

Algorithmic Justice for Development: Using Machine Learning to Identify and Mitigate Bias in Indian Courts

Elliott Ash (ETH Zurich), Sam Asher (John Hopkins),
Sandeep Bhupatiraju (World Bank), **Daniel L. Chen** (Toulouse),
Tanaya Devi (Harvard), Paul Novosad (Dartmouth),
Arianna Ornaghi (Warwick), Bilal Siddiqi (Berkeley)

MIT GOV/LAB
November 2019

Motivation

- Strong institutions encourage investment and growth (e.g., Rodrik 2000; Pande and Udry 2006)
- Courts in developing countries face numerous challenges to providing efficient and fair justice to citizens and firms (e.g. Djankov et al., 2003; La Porta et al., 2008).
 - ▶ transplanted legal codes
 - ★ preferences for informal mechanisms
 - ▶ low infrastructure in court system
 - ★ low-quality representation
 - ★ corruption
 - ★ **implicit or explicit bias** among judicial officers
- Cycle of uneven/uncertain justice → distrust → lack of reliance → lower investment → economic inefficiency
- Scarce empirical research on courts in developing countries (e.g. Ponticelli and Alencar, 2016).

Motivation

- Strong institutions encourage investment and growth (e.g., Rodrik 2000; Pande and Udry 2006)
- Courts in developing countries face numerous challenges to providing efficient and fair justice to citizens and firms (e.g. Djankov et al., 2003; La Porta et al., 2008).
 - ▶ transplanted legal codes
 - ★ preferences for informal mechanisms
 - ▶ low infrastructure in court system
 - ★ low-quality representation
 - ★ corruption
 - ★ implicit or explicit bias among judicial officers
- Cycle of uneven/uncertain justice → distrust → lack of reliance → lower investment → economic inefficiency
- Scarce empirical research on courts in developing countries (e.g. Ponticelli and Alencar, 2016).

Motivation

- Strong institutions encourage investment and growth (e.g., Rodrik 2000; Pande and Udry 2006)
- Courts in developing countries face numerous challenges to providing efficient and fair justice to citizens and firms (e.g. Djankov et al., 2003; La Porta et al., 2008).
 - ▶ transplanted legal codes
 - ★ preferences for informal mechanisms
 - ▶ low infrastructure in court system
 - ★ low-quality representation
 - ★ corruption
 - ★ implicit or explicit bias among judicial officers
- Cycle of uneven/uncertain justice → distrust → lack of reliance → lower investment → economic inefficiency
- Scarce empirical research on courts in developing countries (e.g. Ponticelli and Alencar, 2016).

Motivation

- Strong institutions encourage investment and growth (e.g., Rodrik 2000; Pande and Udry 2006)
- Courts in developing countries face numerous challenges to providing efficient and fair justice to citizens and firms (e.g. Djankov et al., 2003; La Porta et al., 2008).
 - ▶ transplanted legal codes
 - ★ preferences for informal mechanisms
 - ▶ low infrastructure in court system
 - ★ low-quality representation
 - ★ corruption
 - ★ **implicit or explicit bias** among judicial officers
- Cycle of uneven/uncertain justice → distrust → lack of reliance → lower investment → economic inefficiency
- Scarce empirical research on courts in developing countries (e.g. Ponticelli and Alencar, 2016).

Motivation

- Strong institutions encourage investment and growth (e.g., Rodrik 2000; Pande and Udry 2006)
- Courts in developing countries face numerous challenges to providing efficient and fair justice to citizens and firms (e.g. Djankov et al., 2003; La Porta et al., 2008).
 - ▶ transplanted legal codes
 - ★ preferences for informal mechanisms
 - ▶ low infrastructure in court system
 - ★ low-quality representation
 - ★ corruption
 - ★ **implicit or explicit bias** among judicial officers
- Cycle of uneven/uncertain justice → distrust → lack of reliance → lower investment → economic inefficiency
- Scarce empirical research on courts in developing countries (e.g. Ponticelli and Alencar, 2016).

Motivation

- Strong institutions encourage investment and growth (e.g., Rodrik 2000; Pande and Udry 2006)
- Courts in developing countries face numerous challenges to providing efficient and fair justice to citizens and firms (e.g. Djankov et al., 2003; La Porta et al., 2008).
 - ▶ transplanted legal codes
 - ★ preferences for informal mechanisms
 - ▶ low infrastructure in court system
 - ★ low-quality representation
 - ★ corruption
 - ★ **implicit or explicit bias** among judicial officers
- Cycle of uneven/uncertain justice → distrust → lack of reliance → lower investment → economic inefficiency
- Scarce empirical research on courts in developing countries (e.g. Ponticelli and Alencar, 2016).

New Opportunities

- ① Court rulings and judge biographies are increasingly digitized, allowing the construction of large-scale datasets.
- ② Natural language processing (NLP) tools can produce interpretable data from unstructured text – including written judicial opinions.
- ③ ML can predict judge decision-making and uncover bias.

Data

- A new database on the universe of judicial proceedings (70 million hearings, 14 million cases, and 10 million written judicial decisions)
- Supreme Court of India, 24 High Courts, 3,000+ subordinate courts.
 - ▶ World's largest democracy and largest common law legal system

Data

- A new database on the universe of judicial proceedings (70 million hearings, 14 million cases, and 10 million written judicial decisions)
- Supreme Court of India, 24 High Courts, 3,000+ subordinate courts.
 - ▶ World's largest democracy and largest common law legal system

Data

- A new database on the universe of judicial proceedings (70 million hearings, 14 million cases, and 10 million written judicial decisions)
- Supreme Court of India, 24 High Courts, 3,000+ subordinate courts.
 - ▶ World's largest democracy and largest common law legal system

Project #1

- An empirical analysis of biased justice due to social (dis)advantage.
- Disparities in:
 - ▶ judicial representation
 - ▶ judicial treatment
 - ▶ judicial outcomes
- By group membership:
 - ▶ male vs female
 - ▶ hindu vs muslim
 - ▶ upper-caste vs lower-caste
- Data explorer
- Three policy issues
 - ▶ Court congestion
 - ▶ Environment
 - ▶ Network analysis of lawyers and judges

Project #1

- An empirical analysis of biased justice due to social (dis)advantage.
- Disparities in:
 - ▶ judicial representation
 - ▶ judicial treatment
 - ▶ judicial outcomes
- By group membership:
 - ▶ male vs female
 - ▶ hindu vs muslim
 - ▶ upper-caste vs lower-caste
- Data explorer
- Three policy issues
 - ▶ Court congestion
 - ▶ Environment
 - ▶ Network analysis of lawyers and judges

Project #1

- An empirical analysis of biased justice due to social (dis)advantage.
- Disparities in:
 - ▶ judicial representation
 - ▶ judicial treatment
 - ▶ judicial outcomes
- By group membership:
 - ▶ male vs female
 - ▶ hindu vs muslim
 - ▶ upper-caste vs lower-caste
- Data explorer
- Three policy issues
 - ▶ Court congestion
 - ▶ Environment
 - ▶ Network analysis of lawyers and judges

Measuring Stereotypes in Judicial Language

Lexical slant

- Google translate
 - ▶ “he/she is a doctor” (turkish) -> “he is a doctor” (english)
 - ▶ “he/she is a nurse” (turkish) -> “she is a nurse” (english)
- A truck driver should plan his route carefully.
- A truck driver should plan the travel route carefully.

Lexical slant

- Google translate
 - ▶ “he/she is a doctor” (turkish) -> “he is a doctor” (english)
 - ▶ “he/she is a nurse” (turkish) -> “she is a nurse” (english)
- A truck driver should plan his route carefully.
- A truck driver should plan the travel route carefully.

Lexical slant

- Google translate
 - ▶ “he/she is a doctor” (turkish) -> “he is a doctor” (english)
 - ▶ “he/she is a nurse” (turkish) -> “she is a nurse” (english)
- A truck driver should plan his route carefully.
- A truck driver should plan the travel route carefully.

Lexical slant

- Google translate
 - ▶ “he/she is a doctor” (turkish) -> “he is a doctor” (english)
 - ▶ “he/she is a nurse” (turkish) -> “she is a nurse” (english)
- A truck driver should plan his route carefully.
- A truck driver should plan the travel route carefully.

"Attitudes that affect our understanding, actions, and decisions in an unconscious manner"

Implicit bias (Kirnan institute OSU)

- Does implicit bias exist?

- ▶ Ottaway et al. 2001, Rothermund et al. 2004, Arkes et al. 2004, Blanton et al. 2006

- Does it affect **real-world** decisions?

- ▶ police (Correll et al. 2002); physicians (Green et al. 2007); resume screening (Bertrand et al. 2005)

- Does it lead to **disparate treatment**?

- ▶ patients' feelings (Penner et al. 2010); grocery cashiers (Glover et al. 2017); students (Carlana 2018)

- Does **training** affect implicit attitudes?

- ▶ exposure to female leaders (Beaman et al. 2009)

"Attitudes that affect our understanding, actions, and decisions in an unconscious manner"

Implicit bias (Kirnan institute OSU)

- Does implicit bias exist?

- ▶ Ottaway et al. 2001, Rothermund et al. 2004, Arkes et al. 2004, Blanton et al. 2006

- Does it affect **real-world** decisions?

- ▶ police (Correll et al. 2002); physicians (Green et al. 2007); resume screening (Bertrand et al. 2005)

- Does it lead to **disparate treatment**?

- ▶ patients' feelings (Penner et al. 2010); grocery cashiers (Glover et al. 2017); students (Carlana 2018)

- Does **training** affect implicit attitudes?

