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Motivation

e Strong institutions encourage investment and growth (e.g., Rodrik
2000; Pande and Udry 2006)

e Courts in developing countries face numerous challenges to providing
efficient and fair justice to citizens and firms (e.g. Djankov et al.,
2003; La Porta et al., 2008).

» transplanted legal codes
* preferences for informal mechanisms

» low infrastructure in court system

* low-quality representation
* corruption
* implicit or explicit bias among judicial officers

@ Cycle of uneven/uncertain justice — distrust — lack of reliance —
lower investment — economic inefficiency

@ Scarce empirical research on courts in developing countries (e.g.
Ponticelli and Alencar, 2016).



New Opportunities

@ Court rulings and judge biographies are increasingly digitized, allowing
the construction of large-scale datasets.

@ Natural language processing (NLP) tools can produce interpretable
data from unstructured text — including written judicial opinions.

© ML can predict judge decision-making and uncover bias.
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@ A new database on the universe of judicial proceedings (70 million
hearings, 14 million cases, and 10 million written judicial decisions)

@ Supreme Court of India, 24 High Courts, 3,000+ subordinate courts.

» World's largest democracy and largest common law legal system
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Project #1

An empirical analysis of biased justice due to social (dis)advantage.

Disparities in:
» judicial representation
» judicial treatment
» judicial outcomes

By group membership:
» male vs female
» hindu vs muslim
» upper-caste vs lower-caste

Data explorer

Three policy issues
» Court congestion
» Environment
» Network analysis of lawyers and judges



Measuring Stereotypes in Judicial Language
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» “he/she is a doctor” (turkish) -> "he is a doctor” (english)
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@ A truck driver should plan the travel route carefully.
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"Attitudes that affect our understanding, actions, and
deC|S|0nS In an UnCOﬂSCIOUS manner” Implicit bias (Kirnan institute OSU)

Does implicit bias exist in the wild?
»  Ottaway et al. 2001, Rothermund et al. 2004, Arkes et al. 2004, Blanton et al. 2006

Does it affect judicial decisions?

> police (Correll et al. 2002); physicians (Green et al. 2007); resume screening (Bertrand et al. 2005)

@ Does it lead to disparate treatment of other judges?

> patients’ feelings (Penner et al. 2010); grocery cashiers (Glover et al. 2017); students (Carlana 2018)

@ Does diversity affect implicit attitudes?

P> exposure to female leaders (Beaman et al. 2009)
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Implicit attitudes

@ Generally measured using Implicit Association Tests (IATs)
@ Subjects asked to assign words to categories (Greenwald et al. 1998)

Female
or
Family

Michelle Michelle

e Comparing reaction times across trials with different pairings

» subjects are faster and make fewer errors on stereotype-consistent trials

» difference yields “IAT score”
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Challenges of studying implicit attitudes

e Challenge: how can we measure implicit attitudes for the judiciary?

» But we cannot elicit IAT scores from sitting judges (yet =) )
@ Proposed solution: proxy for IAT using large amounts of written text
» Represent judicial language in vector space

» Are words representing different groups associated to certain attributes?
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@ Kerosene, petroleum, poured, modesty, cooperative, torture, harassed

Word-Embedding Association Test: WEAT = Z s(x, A, B)

- Z s(y, A, B) (Caliskan et al. 2017)
xeX

yeY
distance between IAT vectors correlate with behavioral delays

@ X, Y are male (his, he, him, mr, himself) vs. female words (her, she, ms, women, woman)

@ A, B are career (company, work, business, service, pay) vs. family (family, wife, husband, mother, father)
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How to represent text as data?

o (obama speaks media illinois) is orthogonal to (president greets press
chicago) according to cosine similarity

@ But word embeddings capture contextual similarities between words

1. Finding the degree of similarity between two words.
model.similarity('woman', 'man')
0.73723527

2. Finding odd one out.
model.doesnt_match('breakfast cereal dinner
lunch';.split(Q))
'cereal’

3. Amazing things like woman+king-man =queen
model .most_similar(positive=
['woman', 'king'],negative=["man'],topn=1)
queen: 0.508

4. Probability of a text under the model
model.score(['The fox jumped over the lazy
dog'.split()]1)
0.21

@ If we know the words having similar meanings in different languages, word
embeddings can be used to (Google) translate!
“The Great Al Awakening”, New York Times, Dec 14, 2016
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Distance encodes semantic similarity between words

e GloVe (Global Vectors)

