Daniel Chen, Damian Kozbur, Alan Yu

Introduction

Convergence Calculations

Linguistic Convergence Supreme Court Oral Arguments

Daniel Chen, Damian Kozbur, Alan Yu

January 2016

Daniel Chen, Damian Kozbur, Alan Yu

Introduction

Convergence Calculations

1 Introduction

2 Convergence Calculations

Daniel Chen, Damian Kozbur, Alan Yu

Introduction

Convergence Calculations

Setting for ABA

- ABA triplets.
- The first segement with speaker A speaking is referenced with A_1
- lacktriangle The second segment with speaker B's response to speaker A is referenced by B
- The thrid segement with speaker A's response to speaker B is referenced A_2 .
- We define average formants for a segment. Specifically, for j = 1 or j = 2,

$$\bar{f}_j(ABA) = \frac{1}{n_{ABA}} \sum_{v \in ABA} \int_{v \in C} f_j(v)$$

where v is the set of vowels in ABA of type C

 \blacksquare Eg. C = AA, AE, UH, etc

Daniel Chen. Damian Kozbur. Alan Yu

Introduction

Setting for ABA

- \blacksquare AxByA triplets. Only judges can be A, B. Lawyers can be x, y. Or x, y can be empty.
- The first segement with speaker A speaking is referenced with A_1
- The second segment with speaker B's response to speaker A is referenced by B
- The thrid segement with speaker A's response to speaker B is referenced A_2 .
- We define average formants for a segment. Specifically, for j=1 or j=2,

$$\bar{f}_j(ABA) = \frac{1}{n_{ABA}} \sum_{v \in ABA, v = C} f_j(v)$$

where v is the set of vowels in ABA of type C

 \blacksquare Eg. C = AA, AE, UH, etc

Daniel Chen, Damian Kozbur, Alan Yu

Introduction

Calculations

Convergence Definition

$$\begin{split} \mathbf{E}[f_j - \bar{f}_j(A_1)|\bar{f}_j(A1),\bar{f}_j(B)] \\ = \mathbf{conv} \cdot [\bar{f}_j(B) - \bar{f}_j(A_1)] + \gamma \cdot \bar{f}_j(A_1) \end{split}$$

- Convergence, **conv** defined by above
- \blacksquare γ is an auxiliary parameter also defined by above
- lacksquare f_j is the formant of any vowel in the A2 segment of any ABA

Daniel Chen, Damian Kozbur, Alan Yu

Introduction

Convergence Calculations

Convergence Estimation

- Least squares.
- Allows quantification of uncertainty about estimates.
- Standard errors allow random noise to be correlated arbitrarily throughout an oral argument.

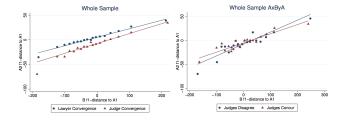
$$\widehat{\mathbf{conv}} = \mathop{\mathrm{argmin}}_{\delta} \min_{\gamma} \sum_{d=1}^{D} \sum_{\alpha \in D} \sum_{C \in \mathcal{C}} \sum_{v \in A_2(\alpha): v \in C}$$

$$\left[f_j(v) - \delta \cdot \left[\bar{f}_j(B) - \bar{f}_j(A_1)\right] - \gamma \cdot \bar{f}_j(A_1)\right]^2$$

Daniel Chen, Damian Kozbur, Alan Yu

Introduction

Convergence Calculations


1 Introduction

2 Convergence Calculations

Daniel Chen, Damian Kozbur, Alan Yu

Introduction

Convergence Calculations

Daniel Chen, Damian Kozbur, Alan Yu

Introduction

Convergence Calculations

Table: ABA Basic Convergence Parameters

		F1 te (S.E.) I. Overall (No		F2 Estimate (S.E.) Directional)	
Overall	0.175	(0.003)	0.156	(0.003)	
	II. Lawyer → Judge				
Overall	0.213	(0.005)	0.187	(0.005)	
Winning Lawyer Losing Lawyer	0.222 0.205	(0.006) (0.009)	0.186 0.188	(0.006) (0.006)	
Losing Lawyer	0.205	(0.009)	0.100	(0.000)	
	III. Judge → Lawyer				
Overall	0.190	(0.004)	0.151	(0.003)	
Winning Lawyer	0.200	(0.006)	0.157	(0.004)	
Losing Lawyer	0.181	(0.006)	0.146	(0.004)	

This table presents the basic estimate of convergence parameters. All vowels are treated symmetrically with a single convergence parameters. Panel I calculates convergence on the entire sample. Panel II restricts to ABA triples where the lawyer is speaker A. Panel III restricts to ABA triples where the lawyer is speaker B.

Daniel Chen, Damian Kozbur, Alan Yu

Introduction

Convergence Calculations

Table: AxByA Basic Convergence Parameters

	F1 Estimate (S.E.)			F2 te (S.E.)
	I. Overall			
Overall	0.363	(0.007)	0.339	(0.006)
	II. By Decision			
Concurring Not Concurring	0.374 0.227	(0.007) (0.032)	0.359 0.159	(0.007) (0.020)

This table presents the basic estimate of convergence parameters. All vowels are treated symmetrically with a single convergence parameters. Panel I calculates convergence on the entire AxByA sample. Panel II considers AxByA triples on concurring and non concurring judges separately.