- ▶ exposure to female leaders (Beaman et al. 2009)

"Attitudes that affect our understanding, actions, and decisions in an unconscious manner"

Implicit bias (Kirnan institute OSU)

- Does implicit bias exist?
 - ▶ Ottaway et al. 2001, Rothermund et al. 2004, Arkes et al. 2004, Blanton et al. 2006
- Does it affect **real-world** decisions?
 - ▶ police (Correll et al. 2002); physicians (Green et al. 2007); resume screening (Bertrand et al. 2005)
- Does it lead to **disparate treatment**?
 - ▶ patients' feelings (Penner et al. 2010); grocery cashiers (Glover et al. 2017); students (Carlana 2018)
- Does **training** affect implicit attitudes?
 - ▶ exposure to female leaders (Beaman et al. 2009)

"Attitudes that affect our understanding, actions, and decisions in an unconscious manner"

Implicit bias (Kirnan institute OSU)

- Does implicit bias exist?
 - ▶ Ottaway et al. 2001, Rothermund et al. 2004, Arkes et al. 2004, Blanton et al. 2006
- Does it affect **real-world** decisions?
 - ▶ police (Correll et al. 2002); physicians (Green et al. 2007); resume screening (Bertrand et al. 2005)
- Does it lead to **disparate treatment**?
 - ▶ patients' feelings (Penner et al. 2010); grocery cashiers (Glover et al. 2017); students (Carlana 2018)
- Does **training** affect implicit attitudes?
 - ▶ exposure to female leaders (Beaman et al. 2009)

"Attitudes that affect our understanding, actions, and decisions in an unconscious manner"

Implicit bias (Kirnan institute OSU)

- Does implicit bias exist?
 - ▶ Ottaway et al. 2001, Rothermund et al. 2004, Arkes et al. 2004, Blanton et al. 2006
- Does it affect **real-world** decisions?
 - ▶ police (Correll et al. 2002); physicians (Green et al. 2007); resume screening (Bertrand et al. 2005)
- Does it lead to **disparate treatment**?
 - ▶ patients' feelings (Penner et al. 2010); grocery cashiers (Glover et al. 2017); students (Carlana 2018)
- Does **training** affect implicit attitudes?
 - ▶ exposure to female leaders (Beaman et al. 2009)

"Attitudes that affect our understanding, actions, and decisions in an unconscious manner"

Implicit bias (Kirnan institute OSU)

- Does implicit bias exist in the **wild**?

- ▶ Ottaway et al. 2001, Rothermund et al. 2004, Arkes et al. 2004, Blanton et al. 2006

- Does it affect **judicial** decisions?

- ▶ police (Correll et al. 2002); physicians (Green et al. 2007); resume screening (Bertrand et al. 2005)

- Does it lead to **disparate treatment of other judges**?

- ▶ patients' feelings (Penner et al. 2010); grocery cashiers (Glover et al. 2017); students (Carlana 2018)

- Does **diversity** affect implicit attitudes?

- ▶ exposure to female leaders (Beaman et al. 2009)

"Attitudes that affect our understanding, actions, and decisions in an unconscious manner"

Implicit bias (Kirnan institute OSU)

- Does implicit bias exist in the **wild**?

- ▶ Ottaway et al. 2001, Rothermund et al. 2004, Arkes et al. 2004, Blanton et al. 2006

- Does it affect **judicial** decisions?

- ▶ police (Correll et al. 2002); physicians (Green et al. 2007); resume screening (Bertrand et al. 2005)

- Does it lead to **disparate treatment of other judges**?

- ▶ patients' feelings (Penner et al. 2010); grocery cashiers (Glover et al. 2017); students (Carlana 2018)

- Does **diversity** affect implicit attitudes?

- ▶ exposure to female leaders (Beaman et al. 2009)

"Attitudes that affect our understanding, actions, and decisions in an unconscious manner"

Implicit bias (Kirnan institute OSU)

- Does implicit bias exist in the **wild**?

- ▶ Ottaway et al. 2001, Rothermund et al. 2004, Arkes et al. 2004, Blanton et al. 2006

- Does it affect **judicial** decisions?

- ▶ police (Correll et al. 2002); physicians (Green et al. 2007); resume screening (Bertrand et al. 2005)

- Does it lead to **disparate treatment of other judges**?

- ▶ patients' feelings (Penner et al. 2010); grocery cashiers (Glover et al. 2017); students (Carlana 2018)

- Does **diversity** affect implicit attitudes?

- ▶ exposure to female leaders (Beaman et al. 2009)

Implicit attitudes

- Generally measured using Implicit Association Tests (IATs)
- Subjects asked to assign words to categories (Greenwald et al. 1998)

- Comparing reaction times across trials with different pairings
 - ▶ subjects are faster and make fewer errors on stereotype-consistent trials
 - ▶ difference yields “IAT score”

Implicit attitudes

- Generally measured using Implicit Association Tests (IATs)
- Subjects asked to assign words to categories (Greenwald et al. 1998)

- Comparing reaction times across trials with different pairings
 - ▶ subjects are faster and make fewer errors on stereotype-consistent trials
 - ▶ difference yields “IAT score”

Implicit attitudes

- Generally measured using Implicit Association Tests (IATs)
- Subjects asked to assign words to categories (Greenwald et al. 1998)

- Comparing reaction times across trials with different pairings
 - ▶ subjects are faster and make fewer errors on stereotype-consistent trials
 - ▶ difference yields “IAT score”

Implicit attitudes

- Generally measured using Implicit Association Tests (IATs)
- Subjects asked to assign words to categories (Greenwald et al. 1998)

- Comparing reaction times across trials with different pairings
 - ▶ subjects are faster and make fewer errors on stereotype-consistent trials
 - ▶ difference yields “IAT score”

Challenges of studying implicit attitudes

- Challenge: how can we measure implicit attitudes for the judiciary?
 - ▶ But we cannot elicit IAT scores from sitting judges (yet :-)
- Proposed solution: proxy for IAT using large amounts of written text
 - ▶ Represent judicial language in vector space
 - ▶ Are words representing different groups associated to certain attributes?

Challenges of studying implicit attitudes

- Challenge: how can we measure implicit attitudes for the judiciary?
 - ▶ But we cannot elicit IAT scores from sitting judges (yet :-))
- Proposed solution: proxy for IAT using large amounts of written text
 - ▶ Represent judicial language in vector space
 - ▶ Are words representing different groups associated to certain attributes?

Challenges of studying implicit attitudes

- Challenge: how can we measure implicit attitudes for the judiciary?
 - ▶ But we cannot elicit IAT scores from sitting judges (yet :-))
- Proposed solution: proxy for IAT using large amounts of written text
 - ▶ Represent judicial language in vector space
 - ▶ Are words representing different groups associated to certain attributes?

Challenges of studying implicit attitudes

- Challenge: how can we measure implicit attitudes for the judiciary?
 - ▶ But we cannot elicit IAT scores from sitting judges (yet :-))
- Proposed solution: proxy for IAT using large amounts of written text
 - ▶ Represent judicial language in vector space
 - ▶ Are words representing different groups associated to certain attributes?

Challenges of studying implicit attitudes

- Challenge: how can we measure implicit attitudes for the judiciary?
 - ▶ But we cannot elicit IAT scores from sitting judges (*yet :-)*)
- Proposed solution: proxy for IAT using large amounts of written text
 - ▶ Represent judicial language in vector space
 - ▶ Are words representing different groups associated to certain attributes?

Words closest to female and male dimensions

Words closest to female and male dimension

- Kerosene, petroleum, poured, modesty, cooperative, torture, harassed

Words closest to female and male dimension

- Kerosene, petroleum, poured, modesty, cooperative, torture, harassed

$$\text{Word-Embedding Association Test: WEAT} = \sum_{x \in X} s(x, A, B) - \sum_{y \in Y} s(y, A, B) \text{ (Caliskan et al. 2017)}$$

distance between IAT vectors correlate with behavioral delays

- X, Y are male (his, he, him, mr, himself) vs. female words (her, she, ms, women, woman)
- A, B are career (company, work, business, service, pay) vs. family (family, wife, husband, mother, father)

Words closest to female and male dimension

- Kerosene, petroleum, poured, modesty, cooperative, torture, harassed

$$\text{Word-Embedding Association Test: } WEAT = \sum_{x \in X} s(x, A, B) - \sum_{y \in Y} s(y, A, B) \quad (\text{Caliskan et al. 2017})$$

distance between IAT vectors correlate with behavioral delays

- *X, Y* are male (his, he, him, mr, himself) vs. female words (her, she, ms, women, woman)
- *A, B* are career (company, work, business, service, pay) vs. family (family, wife, husband, mother, father)

Words closest to female and male dimension

- Kerosene, petroleum, poured, modesty, cooperative, torture, harassed

$$\text{Word-Embedding Association Test: WEAT} = \sum_{x \in X} s(x, A, B) - \sum_{y \in Y} s(y, A, B) \quad (\text{Caliskan et al. 2017})$$

distance between IAT vectors correlate with behavioral delays

- *X, Y* are male (his, he, him, mr, himself) vs. female words (her, she, ms, women, woman)
- *A, B* are career (company, work, business, service, pay) vs. family (family, wife, husband, mother, father)

How to represent text as data?

- (obama speaks media illinois) is orthogonal to (president greets press chicago) according to **cosine similarity**
- But word **embeddings** capture contextual similarities between words

1. Finding the degree of similarity between two words.

```
model.similarity('woman', 'man')  
0.73723527
```

2. Finding odd one out.

```
model.doesnt_match('breakfast cereal dinner  
lunch';.split())  
'cereal'
```

3. Amazing things like woman+king-man =queen

```
model.most_similar(positive=  
['woman', 'king'], negative=['man'], topn=1)  
queen: 0.508
```

4. Probability of a text under the model

```
model.score(['The fox jumped over the lazy  
dog'.split()])  
0.21
```

- If we know the words having similar meanings in different languages, word embeddings can be used to (Google) translate!

How to represent text as data?

- (obama speaks media illinois) is orthogonal to (president greets press chicago) according to **cosine similarity**
- But word embeddings capture contextual similarities between words

1. Finding the degree of similarity between two words.

```
model.similarity('woman', 'man')  
0.73723527
```

2. Finding odd one out.

```
model.doesnt_match('breakfast cereal dinner  
lunch';.split())  
'cereal'
```

3. Amazing things like woman+king-man =queen

```
model.most_similar(positive=  
['woman', 'king'], negative=['man'], topn=1)  
queen: 0.508
```

4. Probability of a text under the model

```
model.score(['The fox jumped over the lazy  
dog'.split()])  
0.21
```

- If we know the words having similar meanings in different languages, word embeddings can be used to (Google) translate!

How to represent text as data?

- (obama speaks media illinois) is orthogonal to (president greets press chicago) according to **cosine similarity**
- But **word embeddings** capture contextual similarities between words

1. Finding the degree of similarity between two words.

```
model.similarity('woman', 'man')  
0.73723527
```

2. Finding odd one out.

```
model.doesnt_match('breakfast cereal dinner  
lunch';.split())  
'cereal'
```

3. Amazing things like woman+king-man =queen

```
model.most_similar(positive=  
['woman', 'king'], negative=['man'], topn=1)  
queen: 0.508
```

4. Probability of a text under the model

```
model.score(['The fox jumped over the lazy  
dog'.split()])  
0.21
```

- If we know the words having similar meanings in different languages, word embeddings can be used to (Google) translate!