>

>

>

Based on intuition that co-occurrence probabilities convey meaning
Begins by contructing a co-occurence matrix using a fixed window

Obtains word vectors w; € (—1,1)3% that minimize
2
— . T ,
J(w) = 37 F (Xg) (w w; — log (X))
iJ
Xij is the co-occurrence count between words i and j
f(-) is a weighting function that down-weights frequent words

Objective function J(-) trains word vectors to minimize squared difference between
dot product of vectors representing two words and their empirical co-occurrence
Minimize J(-) by stochastic gradient descent (Pennington et al. 2014)

*  300-dimensional vectors, 50K vocabulary, window of 10 words, 0.05 learning rate, 20 epochs
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Word embeddings identify cultural dimensions

o Identify cultural dimension by taking difference between pairs of words

@ man” — woman’ identifies a step in masculine direction

N N

| Nmale ‘ ’ Nfemale ‘
where |Npae| is number of words used to identify the male dimension, e.g.
— = ja
boy — girl, he — she



Measuring Gender Stereotypes using Cosine Similarity
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Religion Dimension

Hindu hindu, hindus, hinduism

Muslim muslim, muslims, islam, islamic

@ Highest positive and negative correlation to hindu-muslim dimension:
Words most correlated to hindu — muslim Words most correlated to muslim — hindu
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Stereotypes: The Career-Family Dimension

Career company, inc, work, business, service, pay, corp, employee, employment, benefits

Family family, wife, husband, mother, father, parents, son, brother, parent, brothers

— —
Words most correlated to careef — family  Words most correlated to family — Careef
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Prejudice: The Pleasant-Unpleasant Dimension

Pleasant good,better,best,pleasant,desirable,joy, love, peace, wonderful,

Unpleasant  bad,worse,worst,unpleasant,undesirable, terrible, horrible, nasty, war, failure

Words most correlated to pleasant — unpleasantWords most correlated to unpleasant — pleasant
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What we have done in U.S. Courts



Words closest to female and male dimension
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Words closest to female and male dimension

pregnant ™ yvawa fonany Leservedit, indystrial
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@ Migraine, hysterical, morbid, obese, terrified, unemancipated, battered

@ Reserve, industrial, honorable, commanding, armed, conscientious, duty



Figure: Gender Slant, by Gender

Lexical Gender Slant by Judge Gender

Male ——— Female

Notes: The graphs show the distribution of the slant measure (cosine similarity between the

gender and career-family dimensions), by judge gender. (p=0.012)
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Judges with more lexical slant are less likely to vote in favor of women's interests

Dataset Epstein et al. (2013) Data Glynn and Sen (2015) Data

Gender Slant -0.041*** -0.041%** -0.066*** -0.053*** -0.054*** -0.058**
(0.013) (0.013) (0.018) (0.019) (0.019) (0.023)

Democrat 0.150*** 0.142%*x* 0.185%** 0.257%** 0.259%** 0.263***
(0.031) (0.031) (0.035) (0.044) (0.046) (0.056)

Female 0.122%** 0.143**x* 0.089%** 0.079** 0.105*** 0.096**
(0.026) (0.036) (0.022) (0.035) (0.037) (0.041)

Observations 2335 2335 2335 1719 1719 1719

Clusters 112 112 112 109 109 109

Outcome Mean 0.4167 0.417 0.417 0.383 0.383 0.383

Circuit-Year FE X X X

Topic FE X X

Demographic Controls X X X X

+ Interactions X X

Career FE (judge bio) X X

20 of gender slant = |20% pro-women's rights vote



Panels with more slanted senior judges are less likely to assign opinions to women



Panels with more slanted senior judges are less likely to assign opinions to women

Gender Slant -0.020%*  -0.020*%*  -0.015*%  -0.023%**  _0.023***  _0.026%*

(0.008) (0.008) (0.008) (0.008) (0.007) (0.010)
Democrat -0.065%* -0.033 -0.080%*  -0.067** -0.059%* -0.049

(0.029) (0.034) (0.033) (0.030) (0.026) (0.036)
Female 0.137%%%  0.146%**  0.160***  0.137***  (.135%**

