi)D

′
i are full rank. In the event that they are not, we may replace the inverse operation with

Moore–Penrose pseudoinverse.
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The key assumption for Theorem 3.2 is a mean-square stability requirement for Υ̂N .15 This

is weaker than many assumptions in the literature for semiparametric models (Chen, 2007;

Chernozhukov et al., 2018), which typically require consistency of at least o(N−1/4) in ∥·∥2.
In contrast, (1) in Theorem 3.2 does not require any rate of convergence. The reason here is

that the moment restriction (5) possesses the robustness property that any partially linear

function Υ0(·) are valid instruments, and so bad estimates of Υ⋆ do not necessarily cause bias

in θ0. This robustness property is special to parametric conditional moment restrictions—

the partially linear IV model, for instance, does not possess this robustness and requires

o(n−1/4)-rate conditions (Chernozhukov et al., 2018).16

Remark 3.3 (“Mostly harmless” improvement over TSLS). We conclude this section with

a discussion that highlights the “mostly harmless” nature of (an improvement of) this esti-

mator. It is sometimes the case that the limiting instrument Υ0(·) is in fact a poor one. In

such cases, using this estimator performs worse than simply using TSLS with Zi included

linearly. We could correct this issue by treating Z̃i = [1, Υ̂N(Zi)
′,Z′

i] as a vector of (overi-

dentified) instruments, and estimate optimally weighted GMM with respect to the moment

condition E[Z̃i(Yi − θ′0Di)] = 0.17 When Υ̂N(Zi) ≈ Υ⋆(Zi), doing so recovers efficiency, but

when Υ̂N(Zi) is poor, doing so at least recovers the optimally weighted GMM estimator

using Zi. Such an approach is asymptotically at least as efficient as the TSLS estimator

using Zi—asymptotically, at least, it is harmless.

Of course, one might worry that adding Υ̂N(·) might create a finite-sample “many instru-

ment” bias, essentially due to overfitting when using Z̃i to predict Di,
18 which would make

this approach mostly harmful instead. This issue is mitigated—though not eliminated—by

sample-splitting and using the predicted instrument as an instrument in a TSLS specifica-

tion. Under our setup, this approach at most adds dimension dim(Di) = dim(Υ̂N) to the

vector of instruments. In the locally efficient (homoskedastic) case that we discuss next, this

approach only adds dimWi to the vector of instruments, where dim(Wi) is often 1. Thus,

applying sample-splitting makes this approach mostly harmless in practice as well. ■
15Conditions like (1) are common in machine learning (Bayle, Bayle, Janson and Mackey, 2020; Austern and
Syrgkanis, 2021). For instance, assumption A.2. in Lei, G’Sell, Rinaldo, Tibshirani and Wasserman (2018)
is a similar restriction (they consider high-probability bounds in ∥·∥∞ as opposed to bounds on the expected
value in ∥·∥2).
16It is also analogous to the fact that optimally weighted parametric GMM simply requires consistent esti-
mates of the optimal weighting matrix, without further rate requirements.
17Echoing the projection argument in Hausman (1978), we can view the resulting optimally weighted GMM

estimator as the variance-minimizing weighted average of θ̂0,N in Theorem 3.2 and the optimally weighted

GMM estimator for E[ZiUi] = 0, θ̂OW-GMM. When θ̂0,N is efficient, the resulting weighted average puts

weight solely on θ̂0,N .
18For one, estimated standard errors mechanically decrease as more instruments are added to Z̃i, but finite-
sample performance is typically poorer.
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3.3. Local efficiency. The expression (10) simplifies when E[U2
i | Zi] = σ2(Zi) = 1 is a

constant. This leads to a locally efficient instrument that has certain additional appealing

properties that are worth discussing.

Lemma 3.4. When E[U2
i | Zi] = 1 is a constant normalized to 1, the optimal instrument

for (5) is the partially linear regression of Di on Zi, Xi:

Υ⋆(Zi) = PL[Di | Zi;Xi] = [1,PL[Wi | Zi;Xi]
′, X ′

i]
′. (13)

The estimator that depends on (13) is consistent for (5) and locally efficient at (5) when

E[U2
i | Zi] = σ2(Zi) is constant. Local efficiency means that such an estimator achieves

the efficiency bound that solely imposes (5) (see, e.g., Newey, 1990; Graham et al., 2012).

However, this efficiency bound does not presume knowledge of E[U2
i | Zi] = 1, and exploiting

this restriction would lead to estimators with lower asymptotic variance.

The instrument (13) is easy to implement, as it does not involve estimating and weighting

by Var(Ui | Zi). This leads the instrument to have additional appealing properties. First,

since the instrument includes the covariates [1, X ′
i]
′, the corresponding TSLS estimator for

the subvector β0 is numerically equivalent to a TSLS estimator of the following (infeasible)

specification:

Yi = α0 + W ′
iβ0 + X ′

iη0 + Ui

Wi = γ0 + Υ(Zi)
′δ0 + X ′

iπ0 + Vi, (14)

where Υ(Zi) is the nonlinear part of PL[Wi | Zi;Xi] = Υ(Zi) + κ0Xi. Feasible implementa-

tions would replace Υ(Zi) with an estimate, possibly coming from a separate sample of the

data. This means that, at least if we sample-split, on the held-out set of the data (conditional

on the estimate Υ̂(Zi)), we have a conventional, just-identified linear IV problem, for which

a set of additional theoretical results (say on weak instruments) apply (Andrews, Stock and

Sun, 2019).

