Unlocking the Positive Effects of Justice on Economic Development

Daniel L. Chen

Institute for Advanced Study in Toulouse

Can Al Help Courts be Fair and Just?

- Al to understand, diagnose, and address injustice
- ② Economic impacts of judicial state capacity
 - Physical capital (digital infrastructure)
 - 2 Human capital (training)
- Measuring intrinsic value of justice

- Al to understand, diagnose, and address injustice
- Economic impacts of judicial state capacity
 - Physical capital (digital infrastructure)
 - Human capital (training)
- Measuring intrinsic value of justice

- Al to understand, diagnose, and address injustice
- Economic impacts of judicial state capacity
 - Physical capital (digital infrastructure)
 - Human capital (training)
- Measuring intrinsic value of justice

- Al to understand, diagnose, and address injustice
- Economic impacts of judicial state capacity
 - Physical capital (digital infrastructure)
 - Human capital (training)
- Measuring intrinsic value of justice

Judicial Analytics and Law J of Artificial Intelligence & Law 2018

Justice: equal treatment before the law $(y = f(X) + \varepsilon, a \rightarrow X)$ equality based on recognition of difference $(y \perp W, var(\varepsilon) \perp W, a \nrightarrow W)$

control principle and merit principle: individuals responsible only for events that are under their control W: race, gender, masculinity, name, football, weather, judge's lunchtime, preceding case, ...

Judicial Analytics and Law J of Artificial Intelligence & Law 2018

Justice: equal treatment before the law $(y = f(X) + \varepsilon, a \rightarrow X)$ equality based on recognition of difference $(y \perp W, var(\varepsilon) \perp W, a \nrightarrow W)$

control principle and merit principle: individuals responsible only for events that are under their control W: race, gender, masculinity, name, football, weather, judge's lunchtime, preceding case.

Judicial Analytics and Law J of Artificial Intelligence & Law 2018

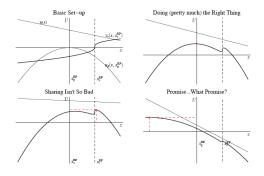
Justice: equal treatment before the law $(y = f(X) + \varepsilon, a \rightarrow X)$ equality based on recognition of difference

 $(y \perp W, var(\varepsilon) \perp W, a \rightarrow W)$

control principle and merit principle: individuals responsible only for events that are under their control W: race, gender, masculinity, name, football, weather, judge's lunchtime, preceding case, ...

Machine Learning and Rule of Law Computational Analysis of Law 2018

- Behavioral anomalies offer intuitive understanding of feature relevance
- "settings where people are closer to indifference among options are more likely to lead to detectable effects [of behavioral biases] outside of it." (Simonsohn, JPSP 2011)



A model of recognition-respect and revealed preference indifference

U.S. Circuit Courts

- All 380K cases, 1M judge votes, from 1891-
- 2B 8-grams, 5M citation edges across cases

U.S. District Courts

- 1M criminal sentencing decisions
- 2.5M opinions from 1923-

U.S. Supreme Court

- Speech patterns in oral arguments from 1955-
- Identical introductory sentences

U.S. Immigration Courts

Prosecutors

WW1 Courts martials

U.S. Circuit Courts

- All 380K cases, 1M judge votes, from 1891-
- 2B 8-grams, 5M citation edges across cases

U.S. District Courts

- 1M criminal sentencing decisions
- 2.5M opinions from 1923-

U.S. Supreme Court

- Speech patterns in oral arguments from 1955-
- Identical introductory sentences

U.S. Immigration Courts

Prosecutors

WW1 Courts martials

U.S. Circuit Courts

- All 380K cases, 1M judge votes, from 1891-
- 2B 8-grams, 5M citation edges across cases

U.S. District Courts

- 1M criminal sentencing decisions
- 2.5M opinions from 1923-

U.S. Supreme Court

- Speech patterns in oral arguments from 1955-
- Identical introductory sentences

U.S. Immigration Courts

Prosecutors

WW1 Courts martials

U.S. Circuit Courts

- All 380K cases, 1M judge votes, from 1891-
- 2B 8-grams, 5M citation edges across cases

U.S. District Courts

- 1M criminal sentencing decisions
- 2.5M opinions from 1923-

U.S. Supreme Court

- Speech patterns in oral arguments from 1955-
- Identical introductory sentences

U.S. Immigration Courts

Prosecutors

WW1 Courts martials

U.S. Circuit Courts

- All 380K cases, 1M judge votes, from 1891-
- 2B 8-grams, 5M citation edges across cases

U.S. District Courts

- 1M criminal sentencing decisions
- 2.5M opinions from 1923-

U.S. Supreme Court

- Speech patterns in oral arguments from 1955-
- Identical introductory sentences

U.S. Immigration Courts

Prosecutors

WW1 Courts martials

U.S. Circuit Courts

- All 380K cases, 1M judge votes, from 1891-
- 2B 8-grams, 5M citation edges across cases

U.S. District Courts

- 1M criminal sentencing decisions
- 2.5M opinions from 1923-

U.S. Supreme Court

- Speech patterns in oral arguments from 1955-
- Identical introductory sentences

U.S. Immigration Courts

Prosecutors

WW1 Courts martials

U.S. Circuit Courts

- All 380K cases, 1M judge votes, from 1891-
- 2B 8-grams, 5M citation edges across cases

U.S. District Courts

- 1M criminal sentencing decisions
- 2.5M opinions from 1923-

U.S. Supreme Court

- Speech patterns in oral arguments from 1955-
- Identical introductory sentences

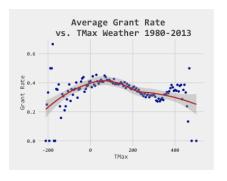
U.S. Immigration Courts

Prosecutors

WW1 Courts martials

The weather

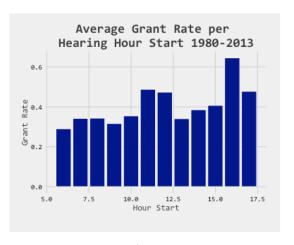
Judges deny refugees asylum when the weather is too hot or too cold



Chen and Eagel, ACM AI & Law 2017

Time of Day

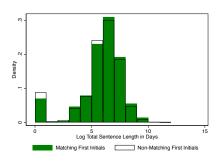
They grant asylum more before lunch and less after.

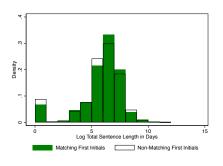


1M decisions

The defendant's name

They assign longer sentence lengths to defendants whose first initial matches their own.





First Letter of First Name

First Letter of Last Name

Kyklos 2024

The defendant's birthday

When they do the opposite and give the gift of leniency

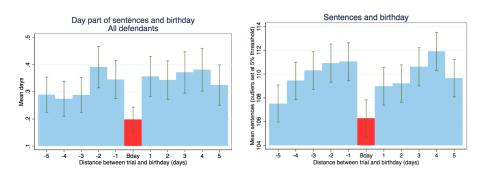
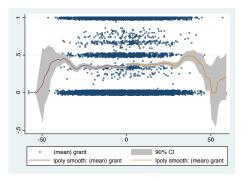


Figure: US and French judicial leniency on defendant birthdays

Chen and Philippe, J Econ Behavior & Org 2023

NFL Football

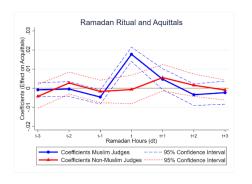
Judges are more lenient the day after their team wins, rather than loses.



Mood and the Malleability of Moral Reasoning

Ramadan

Muslim judges are more lenient the longer is Ramadan

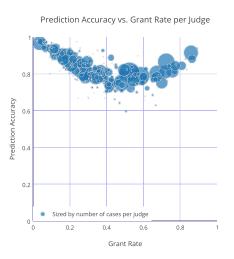


Pakistan and India

Mehmood, Seror, Chen, Nature Human Behavior 2023

Snap judgments

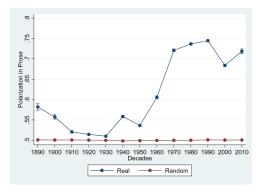
We can use machine learning to predict asylum decisions with 80% accuracy the date the case opens.. and when it closes.



Dunn, Sagun, Sirin, and Chen, ACM AI & Law 2017

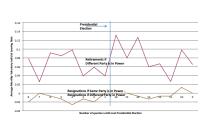
Motivated reasoning

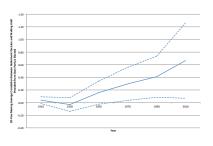
.. and predict partisan identity with 75% accuracy using judges' opinions



The Disavowal of Decisionism in American Law

and motivated decision-making reflected in the timing of exits



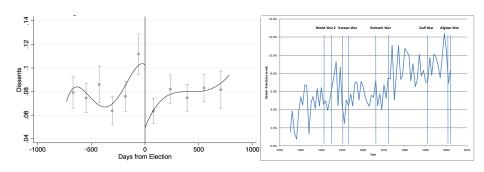


Strategic Retirements around Presidential Elections

are also Growing

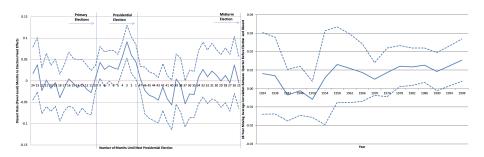
Chen and Reinhart, Rev Law & Econ 2024

Elections and wartime also affect decisions



Berdejo and Chen, J Law & Econ 2017

Primed by the state's primary election and growing over time



European Econ Review, R&R, International Econ Review, R/R

Gambler's Fallacy

How people often imagine a sequence of coin flips:

0101001011001010100110100

A real sequence of coin flips:

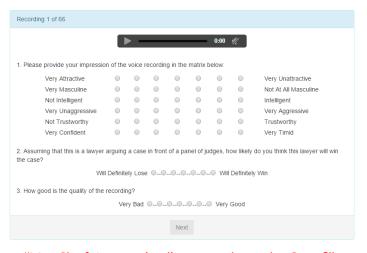
01010111111011000001001101

Up to 5% of decisions reversed due to the gambler's fallacy

UMPIRE CALLS AND THE GAMBLER'S FALLACY MLB umpires call fewer strikes if previous call was a strike	
Percentage point decline in probability of a called strike i Previous call was a strike Previous two calls	
Obvious pitches: Within 3 inches of center	r of strike zone
	-0.2
	-0.5
Ambiguous pitches: Within 1.5 inches of edge	e of strike zone
-3.5 🥽	
-4.8	
	revious calls that were balls lations using PITCHf/x data

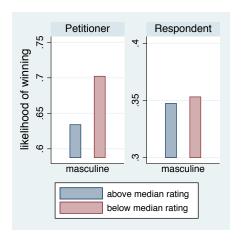
Chen, Moskowitz, and Shue, Quarterly J Econ 2016

In the US Supreme Court, the first sentence of the lawyers oral arguments are identical



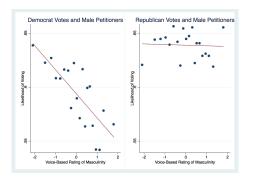
"Mr. Chief Justice, (and) may it please the Court?"

Male petitioners below median in masculinity rating are 7 percentage points more likely to win



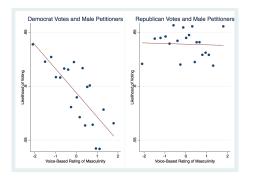
Chen, Halberstam, and Yu, Plos-ONE 2016

Democrats vote against masculine-sounding lawyers



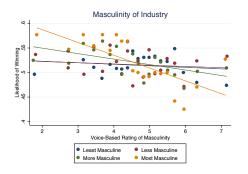
Profit-maximizing firms would tend to erode this correlation

Democrats vote against masculine-sounding lawyers



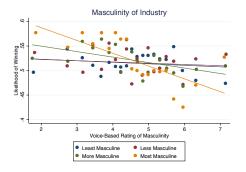
Profit-maximizing firms would tend to erode this correlation

Negative correlation is stronger in more masculine industries



consistent with their perceiving masculine-sounding lawyers as winners

Negative correlation is stronger in more masculine industries



consistent with their perceiving masculine-sounding lawyers as winners

De-Biasing Experiment Reduces Misbeliefs

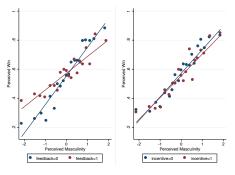


Figure: Feedback (p < 0.01), Incentives

Incentives Further Erodes Misbeliefs

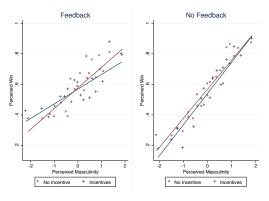


Figure: Incentives (p < 0.05) with Feedback

identifying a taste for masculine-sounding lawyers

Incentives Further Erodes Misbeliefs

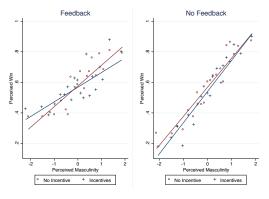


Figure: Incentives (p < 0.05) with Feedback

identifying a taste for masculine-sounding lawyers

Gender

- Female lawyers are also coached to be more masculine (Starecheski 2014)
 - ▶ Are our findings restricted to male advocates alone or do they extend?

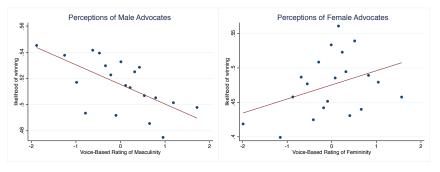


Figure: Extends: Less masculine males and more feminine females \tag{win}

masculine = - feminine

Robust to Lawyer Characteristics and the Best ML Prediction of the Supreme Court

		J	Judge Vote	s for Lawy	rer	
Predicted Vote	0.257***		0.258***	0.250***		0.248***
from Random Forest	(0.0486)		(0.0487)	(0.0485)		(0.0489)
Masculine		-0.0223**	-0.0207**		-0.0852**	-0.0780**
		(0.0101)	(0.0101)		(0.0359)	(0.0361)
Cluster			Lawyer a	and Judge		
Collapsed	No	No	No	Yes	Yes	Yes
Observations	26447	26391	26391	1229	1229	1229
R-squared	0.061	0.002	0.063	0.058	0.008	0.064
Sample: Male Petitione	rs, Democi	at Judges				

Figure: Best Prediction and Perceived Masculinity

Random forest also selects perceptions

homophily in masculine industries, how about in our dialogue?