(0.015) (0.018) (0.016) (0.016) (0.016)
Observations 32052 32052 32052 31858 36939 19940
Clusters 125 125 125 123 125 125
Outcome Mean 0.383 0.383 0.383 0.383 0.383 0.4325

Circuit-Year FE

Demographic Controls

+ Interactions X

Career FE X

Liberal % (Songer-Auburn) X

Includes 2-1 X

Excludes Female Senior Judge X

20 of gender slant = |10% female assigned authorship



Judges with more lexical slant cite female judges less



Judges with more lexical slant cite female judges less

Dependent Variable Cites at Least One Female Judge
Gender Slant -0.009* -0.008* -0.010* -0.010%*
(0.005)  (0.005)  (0.006)  (0.005)
Democrat -0.021 -0.030* -0.046*** -0.026*
(0.015)  (0.015)  (0.015)  (0.015)
Female 0.123%**  (0.107*** 0.134%** 0.122%**
(0.015)  (0.017)  (0.013)  (0.015)
Observations 107923 107923 107923 106557
Clusters 139 139 139 136
Outcome Mean 0.383 0.383 0.383 0.381
Circuit-Year FE X X X X
Demographic Controls X X X X
Interacted Demographic Controls X
Career FE X X
Liberal % (Songer-Auburn) X

20 of gender slant = |6% citing a female



Judges with more lexical slant reverse female district judges more

Gender Slant * Female District Judge 0.010*** 0.010%** 0.012%** 0.012%**
(0.004) (0.004) (0.004) (0.004)
Democrat * Female District Judge -0.009 -0.024%* -0.006 -0.007
(0.014) (0.009) (0.014) (0.013)
Female * Female District Judge -0.009 -0.022%** -0.007 -0.011
(0.009) (0.008) (0.009) (0.010)
Democrat * Female * Female District Judge 0.152%**
(0.015)
Observations 145862 145862 144965 145563
Clusters 133 133 130 133
Outcome Mean for Male Judges 0.180 0.180 0.180 0.180
Outcome Mean for Female Judges 0.157 0.157 0.157 0.157
Circuit-Year FE X X X X
Judge FE X X X X
District Judge FE X X X X
Demographic Controls X X X X
+ Interactions X

Liberal Score Interaction X

District-Year FE X



But female judges are 3.6% less likely to be reversed

Gender Slant * Female District Judge 0.010*** 0.010%** 0.012%** 0.012%**
(0.004) (0.004) (0.004) (0.004)
Democrat * Female District Judge -0.009 -0.024** -0.006 -0.007
(0.014) (0.009) (0.014) (0.013)
Female * Female District Judge -0.009 -0.022%** -0.007 -0.011
(0.009) (0.008) (0.009) (0.010)
Democrat * Female * Female District Judge 0.152%**
(0.015)
Observations 145862 145862 144965 145563
Clusters 133 133 130 133
Outcome Mean for Male Judges 0.180 0.180 0.180 0.180
Outcome Mean for Female Judges 0.157 0.157 0.157 0.157
Circuit-Year FE X X X X
Judge FE X X X X
District Judge FE X X X X
Demographic Controls X X X X
+ Interactions X

Liberal Score Interaction X

District-Year FE X



Daughters Reduce Gender Slant



Daughters Reduce Gender Slant

Daughter -0.477* -0.468*
(0.274) (0.278)
Democrat -0.016 -0.069
(0.535) (0.613)
Female -0.659***  _0.683***
(0.232) (0.239)
Democrat * Female 0.321
(0.631)
Observations 98 98
Outcome Mean -0.085 -0.085
Adjusted R2 0.528 0.520
Circuit FE X X
Number of Children FE X X
Demographic Controls X X
Interacted Demographic Controls X

Conditional on number of children, having a daughter as good as random.



What we are doing in Indian Courts



India E-Courts

Figure: Number of Cases per Year, India E-Courts
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Meta-Data

@ We have parsed the cases and hearings to pull out relevant metadata
(331 and 256 fields respectively).