Second, the form (14) also clarifies how Υ⋆(·) improves efficiency—it does so by finding a

good prediction of Wi. (14) implies that the asymptotic variance of the estimator that uses

Υ(Zi) for β0 is of the form

V0,β =
(
E[Υ̃(Zi)W̃

′
i ]E[U2

i Υ̃(Zi)Υ̃(Zi)
′]−1E[W̃iΥ̃(Zi)

′]
)−1

where W̃i = Wi−L[Wi | Xi] and Υ̃(Zi) = Υ(Zi)−L[Zi | Xi]. If we assume homoskedasticity

σ2(Zi) = Var(Ui | Zi) = σ2 and that the treatment is a scalar dim(W ) = 1, then

V0,β = σ2

(
Cov(W̃ , Υ̃)2

Var(W̃ ) Var(Υ̃)
Var(W̃ )

)−1

=
1

R2
W∼Υ|X

σ2

Var(W̃ )
, (15)
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where R2
W∼Υ|X is the partial R2 of a regression of W on the instrument Υ, controlling for X.

This echoes a familiar intuition about TSLS, where the second-stage regresses on the first-

stage predictions of the endogenous variables, and one might expect that—indeed as (15)

demonstrates—better predictions deliver better second-stage estimates.19 TSLS substitutes

in a best linear prediction. Our assumption (2.2) expands the class of predictions to ones

that are partially linear in Xi, allowing for nonlinear functions of Zi and efficient prediction

via machine learning methods. The optimal instrument Υ(Zi) exactly maximizes this partial

R2 since it is the nonlinear part of a partially linear regression of Wi on Zi, Xi.

Third, since Υ⋆(·) in this case already includes Xi, the mostly harmless approach discussed

in Remark 3.3 would simply use Z̃i = [1,Υ(Zi)
′, Z ′

i, X
′
i]
′ as the vector of instruments. Under

homoskedasticity, it would also use TSLS rather than optimally weighted GMM to estimate

θ0. In this case, the approach in Remark 3.3 simply boils down to estimating a candidate

optimal instrument Υ(Zi) and including it in the TSLS specification. This approach adds

at most dim(Wi) instruments to the specification, and at least in the leading case where Wi

is a scalar, it should not contribute too much to many-instrument bias.

Lastly, this additional structure yields some additional nonparametric interpretation of

the estimand, formalized in the following proposition.20 In short, when Wi is binary, even in

the absence of Assumptions 2.1 and 2.2, the estimand of (14) has a causal interpretation if

(i) Zi randomly assigned and independent of Xi and (ii) the strong monotonicity condition

holds: for all values of Xi, Wi(z) has the same ordering over z.

Proposition 3.5. Suppose Wi is binary and suppose that

Wi(z) = 1(u(z) > Vi(Xi)) (Strong monotonicity)

for some random Vi(·) with the marginal distribution of Vi = Vi(Xi) normalized to Unif[0, 1].

Suppose Υ(Zi) is mean zero such that

PL[Wi | Zi;Xi] = Υ(Zi) + [1, X ′
i]κ0.

Define the marginal treatment effect at v to be

MTE(v) = E[Yi(1) − Yi(0) | Vi = v].

19We warn that regressing on Υ(Zi) would not deliver consistent estimates of β0, as confirmed empirically by
Lennon, Rubin and Waddell (2022)—this is what Angrist and Pischke (2008) refer to as forbidden regression.
Instead, one needs to use Υ(Zi) as instruments in a just-identified TSLS regression (14).
20This proposition is related to Corollary 3.4 in S loczyński (2022) and section 4 in Heckman and Vytlacil
(2005). Relative to S loczyński (2022), we do not restrict to binary instruments but do restrict to fully
randomized instruments. This proposition can be viewed as a corollary of section 4.3 of Heckman and
Vytlacil (2005) exploiting the additional observation that E[Wi | Zi] = Υ(Zi) + E[Wi].
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Then, suppose Zi is fully randomly assigned Zi y (Xi, Yi(·),Wi(·)). Then the estimand for

β in (14) is a convex average of marginal treatment effects:

β =

∫ 1

0

E[Υ(Zi)1(u(Zi) > v)]

E[Υ(Zi)u(Zi)]
MTE(v) dv.

3.4. Implementation. We describe a concrete implementation of Υ̂N . We start from es-

timating locally efficient instrument (13). Fix a sample splitting fold k and let j index all

N−k-observations not in fold k. By a transformation of Robinson (1988), note that

PL[W | Z;X] = E[W | Z] + L[(W − E[W | Z]) | (X − E[X | Z])].

Thus, by the plug-in principle, we may estimate the partially linear regression via the fol-

lowing steps on the data in folds other than k:

(1) Let f̂1N,k(Z) be an estimate of E[W | Z], obtained, for instance, via minimizing

squared error with machine learning methods.

(2) Similarly, let f̂2N,k(Z) be an estimate of E[X | Z].