Robust to Lawyer Characteristics and the Best ML Prediction of the Supreme Court

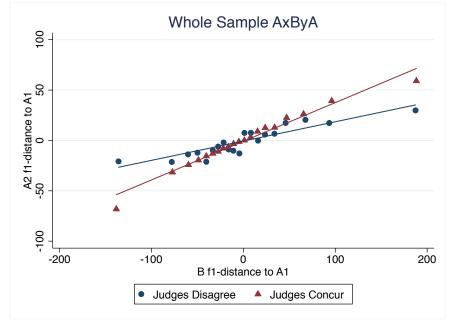
		J	udge Vote	s for Lawy	er	
Predicted Vote	0.257***		0.258***	0.250***		0.248***
from Random Forest	(0.0486)		(0.0487)	(0.0485)		(0.0489)
Masculine		-0.0223**	-0.0207**		-0.0852**	-0.0780**
		(0.0101)	(0.0101)		(0.0359)	(0.0361)
Cluster			Lawyer a	nd Judge		
Collapsed	No	No	No	Yes	Yes	Yes
Observations	26447	26391	26391	1229	1229	1229
R-squared	0.061	0.002	0.063	0.058	0.008	0.064
Sample: Male Petitione	rs, Democr	at Judges				

Figure: Best Prediction and Perceived Masculinity

Random forest also selects perceptions

homophily in masculine industries, how about in our dialogue?

Speaking convergence predicts decisions



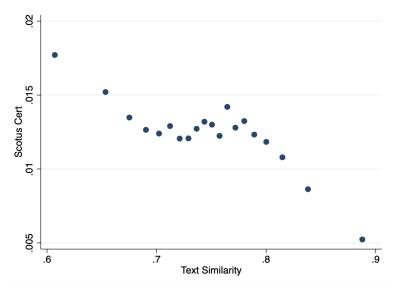
.. and winning lawyers

Table: ABA Basic Convergence Parameters

	F1 Estimate (S.E.) I. Overall (Non I		F Estimat on Directional)	_
Overall	0.175	(0.003)	0.156	(0.003)
	II. Lawyer \longrightarrow Judge			
Overall Winning Lawyer Losing Lawyer	0.213 0.222 0.205	(0.005) (0.006) (0.009)	0.187 0.186 0.188	(0.005) (0.006) (0.006)
	III. Judge \longrightarrow Lawyer			
Overall Winning Lawyer Losing Lawyer	0.190 0.200 0.181	(0.004) (0.006) (0.006)	0.151 0.157 0.146	(0.003) (0.004) (0.004)

Figure: Convergence predicts winning lawyer

Dissimilarity predicts reversals



Besides voice, there is text

- Females: Migraine, hysterical, morbid, obese, terrified, unemancipated, battered
- Males: Reserve, industrial, honorable, commanding, conscientious, duty

Besides voice, there is text

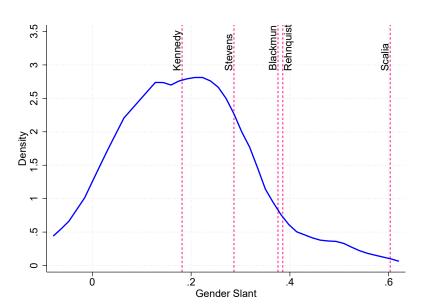
- Females: Migraine, hysterical, morbid, obese, terrified, unemancipated, battered
- Males: Reserve, industrial, honorable, commanding, conscientious, duty

Besides voice, there is text

- Females: Migraine, hysterical, morbid, obese, terrified, unemancipated, battered
- Males: Reserve, industrial, honorable, commanding, conscientious, duty

We can do this judge by judge

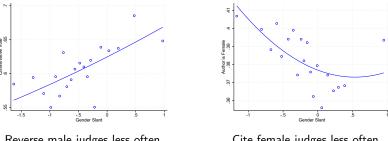
Justice Scalia is an outlier in gender slant



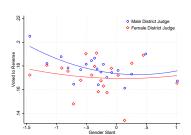
In the Circuit Courts, judges with more gender slant...

Vote against women's rights issues

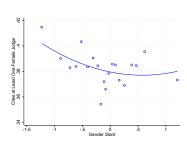
Assign fewer opinions for females to author



Reverse male judges less often



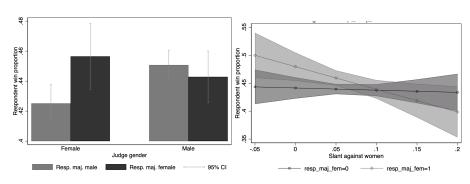
Cite female judges less often



Ash, Chen, and Ornaghi, American Econ J: Applied 2022

Prejudice in Practice

The results extend to Kenya: Judges favor defendants of their own ethnicity and gender



ruling against women when they exhibit stereotypical gender writing biases

India In-Group Bias

Judges favor defendants who share their last name

	Acquitted		
	(1)	(2)	
Same Last Name	0.0176**	-0.0010	
	(0.0083)	(0.0045)	
Same Last Name * Rare Name		0.0398**	
		(0.0176)	
N	2142697	2142697	
Court-Year FE	Υ	Υ	
Judge FE	Υ	Υ	
Charge FE	Υ	Υ	
Last Name FE	Υ	Υ	

Ash, Asher, Bhowmick, Bhupatiraju, Chen, Devi, Goessmann, Novosad, Siddiqi, Review Econ Stat R&R

Caste Aside?

Exacerbating the disadvantages that low-caste litigants face



- Early predictability
- Behavioral anomalies
- Inattentiveness to appellate reversals
- 4 Implicit risk rankings of asylees closer to random
- Is indifference greater for some refugees (e.g., from Global South)?

- Early predictability
- Behavioral anomalies
- Inattentiveness to appellate reversals
- 4 Implicit risk rankings of asylees closer to random
- Is indifference greater for some refugees (e.g., from Global South)?

- Early predictability
- Behavioral anomalies
- Inattentiveness to appellate reversals
- Implicit risk rankings of asylees closer to random
- Is indifference greater for some refugees (e.g., from Global South)?

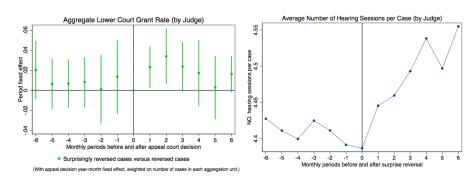
- Early predictability
- Behavioral anomalies
- Inattentiveness to appellate reversals
- 4 Implicit risk rankings of asylees closer to random
- Is indifference greater for some refugees (e.g., from Global South)?

- Early predictability
- Behavioral anomalies
- Inattentiveness to appellate reversals
- 4 Implicit risk rankings of asylees closer to random
- Is indifference greater for some refugees (e.g., from Global South)?

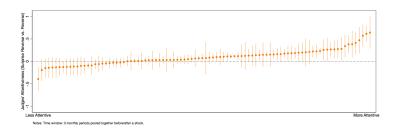
- Early predictability
- Behavioral anomalies
- Inattentiveness to appellate reversals
- Implicit risk rankings of asylees closer to random
- Is indifference greater for some refugees (e.g., from Global South)?

After "Surprise" Reversals, Judges Grant More Asylum and Hold More Hearing Sessions

Surprise Reversal is a reversal of a decision that was predicted to be "Affirm"

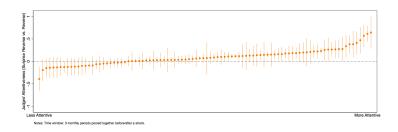


Judges Vary in Responsiveness to Reversal

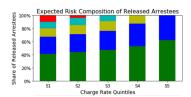


Do less attentive judges have implicit risk rankings closer to random?

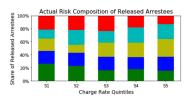
Judges Vary in Responsiveness to Reversal



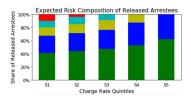
Do less attentive judges have implicit risk rankings closer to random?



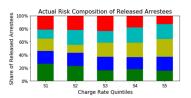
 If defendants released based only on risk score, the harshest prosecutors would only be releasing low-risk defendants.



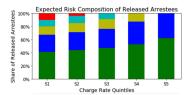
- Distribution of risk scores for released defendants is similar for most lenient and least lenient prosecutors.
- Are the lenient asylum judges, only denying the 'riskiest' applicants
 - ▶ i.e., seeing the lowest reversal rates (of their asylum denials)?



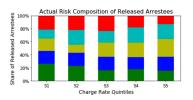
 If defendants released based only on risk score, the harshest prosecutors would only be releasing low-risk defendants.



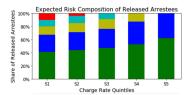
- Distribution of risk scores for released defendants is similar for most lenient and least lenient prosecutors.
- Are the lenient asylum judges, only denying the 'riskiest' applicants
 - ▶ i.e., seeing the lowest reversal rates (of their asylum denials)?



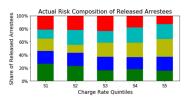
 If defendants released based only on risk score, the harshest prosecutors would only be releasing low-risk defendants.



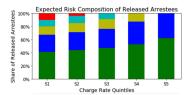
- Distribution of risk scores for released defendants is similar for most lenient and least lenient prosecutors.
- Are the lenient asylum judges, only denying the 'riskiest' applicants
 - ▶ i.e., seeing the lowest reversal rates (of their asylum denials)?



 If defendants released based only on risk score, the harshest prosecutors would only be releasing low-risk defendants.

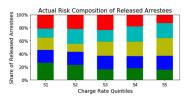


- Distribution of risk scores for released defendants is similar for most lenient and least lenient prosecutors.
- Are the lenient asylum judges, only denying the 'riskiest' applicants
 - ▶ i.e., seeing the lowest reversal rates (of their asylum denials)?



 If defendants released based only on risk score, the harshest prosecutors would only be releasing low-risk defendants.

Human Prosecutors

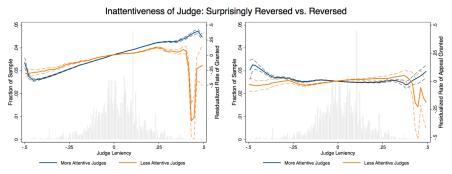


- Distribution of risk scores for released defendants is similar for most lenient and least lenient prosecutors.
- Are the lenient asylum judges, only denying the 'riskiest' applicants
 - ▶ i.e., seeing the lowest reversal rates (of their asylum denials)?

See also Kleinberg, Lakkaraju, Leskovec, Ludwig, Mullainathan, Quarterly J Econ 2017

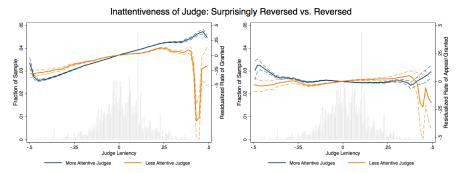
Left Figure: Judges have strong habits

A judge who is generally lenient in other cases is likely to be lenient in a given case



(Time window: 3 monthly periods pooled together before/after shock. More attentiveness: the coefficient of interaction of surprisingly reversed dummy and time-period dummy is bigger)

Right Figure: Assess implicit risk ranking

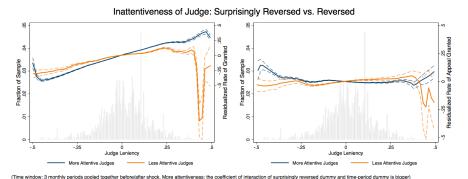


(Time window: 3 monthly periods pooled together before/after shock. More attentiveness: the coefficient of interaction of surprisingly reversed dummy and time-period dummy is bigger)

If judges are 'ordering' their asylees, the most lenient judge letting in the most applicants should be rejecting only the "least safe" applicants

Their appeal success should be lower, which we see among more attentive judges

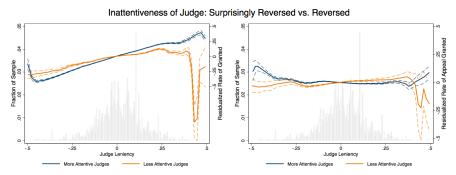
Right Figure: Assess implicit risk ranking



If judges are 'ordering' their asylees, the most lenient judge letting in the most applicants should be rejecting only the "least safe" applicants

Their appeal success should be lower, which we see among more attentive judges

.. but not less attentive judges

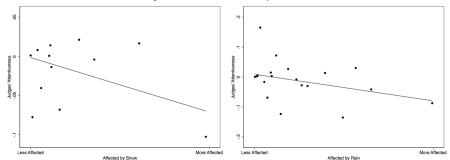


(Time window: 3 monthly periods pooled together before/after shock. More attentiveness: the coefficient of interaction of surprisingly reversed dummy and time-period dummy is bigger)

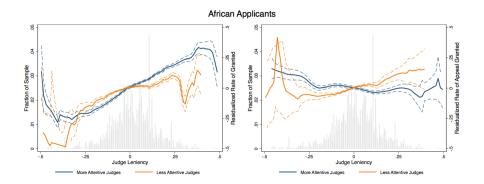
.. who may be more prone to other extraneous factors

.. such as weather

Judges' Attentiveness and Vulnerability to Weather

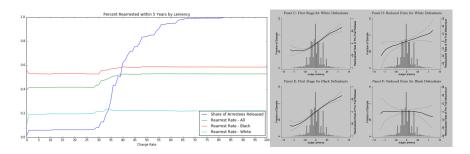


Difference in Indifference for asylees from the Global South



Judicial Inattention: Machine Prediction of Appeal Success

Using ML to Understand how Screeners Screen



Actually, flat for Whites, upward slope for Blacks (left)

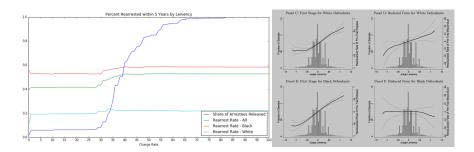
Algorithms as Prosecutors: Identifying Characteristics Noisy to Human Prosecutors

Judges released along "right" diagonal for Whites but not Blacks (right)

in Arnold, Dobbie, Yang, Quarterly J Econ 2017

Why "wrong diagonal" for Black defendants?