How to represent text as data?

- (obama speaks media illinois) is orthogonal to (president greets press chicago) according to **cosine similarity**
- But **word embeddings** capture contextual similarities between words

1. Finding the degree of similarity between two words.

```
model.similarity('woman', 'man')  
0.73723527
```

2. Finding odd one out.

```
model.doesnt_match('breakfast cereal dinner  
lunch';.split())  
'cereal'
```

3. Amazing things like woman+king-man =queen

```
model.most_similar(positive=  
['woman', 'king'], negative=['man'], topn=1)  
queen: 0.508
```

4. Probability of a text under the model

```
model.score(['The fox jumped over the lazy  
dog'.split()])  
0.21
```

- If we know the words having similar meanings in different languages, word embeddings can be used to (Google) translate!

Distance encodes semantic similarity between words

- **GloVe (Global Vectors)**

- ▶ Based on intuition that co-occurrence probabilities convey meaning
- ▶ Begins by constructing a co-occurrence matrix using a fixed window
- ▶ Obtains word vectors $w_i \in (-1, 1)^{300}$ that minimize

$$J(\mathbf{w}) = \sum_{i,j} f(X_{ij}) \left(w_i^T w_j - \log(X_{ij}) \right)^2$$

- ▶ X_{ij} is the co-occurrence count between words i and j
- ▶ $f(\cdot)$ is a weighting function that down-weights frequent words
- ▶ Objective function $J(\cdot)$ trains word vectors to minimize squared difference between dot product of vectors representing two words and their empirical co-occurrence
- ▶ Minimize $J(\cdot)$ by stochastic gradient descent (Pennington et al. 2014)
 - ★ 300-dimensional vectors, 50K vocabulary, window of 10 words, 0.05 learning rate, 20 epochs

Distance encodes semantic similarity between words

- GloVe (Global Vectors)

- ▶ Based on intuition that co-occurrence probabilities convey meaning
- ▶ Begins by constructing a co-occurrence matrix using a fixed window
- ▶ Obtains word vectors $w_i \in (-1, 1)^{300}$ that minimize

$$J(\mathbf{w}) = \sum_{i,j} f(X_{ij}) \left(w_i^T w_j - \log(X_{ij}) \right)^2$$

- ▶ X_{ij} is the co-occurrence count between words i and j
- ▶ $f(\cdot)$ is a weighting function that down-weights frequent words
- ▶ Objective function $J(\cdot)$ trains word vectors to minimize squared difference between dot product of vectors representing two words and their empirical co-occurrence
- ▶ Minimize $J(\cdot)$ by stochastic gradient descent (Pennington et al. 2014)
 - ★ 300-dimensional vectors, 50K vocabulary, window of 10 words, 0.05 learning rate, 20 epochs

Distance encodes semantic similarity between words

- GloVe (Global Vectors)

- ▶ Based on intuition that co-occurrence probabilities convey meaning
- ▶ Begins by constructing a co-occurrence matrix using a fixed window
- ▶ Obtains word vectors $w_i \in (-1, 1)^{300}$ that minimize

$$J(\mathbf{w}) = \sum_{i,j} f(X_{ij}) \left(w_i^T w_j - \log(X_{ij}) \right)^2$$

- ▶ X_{ij} is the co-occurrence count between words i and j
- ▶ $f(\cdot)$ is a weighting function that down-weights frequent words
- ▶ Objective function $J(\cdot)$ trains word vectors to minimize squared difference between dot product of vectors representing two words and their empirical co-occurrence
- ▶ Minimize $J(\cdot)$ by stochastic gradient descent (Pennington et al. 2014)
 - ★ 300-dimensional vectors, 50K vocabulary, window of 10 words, 0.05 learning rate, 20 epochs

Distance encodes semantic similarity between words

- GloVe (Global Vectors)

- ▶ Based on intuition that co-occurrence probabilities convey meaning
- ▶ Begins by constructing a co-occurrence matrix using a fixed window
- ▶ Obtains word vectors $w_i \in (-1, 1)^{300}$ that minimize

$$J(\mathbf{w}) = \sum_{i,j} f(X_{ij}) \left(w_i^T w_j - \log(X_{ij}) \right)^2$$

- ▶ X_{ij} is the co-occurrence count between words i and j
- ▶ $f(\cdot)$ is a weighting function that down-weights frequent words
- ▶ Objective function $J(\cdot)$ trains word vectors to minimize squared difference between dot product of vectors representing two words and their empirical co-occurrence
- ▶ Minimize $J(\cdot)$ by stochastic gradient descent (Pennington et al. 2014)
 - ★ 300-dimensional vectors, 50K vocabulary, window of 10 words, 0.05 learning rate, 20 epochs

Distance encodes semantic similarity between words

- GloVe (Global Vectors)

- ▶ Based on intuition that co-occurrence probabilities convey meaning
- ▶ Begins by constructing a co-occurrence matrix using a fixed window
- ▶ Obtains word vectors $w_i \in (-1, 1)^{300}$ that minimize

$$J(\mathbf{w}) = \sum_{i,j} f(X_{ij}) \left(w_i^T w_j - \log(X_{ij}) \right)^2$$

- ▶ X_{ij} is the co-occurrence count between words i and j
- ▶ $f(\cdot)$ is a weighting function that down-weights frequent words
- ▶ Objective function $J(\cdot)$ trains word vectors to minimize squared difference between dot product of vectors representing two words and their empirical co-occurrence
- ▶ Minimize $J(\cdot)$ by stochastic gradient descent (Pennington et al. 2014)

★ 300-dimensional vectors, 50K vocabulary, window of 10 words, 0.05 learning rate, 20 epochs

Distance encodes semantic similarity between words

- GloVe (Global Vectors)

- ▶ Based on intuition that co-occurrence probabilities convey meaning
- ▶ Begins by constructing a co-occurrence matrix using a fixed window
- ▶ Obtains word vectors $w_i \in (-1, 1)^{300}$ that minimize

$$J(\mathbf{w}) = \sum_{i,j} f(X_{ij}) \left(w_i^T w_j - \log(X_{ij}) \right)^2$$

- ▶ X_{ij} is the co-occurrence count between words i and j
- ▶ $f(\cdot)$ is a weighting function that down-weights frequent words
- ▶ Objective function $J(\cdot)$ trains word vectors to minimize squared difference between dot product of vectors representing two words and their empirical co-occurrence
- ▶ Minimize $J(\cdot)$ by stochastic gradient descent (Pennington et al. 2014)
 - ★ 300-dimensional vectors, 50K vocabulary, window of 10 words, 0.05 learning rate, 20 epochs

Word embeddings identify cultural dimensions

- Identify cultural dimension by taking difference between pairs of words

- $\overrightarrow{\text{man}} - \overrightarrow{\text{woman}}$ identifies a step in masculine direction

$$\overrightarrow{\text{male}} - \overrightarrow{\text{female}} = \frac{\sum_n \overrightarrow{\text{male word}_n}}{|\text{N}_{\text{male}}|} - \frac{\sum_n \overrightarrow{\text{female word}_n}}{|\text{N}_{\text{female}}|}$$

where $|\text{N}_{\text{male}}|$ is number of words used to identify the male dimension, e.g. $\overrightarrow{\text{boy}} - \overrightarrow{\text{girl}}$, $\overrightarrow{\text{he}} - \overrightarrow{\text{she}}$, etc.

Word embeddings identify cultural dimensions

- Identify cultural dimension by taking difference between pairs of words

- $\overrightarrow{\text{man}} - \overrightarrow{\text{woman}}$ identifies a step in masculine direction

$$\overrightarrow{\text{male}} - \overrightarrow{\text{female}} = \frac{\sum_n \overrightarrow{\text{male word}_n}}{|\text{N}_{\text{male}}|} - \frac{\sum_n \overrightarrow{\text{female word}_n}}{|\text{N}_{\text{female}}|}$$

where $|\text{N}_{\text{male}}|$ is number of words used to identify the male dimension, e.g. $\overrightarrow{\text{boy}} - \overrightarrow{\text{girl}}$, $\overrightarrow{\text{he}} - \overrightarrow{\text{she}}$, etc.

Measuring Gender Stereotypes using Cosine Similarity

(a)

(b)

(c)

Religion Dimension

Hindu	hindu, hindus, hinduism
Muslim	muslim, muslims, islam, islamic

- Highest positive and negative correlation to hindu-muslim dimension:

Words most correlated to $\overrightarrow{\text{hindu}} - \overrightarrow{\text{muslim}}$ Words most correlated to $\overrightarrow{\text{muslim}} - \overrightarrow{\text{hindu}}$

owner code transfer petition members house
succession dispute land and
indian duty companies
income vehicles education
landlord management conduct arms
settlement employer registration disputes
acquisition industrial law rent
industrial limitation university
landlord act society arbitration motor
partition board secretary properties
tenant scheme ew wife under
vehicle amendment control registrars
provisions tenancy of
department trust tax
director constitution employment pension customs
commission

requisites jaiswal rajkumar muslim
dey mohammad shortly grown muslim
ganjuly ansarirahman shaikh dutta tulsi
ranjan basu ourselves sayak biping garg dubey
rashid sardar please kapoor dhar vakil
prabhakar alam iranjan yusuf imran sadhu
ghosh islam iranjan yusuf anwar incidentally
sharad hussain ray sahudipak misra
hereinbelow menon kishun paul poddar
uttam vishwanath tewari paul hasan
agarwal amarnath goswami salim
syed malhotra haque dutt oor broadly
elaborately gill sen miss sarkar
chatterjee strenuously
ahmed pradip ramakant

Stereotypes: The Career-Family Dimension

Career company, inc, work, business, service, pay, corp, employee, employment, benefits
Family family, wife, husband, mother, father, parents, son, brother, parent, brothers

Words most correlated to $\overrightarrow{\text{career}} - \overrightarrow{\text{family}}$

Words most correlated to $\overrightarrow{\text{family}} - \overrightarrow{\text{career}}$

specified deposit grant provided prescribed grant may deduction respect statute offence liable appropriate liability commission necessary permit regular paid particular benefit should proceeding activity deemed issue matters provision offence tax basis constitute monetary employment establishment policy advance certified granted pass levy amount area licence punishment tax contract impose basis fee excess benefits be permissible subject interim can liable required can service