(3) Let β̂3N,k be the dim(W ) × dim(X) matrix of linear regression coefficients of W −
f̂1N,k(Z) on X − f̂2N,k(Z).

(4) Return Υ̂N,k(Z) = f̂1N,k(Z) − β̂3N,kf̂2N,k(Z).21

For observations i in fold k, we can then define

Υ̂N(Zi) = [1, Υ̂′
N,k(Zi), X

′
i]
′.

and plug into (12) to obtain an estimate θ̂N .

The fully optimal instrument (10) requires estimating more nuisance parameters, but it is

conceptually similar via the plug-in principle. On folds other than k:

(1) Let f̂N,k(Z) = [1, f̂1N,k(Z)′, f̂2N,k(Z)′]′ be an estimate of E[Dj | Zj] = [1,E[Wj |
Zj]

′,E[Xj | Zj]
′].

(2) Obtain a first step consistent estimate θ̃N of θ0, via, say, TSLS.

(3) Let Ûj = Yj −D′
j θ̃N .

(4) Obtain an estimate σ̂2
kN(Z) of E[Û2

j | Zj] and f̂3N,k(Z) of E[Û2
j Xj | Zj].

(5) Let X̌i = Xj − f̂3N,k(Zj)/σ̂
2
kN(Zj) be an analogue of X̃j and compute

β̂4N,k =

(
1

N−k

∑
j

DjX̌
′
j

)(
1

N−k

∑
j

Û2
j X̌jX̌

′
j

)−1

.

(6) Return Υ̂N,k(Z) =
f̂N,k(Z)

σ̂2
N,k(Z)

+ β̂4N,k(X − f̂3N,k(Z)/σ̂2
kN(Z)).

For observations i in fold k, we can then define

Υ̂N(Zi) = Υ̂N,k(Zi).

21We are omitting a β̂′X term since X already enters the vector of instruments.
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4. Empirical applications

4.1. Monte Carlo. To illustrate our theoretical results on efficiency, we consider a Monte

Carlo setting where the benefits of machine learning methods are salient. We consider the

following data-generating process, where E[W | Z] is a complicated function of Z, so that

machine learning methods are likely more effective than traditional methods in learning this

function:

ϵ1 ∼ N (0, 1) ϵ2 ∼ N (0, 1) U1 = Φ

(
ϵ1 + ϵ2√

2

)
∼ Unif[0, 1]

Z = N (0, I3) Z =
1√
3

∑
j

Zj ∼ N (0, 1)

X = m(Z) + s(Z)ϵ1 where m(t) =
1

1 + e−t
− 0.5 and s(t) =

√
1 −m(t)2

W = 1(U1 < π(Z)) π(z1, z2, z3) =
1

1 + e−3q(z1,z2)
sin2(2z3)

q(z1, z2) =


(z21 + z22) z1z2 > 0, z21 + z22 < 1

−(z21 + z22) z1z2 < 0, z21 + z22 < 1

0.1 z21 + z22 > 1.

Y = W + 0.5(X2 −X) + (0.5Z)ϵ2. (16)

Since X is symmetric about zero, L[X2 | X] = E[X2]. Note too that E[X2 | Z] = E[X2] =

L[X2 | X] is constant. Thus, this data-generating process satisfies Assumption 2.2.

The performances of various methods are recorded in Table 1. The first two rows of

Table 1 illustrates that the optimal instrument (10) does deliver more efficient estimates

than a locally efficient instrument, as the true data-generating process is heteroskedastic. The

next two rows illustrate the performance of feasible methods. Somewhat disappointingly, it

appears that both feasible methods fail to fully accurately estimate the optimal instruments.

As a result, they deliver estimates that are less precise. Despite this, they still deliver

efficiency improvements over TSLS and have undistorted inferences, which demonstrates the

robustness in Theorem 3.2. Finally, due to the complex first-stage relationship in this case,

traditional TSLS methods deliver estimates that are orders of magnitudes noisier than these

feasible machine learning methods.

4.2. Empirical applications. Our empirical application is to Dustmann, Fasani and Spe-

ciale (2017). They study the effect of legal immigration status (Wi) on immigrants’ con-

sumption behavior (Yi, measured in log expenditure) in Italy. One of their empirical state-

gies instrument for legal status with rainfall shocks in the immigrants’ home country (Zi) at

the time of migration. If rainfall affects an immigrant’s home-country income, it plausibly
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Table 1. Relative performance of various methods in Monte Carlo design

Relative MSE (MSE / Oracle MSE) Coverage

Oracle 1.00
Oracle locally efficient 1.10
Estimated efficient 1.54 0.94
Estimated locally efficient 1.56 0.94
TSLS 64.32 0.96
TSLS with polynomials 55.98 0.96