Using ML to Understand how Screeners Screen



Actually, flat for Whites, upward slope for Blacks (left)

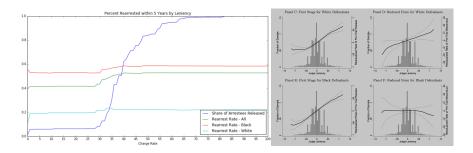
Algorithms as Prosecutors: Identifying Characteristics Noisy to Human Prosecutors

• Judges released along "right" diagonal for Whites but not Blacks (right)

in Arnold, Dobbie, Yang, Quarterly J Econ 2017

Why "wrong diagonal" for Black defendants?

Using ML to Understand how Screeners Screen



Actually, flat for Whites, upward slope for Blacks (left)

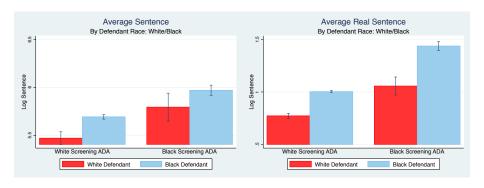
Algorithms as Prosecutors: Identifying Characteristics Noisy to Human Prosecutors

Judges released along "right" diagonal for Whites but not Blacks (right)

in Arnold, Dobbie, Yang, Quarterly J Econ 2017

Why "wrong diagonal" for Black defendants?

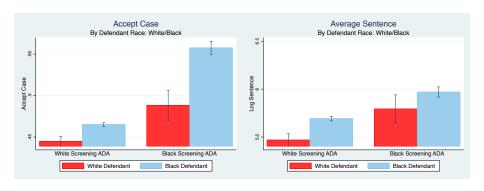
1. Screening Increases Racial Sentencing Gap



- Since black defendants are less likely to be declined, "real" racial disparity magnifies (on right)
 - Is statistical discrimination the reason for disparate screening?

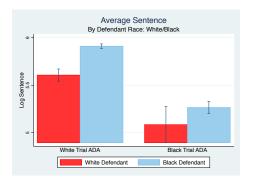
How Prosecutors Exacerbate Racial Disparities

2. White Prosecutors Screen-In Fewer Cases that result in Shorter Sentences



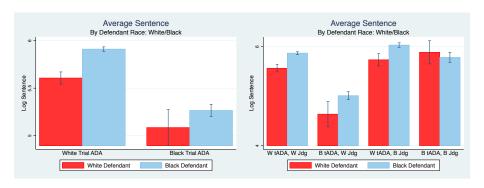
- White and black screeners let in different cases
 - If targeting the most severe ones, white screener cases should have longer sentences

3. White Trial Prosecutors Obtain Longer Sentences



- Most District Attorneys are elected; want to appear tough-on-crime (Pfaff 2016)
- Why are white trial prosecutors more effective in this goal?

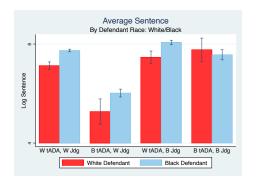
4. Black Trial Prosecutors + White Judges Render Shorter Sentences



- The difference seems attributeable to the interaction of hierarchy and race
 - ▶ Black trial prosecutors + Black judges (on right) render similar average sentences as White trial prosecutors do

The Legal Reproduction of Racism: Racial Hierarchy Determinants of Sentencing Disparities

5. Black Trial Prosecutors + Black Judges Eliminate or Reverse Racial Sentencing Gap



Hard to explain as statistical discrimination

Revealed Preference Indifference

	Log of Total Sentence in Days				
	(1)	(2)			
First Letter Match \times Negro	0.174	0.168			
	(0.0687)	(0.0686)			
N	41793	40011			
adj. R-sq	0.475	0.442			
First Letter Match × Judge FE	Χ	X			
First Letter Match \times Month \times Year FE	Χ	X			
First Letter Match \times Case Type FE	Χ	X			
First Letter Match \times Skin Color FE		X			
First Letter Match \times Hair Color FE		X			
First Letter Match x Eye Color FE		X			

- Name letter effects appear only for African Americans labeled "Negro" and not for "Black"
 - robust to controls for skin, hair, eye color
 - highlights the potential for labels to increase recognition and respect

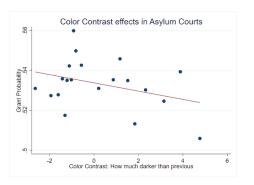
Revealed Preference Indifference

	Log of Total Sentence in Days				
	(1)	(2)			
First Letter Match \times Negro	0.174	0.168			
	(0.0687)	(0.0686)			
N	41793	40011			
adj. R-sq	0.475	0.442			
First Letter Match × Judge FE	Χ	X			
First Letter Match \times Month \times Year FE	Χ	X			
First Letter Match \times Case Type FE	Χ	X			
First Letter Match \times Skin Color FE		X			
First Letter Match \times Hair Color FE		X			
First Letter Match x Eye Color FE		X			

- Name letter effects appear only for African Americans labeled "Negro" and not for "Black"
 - robust to controls for skin, hair, eye color
 - highlights the potential for labels to increase recognition and respect

Relativity of Racial Perception

Judges deny refugees asylum, the darker the applicant's skin tone is relative to that of the prior applicant



See also Ludwig and Mullainathan, Quarterly J Econ 2024

Unrepresented Parties in Asylum Bear Brunt of Mood Effects

Dependent variable	Granted Asylum					
Sample	All	With Lawyer	Without Lawyer			
	(1)	(2)	(3)			
Upset Loss (Loss X Predicted Win)	-0.066***	-0.007	-0.067**			
	(0.022)	(0.011)	(0.030)			
Upset Loss (Loss X Predicted Win)	0.061**					
X Lawyer	(0.023)					
Close Loss (Loss X Predicted Close)	-0.046**	0.008	-0.045**			
	(0.022)	(0.011)	(0.021)			
Close Loss (Loss X Predicted Close)	0.054**					
X Lawyer	(0.024)					
Upset Win (Win X Predicted Loss)	-0.023	-0.001	-0.036			
	(0.035)	(0.015)	(0.032)			
Upset Win (Win X Predicted Loss)	0.020					
X Lawyer	(0.036)					

JudgeXCity FE, City-Specific Trends, Week FE, Case Controls

By 1990, 40% of federal judges had attended an economics-training program.

Special to The New York Times

weeks. 19 Federal judges from cases now pending in Federal cow around the country took a grueling, six- "One has to be very cautious in deal" day-a-week course in economics that with Federal judges," said Henry Man ended here vesterday.

sometimes ending at 10 P.M. or later, in economic theory and enable them the judges received the equivalent of a better understand the testimony of exp full semester at the college level.

Nobel laureates in economics, Paul Sam- Federal District Court in the South uelson and Milton Friedman. The courses, District of New York, who is the sponsored by the Law and Economics Center of the University of Miami School of Law, made up what is believed to have been the first such institute for many lawyers as the most important at Federal judges.

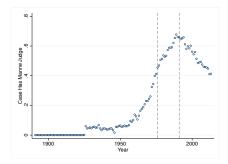
"It was a very enriching experience." said Chief Judge John W. Reynolds of attend the institute to clear any fi the Federal District Court in the Eastern questions about a possible conflict of District of Wisconsin, "We were here not terest, to become economists, but to understand the language of economics. Courts are replied that they saw no grounds for only as good as judges and the lawyers conflict of interest in my coming he who appear before us. By and large, our Judge Edelstein said. training in economics is not really satis- From the beginning, the judges, factory, and yet we are being increasingly of them 60 years old or over, being called upon to decide economic issues." like students, deferring to their tead

KEY LARGO, Fla., Dec. 18-For three not to relate the theoretical studies director of the center, "Our goal has be With classes starting at 9 A.M. and to give them the most recent think witnesses and lawvers."

Their teachers were, among others, two | Chief Judge David N. Edelstein of in the International Business Machi Corporation antitrust case-regarded trust litigation of the century-inform attorneys in the case of his intention

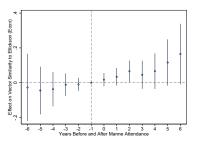
"All the lawyers were very cordial

The program dealt basically with eco- and reminiscing about undergrade nomic theory, and an effort was made days decades ago.



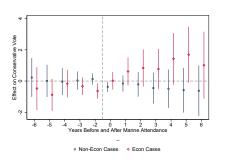
The results of these seminars were dramatic

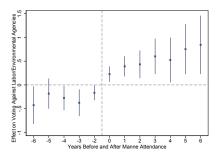
We can see economics language used in academic articles became prevalent in opinions.



The results of these seminars were dramatic

We can see economics trained judges changing how they decided



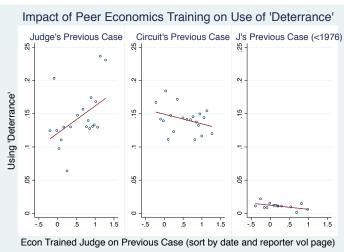


Econ vs Non-Economics Cases

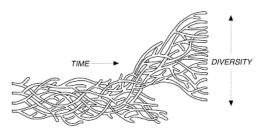
on Labor/Environmental Cases

Impacting their peers

We can see economic language traveling from one judge to another and across legal areas.



The Geneology of Ideology



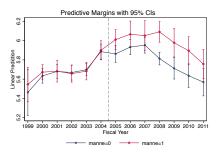
$$P_m = \frac{d_{m \to m}}{d_{\to m} + \delta} / \frac{d_{m \to \text{pr}} + \delta}{d_{\to \text{pr}} + \delta}$$

Scoring Memetic Phrases

Varma, Parthasarathy, and Chen, ACM AI & Law 2017

When judges were given discretion in sentencing

economics trained judges immediately rendered 20% longer sentences relative to the non-economics counterparts.



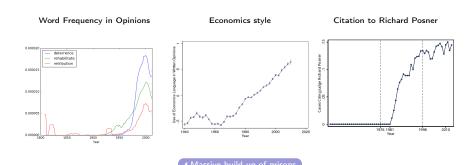
The Prejudices of Economic Ideology

Economics trained judges are harsher to blacks

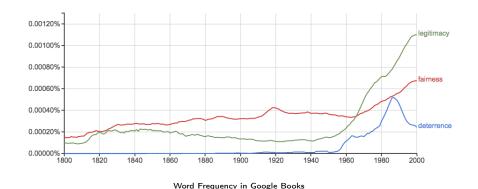
	<u>Life</u>	Months	<u>Life</u>	Months	
	(1)	(2)	(3)	(4)	
Minority	0.00395***	20.84***	0.00388***	20.34***	
	(0.000770)	(1.979)	(0.00102)	(2.170)	
* Economics	0.00401**	5.413***	0.00379**	3.180*	
	(0.00157)	(2.044)	(0.00170)	(1.910)	
* Republican			0.000641	4.096**	
			(0.00103)	(1.723)	
* Minority J			-0.00119	-7.451**	
			(0.00135)	(3.167)	
N	156650	155977	154920	154253	
adj. R-sq	0.015	0.102	0.015	0.102	
Judge FE	Υ	Υ	Υ	Y	
Sample	All	All	All	All	

Half the magnitude of ingroup bias, which reduces gap by one-third

The Great Transformation mentalities changed to be more economical (Polyani 1944)

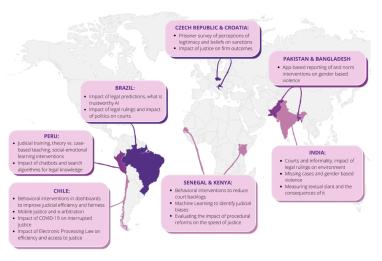


Al and the Next Transformation of Law?

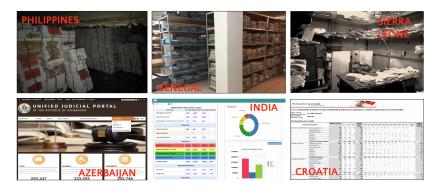


• retribution, rehabilitation, deterrence, legitimacy, fairness

AMICUS (Analytical Metrics for Informed Courtroom Understanding & Strategy)

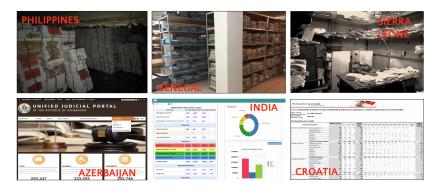


We run law and development RCTs through relationships with government partners who link legal cases to downstream effects for individuals and firms.