Prejudice: The Pleasant-Unpleasant Dimension

Pleasant

good,better,best,pleasant,desirable,joy, love, peace, wonderful,

Unpleasant

bad,worse,worst,unpleasant,undesirable, terrible, horrible, nasty, war, failure

Words most correlated to $\overrightarrow{\text{pleasant}} - \overrightarrow{\text{unpleasant}}$ Words most correlated to $\overrightarrow{\text{unpleasant}} - \overrightarrow{\text{pleasant}}$

What we have done in U.S. Courts

Words closest to female and male dimension

- Migraine, hysterical, morbid, obese, terrified, unemancipated, battered
- Reserve, industrial, honorable, commanding, armed, conscientious, duty

Words closest to female and male dimension

- Migraine, hysterical, morbid, obese, terrified, unemancipated, battered
- Reserve, industrial, honorable, commanding, armed, conscientious, duty

Figure: Gender Slant, by Gender

Notes: The graphs show the distribution of the slant measure (cosine similarity between the gender and career-family dimensions), by judge gender. ($p=0.012$)

Judges with more lexical slant are less likely to vote in favor of women's interests

Dataset	Epstein et al. (2013) Data			Glynn and Sen (2015) Data		
Gender Slant	-0.041*** (0.013)	-0.041*** (0.013)	-0.066*** (0.018)	-0.053*** (0.019)	-0.054*** (0.019)	-0.058** (0.023)
Democrat	0.150*** (0.031)	0.142*** (0.031)	0.185*** (0.035)	0.257*** (0.044)	0.259*** (0.046)	0.263*** (0.056)
Female	0.122*** (0.026)	0.143*** (0.036)	0.089*** (0.022)	0.079** (0.035)	0.105*** (0.037)	0.096** (0.041)
Observations	2335	2335	2335	1719	1719	1719
Clusters	112	112	112	109	109	109
Outcome Mean	0.4167	0.417	0.417	0.383	0.383	0.383
Circuit-Year FE	X	X	X	X	X	X
Topic FE	X	X	X	X	X	X
Demographic Controls	X	X	X	X	X	X
+ Interactions		X			X	
Career FE (judge bio)			X			X

2σ of gender slant $\Rightarrow \downarrow 20\%$ pro-women's rights vote

Judges with more lexical slant are less likely to vote in favor of women's interests

Dataset	Epstein et al. (2013) Data			Glynn and Sen (2015) Data		
Gender Slant	-0.041*** (0.013)	-0.041*** (0.013)	-0.066*** (0.018)	-0.053*** (0.019)	-0.054*** (0.019)	-0.058** (0.023)
Democrat	0.150*** (0.031)	0.142*** (0.031)	0.185*** (0.035)	0.257*** (0.044)	0.259*** (0.046)	0.263*** (0.056)
Female	0.122*** (0.026)	0.143*** (0.036)	0.089*** (0.022)	0.079** (0.035)	0.105*** (0.037)	0.096** (0.041)
Observations	2335	2335	2335	1719	1719	1719
Clusters	112	112	112	109	109	109
Outcome Mean	0.4167	0.417	0.417	0.383	0.383	0.383
Circuit-Year FE	X	X	X	X	X	X
Topic FE	X	X	X	X	X	X
Demographic Controls	X	X	X	X	X	X
+ Interactions		X			X	
Career FE (judge bio)			X			X

2σ of gender slant $\Rightarrow \downarrow 20\%$ pro-women's rights vote

Panels with more slanted senior judges are less likely to assign opinions to women

Gender Slant	-0.020** (0.008)	-0.020** (0.008)	-0.015* (0.008)	-0.023*** (0.008)	-0.023*** (0.007)	-0.026** (0.010)
Democrat	-0.065** (0.029)	-0.033 (0.034)	-0.080** (0.033)	-0.067** (0.030)	-0.059** (0.026)	-0.049 (0.036)
Female	0.137*** (0.015)	0.146*** (0.018)	0.160*** (0.016)	0.137*** (0.016)	0.135*** (0.016)	
Observations	32052	32052	32052	31858	36939	19940
Clusters	125	125	125	123	125	125
Outcome Mean	0.383	0.383	0.383	0.383	0.383	0.4325
Circuit-Year FE	✗	✗	✗	✗	✗	✗
Demographic Controls	✗	✗	✗	✗	✗	✗
+ Interactions		✗				
Career FE			✗			
Liberal % (Songer-Auburn)				✗		
Includes 2-1					✗	
Excludes Female Senior Judge						✗

2σ of gender slant $\Rightarrow \downarrow 10\%$ female assigned authorship

Panels with more slanted senior judges are less likely to assign opinions to women

Gender Slant	-0.020** (0.008)	-0.020** (0.008)	-0.015* (0.008)	-0.023*** (0.008)	-0.023*** (0.007)	-0.026** (0.010)
Democrat	-0.065** (0.029)	-0.033 (0.034)	-0.080** (0.033)	-0.067** (0.030)	-0.059** (0.026)	-0.049 (0.036)
Female	0.137*** (0.015)	0.146*** (0.018)	0.160*** (0.016)	0.137*** (0.016)	0.135*** (0.016)	
Observations	32052	32052	32052	31858	36939	19940
Clusters	125	125	125	123	125	125
Outcome Mean	0.383	0.383	0.383	0.383	0.383	0.4325
Circuit-Year FE	X	X	X	X	X	X
Demographic Controls	X	X	X	X	X	X
+ Interactions		X				
Career FE			X			
Liberal % (Songer-Auburn)				X		
Includes 2-1					X	
Excludes Female Senior Judge						X

2σ of gender slant $\Rightarrow \downarrow 10\%$ female assigned authorship

Judges with more lexical slant cite female judges less

Dependent Variable	Cites at Least One Female Judge			
Gender Slant	-0.009*	-0.008*	-0.010*	-0.010*
	(0.005)	(0.005)	(0.006)	(0.005)
Democrat	-0.021	-0.030*	-0.046***	-0.026*
	(0.015)	(0.015)	(0.015)	(0.015)
Female	0.123***	0.107***	0.134***	0.122***
	(0.015)	(0.017)	(0.013)	(0.015)
Observations	107923	107923	107923	106557
Clusters	139	139	139	136
Outcome Mean	0.383	0.383	0.383	0.381
Circuit-Year FE	X	X	X	X
Demographic Controls	X	X	X	X
Interacted Demographic Controls		X		
Career FE			X	X
Liberal % (Songer-Auburn)				X

2σ of gender slant $\Rightarrow \downarrow 6\%$ citing a female

Judges with more lexical slant cite female judges less

Dependent Variable	Cites at Least One Female Judge			
Gender Slant	-0.009*	-0.008*	-0.010*	-0.010*
	(0.005)	(0.005)	(0.006)	(0.005)
Democrat	-0.021	-0.030*	-0.046***	-0.026*
	(0.015)	(0.015)	(0.015)	(0.015)
Female	0.123***	0.107***	0.134***	0.122***
	(0.015)	(0.017)	(0.013)	(0.015)
Observations	107923	107923	107923	106557
Clusters	139	139	139	136
Outcome Mean	0.383	0.383	0.383	0.381
Circuit-Year FE	X	X	X	X
Demographic Controls	X	X	X	X
Interacted Demographic Controls		X		
Career FE			X	X
Liberal % (Songer-Auburn)				X

2σ of gender slant $\Rightarrow \downarrow 6\%$ citing a female

Judges with more lexical slant reverse female district judges more

Gender Slant * Female District Judge	0.010*** (0.004)	0.010*** (0.004)	0.012*** (0.004)	0.012*** (0.004)
Democrat * Female District Judge	-0.009 (0.014)	-0.024** (0.009)	-0.006 (0.014)	-0.007 (0.013)
Female * Female District Judge	-0.009 (0.009)	-0.022*** (0.008)	-0.007 (0.009)	-0.011 (0.010)
Democrat * Female * Female District Judge		0.152*** (0.015)		
Observations	145862	145862	144965	145563
Clusters	133	133	130	133
Outcome Mean for Male Judges	0.180	0.180	0.180	0.180
Outcome Mean for Female Judges	0.157	0.157	0.157	0.157
Circuit-Year FE	X	X	X	X
Judge FE	X	X	X	X
District Judge FE	X	X	X	X
Demographic Controls	X	X	X	X
+ Interactions		X		
Liberal Score Interaction			X	
District-Year FE				X

But female judges are 3.6% less likely to be reversed

Gender Slant * Female District Judge	0.010*** (0.004)	0.010*** (0.004)	0.012*** (0.004)	0.012*** (0.004)
Democrat * Female District Judge	-0.009 (0.014)	-0.024** (0.009)	-0.006 (0.014)	-0.007 (0.013)
Female * Female District Judge	-0.009 (0.009)	-0.022*** (0.008)	-0.007 (0.009)	-0.011 (0.010)
Democrat * Female * Female District Judge		0.152*** (0.015)		
Observations	145862	145862	144965	145563
Clusters	133	133	130	133
Outcome Mean for Male Judges	0.180	0.180	0.180	0.180
Outcome Mean for Female Judges	0.157	0.157	0.157	0.157
Circuit-Year FE	X	X	X	X
Judge FE	X	X	X	X
District Judge FE	X	X	X	X
Demographic Controls	X	X	X	X
+ Interactions		X		
Liberal Score Interaction			X	
District-Year FE				X

Daughters Reduce Gender Slant

Daughter	-0.477*	-0.468*
	(0.274)	(0.278)
Democrat	-0.016	-0.069
	(0.535)	(0.613)
Female	-0.659***	-0.683***
	(0.232)	(0.239)
Democrat * Female		0.321
		(0.631)
<hr/>		
Observations	98	98
Outcome Mean	-0.085	-0.085
Adjusted R2	0.528	0.520
<hr/>		
Circuit FE	X	X
Number of Children FE	X	X
Demographic Controls	X	X
Interacted Demographic Controls		X

Conditional on number of children, having a daughter as good as random.

Daughters Reduce Gender Slant

Daughter	-0.477*	-0.468*
	(0.274)	(0.278)
Democrat	-0.016	-0.069
	(0.535)	(0.613)
Female	-0.659***	-0.683***
	(0.232)	(0.239)
Democrat * Female		0.321
		(0.631)
<hr/>		
Observations	98	98
Outcome Mean	-0.085	-0.085
Adjusted R2	0.528	0.520
<hr/>		
Circuit FE	X	X
Number of Children FE	X	X
Demographic Controls	X	X
Interacted Demographic Controls		X

Conditional on number of children, having a daughter as good as random.