Notes. We estimate several methods on the Monte Carlo design (16) and average over 1000
draws of the data-generating process, with N = 10, 000. The first column shows the relative
MSE of estimating the coefficient on Wi (which is equal to 1 under (16)). Relative MSE
is the ratio of MSE against the MSE of the oracle efficient instrument (which is 0.00136).
The second coverage shows the empirical coverage of Wald confidence intervals using esti-
mated standard errors. Here, Oracle is the method that uses Υ⋆ (10) without having to

estimate it (we use 0.75 + 0.25Z
2

as E[U2 | Z], which is very close to the true function);
Oracle locally efficient is the method that uses PL[W | Z;X] without having to estimate
it. Estimated efficient and Estimated locally efficient are feasible counterparts to Oracle
and Oracle locally efficient, respectively, where we use a 3-fold sample split procedure.
Nonparametric estimation of E[W | Z],E[X | Z] is through lightGBM, and nonparamet-
ric estimation of E[U2 | Z] is through 50-nearest neighbors. Finally, TSLS is two-stage
least-squares with Z, and TSLS with polynomials transforms Z into the basis functions
Z,Z2

1 , Z
2
2 , Z

2
3 , Z1Z2, Z2Z3, Z1Z3, Z1Z2Z3. □

affects their migration decisions. Table 5, column 3 in their paper implements one such IV

specification, which includes some baseline covariates Xi. This specification finds that illegal

status reduces consumption by 0.58 log points (SE 0.2). This specification is replicated in

the last row of Table 2. As an illustration, we consider whether specifications nonlinear in

Zi have appreciable effect on the precision of the estimates.

We implement our procedure described in Section 3.3. We choose a simple estimator for

the partially linear regression of Wi on Zi, Xi. Namely, we discretize Zi into k equipercentile

bins, and view the ensuing binscatter as an estimator for partially linear regression (Cattaneo,

Crump, Farrell and Feng, 2019). We estimate TSLS with the estimated instrument Υ̂ (as

in Section 3.3) and the original instrument Zi. We implement a three-fold cross-fitting

procedure. However, it turns out that if we split on clusters (the migrants’ origin country

in this case), the partially linear regressions generalize poorly onto the hold-out set. As an

illustration here, we will ignore the fact that the instrument is assigned clusterwise and treat

this setting as a cross-sectional setting, and implement the sample-splits without taking into

account clusters.22

22We still compute clustered SE along with heteroskedasticity-robust SE in the end. We conjecture that,
given the binned regression estimator is quite simple here, our results should extend to this case—at least for
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Table 2. Empirical exercise with Dustmann et al. (2017)

Number of bins Clustered SE (ratio) EHW SE (ratio) Estimate Partial R-sq

5 0.992 0.991 -0.571 0.013
11 0.738 0.832 -0.486 0.018
15 0.882 0.891 -0.557 0.017
20 0.763 0.860 -0.603 0.018
50 0.497 0.583 -0.283 0.042
80 0.468 0.547 -0.328 0.049

Original 0.202 0.129 -0.578 0.012

Notes. For each k, we implement a 3-fold cross-fitting procedure, where the sample is split
across units (and not clusters), and output the median across 500 draws of the sample-splits
for each k. The estimated IMSE optimal number of bins through Cattaneo et al. (2019) is
11. The first two columns show the ratio between the estimated standard errors and their
counterparts in the original specification (Table 5, column 3 in Dustmann et al. (2017)). The
first column is the cluster-robust SEs, and the second column is the heteroskedasticity-robust
SEs. The third column shows the point estimate of TSLS. The last column shows the partial
cross-validated R2, computed by taking the average of the out-of-sample partial R2

W∼Υ̂|X
across the three folds. As a note on the variability of these estimates across sample splits
on the same data: The standard deviation of the estimates across sample splits is about
0.03, which is small compared to the standard errors (on the order of 0.1) and the standard
deviation of the standard errors across splits is about 0.01. □

Table 2 shows the median results across 500 sample splits of this exercise. We normalize

the standard errors of our procedure by the estimated standard errors in the orginal design.

Across different values of k, all values of this ratio are less than 1, meaning that the standard

errors of the proposed procedure are smaller than the standard errors in the original design.

For the bin size chosen by the procedure of Cattaneo et al. (2019) (k = 11), our standard

errors are only 70%-80% of the original standard errors. Since one needs (1/0.75)2 = 1.8

times larger sample sizes to achieve a 25% reduction in standard errors, this is potentially

substantively significant.

Confirming our intuition in Section 3.3, this gain is coming from a higher partial R2 of

predicting Wi from the instruments Zi, given the covariates Xi, shown in the last column of

Table 2. Interestingly, the point estimates remain stable for small values of k, but becomes

closer to zero for large values of k. This potentially suggests treatment effect heterogeneity

and the violation of Assumption 2.1 in this empirical setting.

small k—without needing to split across clusters; after all, a procedure that just runs TSLS with additional
k indicator variables for the quantile bins of Zi would be valid so long as k is small.
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5. Conclusion

Two-stage least-squares with linear covariates is a workhorse specification in empirical

economics. This paper considers several restrictions on the potential outcomes model that

purport to justify TSLS, and finds that partial mean-independence is a restriction that

satisfies three natural requirements. This is a positive result that complements Blandhol et al.