- Recent innovations have opened up new opportunities for delivery of justice
 - Increasingly digitized large-scale datasets
 - ML applications to produce interpretable data from unstructured text
 - Predictive models of decision-making to better understand biases and address them with digital interfaces

- Recent innovations have opened up new opportunities for delivery of justice
 - Increasingly digitized large-scale datasets
 - ML applications to produce interpretable data from unstructured text
 - Predictive models of decision-making to better understand biases and address them with digital interfaces

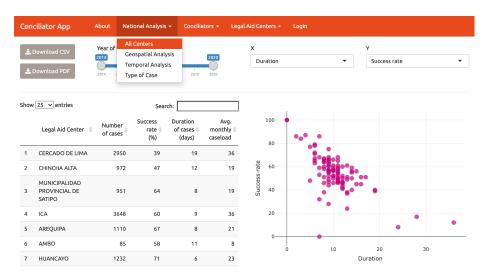


- Recent innovations have opened up new opportunities for delivery of justice
 - Increasingly digitized large-scale datasets
 - ▶ ML applications to produce interpretable data from unstructured text
 - Predictive models of decision-making to better understand biases and address them with digital interfaces



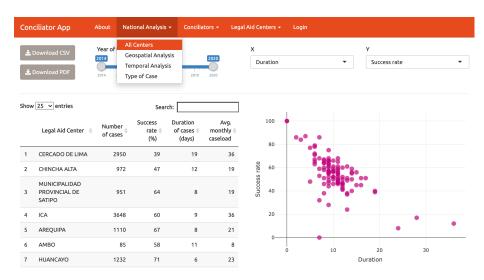
- Recent innovations have opened up new opportunities for delivery of justice
 - Increasingly digitized large-scale datasets
 - $\,\blacktriangleright\,$ ML applications to produce interpretable data from unstructured text
 - Predictive models of decision-making to better understand biases and address them with digital interfaces

Recommending Actions to Each Other



oTreeJustice

Recommending Actions to Each Other



oTreeJustice

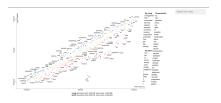
E-Justice Innovations

WhatsApp access to virtual courts

Apps for missing cases

Uber-ization of case backlog

Open access legal search engines



Human-Centric

Personalized case-based teaching

Predicted self

Asylum Case Predictor Home | About State Select a state Attorney present? Yes O No Nationality CHINA O befensive O Affirmative Case Type REMOVAL ASYLUM ONLY CASE O BEPORTATION

Building Capacity

Open source no-code tools for

Data entry and decision-support

						Q Seach.			_ е н	
NEW	MAC No. +	Name	Active	Apr	Professional Ments	Professional Da	en.	Experience		,
	Piler .	Film.	Yes	Pilot.	No.	Piles.		Piles.		
DELETE	MAC/0821-000	Allow Flori	ne		MTI, CIAG	BA Commerce		2 feats		
оецете	MAG/2820-871	Dre Baz	Yes	22	MTI	UKUW		4 Year		
						•				

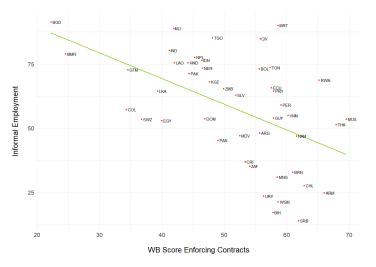
Understanding justice needs

Learning best practices

Increasing recognition-respect

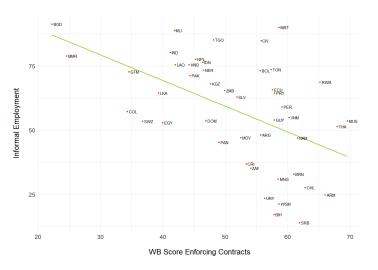
Chen, Schonger, and Wickens J Behavioral & Experimental Finance 2016

Economic development & legal institutions are associated



A 20% decrease in case duration is associated with a 10% increase in GDP per capita (Penn World tables)

Economic development & legal institutions are associated



A 20% decrease in case duration is associated with a 10% increase in GDP per capita (Penn World tables)

"Endless adjournments of cases on frivolous grounds" are a major cause of case backlog (Chief Justice Maraga 2019)

- Nation-wide experiment using the first digitized daily court records
 - Developed an algorithm to identify the greatest source of court delays
 - ► T1: provide actionable information
 - ► T2: + accountability
 - ▶ Control: status quo (no information), RCT across all 123 court stations

"Endless adjournments of cases on frivolous grounds" are a major cause of case backlog (Chief Justice Maraga 2019)

- Nation-wide experiment using the first digitized daily court records
 - Developed an algorithm to identify the greatest source of court delays
 - T1: provide actionable information
 - ► T2: + accountability
 - Control: status quo (no information), RCT across all 123 court stations

"Endless adjournments of cases on frivolous grounds" are a major cause of case backlog (Chief Justice Maraga 2019)

- Nation-wide experiment using the first digitized daily court records
 - Developed an algorithm to identify the greatest source of court delays
 - ► T1: provide actionable information
 - ► T2: + accountability
 - Control: status quo (no information), RCT across all 123 court stations

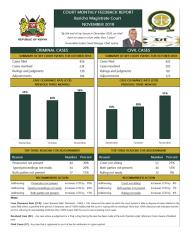
"Endless adjournments of cases on frivolous grounds" are a major cause of case backlog (Chief Justice Maraga 2019)

- Nation-wide experiment using the first digitized daily court records
 - Developed an algorithm to identify the greatest source of court delays
 - ► T1: provide actionable information
 - ► T2: + accountability
 - Control: status quo (no information), RCT across all 123 court stations

"Endless adjournments of cases on frivolous grounds" are a major cause of case backlog (Chief Justice Maraga 2019)

- Nation-wide experiment using the first digitized daily court records
 - Developed an algorithm to identify the greatest source of court delays
 - ► T1: provide actionable information
 - ► T2: + accountability
 - Control: status quo (no information), RCT across all 123 court stations

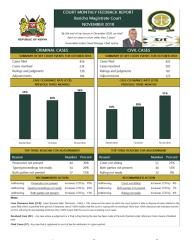
Actionable Recommendations



Can AI reduce information frictions Improve the functioning of courts

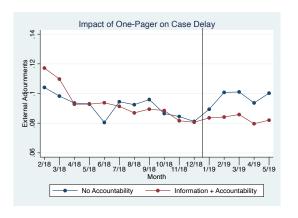
Unlock the positive effects of justice on economic development?

Actionable Recommendations



Can AI reduce information frictions Improve the functioning of courts

Unlock the positive effects of justice on economic development?



- Effect size suggests 20 percent impacts
- Compound effects: adjournments for another hearing
 - ► The mean number of hearings per case is 4.63
- Translates into a reduction of 107 days in trial length, or 22%

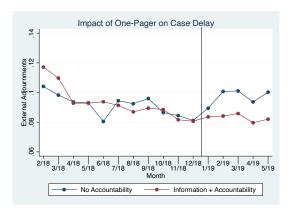


Effect size suggests 20 percent impacts

- Compound effects: adjournments for another hearing
 - ► The mean number of hearings per case is 4.63
- Translates into a reduction of 107 days in trial length, or 22%

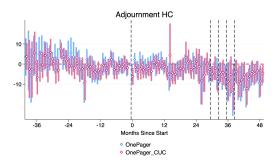


- Effect size suggests 20 percent impacts
- Compound effects: adjournments for another hearing
 - ▶ The mean number of hearings per case is 4.63
- Translates into a reduction of 107 days in trial length, or 22%



- Effect size suggests 20 percent impacts
- Compound effects: adjournments for another hearing
 - ▶ The mean number of hearings per case is 4.63
- Translates into a reduction of 107 days in trial length, or 22%

The effects persist



Long-term impact

Elevating to 30% reduction in time to disposition over four years

	Time to Disposition	Commercial Cases Filed Per Day Per Court
OnePager * Post	-244.8*	0.27
	(135.4) -322.4*	(0.17)
OnePager CUC * Post	-322.4*	0.41**
	(176.5)	(0.20)
Court FE	Yes	Yes
Day FE	Yes	Yes
Control Group mean	1103.6	0.61
SD	1481.6	2.36
Observations	183068	62883

along with an increase in access to justice

No adverse impacts of increased speed on proxies for quality

	(1)	(2)	(3)	(4)
	Judgement	Cases	Laws	Number
	Length	in text	in text	citations
OnePager * February 2019	-2.75	-0.87	0.23	-0.01
-	(160.75)	(0.66)	(0.55)	(0.09)
OnePager CUC * February 2019	-38.67	-0.07	0.06	-0.10
	(179.62)	(0.82)	(0.54)	(0.10)
OnePager * March 2019	194.00	0.09	0.32	0.05
	(142.12)	(0.38)	(0.50)	(0.05)
OnePager CUC * March 2019	107.30	0.54	0.67	0.22
	(179.59)	(0.52)	(0.60)	(0.25)
OnePager * April 2019	186.91	0.73	0.56	0.13*
	(193.18)	(0.68)	(0.73)	(0.07)
OnePager CUC * April 2019	-29.20	0.89	0.49	-0.07
	(229.49)	(0.60)	(0.82)	(0.09)
OnePager * May 2019	-4.81	-0.76	0.51	`0.08
	(221.05)	(0.67)	(0.69)	(0.07)
OnePager CUC * May 2019	-92.43	0.17	0.86	-0.11
	(236.63)	(0.78)	(0.80)	(0.09)
OnePager * After June 2019	143.04	-0.04	0.36	`0.08
-	(151.46)	(0.75)	(0.69)	(0.07)
OnePager CUC * After June 2019	`70.80 ´	0.82	0.07	-0.05
	(194.39)	(0.87)	(0.66)	(0.09)
OnePager * Month Before	-4.36	0.24	-0.26	`0.08
	(172.62)	(0.45)	(0.72)	(0.07)
OnePager CUC * Month Before	206.14	1.45**	0.35	0.14
-	(194.22)	(0.61)	(0.68)	(0.14)
Observations	137,376	137,376	137,376	137,231
R-squared	0.111	0.141	0.126	0.034
Mean Dep Var	2023	3.273	5.128	1.350
(SD)	2643	6.558	13.51	12.82

Speed of Justice & Citizen Satisfaction

What suggestions do you have for improving court facilities and services?

	Judge neutral	Judge led proceedings well	Suggestion Speed	Suggestion Quality
OnePager * 2019	0.04	0.00	-0.06*	-0.06***
G	(0.07)	(0.07)	(0.03)	(0.02)
OnePager_CUC * 2019	-0.09	-0.04	-0.04	-0.05***
OD* 2015	(0.07)	(0.06)	(0.04)	(0.02)
OnePager * 2015	0.29 (0.27)	0.33 (0.32)	-0.05 (0.03)	0.01 (0.04)
OnePager CUC * 2015	0.26	0.31	-0.00	0.02
	(0.26)	(0.30)	(0.03)	(0.04)
Observations	12,612	13,847	15,199	15,199
R-squared	0.875	0.903	0.227	0.176

We find a reduction in complaints about speed and quality.

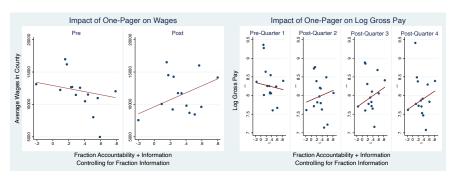
What is the long-term impact on trust?

Trust courts					
	All	Likely	Not Likely		
		user	user		
OnePager * Wave 2	9.99*	16.37**	4.67		
oner age. Wave 2	(5.34)	(6.35)	(6.55)		
OnePager CUC * Wave 2	4.41	3.28	5.31		
	(5.02)	(5.65)	(7.04)		
OnePager * Wave 1	`4.45´	4.94	`3.48		
_	(5.89)	(6.66)	(6.43)		
OnePager CUC * Wave 1	1.33	-1.86	4.98		
	(6.42)	(6.82)	(7.27)		
OnePager * Before	7.41	9.34	6.37		
	(6.69)	(7.60)	(7.25)		
OnePager CUC * Before	1.94	-1.79	5.93		
	(6.19)	(7.29)	(6.87)		
Observations	9,315	4,791	4,484		
County fixed effects	YES	YES	YES		
Time FE	YES	YES	YES		
Mean control group	55.78	54.50	57.62		
SD control group	31.16	31	31.33		

 Afrobarometer survey: "How much do you trust Courts of law?" (0=Not at all, 1=Just a little, 2=Somewhat, 3=A lot).

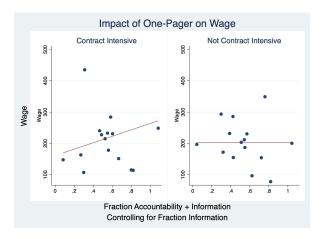
Speed of Justice & Economic Outcomes (VAT, KIHBS)

Kenya Continuous Household Survey measures wages, industry, contracts



Wages of individuals in the county is associated with proportion of treated court stations in a county

Contract Intensity



The effects are larger in contract-intensive industries.

Increase in Formal Contracts

Robust to different trimming of the wages, or using the log of wages, or using other measures of wage

	Wage	$\begin{array}{c} {\rm Wage} \\ {\rm Trim} \ 3 \ {\rm sd} \end{array}$	Log Wage	Total Gross Pay	Extensive Margin Wages	Written Contract
Frac. OnePager * Post * CI	61.61	63.25	0.37	59.99	0.022	0.06**
o a	(46.95)	(45.94)	(0.32)	(59.51)	(0.033)	(0.03)
Frac. OnePagerCUC * Post * CI	76.18**	74.91**	0.33*	110.21*	0.005	0.06**
	(34.96)	(35.45)	(0.18)	(57.14)	(0.026)	(0.03)
Frac. OnePager * Post	52.40	45.80	0.26	69.39	0.016	0.02
_	(36.93)	(37.56)	(0.35)	(64.07)	(0.037)	(0.02)
Frac. OnePagerCUC * Post	106.88**	103.29**	0.55	173.95**	-0.008	0.04
_	(44.29)	(44.23)	(0.35)	(67.44)	(0.029)	(0.02)
Observations	6,857	6.827	6.857	3,574	34.887	34,154
County fixed effects	YES	YES	YES	YES	YES	YES
Quarter FE	YES	YES	YES	YES	YES	YES
CI	YES	YES	YES	YES	YES	YES
Mean control group	261	261	8.225	436.4	0.0921	0.143
SD control group	319.3	319.3	1.819	462.4	0.289	0.350

ndividuals in the KCHSP are asked whether their labor contract is a written contract, a verbal agreement, an implied contract, or not a contract. We find more written contracts after the reform, which is indicative of citizens feeling more confident asking for contracts. (Kenyan Employment Act)

Increase in Formal Contracts

Robust to different trimming of the wages, or using the log of wages, or using other measures of wage

	Wage	$\begin{array}{c} {\rm Wage} \\ {\rm Trim} \ 3 \ {\rm sd} \end{array}$	Log Wage	Total Gross Pay	Extensive Margin Wages	Written Contract
Frac. OnePager * Post * CI	61.61	63.25	0.37	59.99	0.022	0.06**
1100. 0 101. 0 00.	(46.95)	(45.94)	(0.32)	(59.51)	(0.033)	(0.03)
Frac. OnePagerCUC * Post * CI	76.18**	74.91**	0.33*	110.21*	0.005	0.06**
	(34.96)	(35.45)	(0.18)	(57.14)	(0.026)	(0.03)
Frac. OnePager * Post	52.40	45.80	0.26	69.39	0.016	0.02
_	(36.93)	(37.56)	(0.35)	(64.07)	(0.037)	(0.02)
Frac. OnePagerCUC * Post	106.88**	103.29**	0.55	173.95**	-0.008	0.04
_	(44.29)	(44.23)	(0.35)	(67.44)	(0.029)	(0.02)
Observations	6,857	6.827	6.857	3,574	34.887	34,154
County fixed effects	YES	YES	YES	YES	YES	YES
Quarter FE	YES	YES	YES	YES	YES	YES
CI	YES	YES	YES	YES	YES	YES
Mean control group	261	261	8.225	436.4	0.0921	0.143
SD control group	319.3	319.3	1.819	462.4	0.289	0.350

Individuals in the KCHSP are asked whether their labor contract is a written contract, a verbal agreement, an implied contract, or not a contract. We find more written contracts after the reform, which is indicative of citizens feeling more confident asking for contracts. (Kenyan Employment Act)

AEARCTR-0006228, Data Science for Justice: Evidence from a Nationwide Randomized Experiment in Kenya

Can digital platforms offering free legal information improve justice systems?