What we are doing in Indian Courts

India E-Courts

Figure: Number of Cases per Year, India E-Courts

Meta-Data

- We have parsed the cases and hearings to pull out relevant metadata (331 and 256 fields respectively).
 - ▶ dates, court, parties, case type, and judge identity
- Simple measures of court efficiency that can be generated from the administrative data
 - ▶ total caseload, trial duration, case disposal rates, backlogs, appeal rates, and proportion of appeals successfully upheld
- Measures of judicial outcomes include
 - ▶ resolution, ruling, and sentence

Meta-Data

- We have parsed the cases and hearings to pull out relevant metadata (331 and 256 fields respectively).
 - ▶ dates, court, parties, case type, and judge identity
- Simple measures of court efficiency that can be generated from the administrative data
 - ▶ total caseload, trial duration, case disposal rates, backlogs, appeal rates, and proportion of appeals successfully upheld
- Measures of judicial outcomes include
 - ▶ resolution, ruling, and sentence

Meta-Data

- We have parsed the cases and hearings to pull out relevant metadata (331 and 256 fields respectively).
 - ▶ dates, court, parties, case type, and judge identity
- Simple measures of court efficiency that can be generated from the administrative data
 - ▶ total caseload, trial duration, case disposal rates, backlogs, appeal rates, and proportion of appeals successfully upheld
- Measures of judicial outcomes include
 - ▶ resolution, ruling, and sentence

Written Opinions 1930-2018

- case title/citation, dates, judges on the panel, author
- split into sections and paragraphs
- annotated citations to legal authorities, i.e. statutes and previous cases

Separate dataset - lists of first and last names digitized from the Anthropological Survey of India

- gender, social identity (subcaste or jati) and religion (i.e., for Muslims)
- data on judges collected from the National Judicial Data Grid

The Socioeconomic and Caste Census (2012) is a *census* that describes household income and assets for all Indians.

The Economic Census (2005 and 2012) describes the universe of firms with ten or more employees

Written Opinions 1930-2018

- case title/citation, dates, judges on the panel, author
- split into sections and paragraphs
- annotated citations to legal authorities, i.e. statutes and previous cases

Separate dataset - lists of first and last names digitized from the Anthropological Survey of India

- gender, social identity (subcaste or jati) and religion (i.e., for Muslims)
- data on judges collected from the National Judicial Data Grid

The Socioeconomic and Caste Census (2012) is a *census* that describes household income and assets for all Indians.

The Economic Census (2005 and 2012) describes the universe of firms with ten or more employees

Written Opinions 1930-2018

- case title/citation, dates, judges on the panel, author
- split into sections and paragraphs
- annotated citations to legal authorities, i.e. statutes and previous cases

Separate dataset - lists of first and last names digitized from the Anthropological Survey of India

- gender, social identity (subcaste or jati) and religion (i.e., for Muslims)
- data on judges collected from the National Judicial Data Grid

The Socioeconomic and Caste Census (2012) is a *census* that describes household income and assets for all Indians.

The Economic Census (2005 and 2012) describes the universe of firms with ten or more employees

Written Opinions 1930-2018

- case title/citation, dates, judges on the panel, author
- split into sections and paragraphs
- annotated citations to legal authorities, i.e. statutes and previous cases

Separate dataset - lists of first and last names digitized from the Anthropological Survey of India

- gender, social identity (subcaste or jati) and religion (i.e., for Muslims)
- data on judges collected from the National Judicial Data Grid

The Socioeconomic and Caste Census (2012) is a *census* that describes household income and assets for all Indians.

The Economic Census (2005 and 2012) describes the universe of firms with ten or more employees

Written Opinions 1930-2018

- case title/citation, dates, judges on the panel, author
- split into sections and paragraphs
- annotated citations to legal authorities, i.e. statutes and previous cases

Separate dataset - lists of first and last names digitized from the Anthropological Survey of India

- gender, social identity (subcaste or jati) and religion (i.e., for Muslims)
- data on judges collected from the National Judicial Data Grid

The Socioeconomic and Caste Census (2012) is a *census* that describes household income and assets for all Indians.

The Economic Census (2005 and 2012) describes the universe of firms with ten or more employees

Gender Stereotypes and Religious Prejudice, 1990-2018

Male Association with Career
(Female Association with Family)

Hindu Association with Pleasant
(Muslim Association with Unpleasant)

Hindu, Muslim, and caste in India

Hindu
defendant

Hindu judge

understanding	frivolous	dissatisfied
polished	cooperative	prejudiced
original	curious	adventive
formal	forceful	vindictive
progressive	moodiness	contused
confident	handsome	thoughtful
peculiar	hasty	outgoing
	impatient	anxious
	humorous	intensity
	reasonable	principled
	quick	informal
	strong	
	complaining	
	confused	
	withdrawn	
	reserved	

SC/ST
defendant

ontaneous irritable vindictive
pendable noisy arrogant
arrogant quarrelsome
upable polished aggressive
cal lazy hasty
stitious irresponsible
shred shy
modical tenser
intolerant emotional
assertive calm
ervative preoccupied
assertive humorously
civilized

Muslim
defendant

unstable generous efficient wary
reflective helpful
obliging deceitful responsible
mature obnoxious greedy
restless ambitious hurried
quiet orderly
reckless complicated indifferent
autocratic selfish
healthy ^{wise} active kind loud
gloomy ^{com} noisy daring
friendly ^{cheerful} lazy cool leisurely immature

SC/ST judge

natural honest strong
serious relaxed unaffected
silent rigid
tense thorough frivilous quick
wise independent
cautious patient
precise dominant
Weak understanding capable
concerned responsible
prejudiced logical attractive
affected anxious reliable
anxious persistent
dependent suspicious

initiative
simple
relaxed
retiring
dominant
dependent
kind
sensitive
confused
cautious
original
prejudiced

complicated
persistent
serious
practical
cold
thorough
withdrew
complaining
frivolous
responsible
reserved
slow
precise
elegant
rugged

cooperative
determined
dissatisfied
peculiar
demanding
attractive
honest
unaffected

rational	simple	tense	cautious
natural	independent	deliberate	slow
attractive	quick	coarse	
quiet	controlled	sensitive	relaxed
demanding	patient	Weak	
responsible	logical		formal
active	hostile	honest	incapable
cruel	precise	serious	
cold	understanding	initiative	thorough
kind			
strong	SUSPICIOUS	severe	reserves
anxious		reasonable	

Muslim judge

independent
curious
reckless
prejudiced
hostile
strong
outgoing
severe
serious
wise
natural
cold
silent
aint
deliberate
dissatisfied
indifferent
progressive
rational
realistic
initiative
attractive
helpful
cooperative
light
wholesome
confused
thoughtful
patient
contented
relaxed
efficient
honest
unbiased
logical
reliable

deliberate
attractive
prejudiced confused
severe
understanding
reliable
wise
weak
intelligent
hostile
patients
organized
suspicious
thorough
anxious
cruel
quiet
stable
Cold
peculiar
Initiative
loud
dominant
wholesome
cautious
honest
healthy
alert
treckless
indifferent

peculiar responsible weak
quick original active
spontaneous dependent slow
cautious rigid unaffected retiring
precise rational kind
determined simple frivilous anxious
intelligent demanding
withdrewn conventional
reserved dominant
formal unscrupulous nature
complaining reasonable cooperative affected
capable

Sentiment analysis

natural reasonable frivolous gentle
confident formal
versatile dominant progressive
anxious reserved
impatient confused
curious original
initiative quick
cooperative robust dissatisfied
thoughtful prejudiced attractive
withdrawn humorous
handsome
vindictive
moody jolly
forceful complaining
determined simple
peculiar
preoccupied demanding
outgoing
strong
contented

deliberate formal
sensitive cold kind
weak suspicious rational
original reasonable logical
dissatisfied simple
confused reserved slow
active independent
quiet cautious
tense demanding
initiative
coarse patient serious
attractive precise
cold quick thorough
kind capable

Hindu judges describe Hindu litigants more positively

SC/ST judges describe Muslims more negatively

Access to Justice

- Disparities in:
 - ▶ judicial representation
 - ▶ judicial treatment
 - ▶ judicial outcomes

Access to Justice

Table: Distribution of Court Actors, By Social Group

	<i>Counts and Percentages by Group</i>		
	<i>Hindus</i>		<i>Muslims</i>
	<i>Non-Scheduled</i>	<i>Scheduled</i>	
Civil Litigants	3,837,066 87.5%	179,613 4.1%	366,278 8.3%
Criminal Defendants	568,017 86.4%	35,104 5.3%	54,146 8.2%
Judges	1,318,440 88.4%	11,211 0.8%	162,552 10.8%

- None reflect the distribution in the population.
 - ▶ Scheduled - 16%; Muslims - 14%
 - ▶ Scheduled - 30% more likely to appear as defendants than litigants

Access to Justice

Table: Distribution of Court Actors, By Social Group

	<i>Counts and Percentages by Group</i>		
	<i>Hindus</i>		<i>Muslims</i>
	<i>Non-Scheduled</i>	<i>Scheduled</i>	
Civil Litigants	3,837,066 87.5%	179,613 4.1%	366,278 8.3%
Criminal Defendants	568,017 86.4%	35,104 5.3%	54,146 8.2%
Judges	1,318,440 88.4%	11,211 0.8%	162,552 10.8%

- None reflect the distribution in the population.
 - ▶ Scheduled - 16%; Muslims - 14%
 - ▶ Scheduled - 30% more likely to appear as defendants than litigants

Random Assignment

- Random assignment of judges is not a universal feature of the Indian court system, but it appears in many of the subordinate courts
- Focus on Delhi courts [pop. ~ Netherlands, 2x Sweden, 4x Norway]
 - ▶ all cases filed under the Indian Penal Code Act of 1860
 - ▶ all brought by the state (so defendant = respondent)
- District and Sessions Judge (the highest court in the district)
 - ▶ principal court of civil jurisdiction (most serious cases)
- Chief Metropolitan Magistrate
 - ▶ cases punishable with imprisonment for a term up to seven years.
- Court - Dwarka, Karkardooma, Patiala, Rohini, Saket, Tis Hazari.
 - ▶ Condition on this, judges appear exogenously assigned

Random Assignment

- Random assignment of judges is not a universal feature of the Indian court system, but it appears in many of the subordinate courts
- Focus on Delhi courts [pop. ~ Netherlands, 2x Sweden, 4x Norway]
 - ▶ all cases filed under the Indian Penal Code Act of 1860
 - ▶ all brought by the state (so defendant = respondent)
- District and Sessions Judge (the highest court in the district)
 - ▶ principal court of civil jurisdiction (most serious cases)
- Chief Metropolitan Magistrate
 - ▶ cases punishable with imprisonment for a term up to seven years.
- Court - Dwarka, Karkardooma, Patiala, Rohini, Saket, Tis Hazari.
 - ▶ Condition on this, judges appear exogenously assigned