» dates, court, parties, case type, and judge identity

@ Simple measures of court efficiency that can be generated from the
administrative data

» total caseload, trial duration, case disposal rates, backlogs, appeal
rates, and proportion of appeals successfully upheld

@ Measures of judicial outcomes include
» resolution, ruling, and sentence



Written Opinions 1930-2018

@ case title/citation, dates, judges on the panel, author
@ split into sections and paragraphs

@ annotated citations to legal authorities, i.e. statutes and previous cases



Written Opinions 1930-2018

@ case title/citation, dates, judges on the panel, author

@ split into sections and paragraphs

@ annotated citations to legal authorities, i.e. statutes and previous cases
Separate dataset - lists of first and last names digitized from the
Anthropological Survey of India

@ gender, social identity (subcaste or jati) and religion (i.e., for Muslims)



Written Opinions 1930-2018

@ case title/citation, dates, judges on the panel, author

@ split into sections and paragraphs

@ annotated citations to legal authorities, i.e. statutes and previous cases
Separate dataset - lists of first and last names digitized from the
Anthropological Survey of India

@ gender, social identity (subcaste or jati) and religion (i.e., for Muslims)

e data on judges collected from the National Judicial Data Grid



Written Opinions 1930-2018

@ case title/citation, dates, judges on the panel, author

@ split into sections and paragraphs

@ annotated citations to legal authorities, i.e. statutes and previous cases
Separate dataset - lists of first and last names digitized from the
Anthropological Survey of India

@ gender, social identity (subcaste or jati) and religion (i.e., for Muslims)

e data on judges collected from the National Judicial Data Grid

The Socioeconomic and Caste Census (2012) is a census that describes
household income and assets for all Indians.



Written Opinions 1930-2018

@ case title/citation, dates, judges on the panel, author

@ split into sections and paragraphs

@ annotated citations to legal authorities, i.e. statutes and previous cases
Separate dataset - lists of first and last names digitized from the
Anthropological Survey of India

@ gender, social identity (subcaste or jati) and religion (i.e., for Muslims)

e data on judges collected from the National Judicial Data Grid

The Socioeconomic and Caste Census (2012) is a census that describes
household income and assets for all Indians.

The Economic Census (2005 and 2012) describes the universe of firms with
ten or more employees



Gender Stereotypes and Religious Prejudice, 1990-2018

Male Association with Career

(Female Association with Family)

0z
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Hindu Association with Pleasant
(Muslim Association with Unpleasant)



Hindu, Muslim, and caste in India

Hindu

defendant

SC/ST
defendant

Muslim

defendant

Hindu judge
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Access to Justice

o Disparities in:
» judicial representation
» judicial treatment
» judicial outcomes



Access to Justice

Table: Distribution of Court Actors, By Social Group

Counts and Percentages by Group

Hindus Mushims

Non-Scheduled  Scheduled o™

e 3,837,066 179,613 366,278
Civil Litigants 87.5% A1% 8.3%
. 568,017 35,104 54,146
Criminal Defendants 86.4% 5.3% 8.9%
Tud 1,318,440 11211 162,552
1eees 88.4% 0.8% 10.8%

@ None reflect the distribution in the population.



Access to Justice

Table: Distribution of Court Actors, By Social Group

Counts and Percentages by Group
Hindus

Non-Scheduled Scheduled  1ushims

o 3,837,066 179,613 366,278
Civil Litigants 87.5% A1% 8.3%
. 568,017 35,104 54,146
Criminal Defendants 86.4% 5.3% 8.9%

Judies 1,318,440 11,211 162,552
& 88.4% 0.8% 10.8%

@ None reflect the distribution in the population.

» Scheduled - 16%; Muslims - 14%
» Scheduled - 30% more likely to appear as defendants than litigants
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Random Assignment

@ Random assignment of judges is not a universal feature of the Indian
court system, but it appears in many of the subordinate courts

Focus on Delhi courts [pop. ~ Netherlands, 2x Sweden, 4x Norway]

> all cases filed under the Indian Penal Code Act of 1860
» all brought by the state (so defendant = respondent)

@ District and Sessions Judge (the highest court in the district)
» principal court of civil jurisdiction (most serious cases)

o Chief Metropolitan Magistrate
» cases punishable with imprisonment for a term up to seven years.
@ Court - Dwarka, Karkardooma, Patiala, Rohini, Saket, Tis Hazari.