(2022)’s negative results. Taken as given that practitioners implicitly impose partial mean-

independence when they estimate TSLS specifications, we consider efficient estimation of the

target slope parameter via computing optimal instruments in the sense of Chamberlain (1987,

1992). We find that estimators that plug in estimated optimal instruments are consistent

and asymptotically normal under stability conditions that are notably weaker than typical

rate conditions. These estimators, since they operate under the same set of assumptions

that justify TSLS, provide a mostly harmless free lunch to practitioners.
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Appendix A. Proofs

Lemma 2.2. Any P ∗ that satisfies Assumptions 2.1 and 2.2 implies a distribution P for

observed variables that satisfies the structural equation

Yi = α0 + W ′
iβ0 + X ′

iη0 + Ui PL[Ui | Zi;Xi] = 0 (5)

for some (α0, η0). Conversely, any P that satisfies (5) can be rationalized by some P ∗ that

satifies Assumptions 2.1 and 2.2. Moreover, the restriction PL[Ui | Zi;Xi] = 0 is equivalent

to the restriction that E[UiXi] = E[Ui | Zi] = 0.

Proof. We first show that PL[U | Z;X] = 0 is equivalent to E[U | Z] = 0 and E[XU ] = 0.

For the =⇒ direction, note that

E[(U − E[U | Z])2] ≤ E[U2]

with equality only if E[U | Z] = 0. The fact that PL[U | Z;X] = 0 means that equality is

achieved. Similarly,

E[(U − L[U | X])2] ≤ E[U2].

with equality only if L[U | X] = 0. Thus L[U | X] = 0 and thus E[UX] = 0. For the reverse

direction, note that E[U | Z] = 0 and E[XU ] = 0 satisfies the first-order condition of the

optimization problem in defining PL. Indeed, for the problem

min
f,η

E(Y − f(Zi) − η′Xi)
2,

at η = 0, the optimal choice is f(Zi) = 0. At f(Zi) = 0, the optimal choice is η = 0. Since

this problem is convex in (f, η), we conclude that this certifies that f(·) = η = 0 is the

solution.

Take some P ∗ that satisfies Assumptions 2.1 and 2.2. Note that the observed outcome

can then be written as

E[Yi | Wi(·), Zi = z,Xi] = E[Yi(Wi(z)) − Yi(w0) | Wi, Zi = z,Xi] + E[Yi(w0) | Wi(·), Xi, Zi = z]

= (Wi − w0)
′β0 + E[Yi(w0) | Wi(·), Xi, Zi = z]

and hence

Yi = (Wi − w0)
′β0 + E[Yi(w0) | Wi(·), Xi, Zi = z] + Ui0 E[Ui0 | Wi(·), Xi, Zi] = 0.

Observe that

E[Yi(w0) | Wi(·), Xi, Zi] = Ui1 + E[Yi(w0) | Xi, Zi] E[Ui1 | Xi, Zi] = 0

By Assumption 2.2, note that

PL[E[Yi(w0) | Xi, Zi] | Zi;Xi] = PL[Yi(w0) | Zi;Xi] = L[Yi(w0) | Xi]
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and we can write

E[Yi(w0) | Xi, Zi] = L[Yi(w0) | Xi] + Ui2 PL[Ui2 | Zi;Xi] = 0.

Thus, note that for some α0, η0, we can write

Yi = W ′
iβ0 + α0 + X ′

iη0 + Ui

for Ui = Ui0 + Ui1 + Ui2 with PL[Ui | Zi;Xi] = 0.

Conversely, let P satisfy (5). Consider a potential outcomes model in which Yi(w) =

w′β0 + α0 + X ′
iη0 + Ui where the distribution of Wi(·) is chosen such that

(Wi(Zi) | Zi, Ui) ∼ (Wi | Zi, Ui).

Then this potential outcomes model is consistent with P , in the sense that it generates the

same joint distribution (Yi, Xi,Wi, Zi) ∼ P . It is also immediate to check that this potential

outcomes model satisfies Assumptions 2.1 and 2.2. □

Proposition 2.3. Under random assignment Zi y Yi(·) | Xi,
23 the following are equivalent:

(1) Assumption 2.2

(2) Zi does not predict the nonlinearity of the mean potential outcome given Xi: For

f0(Xi) ≡ E[Yi(w0) | Xi],

E[f0(Xi) − L[f0(Xi) | Xi] | Zi] = 0.

and PL[Yi(w0) | Zi;Xi] = L[f0(Xi) | Xi].

Proof. ( =⇒ ) Note that

f0(Xi) = E[Yi(w0) | Xi, Zi]

by random assignment. First, observe that

PL[Yi(w0) | Zi;Xi] = PL[E[Yi(wi) | Zi, Xi] | Zi;Xi] = PL[f0(Xi) | Zi, Xi] = α0 + X ′
iη0

for some α0, η0 by Assumption 2.2. Since PL minimizes squared error and happens to be an

affine function solely of Xi, we know that L[f0(Xi) | Xi] = α0 + X ′
iη0 and

E[f0(Xi) − α0 −X ′
iη0 | Zi] = 0.

(⇐=) We can write

Yi(w0) = f0(Xi)+Ui1 = (f0(Xi)−L[f0 | Xi])+L[f0 | Xi]+Ui1 E[Ui1 | Xi] = E[Ui1 | Zi, Xi] = 0.