"bring knowledge of the law to the common people"

Keyword searches for automatic determination of most relevant clauses and judgments

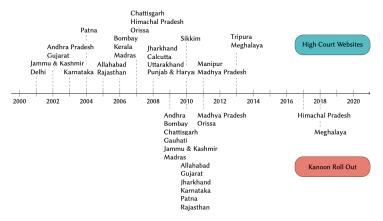


Figure: Roll Out Years for High Court Websites (top) and Kanoon (bottom)

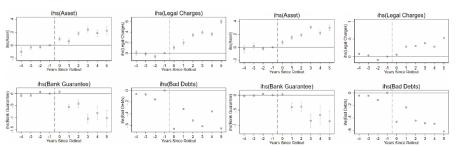
Today, it is a "first-stop" for lawyers, 6 min per page, 2.9 M search queries and 1.5 M sessions per month

Event study analysis of firm financials

$$Y_{ extit{cfst}} = lpha + \sum_{j=2}^4 eta_j (extit{lag}_j)_{ extit{cfst}} + \sum_{k=1}^4 \gamma_k (extit{lead}_k)_{ extit{cfst}} + \mu_s + \delta_f + \lambda_t + \epsilon_{ extit{cfst}}$$

Firms with at least one case

General equilibrium



Sizeable impacts on assets and reduction of bad debt reinforce the findings of a 12% increase in employment in an RCT of free legal information to South African firms. (Bertrand and Crepon 2021)

Highlight the potential for open source / open access tools to be transformative for development

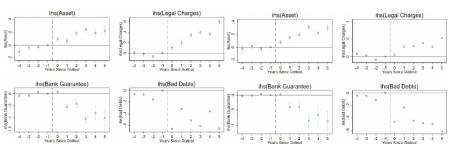
Impact of Free Legal Search on Rule of Law

Event study analysis of firm financials

$$Y_{cfst} = \alpha + \sum_{j=2}^{4} \beta_j (lag_j)_{cfst} + \sum_{k=1}^{4} \gamma_k (lead_k)_{cfst} + \mu_s + \delta_f + \lambda_t + \epsilon_{cfst}$$

Firms with at least one case

General equilibrium



Sizeable impacts on assets and reduction of bad debt reinforce the findings of a 12% increase in employment in an RCT of free legal information to South African firms. (Bertrand and Crepon 2021)

Highlight the potential for open source / open access tools to be transformative for development

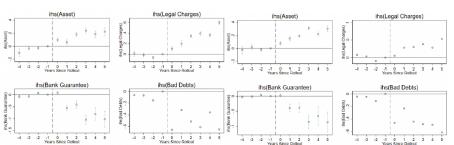
Impact of Free Legal Search on Rule of Law

Event study analysis of firm financials

$$Y_{ extit{cfst}} = lpha + \sum_{j=2}^4 eta_j (extit{lag}_j)_{ extit{cfst}} + \sum_{k=1}^4 \gamma_k (extit{lead}_k)_{ extit{cfst}} + \mu_s + \delta_f + \lambda_t + \epsilon_{ extit{cfst}}$$

Firms with at least one case

General equilibrium

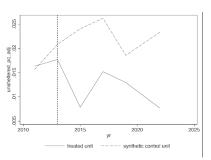


Sizeable impacts on assets and reduction of bad debt reinforce the findings of a 12% increase in employment in an RCT of free legal information to South African firms. (Bertrand and Crepon 2021)

Highlight the potential for open source / open access tools to be transformative for development

Impact of Free Legal Search on Rule of Law

Access to Civil Justice



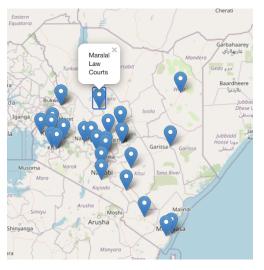
45% of "at risk" or currently homeless individuals were prevented from becoming homeless

What Role Does Access to Civil Justice Play in Reducing Homelessness? Evidence from Open Door Legal

See also NYC: Collison, Humphries, Kestelman, Nelson, Van Dyk, Waldinger 2024

Court Building

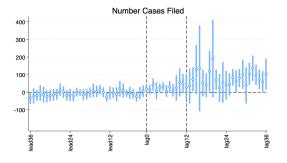
In 2012, Kenya began one of the largest court construction programs on record



Half had exogenous delays in construction

Court Building

Completed courts experienced 60% more cases filed per day



Succession, Commercial, Property

Court Performance

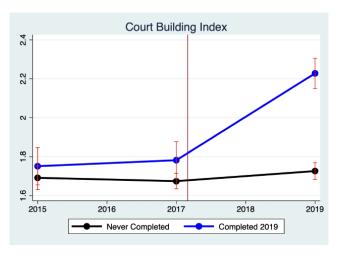
Completed courts reduced case delay by 25%

	(1)	(2)	(3)
	Time to	Number	Time to
	Disposition	Judges	Disposition
CompletedCourt ¹⁺	-119.2*	0.48***	-140.5**
	(59.9)	(0.13)	(58.9)
$CompletedCourt^0$	-13.5	0.13	-19.4
	(52.1)	(0.15)	(49.7)
${\it CompletedCourt}^{-1}$	-17.6	0.19	-22.6
	(50.3)	(0.15)	(53.0)
Number Judges			38.3**
			(16.6)
Control Group mean	483.6	1.92	483.6
Observations	125245	33602	125245

Impact of Completed Courts

Completed courts increased court satisfaction and access to justice

particularly for the disadvantaged



The share of litigants with only primary school education grows by 16 percentage points

Effect on Access to Justice

	(1) Primary
	Education
	Parties
Completed Court	0.16** (0.07)
Observations	1,519
Year FE	YES
Court FE	YES
Mean Control Group	0.42
(SD)	0.49

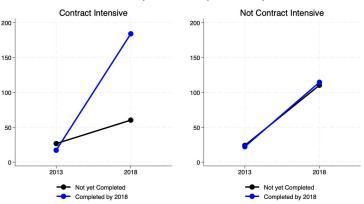
- $42 \Longrightarrow 58\%$, much more in line with Kenya's average
- Transforms the courts to being nationally representative

Firm Investment

Increased investment by firms by 37%

especially in contract intensive industries

Effects of Court Completed on Capital Stock per Worker



 a total added investment of USD 100 million, more than double the costs of the program (USD 45.5 million)

Effects of Court Completion on Property Rights

Completed courts increased property ownership by 5%

	(1) Own Dwelling?
Completed Court	0.035** (0.015)
Control Group mean	0.71
Observations	29082
County FE	YES
Year FE	YES

Building Courts: Effects on Access to Justice and Economic Development

Effects of Court Completion on Property Rights

Completed courts increased property ownership by 5%

	(1)
	Own Dwelling?
Completed Court	0.035** (0.015)
Control Group mean	0.71
Observations	29082
County FE	YES
Year FE	YES

Building Courts: Effects on Access to Justice and Economic Development

Court Speed Matters

Transferred cases result in Judge changes

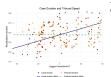
that increase case duration by 30%

	Days in court	Disposed within 1 year	Number of Hearings	Duration of Hearings
Judge changed	169*	-0.24**	3.1*	83***
	(93)	(.11)	(1.8)	(25)
Mean dep. var.	503	0.47	8.1	234
Observations	601540	601775	600268	397902
Month FE	Υ	Υ	Υ	Υ
F-test p-value	.12	.063	.085	.049

What is the impact of delay on litigants' outcomes?

- - Spillover courtrooms (C_i) Firms randomly assigned to 1σ faster panels

Jul 2014 Month-year



Testing empirically the identification assumptions:

Tribunal assignment matters for case duration: there is a steep positive correlation between tribunal speed and case duration (blue line)

Business as usual courtrooms (C₀)

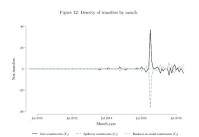
Tribunal assignment is random: there is no correlation between duration predicted by baseline case characteristics and tribunal speed (green dotted line)

Increase productivity by 10%

		Log Sales	
	t-1	t0	t+1
Tribunal Speed	-0.008	0.049	0.099***
	(0.025)	(0.034)	(0.034)
1st Stage F-stat	41	41	41
Y mean (level)	9.401	9.053	8.735

Court Speed Matters

Transferred cases result in Judge changes



that increase case duration by 30%

	Days in court	Disposed within 1 year	Number of Hearings	Duration of Hearings
Judge changed	169*	-0.24**	3.1*	83***
	(93)	(.11)	(1.8)	(25)
Mean dep. var.	503	0.47	8.1	234
Observations	601540	601775	600268	397902
Month FE	Υ	Υ	Υ	Υ
F-test p-value	.12	.063	.085	.049

What is the impact of delay on litigants' outcomes?

Firms randomly assigned to 1σ faster panels



Testing empirically the identification assumptions:

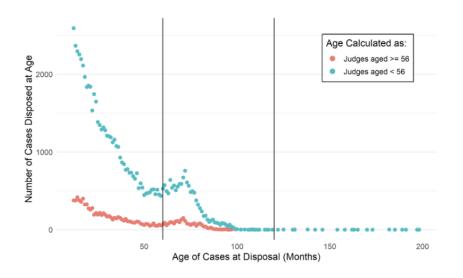
- Tribunal assignment matters for case duration: there is a steep positive correlation between tribunal speed and case duration (blue line)
- Tribunal assignment is random: there is no correlation between duration predicted by baseline case characteristics and tribunal speed (green dotted line)

Increase productivity by 10%

		Log Sales	<u>!</u>
	t-1	t0	t+1
Tribunal Speed	-0.008	0.049	0.099***
	(0.025)	(0.034)	(0.034)
1st Stage F-stat	41	41	41
Y mean (level)	9.401	9.053	8.735

How to increase court effectiveness?

Judges respond to productivity quotas

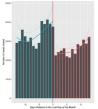


many case types get extra points if case is older than 5 years

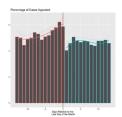
Judges respond to productivity quotas

resolving cases hastily at the end of month

Impact of Judicial Productivity Quotas on Firm Outcomes in Croatia



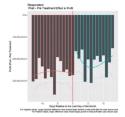
Cases Closed by the days of the month



% Appeals by Case Closing Date

Observe: Judges close more cases towards end of the month

- RDD: Cases decided at end of month are more likely to be appealed
- RDD: Respondent firms have worse outcomes when their cases are decided at end of month



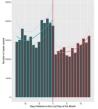
Post - Pre Treatment Effect for Defendant Firm

but hastened decisions are more likely to be appealed and adversely impact firms

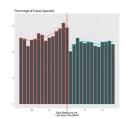
Judges respond to productivity quotas

resolving cases hastily at the end of month

Impact of Judicial Productivity Quotas on Firm Outcomes in Croatia



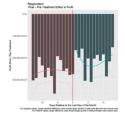
Cases Closed by the days of the month



% Appeals by Case Closing Date

Observe: Judges close more cases towards end of the month

- RDD: Cases decided at end of month are more likely to be appealed
- RDD: Respondent firms have worse outcomes when their cases are decided at end of month



Post - Pre Treatment Effect for Defendant Firm

but hastened decisions are more likely to be appealed and adversely impact firms

Dynamic Point Sytems?

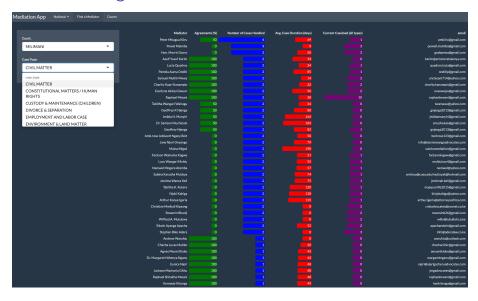
Apply sharing economy principles of low transaction costs, coordination of information networks and better resource allocation and utilization.

Legal Uber App

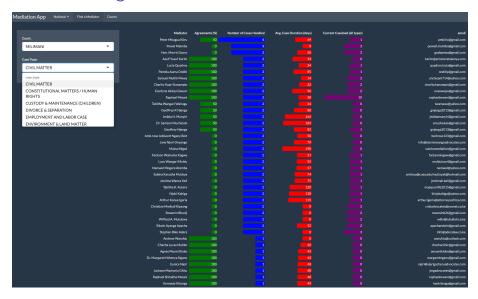
The web app will display a dashboard interface that allows the supply side user (clerk or judge) to view case availability. Case priority can be determined by how long the case has been idle and in which region it exists. These factors can influence not only the prioritization of a case but also the reward that is offered for taking the case. Participants can volunteer into an incentive scheme that allows them to earn points as they complete the cases. These points can then be spent on various rewards like access to interns, working from home allowance, flexible scheduling, and public recognition. Judges and clerks could also share schedules and professional details like their location and expertise with the system which can assist in determining their suitability for the platform.

Improve performance in congested courts by balancing workload across courts, without incurring cost of hiring new staff.

Recommending Mediators to Cases based on Value-Added?



Recommending Mediators to Cases based on Value-Added?

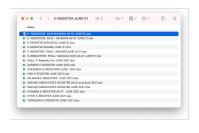


Open source decision support

Before: excel spreadsheets

After: decision dashboards

disaggregated and disharmonized

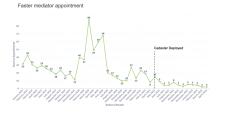


and harmonized data-entry

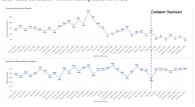
Harmonized data and dashboards

increased speed in appointments

Observational Impact



reduced case delay without adverse effects



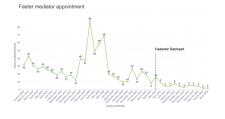
AEARCTR-0007699, The Impact of Case Management on Court-Annexed Mediation in Kenya

SEEING STATISTICS ABOUT THE SELF

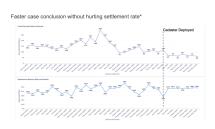
Harmonized data and dashboards

increased speed in appointments

Observational Impact



reduced case delay without adverse effects



AEARCTR-0007699, The Impact of Case Management on Court-Annexed Mediation in Kenya

SEEING STATISTICS ABOUT THE SELF

Dashboard RCT improved case outcomes

increased settlement rates

Improving the Quality of Legal Aid: Tech-Enabled Mediation in Peru

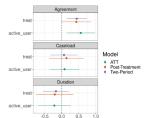
Research design: Randomized controlled trial across 80 legal stations in Peru

- Treatment: Conciliator App to self-assess performance indicators
- · Control: No access

App increases agreement rate by 0.5 standard deviations.