» Condition on this, judges appear exogenously assigned



Outcomes + Treatment

@ Outcome: Negative Disposition

» For bail hearings, bail is not allowed
» For non-bail hearings, convicted or guilty

@ Treatment: Duration between hearings

@ Treatment: Number of hearings per case



Table 1(a): Summary Statistics by Gender

Full Female Male p-value Female Male  p-value
Sample Respondent  Respondent Judge Judge
[0 ) 3) @ ®) ©) )
Case Characteristics:
Female 0.087 1.000 0.000 . 0.059 0.077 0.074
Hindu 0.843 0.846 0.843 0.732 0.862 0.847 0.238
Person Crime 0.429 0318 0.440 0.000 0.445 0458 0.549
Property Crime 0.395 0.445 0.390 0.000 0.366 0.381 0.480
Other Crime 0.455 0.560 0.445 0.000 0.552 0.466 0.001
Bail Hearing 0.192 0.256 0.186 0.000 0.136 0.164 0.407
Joint F-stat 0.110
Court/Judge Characteristics:
Female Judge 0.247 0.206 0.251 0.006 1.000 0.000 .
Hindu Judge 0.982 0.981 0.982 0.709 0.958 0.970 0.577
Chief Metropolitan Magistrate ~ 0.391 0.194 0.409 0.000 0.679 0.419 0.000
District and Sessions Judge 0.609 0.806 0.590 0.000 0.321 0.562 0.000
Year: 2015 0.042 0.022 0.044 0.000 0.075 0.062 0423
Year: 2016 0.335 0.328 0.336 0.644 0.360 0.382 0.549
Year: 2017 0.204 0.220 0.202 0.071 0.142 0.180 0.133
Year: 2018 0.419 0.429 0.418 0.486 0.422 0.376 0.242
Court: Dwarka 0.111 0.122 0.110 0.388 0.074 0.141 0.026
Court: Karkrdooma 0.352 0.319 0.355 0.076 0.226 0.224 0.970
Court: Patiala House 0.026 0.024 0.027 0.388 0.082 0.097 0.583
Court: Rohini 0.190 0.234 0.186 0.011 0.156 0.199 0.272
Court: Saket 0.133 0.133 0.133 0.972 0.211 0.162 0.227
Court: Tis Hazari/Rouse 0.187 0.168 0.189 0.177 0.251 0.177 0.078
Avg. No. of Cases 112.769 169.577  0.002
Outcomes:
% Negative Disposition 0.182 0.192 0.181 0.246 0.166 0.166 0988
Duration Bt. Hearings 28.145 22.049 28.607 0.000 39.509 25827 0.000
No. of Hearings 4.265 3.334 4.354 0.000 5.936 5.694 0.697
Observations 61,236 5315 55,921 134 272

Notes: This table presents summary statistics for different samples considered for the main analysis. Column (1) includes the full

sample of all court
only considers those

ses filed under the Indian Penal Code Act between 2015 and 2018 in any district court in Delhi. The full sample
es that have been resolved and have no missing data. Column (2) includes only those cases that have a female

respondent. Column (3) includes those that have a male respondent. Column (4) reports p-values on the difference of the mean of any

character

as reported in columns (2) and (3). Column (5) includes those cases that have been decided by a fei

judge. Column (6)



Comments

@ Other crime = "cruelty by husband/relatives" - which is related to dowry

> respondent is mother-in-law or husband'’s sister, thus more often female
> and handled by district-session judges who are male



Table 2: Judicial Outcomes by Gender

Duration Between Hearings Number of Hearings Negative Outcome
@ @) 3) [©) [€)] ©) @) ®) ©
(1) Male Judge 11.624***  14.577***  16.338"** 2261 22207 2187 0.063***  0.058 0.036
(1.580) (2.544) (2.605) (0.250) (0.340) (0.347) (0.023)  (0.040) (0.045)
2) Female Judge 39.128"*  34.930*  38.000"* <2403 -3.480"*  -4.424% 0.162*  0.142**  0.141*
(6.449) (6.166) (6.381) (0.889)  (0.835)  (0.925) (0.056)  (0.068) (0.074)
3) Female*Male Judge -0.477 -0.381 -0.471 -0.257*  -0.222%  -0.235"** -0.013*  -0.012*  -0.011
(0.733) (0.711) (0.726) (0.072) (0.070) (0.070) (0.007)  (0.007)  (0.007)
“) Female*Female Judge  -4.387***  -4.211"*  -4.038"** <0422 -0.378**  -0.363" -0.012 -0.012  -0.011
(1.561) (1.538) (1.497) 0.157)  (0.156)  (0.153) 0.013)  (0.013) (0.012)
p-value: (3) = (4) 0.024 0.024 0.033 0.340 0.362 0.445 0.935 0.996 0.988
Fixed Effects
Year Y Y Y Y Y Y Y Y Y
Court N Y Y N Y Y N Y Y
Year*Court N N Y N N Y N N Y
Observations 36,871 36,871 36,871 61,236 61,236 61,236 51,560 51,560 51,560