Let Ui2 = f0(Xi) − L[f0 | Xi], where by assumption E[Ui2 | Zi] = 0 and E[UXi] = 0. By

the second part of Lemma 2.2, we know that PL[Ui2 | Zi;Xi] = 0. Thus, Assumption 2.2 is

23The proof only uses mean-independence: E[Yi(·) | Xi, Zi] = E[Yi(·) | Xi].
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satisfied:

PL[Yi(w0) | Zi;Xi] = L[f0 | Xi] = L[Yi(w0) | Xi].

□

Proposition 2.4. Assumption 2.2 is equivalent to the following: For any function g(·),

L[Yi(w0) | g(Zi), Xi] = α0 + X ′
iη0.

Proof. (⇐=) Suppose PL[Yi(w0) | Zi;Xi] = g0(Zi) + X ′
iη0. Then

L[Yi(w0) | g0(Zi), Xi] = g0(Zi) + X ′
iη0.

By assumption, then g0(Zi) must be zero.

( =⇒ ) Note that given any g, the best partially linear function PL[Yi(w0) | Zi;Xi] =

α0 + η′0Xi is an affine function of g(Zi), Xi. Hence it is automatically equal to L[Yi(w0) |
Zi, Xi]. □

Theorem 3.1. The semiparametric efficiency bound for the sequential moment restrictions

(5) is

V ⋆ =

(
E
[

1

σ2(Zi)
E[Di | Zi]E[Di | Zi]

′
]

+ E[DiX̃
′
i]E[UiX̃iX̃

′
i]
−1E[X̃iD

′
i]

)−1

.

Under the assumptions that (i) Var(Υ⋆(Zi)Ui) < ∞ and (ii) E[Υ⋆(Zi)D
′
i] < ∞ and is full

rank,
√
n(θ̂⋆N − θ0)

d−→ N (0, V ⋆) as N → ∞.

Proof. By Theorem 1 in Chamberlain (1992), the information bound for the sequential mo-

ment restriction (5) is

(V ⋆)−1 = J1 + J2

where J1, J2 are the information bounds for E[X̃iUi] = 0 and E[Ui | Zi] = 0, respectively.

We recall that for a conditional moment restriction E[m(θ0, Ai) | Bi] = 0, the information

bound is of the form

J = E
[
E[dm/dθ | Bi]

′ Var(m(θ0, Ai) | Bi)
−1E[dm/dθ | Bi]

]
.

The information bound J1 is then

J1 = E[DiX̃
′
i]E[U2

i X̃iX̃
′
i]
−1E[X̃iD

′
i]

and J2 is

J2 = E
[
E[Di | Zi]E[U2

i | Zi]
−1E[D′

i | Zi]
]

= E
[

1

σ2(Zi)
E[Di | Zi]E[D′

i | Zi]

]
.

This finishes the proof of the first part.
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For the second part, it is easy to see that the IV estimator is asymptotically normal and

has asymptotic variance equal to

E[Υ⋆(Zi)D
′
i]
−1E[U2

i Υ⋆(Zi)(Υ
⋆(Zi))

′]E[Υ⋆(Zi)D
′
i]
−1.

Now,

E[Υ⋆(Zi)Di] = E
[

1

σ2(Zi)
E[Di | Zi]E[Di | Zi]

′
]

+ E[DiX̃i]E[U2
i X̃iX̃

′
i]E[X̃iD

′
i] = (V ⋆)−1.

and

E[U2
i Υ⋆(Zi)(Υ

⋆(Zi))
′] = Var(UiΥ

⋆(Zi))

= Var

(
Ui

E[Di | Zi]

σ2(Zi)

)
+ Var

(
E[DiX̃i]E[U2

i X̃iX̃
′
i]
−1UiX̃i

)
(Cov(UiX̃i, Ui | Zi) = 0)

= (V ⋆)−1.

Hence the asymptotic variance is equal to V ⋆. □

Theorem 3.2. For a cross-fitted and partially linear estimate Υ̂N(Zi), assume that

(1) (Convergence in L2(Z) to a limiting instrument) Υ̂N converges to some partially linear

Υ0(Zi) = f1(Zi) + X ′
iγ0 in the following out-of-sample sense

lim
N→∞

E
[
∥Υ̂N(Z∗

i ) − Υ0(Z
∗
i )∥2

]
= lim

N→∞
E
[
∥Υ̂N − Υ0∥2L2(Z)

]
= 0.

Here, the expectation integrates over a distribution where Υ̂N depends on N/2 iid copies of

(Yi, Xi,Wi, Zi) and Z∗
i is an additional iid copy of Zi.

(2) (Finite moments) The following moments are finite: E[DiD
′
i] ≤ ∞, E[|Ui|3∥Υ0(Zi)∥3] <

∞, Var(Ui | Zi) ≤ M uniformly over Zi.

(3) (Limiting instrument is strong) E[Υ0(Zi)D
′
i] is full rank.

Let

θ̂N =

(
1

N

∑
i

Υ̂N(Zi)D
′
i

)−1
1

N

∑
i

Υ̂N(Zi)Yi (12)

and let θ̂0,N =
(

1
N

∑
i Υ0(Zi)D

′
i

)−1 1
N

∑
i Υ0(Zi)Yi.

24 Then:

(1) θ̂N and θ̂0,N are asymptotically equivalent
√
N(θ̂N − θ̂0,N)

p−→ 0.

and both are asymptotically normal.