Random Assignment

- Random assignment of judges is not a universal feature of the Indian court system, but it appears in many of the subordinate courts
- Focus on Delhi courts [pop. ~ Netherlands, 2x Sweden, 4x Norway]
 - ▶ all cases filed under the Indian Penal Code Act of 1860
 - ▶ all brought by the state (so defendant = respondent)
- District and Sessions Judge (the highest court in the district)
 - ▶ principal court of civil jurisdiction (most serious cases)
- Chief Metropolitan Magistrate
 - ▶ cases punishable with imprisonment for a term up to seven years.
- Court - Dwarka, Karkardooma, Patiala, Rohini, Saket, Tis Hazari.
 - ▶ Condition on this, judges appear exogenously assigned

Random Assignment

- Random assignment of judges is not a universal feature of the Indian court system, but it appears in many of the subordinate courts
- Focus on Delhi courts [pop. ~ Netherlands, 2x Sweden, 4x Norway]
 - ▶ all cases filed under the Indian Penal Code Act of 1860
 - ▶ all brought by the state (so defendant = respondent)
- District and Sessions Judge (the highest court in the district)
 - ▶ principal court of civil jurisdiction (most serious cases)
- Chief Metropolitan Magistrate
 - ▶ cases punishable with imprisonment for a term up to seven years.
- Court - Dwarka, Karkardooma, Patiala, Rohini, Saket, Tis Hazari.
 - ▶ Condition on this, judges appear exogenously assigned

Random Assignment

- Random assignment of judges is not a universal feature of the Indian court system, but it appears in many of the subordinate courts
- Focus on Delhi courts [pop. ~ Netherlands, 2x Sweden, 4x Norway]
 - ▶ all cases filed under the Indian Penal Code Act of 1860
 - ▶ all brought by the state (so defendant = respondent)
- District and Sessions Judge (the highest court in the district)
 - ▶ principal court of civil jurisdiction (most serious cases)
- Chief Metropolitan Magistrate
 - ▶ cases punishable with imprisonment for a term up to seven years.
- Court - Dwarka, Karkardooma, Patiala, Rohini, Saket, Tis Hazari.
 - ▶ Condition on this, judges appear exogenously assigned

Random Assignment

- Random assignment of judges is not a universal feature of the Indian court system, but it appears in many of the subordinate courts
- Focus on Delhi courts [pop. ~ Netherlands, 2x Sweden, 4x Norway]
 - ▶ all cases filed under the Indian Penal Code Act of 1860
 - ▶ all brought by the state (so defendant = respondent)
- District and Sessions Judge (the highest court in the district)
 - ▶ principal court of civil jurisdiction (most serious cases)
- Chief Metropolitan Magistrate
 - ▶ cases punishable with imprisonment for a term up to seven years.
- Court - Dwarka, Karkardooma, Patiala, Rohini, Saket, Tis Hazari.
 - ▶ Condition on this, judges appear exogenously assigned

Outcomes + Treatment

- **Outcome:** Negative Disposition
 - ▶ For bail hearings, bail is not allowed
 - ▶ For non-bail hearings, convicted or guilty
- **Treatment:** Duration between hearings
- **Treatment:** Number of hearings per case

Table 1(a): Summary Statistics by Gender

	Full Sample (1)	Female Respondent (2)	Male Respondent (3)	p-value (4)	Female Judge (5)	Male Judge (6)	p-value (7)
<i>Case Characteristics:</i>							
Female	0.087	1.000	0.000	.	0.059	0.077	0.074
Hindu	0.843	0.846	0.843	0.732	0.862	0.847	0.238
Person Crime	0.429	0.318	0.440	0.000	0.445	0.458	0.549
Property Crime	0.395	0.445	0.390	0.000	0.366	0.381	0.480
Other Crime	0.455	0.560	0.445	0.000	0.552	0.466	0.001
Bail Hearing	0.192	0.256	0.186	0.000	0.136	0.164	0.407
Joint F-stat							0.110
<i>Court/Judge Characteristics:</i>							
Female Judge	0.247	0.206	0.251	0.006	1.000	0.000	.
Hindu Judge	0.982	0.981	0.982	0.709	0.958	0.970	0.577
Chief Metropolitan Magistrate	0.391	0.194	0.409	0.000	0.679	0.419	0.000
District and Sessions Judge	0.609	0.806	0.590	0.000	0.321	0.562	0.000
Year: 2015	0.042	0.022	0.044	0.000	0.075	0.062	0.423
Year: 2016	0.335	0.328	0.336	0.644	0.360	0.382	0.549
Year: 2017	0.204	0.220	0.202	0.071	0.142	0.180	0.133
Year: 2018	0.419	0.429	0.418	0.486	0.422	0.376	0.242
Court: Dwarka	0.111	0.122	0.110	0.388	0.074	0.141	0.026
Court: Karkardooma	0.352	0.319	0.355	0.076	0.226	0.224	0.970
Court: Patiala House	0.026	0.024	0.027	0.388	0.082	0.097	0.583
Court: Rohini	0.190	0.234	0.186	0.011	0.156	0.199	0.272
Court: Saket	0.133	0.133	0.133	0.972	0.211	0.162	0.227
Court: Tis Hazari/Rouse	0.187	0.168	0.189	0.177	0.251	0.177	0.078
Avg. No. of Cases					112.769	169.577	0.002
<i>Outcomes:</i>							
% Negative Disposition	0.182	0.192	0.181	0.246	0.166	0.166	0.988
Duration Bt. Hearings	28.145	22.049	28.607	0.000	39.509	25.827	0.000
No. of Hearings	4.265	3.334	4.354	0.000	5.936	5.694	0.697
Observations	61,236	5,315	55,921		134	272	

Notes: This table presents summary statistics for different samples considered for the main analysis. Column (1) includes the full sample of all court cases filed under the Indian Penal Code Act between 2015 and 2018 in any district court in Delhi. The full sample only considers those cases that have been resolved and have no missing data. Column (2) includes only those cases that have a female respondent. Column (3) includes those that have a male respondent. Column (4) reports p-values on the difference of the mean of any characteristic as reported in columns (2) and (3). Column (5) includes those cases that have been decided by a female judge. Column (6)

Comments

- Other crime = "cruelty by husband/relatives" - which is related to dowry
 - ▶ respondent is mother-in-law or husband's sister, thus more often female
 - ▶ and handled by district-session judges who are male

Table 2: Judicial Outcomes by Gender

		Duration Between Hearings			Number of Hearings			Negative Outcome		
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
(1)	Male Judge	11.624*** (1.580)	14.577*** (2.544)	16.338*** (2.605)	2.261*** (0.250)	2.220*** (0.340)	2.187*** (0.347)	0.063*** (0.023)	0.058 (0.040)	0.036 (0.045)
(2)	Female Judge	39.128*** (6.449)	34.930*** (6.166)	38.000*** (6.381)	-2.403*** (0.889)	-3.480*** (0.835)	-4.424*** (0.925)	0.162*** (0.056)	0.142** (0.068)	0.141* (0.074)
(3)	Female*Male Judge	-0.477 (0.733)	-0.381 (0.711)	-0.471 (0.726)	-0.257*** (0.072)	-0.222*** (0.070)	-0.235*** (0.070)	-0.013* (0.007)	-0.012* (0.007)	-0.011 (0.007)
(4)	Female*Female Judge	-4.387*** (1.561)	-4.211*** (1.538)	-4.038*** (1.497)	-0.422*** (0.157)	-0.378** (0.156)	-0.363** (0.153)	-0.012 (0.013)	-0.012 (0.013)	-0.011 (0.012)
<i>p-value: (3) = (4)</i>		0.024	0.024	0.033	0.340	0.362	0.445	0.935	0.996	0.988
<i>Fixed Effects</i>										
Year		Y	Y	Y	Y	Y	Y	Y	Y	Y
Court		N	Y	Y	N	Y	Y	N	Y	Y
Year*Court		N	N	Y	N	N	Y	N	N	Y
Observations		36,871	36,871	36,871	61,236	61,236	61,236	51,560	51,560	51,560

Notes: This table reports differences in judicial outcomes by gender of respondent and judge presiding over the case. For columns (1)-(3), the outcome is the average duration between any two consecutive hearings for a case. For columns (4) - (6), the outcome is the number of hearings per case. Finally, for columns (7)- (9), the outcome is whether the respondent pled guilty/was convicted versus other judgements if the purpose of the hearing was not bail while the outcome is whether the bail was dismissed versus other judgements if the purpose of hearing was bail. For each outcome, three separate OLS regressions were run. The first set of regressions regresses the outcome on a dummy variable indicating male judge, a dummy indicating female judge, an interaction variable between female respondent and male judge, an interaction variable between female respondent and female judge, offense type interacted with male judge, offense type interacted with female judge, filing year interacted with male and female judge respectively. The second set of regressions conducts the same regression but adds controls for court interacted with year interacted with male and female judge, respectively. The third and final set of regressions conducts the same regression but adds controls for court interacted with year interacted with male and female judge, respectively. The fifth row reports p-values for the difference in coefficients reported in row (3) and row (4). All regressions cluster standard errors at judge level. The sample considered is all cases filed under Indian Penal Code Act between 2015 and 2018 in any district court in Delhi.