Notes: This table reports differences in judicial outcomes by gender of respondent and judge presiding over the case. For columns (1)-(3), the outcome is the average duration
between any two consecutive hearings for a case. For columns (4) - (6), the outcome is the number of hearings per case. Finally, for columns (7)- (9), the outcome is whether the
respondent pled guilty/was convicted versus other judgements if the purpose of the hearing was not bail while the outcome is whether the bail was dismissed versus other judgements
if the purpose of hearing was bail. For each outcome, three seperate OLS regressions were run. The first set of regressions regresses the outcome on a dummy variable indicating
male judge, a dummy indicating female judge, an interaction varible between female respondent and male judge, an interaction variable between I‘cmdle respondent and female judge,
offense type interacted with male judge, offense type interacted with female judge, filing year interacted with male and female judge respectively. The second set of regressions
conducts the same regression but add controls for court interacted with male and female judge, respectively. The third and final set of regressions conducts the same regression but
adds controls for court interacted with year interacted with male and female judge, respectively. The fifth row reports p-values for the difference in coefficients reported in row (3)
and row (4). All regressions cluster standard errors at judge level. The sample considered is all cases filed under Indian Penal Code Act between 2015 and 2018 in any district court
in Delhi.




Gender Comments

@ Female judges take longer between hearings and hold fewer hearings

v

Female defendants get fewer hearings and shorter delay between hearings
> Female judges are especially faster for female defendants

> No difference-in-difference regarding outcomes (on average)

> Female judges are harsher

@ Randomization controls are offense type interacted with male judge, offense type
interacted with female judge, filing year interacted with male and female judge. (1)

> + court interacted with male and female judge. (2)
> + court interacted with year interacted with male and female judge. (3)



Crime Categories

@ Person Crime - Any offense affecting the human body, namely,

> (a) Murder and Culpable homicide

> (b) Causing miscarriage, injuries to unborn children, exposure of infants and the
concealment of births

(c) Hurt

(d) Wrongful restraint and confinement

(e) Criminal force and assault

(f) Kidnapping, abduction, slavery and forced labor
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e Property Crime - Any offense against property, namely,

> (a) Theft

(b) Extortion

(c) Robbery and dacoity
(d) Criminal misappropriation of property

(e) Criminal breach of trust

(f) Receiving of stolen property

(g) Cheating

(h) Fraudulent deeds and disposition of property
(i) Mischief

(j) Criminal trespass
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Table 3: Judicial Outcomes by Subsamples

Duration Number Negative
Between Hearings of Hearings Outcome
@ @) 3)
Theft/Robbery
Female*Male Judge -0.449 -0.010 0.019
(1.776) (0.308) (0.025)
Female*Female Judge -1.203 -0.573 0.009
(2.760) (0.551) (0.038)
p-value: 0.818 0.373 0.819
Observations 6,701 10,233 9,127
Murder and Culpable Homicide
Female*Male Judge 1.121 -0.341* -0.022
(1.749) 0.181) 0.014)
Female*Female Judge 2.682 -0.099 0.065**
(2.291) (0.394) (0.025)
p-value: 0.589 0.576 0.002
Observations 5,168 8,397 7,394
Public Health, Safety, Convenience, Decency, and Morals
Female*Male Judge 1.534 0.163 0.007
(3.331) (0.312) (0.034)
Female*Female Judge 2.122 -0.516 0.158*
(6.480) (0.672) (0.084)

n-value: N OG N 260 N N00



Gender Sub-Group Analysis

@ Evidence of anti- in-group bias (threatened egoism?)