24Since we assume E[Υ0D
′
i] is full rank, with probability tending to 1 both 1

N

∑
i Υ̂N (Zi)D

′
i and

1
N

∑
i Υ̂0(Zi)D

′
i are full rank. In the event that they are not, we may replace the inverse operation with

Moore–Penrose pseudoinverse.
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(2) The asymptotic variance of θ̂N is equal to the efficiency bound in Theorem 3.1 if Υ̂N

is consistent for the optimal instrument: i.e., Υ0 = Υ⋆.

(3) Assuming additionally that Di and Υ̂N(Zi) has a uniformly bounded fourth moment

conditional on Υ̂N(·) almost surely, the asymptotic variance is consistently estimated by its

empirical counterpart

V̂N =

(
1

N

∑
i

Υ̂N(Zi)D
′
i

)−1(
1

N

∑
i

(Yi − θ̂′NDi)
2Υ̂N(Zi)Υ̂N(Zi)

′

)(
1

N

∑
i

DiΥ̂N(Zi)
′

)−1

.

Proof. (1) We first show that

1

N

∑
i

Υ̂N(Zi)D
′
i =

1

N

∑
i

Υ0(Zi)D
′
i + op(1)

and
1√
N

∑
i

Υ̂N(Zi)Ui =
1√
N

∑
i

Υ0(Zi)Ui + op(1).

For the first claim, note that for the Frobenius norm ∥·∥F∥∥∥∥ 1

N

∑
i

(Υ̂N(Zi) − Υ0(Zi))D
′
i

∥∥∥∥
F

≤ 1

N

∑
i

∥(Υ̂N(Zi) − Υ0(Zi))D
′
i∥F

≤ 1

N

∑
i

∥Υ̂N(Zi) − Υ0(Zi)∥∥Di∥

≤

(
1

N

∑
i

∥Υ̂N(Zi) − Υ0(Zi)∥2
)1/2(

1

N

∑
i

∥Di∥2
)1/2

(Cauchy–Schwarz)

Note that since

E
[
∥Υ̂N(Zi) − Υ0(Zi)∥2

]
→ 0,

Markov’s inequality implies that

1

N

∑
i

∥Υ̂N(Zi) − Υ0(Zi)∥2 = op(1).

By the finiteness of E[DiD
′
i],

1
N

∑
i∥Di∥2 = Op(1). Hence,∥∥∥∥ 1

N

∑
i

(Υ̂N(Zi) − Υ0(Zi))D
′
i

∥∥∥∥
F

= op(1).

For the second claim, note that by Chebyshev’s inequality, for one fold,

1√
N

∑
i∈I1

(
(Υ̂N(Zi) − Υ0(Zi))Ui

)
= Op

(√
Var

[
(Υ̂N(Zi) − Υ0(Zi))Ui | Υ̂N

])
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= Op

(√
E[E[U2

i | Zi](Υ̂N(Zi) − Υ0(Zi))2 | Υ̂N ]

)
= Op

(√
E
[
(Υ̂N(Zi) − Υ0(Zi))2 | Υ̂N

])
= op(1).

This implies that
1√
N

∑
i

(
(Υ̂N(Zi) − Υ0(Zi))Ui

)
= op(1).

Since E[Υ0D
′
i] is full rank, this implies that

√
N
(
θ̂n − θ̂0,N

)
= op(1).

It suffices to then show that
√
N
(
θ̂0,N − θ0

)
d−→ N (0, V )

This is a simple application of the central limit theorem for

1√
N

∑
i

Υ0(Zi)Ui,

which is satisfied say under E[|Ui|3∥Υ0(Zi)∥3] < ∞. By standard results on TSLS, the

variance matrix is

V = E[Υ0(Zi)D
′
i]
−1E[U2

i Υ0(Zi)Υ0(Zi)
′]E[Υ0(Zi)D

′
i]
−1.

(2) We showed in the proof to Theorem 3.1 that the efficiency bound is equal to

E[Υ⋆(Zi)D
′
i]
−1E[U2

i Υ⋆(Zi)Υ
⋆(Zi)

′]E[Υ⋆(Zi)D
′
i]
−1,

which is equal to V if Υ0 = Υ⋆.

(3) We have already shown that

1

N

∑
i

Υ̂N(Zi)D
′
i =

1

N

∑
i

Υ̂0(Zi)D
′
i + op(1)

p−→ E[Υ0D
′
i].

It suffices to show that

1

N

∑
i

(Yi − θ̂′NDi)
2Υ̂N(Zi)Υ̂N(Zi)

′ p−→ E[U2
i Υ0(Zi)Υ0(Zi)

′].

Now, observe that

(Yi − θ̂′NDi)
2 − U2

i = (θ0 − θ̂N)′Di(2Ui + (θ0 − θ̂N)′Di)
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Thus

1

N

∑
i

(Yi − θ̂′NDi)
2Υ̂N(Zi)Υ̂N(Zi)

′

=
1

N

∑
i

U2
i Υ̂N(Zi)Υ̂N(Zi)

′ + (θ0 − θ̂N)′
1

N

∑
i

(2Ui + (θ0 − θ̂N)′Di)DiΥ̂N(Zi)Υ̂N(Zi)
′

︸ ︷︷ ︸
=Op(1), by the existence of the fourth moment.