RCT 1.2: Coaching or Vertical accountability

RCT 2: Reddit forum using Netflix recommendation system



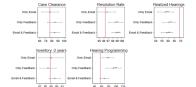
Dashboard RCT improved judicial performance

increased case clearance rates

Information Provision and Court Performance: Experimental Evidence from Chile

Research design: RCT across 55 court stations

- Simple dashboards alleviate the impacts of limited information.
- Courts adjust their decisions and improve court efficiency. Email promotion and feedback increase the timely resolution rate by 0.2 and 0.5 standard deviations, respectively, and hearing programming by 0.7 and 1.3 standard deviations, while they decrease the realized hearings by -1.3 and -1.0 standard deviations for those treated.



simple e-justice interventions enhance judicial state capacity

AEARCTR-0005512, Information Provision and Court Performance: Experimental Evidence from Chile

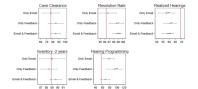
Dashboard RCT improved judicial performance

increased case clearance rates

Information Provision and Court Performance: Experimental Evidence from Chile

Research design: RCT across 55 court stations

- Simple dashboards alleviate the impacts of limited information.
- Courts adjust their decisions and improve court efficiency. Email promotion and feedback increase the timely resolution rate by 0.2 and 0.5 standard deviations, respectively, and hearing programming by 0.7 and 1.3 standard deviations, while they decrease the realized hearings by -1.3 and -1.0 standard deviations for those treated.



simple e-justice interventions enhance judicial state capacity

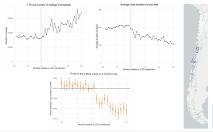
AEARCTR-0005512, Information Provision and Court Performance: Experimental Evidence from Chile

What is the Impact of E-Justice?

E-filing reduced case duration and increased access to justice, particularly for smaller parties

Peru & Chile Improving the Performance of Justice Services (P162833, P173860)

Question: Can technological innovations improve the performance of courts and the overall wellbeing of litigants?



Intervention:

- Electronic filing of cases (LTE) began in 2016
- Interrupted time-series analysis of LTE courts
- Total number of cases filed and resolved increased
 - Duration of cases significantly decreased
 Even for non-spurious cases
- Smaller firms have greater access
- Next: What are the impacts on firms?
- IE design and timeline:
- Geospatial Impact Evaluation (GIE)
 2020-

Key Feature: Electronic processing is a common policy intervention; covid accelerates development of e-justice solutions

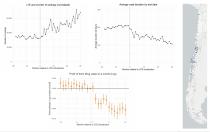
Impact of e-Access to Justice: Evidence from Chile

What is the Impact of E-Justice?

E-filing reduced case duration and increased access to justice, particularly for smaller parties

Peru & Chile Improving the Performance of Justice Services (P162833, P173860)

Question: Can technological innovations improve the performance of courts and the overall wellbeing of litigants?



Intervention:

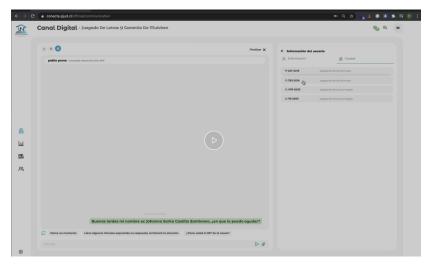
- Electronic filing of cases (LTE) began in 2016
- Interrupted time-series analysis of LTE courts
- Total number of cases filed and resolved increased
 - Duration of cases significantly decreased
 Even for non-spurious cases
 - Smaller firms have greater access
- , and the second second
- Next: What are the impacts on firms?
 IE design and timeline:
- Geospatial Impact Evaluation (GIE)

2020-

Key Feature: Electronic processing is a common policy intervention: covid accelerates development of e-justice solutions

Impact of e-Access to Justice: Evidence from Chile

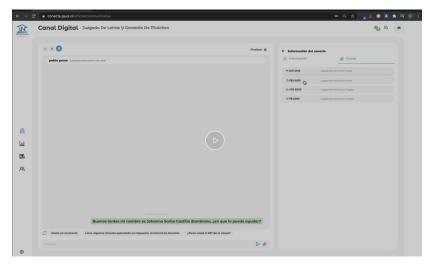
E-Justice during covid: Whatsapp



for Q&A with courts

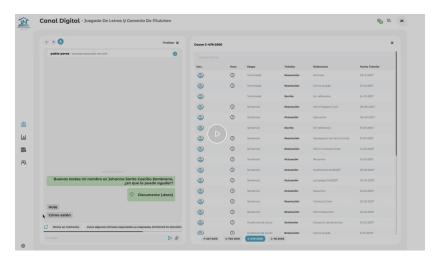
video and audio also enabled

E-Justice during covid: Whatsapp



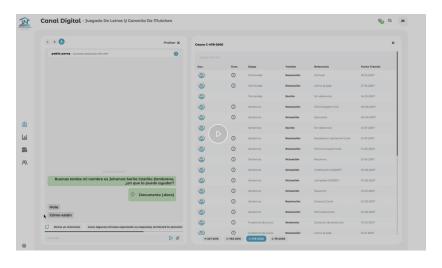
for Q&A with courts video and audio also enabled

.. Receivers are given text to copy and paste (chatbots/humans?)



documents are linked

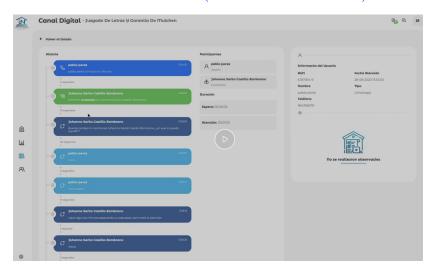
.. Receivers are given text to copy and paste (chatbots/humans?)



documents are linked

Cases are linked across calls

.. and into the courts (DIGITAL INTEROPERABILITY)



Cases are linked across calls

.. and into the courts (DIGITAL INTEROPERABILITY)

FACILITATING DOWNSTREAM ANALYSIS ON CONSEQUENCES

40% of inquiries were gender-related

Rolled out nationally (and advertised on Facebook)

to improve speed of justice

Chatbot & WhatsApp RCT improved dispute resolution and fiscal recovery for the state

Impact of Online Lok Adalats on Judicial Efficiency

With SAMA

Context

- A 2004 study in the US demonstrates that Alternative Dispute Resolution approaches reduced the number of trials (Stipanowich, 2004). We extend this hypothesis to Online Dispute Resolution with the aim to measure its impact on justice outcomes and judicial efficiency.
- This workstream seeks to deploy the technologies developed by Sama to scale up mediation services to poorly served locations in partnership with various state legal service authorities across India.
- Chatbot and WhatsApp performs best and significantly improved settlement rate and fiscal recovery for the state.

Impact of Online Lok Adalats on Judicial Efficiency

With SAMA

Context

- A 2004 study in the US demonstrates that Alternative Dispute Resolution approaches reduced the number of trials (Stipanowich, 2004). We extend this hypothesis to Online Dispute Resolution with the aim to measure its impact on justice outcomes and judicial efficiency.
- This workstream seeks to deploy the technologies developed by Sama to scale up mediation services to poorly served locations in partnership with various state legal service authorities across India.
- · Chatbot and WhatsApp performs best and significantly improved settlement rate and fiscal recovery for the state.

Metaverse

Colombia court moves to metaverse to host hearing

By Isabel Woodford ~

February 24, 2023 11:08 PM GMT+1 - Updated 3 months ago

64 J.L. & Econ. 269 (2021)
Racial Bias and in-Group Bias in Virtual Reality Courtrooms

Racial Bias and In-Group Bias in Virtual Reality Courtrooms

Samantha Bielen Hasselt University
Wim Marneffe Hasselt University
Naci Mocan Louisiana State University

Abstract

We filted video of criminal traits using three-dimensional virtual reality (Visitonhous), presented by scard presentions and defended by result additional trainings in a real countries in a real countries. In the first paper that utilizes Vik exhalogic between the countries of the visiton of visiton of the visiton of th

CAN WE PERSONALIZE DEBIASING TO THE LISTENER/VIEWER?

Metaverse

Colombia court moves to metaverse to host hearing

By Isabel Woodford ~

February 24, 2023 11:08 PM GMT+1 - Updated 3 months ago

64 J.L. & Econ. 269 (2021)
Racial Bias and in-Group Bias in Virtual Reality Courtrooms

Racial Bias and In-Group Bias in Virtual Reality Courtrooms

Samantha Bielen Hasselt University
Wim Marneffe Hasselt University
Naci Mocan Louisiana State University

Abstract

We filted video of criminal traits using three-dimensional virtual reality (Visitonhous), presented by scard presentions and defended by result additional trainings in a real countries in a real countries. In the first paper that utilizes Vik exhalogic between the countries of the visiton of visiton of the visiton of th

Can we personalize debiasing to the listener/viewer?

Can Al improve decision-making? Babic, Chen, Evgeniou, and Fayard, Harvard Business Review 2020

- Cognitive science and psychology suggests that humans have limited and imperfect reasoning capacities (Tversky and Kahneman 1986; Eyster 2019)
- Gambler's fallacy, mood, time of day, order, ...
 - highlight fragility of courts
 - ★ "In a crowded immigration court, 7 minutes to decide a family's future" (Wash Post 2/2/14
- Policy discussion tends to revolve around having AI replace humans or suggest the optimal decision
- Consider instead an incremental approach based on Enlightenment and Romantic ideals of the self: self-knowledge, self-expression

Can Al improve decision-making? Babic, Chen, Evgeniou, and Fayard, Harvard Business Review 2020

- Cognitive science and psychology suggests that humans have limited and imperfect reasoning capacities (Tversky and Kahneman 1986; Eyster 2019)
- Gambler's fallacy, mood, time of day, order, ...
 - highlight fragility of courts
 - \star "In a crowded immigration court, 7 minutes to decide a family's future" (Wash Post 2/2/14)
- Policy discussion tends to revolve around having AI replace humans or suggest the optimal decision
- Consider instead an incremental approach based on Enlightenment and Romantic ideals of the self: self-knowledge, self-expression

Can Al improve decision-making? Babic, Chen, Evgeniou, and Fayard, Harvard Business Review 2020

- Cognitive science and psychology suggests that humans have limited and imperfect reasoning capacities (Tversky and Kahneman 1986; Eyster 2019)
- Gambler's fallacy, mood, time of day, order, ...
 - highlight fragility of courts
 - ★ "In a crowded immigration court, 7 minutes to decide a family's future" (Wash Post 2/2/14)
- Policy discussion tends to revolve around having AI replace humans or suggest the optimal decision
- Consider instead an incremental approach based on Enlightenment and Romantic ideals of the self: self-knowledge, self-expression

Can Al improve decision-making? Babic, Chen, Evgeniou, and Fayard, Harvard Business Review 2020

- Cognitive science and psychology suggests that humans have limited and imperfect reasoning capacities (Tversky and Kahneman 1986; Eyster 2019)
- Gambler's fallacy, mood, time of day, order, ...
 - highlight fragility of courts
 - ★ "In a crowded immigration court, 7 minutes to decide a family's future" (Wash Post 2/2/14)
- Policy discussion tends to revolve around having AI replace humans or suggest the optimal decision
- Consider instead an incremental approach based on Enlightenment and Romantic ideals of the self: self-knowledge, self-expression

Can Al improve decision-making? Babic, Chen, Evgeniou, and Fayard, Harvard Business Review 2020

- Cognitive science and psychology suggests that humans have limited and imperfect reasoning capacities (Tversky and Kahneman 1986; Eyster 2019)
- Gambler's fallacy, mood, time of day, order, ...
 - highlight fragility of courts
 - ★ "In a crowded immigration court, 7 minutes to decide a family's future" (Wash Post 2/2/14)
- Policy discussion tends to revolve around having AI replace humans or suggest the optimal decision
- Consider instead an incremental approach based on Enlightenment and Romantic ideals of the self: self-knowledge, self-expression

Stage 1: Predicted Self

- In Stage 1, people use AI as a support tool, speeding up existing processes (for example, by prefilling forms)
 - ► An Al-based recommender system offers a decision-maker the best prediction of themselves, based on their previous decision-making, from a model using only legally relevant features X.
 - ★ assess judges vs. their predicted self
 - ▶ (1) Increase consistency across similar cases by offering the relevant reference points and cabining the influence of extraneous factors.
 - ▶ (2) Seeing the predicted self leverages self-image motives of pro-social decision-makers (Benabou and Tirole 2011).
 - ▶ (3) Deviating from defaults facilitates conscious deliberation.
- self-image (predicted self)

Stage 1: Predicted Self

- In Stage 1, people use AI as a support tool, speeding up existing processes (for example, by prefilling forms)
 - ► An Al-based recommender system offers a decision-maker the best prediction of themselves, based on their previous decision-making, from a model using only legally relevant features X.
 - ★ assess judges vs. their predicted self
 - ▶ (1) Increase consistency across similar cases by offering the relevant reference points and cabining the influence of extraneous factors.
 - ▶ (2) Seeing the predicted self leverages self-image motives of pro-social decision-makers (Benabou and Tirole 2011).
 - ▶ (3) Deviating from defaults facilitates conscious deliberation.
- self-image (predicted self)

Stage 2: Prediction of Error

- A deviation that is more likely to render an error (from a model using all available features X and W) can be accompanied by a nudge to "be more attentive" or spend more time to make a better decision.
 - ▶ (1) A nudge, instead of a checklist, might impose less bandwidth.
 - ▶ (2) Save time and energy to focus on novel, complex cases.
- self-improvement (nudges)