» Females deciding harsher on females for murder, morals (drugs,
negligence, obscenity), cruelty by relatives of husband

@ Evidence of in-group bias
» Females being lenient to females on cheating, sexual offenses



Table 3: Judicial Outcomes by Subsamples

Duration Number Negative
Between Hearings of Hearings Outcome
(1 2) 3)
Theft/Robbery
Hindu*Hindu Judge 1.648 -0.275* -0.003
(1.441) (0.161) (0.011)
Hindu*Non-Hindu Judge -22.224% -1.085 0.080
(3.786) (0.673) (0.081)
p-value: 0.000 0.243 0.306
Observations 3,347 5,364 4,726
Murder and Culpable Homicide
Hindu*Hindu Judge 1.752* 0.289 -0.000
0.979) (0.176) 0.010)
Hindu*Non-Hindu Judge 4.439* -0.482 -0.184
(2.586) (1.113) (0.194)
p-value: 0.332 0.495 0.345
Observations 2,912 4,800 4,199
Public Health, Safety, Convenience, Decency, and Morals
Hindu*Hindu Judge -0.661 -0.069 0.021
(2.521) (0.205) (0.023)
Hindu*Non-Hindu Judge 15.091 0.483 0.098
(9.734) (0.441) (0.091)

n-value: Nn110 N D57 nai



Religion Comments

@ Muslim judges take longer between hearings and hold fewer hearings

> No difference-in-difference regarding outcomes (on average)
> Hindu judges are harsher



Table 1(b): Summary Statistics by Religion

Full Hindu Non-Hindu _p-value Hindu  Non-Hindu p-value
Sample Respondent  Respondent Judge Judge
@ @ 3) @ ) ©) @
Case Characteristics:
Female 0.098 0.098 0.096 0.751 0.076 0.057 0.283
Hindu 0.843 1.000 0.000 . 0.849 0.888 0.286
Person Crime 0.411 0.407 0.428 0.072 0.436 0.531 0.193
Property Crime 0.384 0.384 0.385 0.947 0.360 0.385 0.762
Other Crime 0.501 0.517 0.415 0.000 0.535 0.552 0.807
Bail Hearing 0.205 0.206 0.203 0.903 0.163 0.075 0.241
Joint F-stat 0.297
Court/Judge Characteristics:
Female Judge 0.226 0.225 0.229 0.843 0.309 0.417 0.456
Hindu Judge 0.982 0.981 0.988 0.095 1.000 0.000 .
Chief Metropolitan Magistrate  0.376 0.374 0.391 0.471 0514 0.417 0.504
District and Sessions Judge 0.623 0.626 0.608 0.474 0.475 0.583 0.457
Year: 2015 0.039 0.038 0.041 0.425 0.060 0.070 0.816
Year: 2016 0.332 0.334 0.322 0.532 0.371 0.368 0.973
Year: 2017 0.207 0.203 0.224 0.099 0.170 0.096 0.073
Year: 2018 0.423 0.425 0.413 0.527 0.398 0.466 0.552
Court: Dwarka 0.119 0.131 0.054 0.000 0.116 0.083 0.686
Court: Karkrdooma 0.343 0319 0.472 0.000 0.224 0.064 0.015
Court: Patiala House 0.022 0.023 0.018 0.071 0.086 0.173 0.382
Court: Rohini 0.188 0.203 0.107 0.000 0.181 0.416 0.103
Court: Saket 0.143 0.137 0.173 0.022 0.193 0.014 0.000
Court: Tis Hazari/Rouse 0.185 0.186 0.177 0.607 0.200 0.250 0.694
Avg. No. of Cases 113.678 63.750 0.023
Outcomes:
% Negative Disposition 0.191 0.191 0.192 0.945 0.171 0.153 0.768
Duration Bt. Hearings 28.025 28.165 27.289 0.472 30.193 29.533 0.895
No. of Hearings 4.083 4.081 4.091 0.932 5.430 6.032 0.719
Observations 42,371 35,721 6,650 366 12

Notes: This table prese:

s summary statistics for different samples considered for the main analysis. Column (1) includes the full

sample of all court cases filed under the Indian Penal Code Act between 2015 and 2018 in any district court in Delhi. The full sample
only considers those cases that have been resolved and have no missing data. Column (2) includes only those cases that have a Hindu
respondent. Column (3) includes those that have a non-Hindu respondent. Column (4) reports p-values on the difference of the mean
of any characteristic as reported in columns (2) and (3). Column (5) includes those cases that have been decided by a Hindu judge
Column (6) includes those that have been decided by a non-Hindu judge. Column (7) reports p-values on the difference of the mean of