Gender Comments

- Female judges take longer between hearings and hold fewer hearings
 - ▶ Female defendants get fewer hearings and shorter delay between hearings
 - ▶ Female judges are especially faster for female defendants
 - ▶ No difference-in-difference regarding outcomes (on average)
 - ▶ Female judges are harsher
- Randomization controls are offense type interacted with male judge, offense type interacted with female judge, filing year interacted with male and female judge. (1)
 - ▶ + court interacted with male and female judge. (2)
 - ▶ + court interacted with year interacted with male and female judge. (3)

Crime Categories

- **Person Crime** - Any offense affecting the human body, namely,
 - ▶ (a) Murder and Culpable homicide
 - ▶ (b) Causing miscarriage, injuries to unborn children, exposure of infants and the concealment of births
 - ▶ (c) Hurt
 - ▶ (d) Wrongful restraint and confinement
 - ▶ (e) Criminal force and assault
 - ▶ (f) Kidnapping, abduction, slavery and forced labor
 - ▶ (g) Sexual offenses including rape and sodomy
- **Property Crime** - Any offense against property, namely,
 - ▶ (a) Theft
 - ▶ (b) Extortion
 - ▶ (c) Robbery and dacoity
 - ▶ (d) Criminal misappropriation of property
 - ▶ (e) Criminal breach of trust
 - ▶ (f) Receiving of stolen property
 - ▶ (g) Cheating
 - ▶ (h) Fraudulent deeds and disposition of property
 - ▶ (i) Mischief
 - ▶ (j) Criminal trespass

Crime Categories

- **Person Crime** - Any offense affecting the human body, namely,
 - ▶ (a) Murder and Culpable homicide
 - ▶ (b) Causing miscarriage, injuries to unborn children, exposure of infants and the concealment of births
 - ▶ (c) Hurt
 - ▶ (d) Wrongful restraint and confinement
 - ▶ (e) Criminal force and assault
 - ▶ (f) Kidnapping, abduction, slavery and forced labor
 - ▶ (g) Sexual offenses including rape and sodomy
- **Property Crime** - Any offense against property, namely,
 - ▶ (a) Theft
 - ▶ (b) Extortion
 - ▶ (c) Robbery and dacoity
 - ▶ (d) Criminal misappropriation of property
 - ▶ (e) Criminal breach of trust
 - ▶ (f) Receiving of stolen property
 - ▶ (g) Cheating
 - ▶ (h) Fraudulent deeds and disposition of property
 - ▶ (i) Mischief
 - ▶ (j) Criminal trespass

Table 3: Judicial Outcomes by Subsamples

	Duration Between Hearings (1)	Number of Hearings (2)	Negative Outcome (3)
<i>Theft/Robbery</i>			
Female*Male Judge	-0.449 (1.776)	-0.010 (0.308)	0.019 (0.025)
Female*Female Judge	-1.203 (2.760)	-0.573 (0.551)	0.009 (0.038)
<i>p-value:</i>	0.818	0.373	0.819
Observations	6,701	10,233	9,127
<i>Murder and Culpable Homicide</i>			
Female*Male Judge	1.121 (1.749)	-0.341* (0.181)	-0.022 (0.014)
Female*Female Judge	2.682 (2.291)	-0.099 (0.394)	0.065*** (0.025)
<i>p-value:</i>	0.589	0.576	0.002
Observations	5,168	8,397	7,394
<i>Public Health, Safety, Convenience, Decency, and Morals</i>			
Female*Male Judge	1.534 (3.331)	0.163 (0.312)	0.007 (0.034)
Female*Female Judge	2.122 (6.480)	-0.516 (0.672)	0.158* (0.084)
<i>p-value:</i>	0.936	0.360	0.099

Gender Sub-Group Analysis

- Evidence of anti- in-group bias (threatened egoism?)
 - ▶ Females deciding harsher on females for murder, morals (drugs, negligence, obscenity), cruelty by relatives of husband
- Evidence of in-group bias
 - ▶ Females being lenient to females on cheating, sexual offenses

Table 3: Judicial Outcomes by Subsamples

	Duration Between Hearings (1)	Number of Hearings (2)	Negative Outcome (3)
<i>Theft/Robbery</i>			
Hindu*Hindu Judge	1.648 (1.441)	-0.275* (0.161)	-0.003 (0.011)
Hindu*Non-Hindu Judge	-22.224*** (3.786)	-1.085 (0.673)	0.080 (0.081)
<i>p-value:</i>	0.000	0.243	0.306
Observations	3,347	5,364	4,726
<i>Murder and Culpable Homicide</i>			
Hindu*Hindu Judge	1.752* (0.979)	0.289 (0.176)	-0.000 (0.010)
Hindu*Non-Hindu Judge	4.439* (2.586)	-0.482 (1.113)	-0.184 (0.194)
<i>p-value:</i>	0.332	0.495	0.345
Observations	2,912	4,800	4,199
<i>Public Health, Safety, Convenience, Decency, and Morals</i>			
Hindu*Hindu Judge	-0.661 (2.521)	-0.069 (0.205)	0.021 (0.023)
Hindu*Non-Hindu Judge	15.091 (9.734)	0.483 (0.441)	0.098 (0.091)
<i>p-value:</i>	0.119	0.257	0.413

Religion Comments

- Muslim judges take longer between hearings and hold fewer hearings
 - ▶ No difference-in-difference regarding outcomes (on average)
 - ▶ Hindu judges are harsher

Table 1(b): Summary Statistics by Religion

	Full Sample (1)	Hindu Respondent (2)	Non-Hindu Respondent (3)	p-value (4)	Hindu Judge (5)	Non-Hindu Judge (6)	p-value (7)
<i>Case Characteristics:</i>							
Female	0.098	0.098	0.096	0.751	0.076	0.057	0.283
Hindu	0.843	1.000	0.000	.	0.849	0.888	0.286
Person Crime	0.411	0.407	0.428	0.072	0.436	0.531	0.193
Property Crime	0.384	0.384	0.385	0.947	0.360	0.385	0.762
Other Crime	0.501	0.517	0.415	0.000	0.535	0.552	0.807
Bail Hearing	0.205	0.206	0.203	0.903	0.163	0.075	0.241
Joint F-stat							0.297
<i>Court/Judge Characteristics:</i>							
Female Judge	0.226	0.225	0.229	0.843	0.309	0.417	0.456
Hindu Judge	0.982	0.981	0.988	0.095	1.000	0.000	.
Chief Metropolitan Magistrate	0.376	0.374	0.391	0.471	0.514	0.417	0.504
District and Sessions Judge	0.623	0.626	0.608	0.474	0.475	0.583	0.457
Year: 2015	0.039	0.038	0.041	0.425	0.060	0.070	0.816
Year: 2016	0.332	0.334	0.322	0.532	0.371	0.368	0.973
Year: 2017	0.207	0.203	0.224	0.099	0.170	0.096	0.073
Year: 2018	0.423	0.425	0.413	0.527	0.398	0.466	0.552
Court: Dwarka	0.119	0.131	0.054	0.000	0.116	0.083	0.686
Court: Karkardooma	0.343	0.319	0.472	0.000	0.224	0.064	0.015
Court: Patiala House	0.022	0.023	0.018	0.071	0.086	0.173	0.382
Court: Rohini	0.188	0.203	0.107	0.000	0.181	0.416	0.103
Court: Saket	0.143	0.137	0.173	0.022	0.193	0.014	0.000
Court: Tis Hazari/Rouse	0.185	0.186	0.177	0.607	0.200	0.250	0.694
Avg. No. of Cases					113.678	63.750	0.023
<i>Outcomes:</i>							
% Negative Disposition	0.191	0.191	0.192	0.945	0.171	0.153	0.768
Duration Bt. Hearings	28.025	28.165	27.289	0.472	30.193	29.533	0.895
No. of Hearings	4.083	4.081	4.091	0.932	5.430	6.032	0.719
Observations	42,371	35,721	6,650		366	12	

Notes: This table presents summary statistics for different samples considered for the main analysis. Column (1) includes the full sample of all court cases filed under the Indian Penal Code Act between 2015 and 2018 in any district court in Delhi. The full sample only considers those cases that have been resolved and have no missing data. Column (2) includes only those cases that have a Hindu respondent. Column (3) includes those that have a non-Hindu respondent. Column (4) reports p-values on the difference of the mean of any characteristic as reported in columns (2) and (3). Column (5) includes those cases that have been decided by a Hindu judge. Column (6) includes those that have been decided by a non-Hindu judge. Column (7) reports p-values on the difference of the mean of any characteristic as reported in columns (5) and (6).

Table 2: Judicial Outcomes by Religion

		Duration Between Hearings			Number of Hearings			Negative Outcome		
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
(1)	Hindu Judge	30.129*** (3.268)	28.397*** (3.658)	28.552*** (3.707)	10.656*** (1.061)	11.103*** (1.048)	10.924*** (1.080)	0.163*** (0.037)	0.156*** (0.046)	0.156*** (0.049)
(2)	Non-Hindu Judge	21.320** (9.448)	10.144 (15.911)	62.809*** (5.601)	8.014*** (1.419)	2.936* (1.747)	7.952*** (1.383)	0.150 (0.165)	0.250* (0.132)	0.034 (0.136)
(3)	Hindu*Hindu Judge	0.531 (1.005)	1.518* (0.900)	1.616* (0.897)	0.070 (0.080)	0.114* (0.067)	0.134** (0.065)	-0.001 (0.006)	0.004 (0.006)	0.004 (0.006)
(4)	Hindu*Non-Hindu Judge	0.997 (3.745)	2.070 (3.552)	1.603 (3.587)	-0.628 (0.746)	-0.101 (0.485)	-0.430 (0.561)	-0.074*** (0.022)	-0.033 (0.020)	-0.029 (0.022)
<i>p-value: (3) = (4)</i>		0.904	0.880	0.997	0.353	0.660	0.319	0.002	0.082	0.158
<i>Fixed Effects</i>										
Year		Y	Y	Y	Y	Y	Y	Y	Y	Y
Court		N	Y	Y	N	Y	Y	N	Y	Y
Year*Court		N	N	Y	N	N	Y	N	N	Y
Observations		24,993	24,993	24,993	42,371	42,371	42,371	35,226	35,226	35,226

Notes: This table reports differences in judicial outcomes by religion of respondent and judge presiding over the case. For columns (1)-(3), the outcome is the average duration between any two consecutive hearings for a case. For columns (4) - (6), the outcome is the number of hearings per case. Finally, for columns (7)- (9), the outcome is whether the respondent pled guilty/was convicted versus other judgements if the purpose of the hearing was not bail while the outcome is whether the bail was dismissed versus other judgements if the purpose of hearing was bail. For each outcome, three separate OLS regressions were run. The first set of regressions regresses the outcome on a dummy variable indicating Hindu judge, a dummy indicating non-Hindu judge, an interaction variable between Hindu respondent and Hindu judge, an interaction variable between Hindu respondent and non-Hindu judge, offense type interacted with Hindu judge, offense type interacted with non-Hindu judge, filing year interacted with Hindu and non-Hindu judge respectively. The second set of regressions conducts the same regression but add controls for court interacted with Hindu and non-Hindu judge, respectively. The third and final set of regressions conducts the same regression but adds controls for court interacted with year interacted with Hindu and non-Hindu judge, respectively. The fifth row reports p-values for the difference in coefficients reported in row (3) and row (4). All regressions cluster standard errors at judge level. The sample considered is all cases filed under Indian Penal Code Act between 2015 and 2018 in any district court in Delhi.