Stage 3: Explanations

- A decision-maker may want interpretable machine learning and request a reason for why the deviation may lead to mistakes.
 - ▶ (1) Stage 3 elevates the AI to the role of a more general coach, providing feedback on choices.
 - ▶ (2) The more people feel that their autonomy is protected and that they are in control of the conversation—able to choose when feedback is given—the better they respond to it. (West and Thorson 2018)
- self-understanding (why)

Stage 4: Dialogue

- Of course, it is always possible that the AI system's suggestion would not take into account some reliable private information that the decision-maker might have access to.
 - Where this happens, the AI system would be steering the decision-maker off course rather than correcting for their inconsistencies.
 - Therefore, a dialogue, encouraged between the decision-maker and the Al system, allowing for the Al to learn from the user as well.
- self-expression (autonomy)

Stage 5: Community of Experts

- Al brings in other people's decision histories and patterns, serving as a platform for a community of experts.
 - ► A decision-maker may want to access a community of experts by seeing what the algorithm predicts other to do.
 - This can be accessible as a dropdown menu, to seek advice from a particular decision-maker,
 - or as a statistical distribution to protect privacy.
- community of practice (self vs. others)

Stages 6+

- Stage 6, train novices
 - who tend to make more mistakes
 - experts can input a preferred decision
 - or use prediction if appealed
- Stage 7, open access for citizens
 - ▶ for transparency & accountability (Kenya)
 - social image (reputation sanctions in lieu of contracts)
- Stage 8, use feedback from dialogue stage as recommender system
 - with A|B testing to generate causal inference

Stages 6+

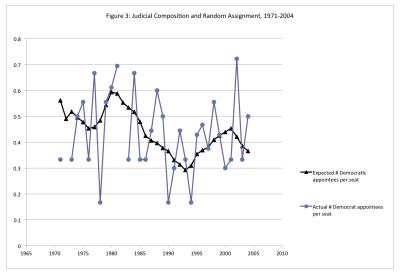
- Stage 6, train novices
 - who tend to make more mistakes
 - experts can input a preferred decision
 - or use prediction if appealed
- Stage 7, open access for citizens
 - ▶ for transparency & accountability (Kenya)
 - social image (reputation sanctions in lieu of contracts)
- Stage 8, use feedback from dialogue stage as recommender system
 - with A|B testing to generate causal inference

Stages 6+

- Stage 6, train novices
 - who tend to make more mistakes
 - experts can input a preferred decision
 - or use prediction if appealed
- Stage 7, open access for citizens
 - ▶ for transparency & accountability (Kenya)
 - social image (reputation sanctions in lieu of contracts)
- Stage 8, use feedback from dialogue stage as recommender system
 - ▶ with A|B testing to generate causal inference

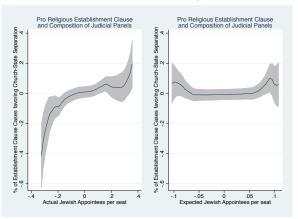
Randomization of cases already yields A|B testing

Decisions are not random, but judges are randomly assigned



In common law, judges set precedent for future judges to follow

Biographies Predict Church-State Separation

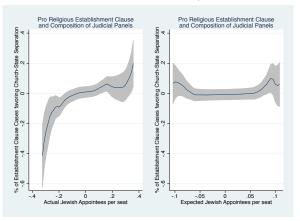


Minority religion judges prefer separate church and state

The Political Economy of Beliefs, European Econ Rev R/R

$$\begin{cases} Law_{ct} = \alpha_{ict} + \phi Z_{ct} + \gamma_1 X_{ict} + \gamma_2 W_{ct} + \eta_{ict} \text{ (machine learning step)} \\ Y_{ict} = \alpha_{ict} + \rho Law_{ct} + \beta_1 X_{ict} + \beta_2 W_{ct} + \varepsilon_{ict} \text{ (causal inference step)} \end{cases}$$

Biographies Predict Church-State Separation

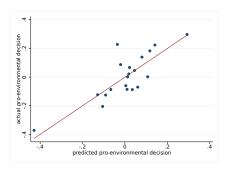


Minority religion judges prefer separate church and state

The Political Economy of Beliefs, European Econ Rev R/R

$$\begin{cases} \textit{Law}_{ct} = \alpha_{ict} + \phi Z_{ct} + \gamma_1 X_{ict} + \gamma_2 W_{ct} + \eta_{ict} \text{ (machine learning step)} \\ Y_{ict} = \alpha_{ict} + \rho \textit{Law}_{ct} + \beta_1 X_{ict} + \beta_2 W_{ct} + \varepsilon_{ict} \text{ (causal inference step)} \end{cases}$$

Impact of Environmental Decisions



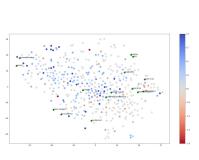
Period (Year)

Effects of Pro-EPA on emissions - crossfoldIV

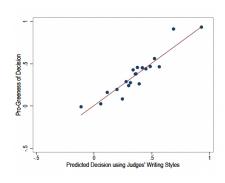
Calibration plot

Rulings in favor of EPA regulations reduce air pollution

Impact of Environmental Decisions

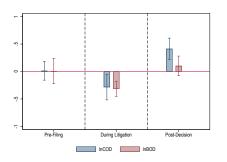


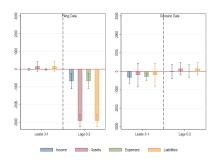
Judges predicted to be Green cluster together



and affect verdicts

Environmental Litigation as Scrutiny





Green judges reduce pollution and

firm activity

A Four Decade Analysis of Environmental Justice, Firms, and Pollution in India

Automated Impact Analysis?

locate the nearest past cases, assignment of judges to those cases, and predict their rulings to identify the consequences of decisions

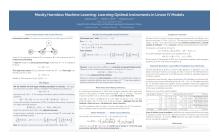
Chen, Chen, and Lewis; NeurIPS 2020 (ML for Policy)

Would informing people about impacts of decisions increase intrinsic motivation?

RENEWED ATTENTION ON DISPARITIES IN THE JUSTICE SYSTEM

Automated Impact Analysis?

locate the nearest past cases, assignment of judges to those cases, and predict their rulings to identify the consequences of decisions



Chen, Chen, and Lewis; NeurIPS 2020 (ML for Policy)

Would informing people about impacts of decisions increase intrinsic motivation?

Renewed Attention on Disparities in the Justice System

Automated Impact Analysis?

locate the nearest past cases, assignment of judges to those cases, and predict their rulings to identify the consequences of decisions

Chen, Chen, and Lewis; NeurIPS 2020 (ML for Policy)

Would informing people about impacts of decisions increase intrinsic motivation?

RENEWED ATTENTION ON DISPARITIES IN THE JUSTICE SYSTEM

How Can We Train Judges to Improve Rule of Law?

- The training of public officials is one of the key dimensions governments use to improve bureaucratic performance
- For example, in 2017 alone, the U.S. allocated approximately 4% of its annual budget for personnel compensation and benefits, or around \$10 billion, towards training civil servants (Credibility Engine 2021; USA Spending)
- Despite its significance, there is limited empirical research on effective methods to improve the training of public officials using RCTs
- Particularly relevant in the judiciary, as slow and unreliable justice systems represent a key barrier to economic growth

How Can We Train Judges to Improve Rule of Law?

- The training of public officials is one of the key dimensions governments use to improve bureaucratic performance
- For example, in 2017 alone, the U.S. allocated approximately 4% of its annual budget for personnel compensation and benefits, or around \$10 billion, towards training civil servants (Credibility Engine 2021; USA Spending)
- Despite its significance, there is limited empirical research on effective methods to improve the training of public officials using RCTs
- Particularly relevant in the judiciary, as slow and unreliable justice systems represent a key barrier to economic growth

Personnel economics of the state (Finan, Olken, and Pande 2017)

selection

incentives

monitoring

attitudes, preferences, beliefs

Personnel economics of the state (Finan, Olken, and Pande 2017)

selection

incentives

monitoring

attitudes, preferences, beliefs

Personnel economics of the state (Finan, Olken, and Pande 2017)

selection

incentives

monitoring

attitudes, preferences, beliefs

Personnel economics of the state (Finan, Olken, and Pande 2017)

selection

incentives

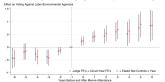
monitoring

attitudes, preferences, beliefs

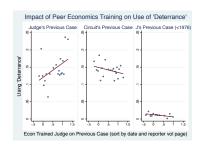
Upon economics training, judges

used economics language in opinions

Effect of Manne Program on Ruling Against Labor/Environment Agencies

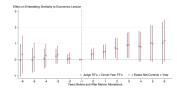


impacted their peers

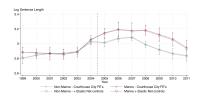


changed how they decided

Effect of Manne Program on Economics Language

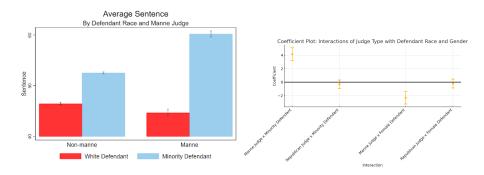


rendered 20% longer sentences



Impact of Economics Judges on Racial Gaps

Economics trained judges are harsher to minorities



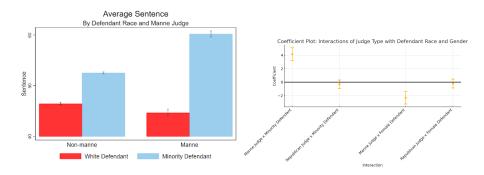
even controlling for political party

Chen, Nagarathinam, and Reinhart, Science Advances R|R

What about econometrics?

Impact of Economics Judges on Racial Gaps

Economics trained judges are harsher to minorities

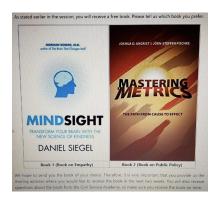


even controlling for political party

Chen, Nagarathinam, and Reinhart, Science Advances R|R

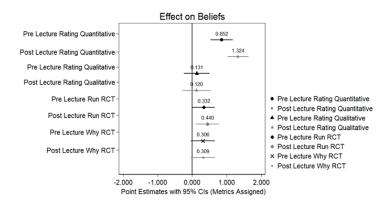
What about econometrics?

Training deputy ministers in school of thought associated with credibility revolution



- Book lottery
- Videos by Authors
- Graded summarization and visualization exercises (SEL)
- Self-persuasion presentation to others

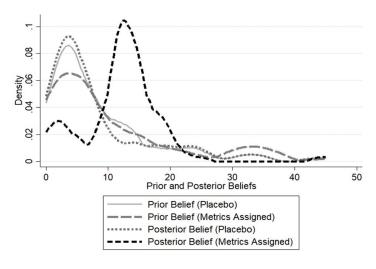
Metrics Training Increased Demand for Causal Evidence



Treated Policymakers Update Posterior Beliefs

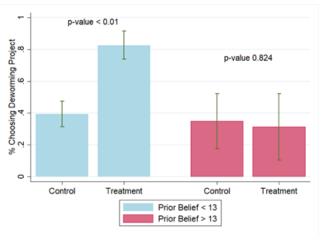
Increased Responsiveness to Causal Evidence

Treated policymakers' performance in national research methods and public policy exams improves and commissioning of RCTs in policy making increases



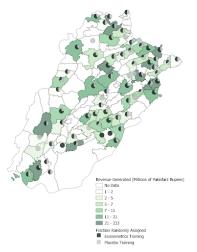
Metrics Training Impacts Deworming Project Choice

In their official duties, twice as likely to choose and triple funding for policies with RCT evidence



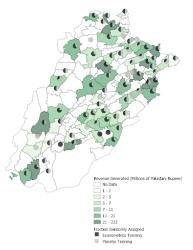
Metrics Training Improves Fiscal State Capacity

The results extend to tax officers: Econometrics education led to a 20% increase in the use of tax reminders and 40% increase in tax collection



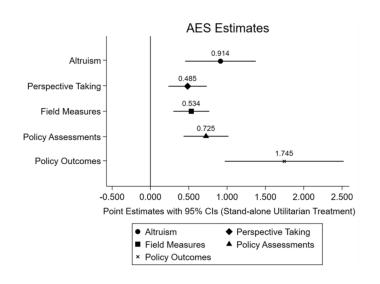
Metrics Training Improves Fiscal State Capacity

The results extend to tax officers: Econometrics education led to a 20% increase in the use of tax reminders and 40% increase in tax collection



AEARCTR-0010583, Training Policymakers in Econometrics II, Management Science R/R

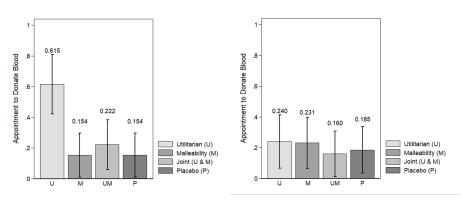
Randomizing schools of thought on cultivating prosociality Training effective altruism via the utilitarian value of empathy renders greater altruism



Blood Donations

Training effective altruism increased mentalizing on consequences of decisions

Blood donations doubled only for matching blood type



Perspective-taking in strategic dilemmas improved

Altruism in Action

Orphanage visits and volunteering increased. Amid official duties, ministers were more likely to choose social policies and recommended 4-fold funding for them

Table 6: Impact of Treatments on Policy

	Orphanage Re	enovation Policy	School Ren	ovation Policy
		Funds		Funds
	Letter Sent	Recommended (PKR)	Letter Sent	Recommended (PKR)
	(1)	(2)	(3)	(4)
U	0.306***	72,708**	0.386***	78,101**
	(0.0754)	(30,867)	(0.0892)	(30,181)
M	0.0599	19,007	-0.0381	17,764
	(0.0562)	(25,173)	(0.0768)	(13,888)
UM	0.0939	17,448	-0.0451	25,848
	(0.0597)	(24,144)	(0.0755)	(18,399)
Individual Controls	Yes	Yes	Yes	Yes
Observations	201	201	201	201
R-squared	0.197	0.125	0.253	0.147
Mean of dep. var. (placebo)	0.041	18367.35	0.163	8367.35

The book lottery illustrates the mechanism

Altruism in Action

Orphanage visits and volunteering increased. Amid official duties, ministers were more likely to choose social policies and recommended 4-fold funding for them