Table 2: Judicial Outcomes by Religion

Duration Between Hearings

Number of Hearings

Negative Outcome

@ €] 3) [©) [€)] ©) (@) ®) [©)]
(1) Hindu Judge 30.129*  28.397***  28.552*** 10.656*  11.103***  10.924** 0.163"**  0.156™*  0.156"**
(3.268) (3.658) (3.707) (1.061) (1.048) (1.080) (0.037) (0.046)  (0.049)
?2) Non-Hindu Judge 21.320"* 10.144  62.809"* 8.014" 2.936* 7.952° 0.150 0.250* 0.034
(9.448) (15.911) (5.601) (1.419) (1.747) (1.383) (0.165) (0.132)  (0.136)
3) Hindu*Hindu Judge 0.531 1.518* 1.616* 0.070 0.114* 0.134* -0.001 0.004 0.004
(1.005) (0.900) (0.897) (0.080) (0.067) (0.065) (0.006) (0.006)  (0.006)
4) Hindu*Non-Hindu Judge 0.997 2.070 1.603 -0.628 -0.101 -0.430 -0.074*  -0.033 -0.029
(3.745) (3.552) (3.587) (0.746) (0.485) (0.561) (0.022) (0.020)  (0.022)
p-value: (3) = (4) 0.904 0.880 0.997 0.353 0.660 0.319 0.002 0.082 0.158
Fixed Effects
Year Y Y Y Y Y Y Y Y Y
Court N Y Y N Y Y N Y Y
Year*Court N N Y N N Y N N Y
Observations 24,993 24,993 24,993 42,371 42,371 42,371 35,226 35,226 35,226

Notes: This table reports differences in judicial outcomes by religion of respondent and judge presiding over the case. For columns (1)-(3), the outcome is the average duration
between any two consecutive hearings for a case. For columns (4) - (6), the outcome is the number of hearings per case. Finally, for columns (7)- (9), the outcome is whether the
respondent pled guilty/was convicted versus other judgements if the purpose of the hearing was not bail while the outcome is whether the bail was dismissed versus other judgements if
the purpose of hearing was bail. For each outcome, three seperate OLS regressions were run. The first set of regressions regresses the outcome on a dummy variable indicating Hindu
judge, a dummy indicating non-Hindu judge, an interaction varible between Hindu respondent and Hindu judge, an interaction variable between Hindu respondent and non-Hindu
judge, offense type interacted with Hindu judge, offense type interacted with non-Hindu judge, filing year interacted with Hindu and non-Hindu judge respectively. The second set of
regressions conducts the same regression but add controls for court interacted with Hindu and non-Hindu judge, respectively. The third and final set of regressions conducts the same
regression but adds controls for court interacted with year interacted with Hindu and non-Hindu judge, respectively. The fifth row reports p-values for the difference in coefficients
reported in row (3) and row (4). All regressions cluster standard errors at judge level. The sample considered is all cases filed under Indian Penal Code Act between 2015 and 2018

in any district court in Delhi.
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Court backlog

Environment

Network analysis of lawyers and judges
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Backlash to Al vs. Incremental Al

In Stage 0, assess judges vs. a bootstrapped judge (predicted
decision-maker)

In Stage 1, people use Al as a support tool, speeding up existing
processes (for example, by prefilling forms)
Once they're used to this, they can more easily accept an added

functionality (Stage 2) in which Al becomes a choice monitor,
p0|nt|ng out ChOIce inCOﬂSiStenCieS (pay more attention / be less indifferent)

Stage 3 elevates the Al to the role of a more general coach, providing
outcome feedback on choices and highlighting decision patterns.
» Transparent + explanable | explain why deviate

Then, in Stage 4, the Al brings in other people’s decision histories and

patterns, serving as a platform for a community of experts.

> (1) self-image, (2) self-improvement, (3) self-understanding, (4) ego
> (0) lbias, (1) Tautonomy, (2) tlearning, (3) Ttransparency, |status quo, adversarial attack

Only in Stage 5, recommend the 'optimal decision’
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