Data Explorer

- <https://explore-ecourts.herokuapp.com/>
- Court backlog
- Environment
- Network analysis of lawyers and judges

Data Explorer

- <https://explore-ecourts.herokuapp.com/>
- Court backlog
- Environment
- Network analysis of lawyers and judges

Using Machine Learning to Identify and Mitigate Bias

- Backlash to AI vs. Incremental AI
- In Stage 0, assess judges vs. a bootstrapped judge (predicted decision-maker)
- In Stage 1, people use AI as a support tool, speeding up existing processes (for example, by prefilling forms)
- Once they're used to this, they can more easily accept an added functionality (Stage 2) in which AI becomes a choice monitor, pointing out choice inconsistencies (pay more attention / be less indifferent)
- Stage 3 elevates the AI to the role of a more general coach, providing outcome feedback on choices and highlighting decision patterns.
 - ▶ Transparent + explainable | explain why deviate
- Then, in Stage 4, the AI brings in other people's decision histories and patterns, serving as a platform for a community of experts.
 - ▶ (1) self-image, (2) self-improvement, (3) self-understanding, (4) ego
 - ▶ (0) ↓bias, (1) ↑autonomy, (2) ↑learning, (3) ↑transparency, ↓status quo, ↓adversarial attack
- Only in Stage 5, recommend the 'optimal decision'

Using Machine Learning to Identify and Mitigate Bias

- Backlash to AI vs. Incremental AI
- In Stage 0, assess judges vs. a bootstrapped judge (predicted decision-maker)
- In Stage 1, people use AI as a support tool, speeding up existing processes (for example, by prefilling forms)
- Once they're used to this, they can more easily accept an added functionality (Stage 2) in which AI becomes a choice monitor, pointing out choice inconsistencies (pay more attention / be less indifferent)
- Stage 3 elevates the AI to the role of a more general coach, providing outcome feedback on choices and highlighting decision patterns.
 - ▶ Transparent + explainable | explain why deviate
- Then, in Stage 4, the AI brings in other people's decision histories and patterns, serving as a platform for a community of experts.
 - ▶ (1) self-image, (2) self-improvement, (3) self-understanding, (4) ego
 - ▶ (0) ↓bias, (1) ↑autonomy, (2) ↑learning, (3) ↑transparency, ↓status quo, ↓adversarial attack
- Only in Stage 5, recommend the 'optimal decision'

Using Machine Learning to Identify and Mitigate Bias

- Backlash to AI vs. Incremental AI
- In Stage 0, assess judges vs. a bootstrapped judge (predicted decision-maker)
- In Stage 1, people use AI as a support tool, speeding up existing processes (for example, by prefilling forms)
- Once they're used to this, they can more easily accept an added functionality (Stage 2) in which AI becomes a choice monitor, pointing out choice inconsistencies (pay more attention / be less indifferent)
- Stage 3 elevates the AI to the role of a more general coach, providing outcome feedback on choices and highlighting decision patterns.
 - ▶ Transparent + explainable | explain why deviate
- Then, in Stage 4, the AI brings in other people's decision histories and patterns, serving as a platform for a community of experts.
 - ▶ (1) self-image, (2) self-improvement, (3) self-understanding, (4) ego
 - ▶ (0) ↓bias, (1) ↑autonomy, (2) ↑learning, (3) ↑transparency, ↓status quo, ↓adversarial attack
- Only in Stage 5, recommend the 'optimal decision'

Using Machine Learning to Identify and Mitigate Bias

- Backlash to AI vs. Incremental AI
- In Stage 0, assess judges vs. a bootstrapped judge (predicted decision-maker)
- In Stage 1, people use AI as a support tool, speeding up existing processes (for example, by prefilling forms)
- Once they're used to this, they can more easily accept an added functionality (Stage 2) in which AI becomes a choice monitor, pointing out choice inconsistencies (pay more attention / be less indifferent)
- Stage 3 elevates the AI to the role of a more general coach, providing outcome feedback on choices and highlighting decision patterns.
 - ▶ Transparent + explainable | explain why deviate
- Then, in Stage 4, the AI brings in other people's decision histories and patterns, serving as a platform for a community of experts.
 - ▶ (1) self-image, (2) self-improvement, (3) self-understanding, (4) ego
 - ▶ (0) ↓bias, (1) ↑autonomy, (2) ↑learning, (3) ↑transparency, ↓status quo, ↓adversarial attack
- Only in Stage 5, recommend the 'optimal decision'

Using Machine Learning to Identify and Mitigate Bias

- Backlash to AI vs. Incremental AI
- In Stage 0, assess judges vs. a bootstrapped judge (predicted decision-maker)
- In Stage 1, people use AI as a support tool, speeding up existing processes (for example, by prefilling forms)
- Once they're used to this, they can more easily accept an added functionality (Stage 2) in which AI becomes a choice monitor, pointing out choice inconsistencies (pay more attention / be less indifferent)
- Stage 3 elevates the AI to the role of a more general coach, providing outcome feedback on choices and highlighting decision patterns.
 - ▶ Transparent + explainable | explain why deviate
- Then, in Stage 4, the AI brings in other people's decision histories and patterns, serving as a platform for a community of experts.
 - ▶ (1) self-image, (2) self-improvement, (3) self-understanding, (4) ego
 - ▶ (0) ↓bias, (1) ↑autonomy, (2) ↑learning, (3) ↑transparency, ↓status quo, ↓adversarial attack
- Only in Stage 5, recommend the 'optimal decision'

Using Machine Learning to Identify and Mitigate Bias

- Backlash to AI vs. Incremental AI
- In Stage 0, assess judges vs. a bootstrapped judge (predicted decision-maker)
- In Stage 1, people use AI as a support tool, speeding up existing processes (for example, by prefilling forms)
- Once they're used to this, they can more easily accept an added functionality (Stage 2) in which AI becomes a choice monitor, pointing out choice inconsistencies (pay more attention / be less indifferent)
- Stage 3 elevates the AI to the role of a more general coach, providing outcome feedback on choices and highlighting decision patterns.
 - ▶ Transparent + explainable | explain why deviate
- Then, in Stage 4, the AI brings in other people's decision histories and patterns, serving as a platform for a community of experts.
 - ▶ (1) self-image, (2) self-improvement, (3) self-understanding, (4) ego
 - ▶ (0) ↓bias, (1) ↑autonomy, (2) ↑learning, (3) ↑transparency, ↓status quo, ↓adversarial attack
- Only in Stage 5, recommend the 'optimal decision'

Using Machine Learning to Identify and Mitigate Bias

- Backlash to AI vs. Incremental AI
- In Stage 0, assess judges vs. a bootstrapped judge (predicted decision-maker)
- In Stage 1, people use AI as a support tool, speeding up existing processes (for example, by prefilling forms)
- Once they're used to this, they can more easily accept an added functionality (Stage 2) in which AI becomes a choice monitor, pointing out choice inconsistencies (pay more attention / be less indifferent)
- Stage 3 elevates the AI to the role of a more general coach, providing outcome feedback on choices and highlighting decision patterns.
 - ▶ Transparent + explainable | explain why deviate
- Then, in Stage 4, the AI brings in other people's decision histories and patterns, serving as a platform for a community of experts.
 - ▶ (1) self-image, (2) self-improvement, (3) self-understanding, (4) ego
 - ▶ (0) ↓bias, (1) ↑autonomy, (2) ↑learning, (3) ↑transparency, ↓status quo, ↓adversarial attack
- Only in Stage 5, recommend the 'optimal decision'

Using Machine Learning to Identify and Mitigate Bias

- Backlash to AI vs. Incremental AI
- In Stage 0, assess judges vs. a bootstrapped judge (predicted decision-maker)
- In Stage 1, people use AI as a support tool, speeding up existing processes (for example, by prefilling forms)
- Once they're used to this, they can more easily accept an added functionality (Stage 2) in which AI becomes a choice monitor, pointing out choice inconsistencies (pay more attention / be less indifferent)
- Stage 3 elevates the AI to the role of a more general coach, providing outcome feedback on choices and highlighting decision patterns.
 - ▶ Transparent + explainable | explain why deviate
- Then, in Stage 4, the AI brings in other people's decision histories and patterns, serving as a platform for a community of experts.
 - ▶ (1) self-image, (2) self-improvement, (3) self-understanding, (4) ego
 - ▶ (0) ↓bias, (1) ↑autonomy, (2) ↑learning, (3) ↑transparency, ↓status quo, ↓adversarial attack
- Only in Stage 5, recommend the 'optimal decision'

Using Machine Learning to Identify and Mitigate Bias

- Backlash to AI vs. Incremental AI
- In Stage 0, assess judges vs. a bootstrapped judge (predicted decision-maker)
- In Stage 1, people use AI as a support tool, speeding up existing processes (for example, by prefilling forms)
- Once they're used to this, they can more easily accept an added functionality (Stage 2) in which AI becomes a choice monitor, pointing out choice inconsistencies (pay more attention / be less indifferent)
- Stage 3 elevates the AI to the role of a more general coach, providing outcome feedback on choices and highlighting decision patterns.
 - ▶ Transparent + explainable | explain why deviate
- Then, in Stage 4, the AI brings in other people's decision histories and patterns, serving as a platform for a community of experts.
 - ▶ (1) self-image, (2) self-improvement, (3) self-understanding, (4) ego
 - ▶ (0) ↓bias, (1) ↑autonomy, (2) ↑learning, (3) ↑transparency, ↓status quo, ↓adversarial attack
- Only in Stage 5, recommend the 'optimal decision'

Using Machine Learning to Identify and Mitigate Bias

- Backlash to AI vs. Incremental AI
- In Stage 0, assess judges vs. a bootstrapped judge (predicted decision-maker)
- In Stage 1, people use AI as a support tool, speeding up existing processes (for example, by prefilling forms)
- Once they're used to this, they can more easily accept an added functionality (Stage 2) in which AI becomes a choice monitor, pointing out choice inconsistencies (pay more attention / be less indifferent)
- Stage 3 elevates the AI to the role of a more general coach, providing outcome feedback on choices and highlighting decision patterns.
 - ▶ Transparent + explainable | explain why deviate
- Then, in Stage 4, the AI brings in other people's decision histories and patterns, serving as a platform for a community of experts.
 - ▶ (1) self-image, (2) self-improvement, (3) self-understanding, (4) ego
 - ▶ (0) ↓bias, (1) ↑autonomy, (2) ↑learning, (3) ↑transparency, ↓status quo, ↓adversarial attack
- Only in Stage 5, recommend the 'optimal decision'