Daniel Chen, Damian Kozbur, Alan Yu

Introduction

Convergence Calculations

Table: AxByA Context Specific Convergence Parameters

	F1 Estimate (S.E.)			F2 Estimate (S.E.)	
		I. Ov	/erall		
Overall	0.351	(0.017)	0.351	(0.011)	
	II. By Decision				
Concurring	0.362	(0.019)	0.374	(0.010)	
Not Concurring	0.155	(0.027)	0.102	(0.037)	

Daniel Chen, Damian Kozbur, Alan Yu

Introduction

Convergence Calculations

Table: ABA Convergence By Gender

		F1 te (S.E.)		=2 te (S.E.)
		I. Male –	→ Female	,
$\begin{array}{l} \mbox{Judge} \rightarrow \mbox{Lawyer, Lawyer Wins} \\ \mbox{Judge} \rightarrow \mbox{Lawyer, Lawyer Loses} \\ \mbox{Lawyer} \rightarrow \mbox{Judge, Lawyer Wins} \\ \mbox{Lawyer} \rightarrow \mbox{Judge, Lawyer Wins} \\ \end{array}$	0.203 0.217 0.190 0.216	(0.016) (0.016) (0.009) (0.010)	0.284 0.235 0.186 0.209	(0.013) (0.018) (0.007) (0.007)
		II. Male	—→ Male	
$\begin{array}{l} {\sf Judge} \to {\sf Lawyer}, {\sf Lawyer} \ {\sf Wins} \\ {\sf Judge} \to {\sf Lawyer}, {\sf Lawyer} \ {\sf Loses} \\ {\sf Lawyer} \to {\sf Judge}, {\sf Lawyer} \ {\sf Wins} \\ {\sf Lawyer} \to {\sf Judge}, {\sf Lawyer} \ {\sf Wins} \\ \end{array}$	0.271 0.272 0.238 0.260	(0.010) (0.008) (0.010) (0.008)	0.312 0.304 0.290 0.300	(0.008) (0.083) (0.007) (0.007)
	-	III. Female	→ Female	
$\begin{array}{l} \mbox{Judge} \rightarrow \mbox{Lawyer, Lawyer Wins} \\ \mbox{Judge} \rightarrow \mbox{Lawyer, Lawyer Loses} \\ \mbox{Lawyer} \rightarrow \mbox{Judge, Lawyer Wins} \\ \mbox{Lawyer} \rightarrow \mbox{Judge, Lawyer Wins} \end{array}$	0.267 0.299 0.260 0.322	(0.026) (0.035) (0.027) (0.035)	0.294 0.270 0.285 0.258	(0.036) (0.036) (0.029) (0.020)
		IV. Female	e → Male	
$\begin{array}{l} \mbox{Judge} \rightarrow \mbox{Lawyer, Lawyer Wins} \\ \mbox{Judge} \rightarrow \mbox{Lawyer, Lawyer Loses} \\ \mbox{Lawyer} \rightarrow \mbox{Judge, Lawyer Wins} \\ \mbox{Lawyer} \rightarrow \mbox{Judge, Lawyer Wins} \end{array}$	0.290 0.323 0.333 0.310	(0.040) (0.020) (0.029) (0.020)	0.322 0.294 0.369 0.373	(0.015) (0.018) (0.024) (0.019)

Daniel Chen, Damian Kozbur, Alan Yu

Introduction

Convergence Calculations

Table: ABA Vowel Specific Convergence Parameters : Monopthongs

		F1		F2		
	Estimate (S.E.)			ate (S.E.)		
		I. Ov	erall			
AA	-0.0121	(0.0106)	0.0525	(0.0105)		
AE	-0.00160	(0.0239)	0.0772	(0.0328)		
AH	0.00662	(0.0120)	0.0481	(0.00942)		
AO	0.0398	(0.00918)	0.0573	(0.00565)		
EH	0.0495	(0.0143)	0.0733	(0.0107)		
ER	0.0439	(0.0101)	0.0534	(0.00615)		
IH	0.0999	(0.00515)	0.100	(0.00376)		
IY	0.169	(0.0117)	0.130	(0.00820)		
UH	0.105	(0.00608)	0.0971	(0.00403)		
UW	0.0704	(0.0139)	0.110	(0.0170)		

This table presents the vowel-specific estimates of convergence parameters in the ABA dataset.

Daniel Chen, Damian Kozbur, Alan Yu

Introduction

Convergence Calculations

Table: AxByA Vowel Specific Convergence Parameters : Monopthongs

		F1		F2		
	Estimate (S.E.)		Estima	te (S.E.)		
		I	. Overall			
AA	0.275	(0.0518)	0.238	(0.0477)		
ΑE	-0.211	(0.112)	-0.0112	(0.122)		
AH	0.294	(0.0550)	0.246	(0.0519)		
AO	0.291	(0.0210)	0.208	(0.0207)		
EH	0.0336	(0.0994)	-0.0228	(0.0547)		
ER	0.307	(0.0212)	0.225	(0.0222)		
IH	0.24	(0.0251)	0.307	(0.0144)		
IY	0.104	(0.0349)	0.0334	(0.0458)		
UH	0.247	(0.0267)	0.335	(0.0140)		
UW	0.219	(0.0451)	0.238	(0.0442)		

This table presents the vowel-specific estimates of convergence parameters in the AxByA dataset.