=
1

N

∑
i

U2
i Υ̂N(Zi)Υ̂N(Zi)

′ + op(1).

Now,

1

N

∑
i

U2
i Υ̂N(Zi)Υ̂N(Zi)

′ =
1

N

∑
i

U2
i (Υ̂N(Zi) − Υ0(Zi))Υ̂N(Zi)

′ +
1

N

∑
i

U2
i Υ0(Zi)Υ̂N(Zi)

′

= op(1) +
1

N

∑
i

U2
i Υ0(Zi)Υ̂N(Zi)

′

by Cauchy–Schwarz and the mean-square convergence condition.

Similarly,

1

N

∑
i

U2
i Υ0(Zi)Υ̂N(Zi)

′ =
1

N

∑
i

U2
i Υ0(Zi)Υ0(Zi)

′ + op(1).

This completes the proof.

□

Lemma 3.4. When E[U2
i | Zi] = 1 is a constant normalized to 1, the optimal instrument

for (5) is the partially linear regression of Di on Zi, Xi:

Υ⋆(Zi) = PL[Di | Zi;Xi] = [1,PL[Wi | Zi;Xi]
′, X ′

i]
′. (13)

Proof. Recall that

Υ⋆(Zi) =
E[Di | Zi]

σ2(Zi)
+ E[DiX̃

′
i]E[U2

i X̃iX̃
′
i]
−1X̃i.

Under these assumptions,

X̃i = Xi − E[Xi | Zi]

σ2(Zi) = 1

E[U2
i X̃iX̃

′
i] = E[X̃iX̃

′
i]

E[DiX̃
′
i] = E[(Di − E[Di | Zi])X̃

′
i] =

 0

E[(Wi − E[Wi | Zi])(Xi − E[Xi | Zi])
′]

E[X̃iX̃
′
i]


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E[Di | Zi] =

 1

E[Wi | Zi]

E[Xi | Zi]


Thus

E[DiX̃
′
i]E[U2

i X̃iX̃
′
i]
−1X̃i =

 0

βW̃∼X̃X̃i

X̃i


where βW̃∼X̃ is the dimW × dimX matrix of regression coefficients of W − E[W | Z] on

X − E[X | Z]. Thus

Υ⋆(Z) =

 1

E[Wi | Zi] + βW̃∼X̃X̃i

Xi


Finally,

E[Wi | Zi] + βW̃∼X̃ = PL[Wi | Zi;Xi]

by Robinson (1988). □

Proposition 3.5. Suppose Wi is binary and suppose that

Wi(z) = 1(u(z) > Vi(Xi)) (Strong monotonicity)

for some random Vi(·) with the marginal distribution of Vi = Vi(Xi) normalized to Unif[0, 1].

Suppose Υ(Zi) is mean zero such that

PL[Wi | Zi;Xi] = Υ(Zi) + [1, X ′
i]κ0.

Define the marginal treatment effect at v to be

MTE(v) = E[Yi(1) − Yi(0) | Vi = v].

Then, suppose Zi is fully randomly assigned Zi y (Xi, Yi(·),Wi(·)). Then the estimand for

β in (14) is a convex average of marginal treatment effects:

β =

∫ 1

0

E[Υ(Zi)1(u(Zi) > v)]

E[Υ(Zi)u(Zi)]
MTE(v) dv.

Proof. Since Zi is randomly assigned, note that Υ̃(Zi) = Υ(Zi) − L[Υ | Xi] = Υ(Zi). Thus

the estimand for β in (14) is

β =
E[Υ(Zi)Yi]

E[Υ(Zi)Wi]
=

E[Υ(Zi)Y (0)] + E[Υ(Zi)Wi(Y (1) − Y (0))]

E[Υ(Zi)Wi]
=

E[Υ(Zi)Wi(Y (1) − Y (0))]

E[Υ(Zi)Wi]

This is the estimand of a TSLS regression of Yi on 1,Wi, instrumenting with 1,Υ(Zi). Note

that

E[Wi | Zi] = u(Zi) = Υ(Zi) + E[Wi]
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The reason is that the condition

PL[Wi | Zi;Xi] = Υ(Zi) + [1, X ′
i]η0

implies that E[Wi − [1, X ′
i]η0 | Zi] = Υ(Zi). Since E[[1, X ′

i]η0 | Zi] is a constant, we conclude

that it must equal to E[Wi]. The random assignment of Zi means that (Wi, Vi, Yi(1), Yi(0),Υ(Zi))

satisfies the assumptions of the MTE model in Heckman and Vytlacil (2005). By section 4.3

of Heckman and Vytlacil (2005),

β =

∫ 1

0

ω(v)E[Yi(1) − Yi(0) | Vi = v] dv

where

ω(v) =
E[Υ(Zi)1(u(Zi) > v)]

E[Υ(Zi)u(Zi)]
≥ 0

since

E[Υ(Zi)1(u(Zi) > v)] = E[u(Zi)1(u(Zi > v))] − E[u(Zi)] P(u(Zi) > v) ≥ 0.

□
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