Table 6: Impact of Treatments on Policy

	Orphanage R	enovation Policy	School Renovation Po	
		Funds		Funds
	Letter Sent	Recommended	Letter Sent	Recommended
		(PKR)		(PKR)
	(1)	(2)	(3)	(4)
U	0.306***	72,708**	0.386***	78,101**
	(0.0754)	(30,867)	(0.0892)	(30,181)
M	0.0599	19,007	-0.0381	17,764
	(0.0562)	(25,173)	(0.0768)	(13,888)
UM	0.0939	17,448	-0.0451	25,848
	(0.0597)	(24,144)	(0.0755)	(18,399)
Individual Controls	Yes	Yes	Yes	Yes
Observations	201	201	201	201
R-squared	0.197	0.125	0.253	0.147
Mean of dep. var. (placebo)	0.041	18367.35	0.163	8367.35

The book lottery illustrates the mechanism

Demand for Learning Drives Long-Term Impacts

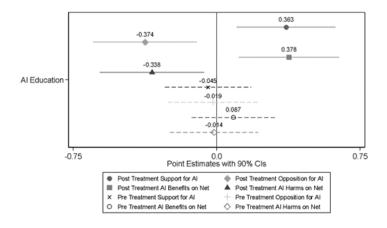
POLICIES ARE INFLUENCED BY TREATMENT ONLY WHEN THE BOOK IS ASSIGNED

Table 9: Causal Mediation Analysis - Mechanism

·	Orphanag	ge Renovation Policy	School	School Renovation Policy		
		Funds Recommended		Funds Recommended		
	Letter Sent	(PKR)	Letter Sent	(PKR)		
	(1)	(2)	(3)	(4)		
U	-0.0703	-31,895	-0.250*	-3,443		
	(0.0610)	(20,961)	(0.136)	(20,214)		
M	0.208*	71.262	-0.0659	41.749		
	(0.108)	(44,827)	(0.151)	(30,768)		
UM	0.0284	24.604	-0.0430	60.145		
	(0.109)	(51,114)	(0.168)	(45,833)		
Empathy Book Assigned	0.0169	22,815	-0.317	-1.291		
	(0.0534)	(21,408)	(0.203)	(34,365)		
UX Empathy Book Assigned	0.458***	56,736	1.124***	119.067**		
	(0.138)	(40,251)	(0.229)	(51,932)		
MX Empathy Book Assigned	-0.318**	-115,090**	0.0983	-16,161		
,	(0.134)	(47,621)	(0.254)	(45,536)		
UMX Empathy Book Assigned	-0.133	-68,845	0.213	-21,556		
. , ,	(0.119)	(45,727)	(0.233)	(44,478)		
Individual Controls	Yes	Yes	Yes	Yes		
Observations	201	201	201	201		
R-squared	0.328	0.204	0.429	0.196		
Mean of dep. var. (placebo)	0.041	18367.35	0.163	8367.35		

Al Training and Al Fairness Activism

Al Training/Activism Impacts Al Attitudes of Ministers and their Subordinates

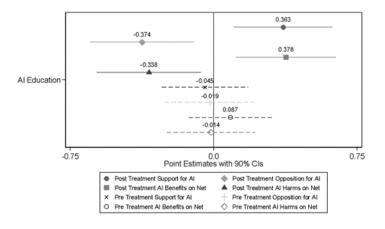


Al Fairness Activism: Weapons of Math Destruction (O'Neill 2016)

AMID LAND RECORD DIGITIZATION EFFORTS..

Al Training and Al Fairness Activism

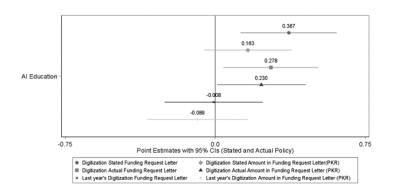
Al Training/Activism Impacts Al Attitudes of Ministers and their Subordinates



Al Fairness Activism: Weapons of Math Destruction (O'Neill 2016)

AMID LAND RECORD DIGITIZATION EFFORTS..

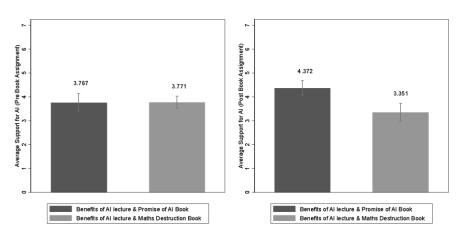
Al Training and Al Fairness Activism Al Training/Activism Impacts Digitization Funding



Book Mechanism

Mediates the Impact of AI Training

Figure B5: Ministers Assigned the "Benefits of AI" lectures (Pre vs Post Book Assignment)



by 33% in resolution time, while AI Fairness Activism worsens resolution of land disputes

Tabl	9: Impact	of Al	Education	Training and	Fairness	Activism by	Land and Placebo	

Schools & Road Construction Complaints						
		dential Property		hools & Road		
	Com	plaints	Construction	n Complaints		
	Citizen Rating	Resolution Days	Citizen Rating	Resolution Days		
	Average	Average	Average	Average		
	(1)	(2)	(3)	(4)		
Panel A: AI Education						
AI Education	0.477**	-22.31**	0.203	-12.49		
	(0.185)	(8.746)	(0.270)	(9.157)		
Controls	Yes	Yes	Yes	Yes		
Observations	95	95	95	95		
R-squared	0.155	0.269	0.023	0.192		
Mean Dep. Variable	1.703	65.356	2.403	63.723		
Panel B: AI Fairness Activism						
AI Fairness Activism	-0.332*	15.85*	-0.373	8.512		
	(0.192)	(8.709)	(0.251)	(8.617)		
Controls	Yes	Yes	Yes	Yes		
Observations	95	95	95	95		
R-squared	0.126	0.244	0.041	0.182		
Mean Dep. Variable	1.703	65.356	2.403	63.723		

AEARCTR-0008431, AI Education as State Capacity: Experimental Evidence from Pakistan

Schools of thought have been influential in impacting citizens' lives

WOMEN'S RIGHTS MOVEMENT HAS IMPROVED LIVES OF WOMEN

BUT SLOW PROGRESS IN SOME PLACES SPEAK TO STICKINESS OF NORMS

by 33% in resolution time, while AI Fairness Activism worsens resolution of land disputes

Table 9: Impact of AI Education Training and Fairness Activism by Land and Placebo Schools & Road Construction Complaints						
		dential Property plaints	Placebo - Schools & Road Construction Complaints			
	Citizen Rating	Resolution Days	Citizen Rating	Resolution Days		
	Average	Average	Average	Average		
	(1)	(2)	(3)	(4)		
Panel A: AI Education						
AI Education	0.477**	-22.31**	0.203	-12.49		
	(0.185)	(8.746)	(0.270)	(9.157)		
Controls	Yes	Yes	Yes	Yes		
Observations	95	95	95	95		
R-squared	0.155	0.269	0.023	0.192		
Mean Dep. Variable	1.703	65.356	2.403	63.723		
Panel B: AI Fairness Activism						
AI Fairness Activism	-0.332*	15.85*	-0.373	8.512		
	(0.192)	(8.709)	(0.251)	(8.617)		
Controls	Yes	Yes	Yes	Yes		
Observations	95	95	95	95		
R-squared	0.126	0.244	0.041	0.182		

AEARCTR-0008431, AI Education as State Capacity: Experimental Evidence from Pakistan Schools of thought have been influential in impacting citizens' lives

2 403

63 723

WOMEN'S RIGHTS MOVEMENT HAS IMPROVED LIVES OF WOMEN

1 703

BUT SLOW PROGRESS IN SOME PLACES SPEAK TO STICKINESS OF NORMS

by 33% in resolution time, while AI Fairness Activism worsens resolution of land disputes

Schools & Road Construction Complaints							
	Land and Residential Property		Placebo - Sc.	Placebo - Schools & Road			
	Com	plaints	Construction Complaints				
	Citizen Rating Resolution Days		Citizen Rating	Resolution Days			
	Average	Average	Average	Average			
	(1)	(2)	(3)	(4)			
Panel A: AI Education							
AI Education	0.477**	-22.31**	0.203	-12.49			
	(0.185)	(8.746)	(0.270)	(9.157)			
Controls	Yes	Yes	Yes	Yes			
Observations	95	95	95	95			
R-squared	0.155	0.269	0.023	0.192			

AI Fairness Activism	-0.332*	15.85*	-0.373	8.512
	(0.192)	(8.709)	(0.251)	(8.617)
Controls	Yes	Yes	Yes	Yes
Observations	95	95	95	95
R-squared	0.126	0.244	0.041	0.182
Mean Den, Variable	1.703	65 356	2.403	63 723

AEARCTR-0008431, Al Education as State Capacity: Experimental Evidence from Pakistan

2.403

Schools of thought have been influential in impacting citizens' lives

WOMEN'S RIGHTS MOVEMENT HAS IMPROVED LIVES OF WOMEN

BUT SLOW PROGRESS IN SOME PLACES SPEAK TO STICKINESS OF NORMS

Controls

Observations R-squared

by 33% in resolution time, while AI Fairness Activism worsens resolution of land disputes

Impact of AI Education Training and Fairness Activism by Land and Placebo

Schools & Road Construction Complaints							
		dential Property plaints	Placebo - Schools & Road Construction Complaints				
	Citizen Rating	Resolution Days	Citizen Rating	Resolution Days			
	Average	Average	Average	Average			
	(1)	(2)	(3)	(4)			
Panel A: AI Education							
AI Education	0.477**	-22.31**	0.203	-12.49			
	(0.185)	(8.746)	(0.270)	(9.157)			
Controls	Yes	Yes	Yes	Yes			
Observations	95	95	95	95			
R-squared	0.155	0.269	0.023	0.192			
Mean Dep. Variable	1.703	65.356	2.403	63.723			
Panel B: AI Fairness Activism							
AI Fairness Activism	-0.332*	15.85*	-0.373	8.512			
	(0.192)	(8.709)	(0.251)	(8,617)			

AEARCTR-0008431, AI Education as State Capacity: Experimental Evidence from Pakistan

Yes

0.041

2 403

0.182

63 723

Schools of thought have been influential in impacting citizens' lives

0.244

65 356

0.126

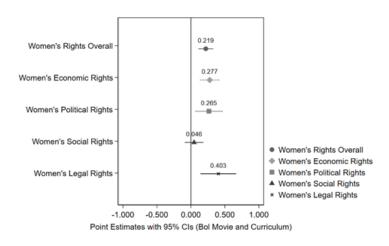
1 703

WOMEN'S RIGHTS MOVEMENT HAS IMPROVED LIVES OF WOMEN

BUT SLOW PROGRESS IN SOME PLACES SPEAK TO STICKINESS OF NORMS

Transmitting Gender Rights Shifts Teacher's Attitudes

Using a visual narrative (best-selling film developed with Johns Hopkins) and 5-page curricular outline, we randomized teachers to conduct structured semester-long class discussions over women's rights.

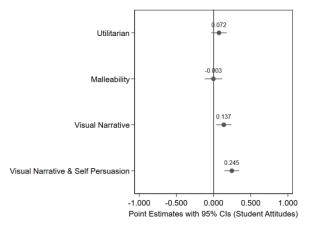


Signing of Petititons and Implicit Attitudes

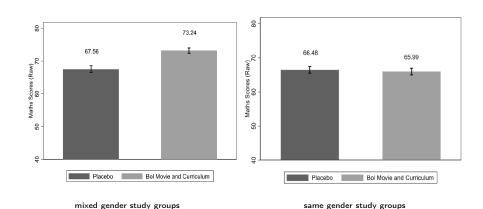
	(1)	(2)	(3)	(4)
	Gender	Petition to	Petition to	Gender IAT
	Recognition	Criminalize	Abolish	Score
	Index	Dowry	Polygamy	
Visual Narrative & Self-Persuasion	0.187***	0.566***	0.512***	0.348**
	[0.0510]	[0.143]	[0.146]	[0.162]
Visual Narrative	0.140***	0.362***	0.349**	0.247*
	[0.0511]	[0.130]	[0.140]	[0.136]
U	0.0607	0.0221	-0.0626	-0.0786
	[0.0445]	[0.104]	[0.0557]	[0.140]
M	0.0897*	0.0595	-0.0191	-0.114
	[0.0531]	[0.109]	[0.0603]	[0.123]
Individual Controls	Yes	Yes	Yes	Yes
School Fixed Effects	Yes	Yes	Yes	Yes
Observations	607	607	607	527
R-squared	0.138	0.140	0.200	0.131

Gender Rights are Oblique Transmitted to Students

Figure 3: Impact on Students' Gender Attitudes



Transmitting Gender Rights Improves Student Achievement Only for Mixed Gender Study Groups



Mixed-Gender Study Groups

Increased cooperation and coordination with the opposite gender

Panel A: Responses when facing opposite gender						
	(1)	(2)	(3)	(4)		
	Redistribution	Competitiveness	Cooperation	Coordination		
UX Mixed Study Group	-0.0661	-0.0219	-0.00630	-0.0168		
	[0.0646]	[0.0666]	[0.0377]	[0.0347]		
MX Mixed Study Group	-0.0812	-0.0961	-0.0230	0.0122		
	[0.0642]	[0.0669]	[0.0380]	[0.0345]		
Movie X Mixed Study Group	-0.0375	-0.0666	0.171***	0.184***		
	[0.0705]	[0.0705]	[0.0386]	[0.0481]		
Movie-Curriculum X Mixed Study Group	-0.0406	-0.0358	0.299***	0.333***		
	[0.0671]	[0.0733]	[0.0349]	[0.0347]		
Playing with Opposite Gender	Yes	Yes	Yes	Yes		
Individual Controls & School FE	Yes	Yes	Yes	Yes		
Observations	9,145	9,145	9,145	9,145		
R-squared	0.008	0.013	0.610	0.331		

AEARCTR-0007465, Mehmood, Naseer, and Chen, American Economic J: Policy R&R

students looking up to teachers can explain oblique transmission

Mixed-Gender Study Groups

Increased cooperation and coordination with the opposite gender

Panel A: Responses when facing op	posite gender			
	(1)	(2)	(3)	(4)
	Redistribution	Competitiveness	Cooperation	Coordination
UX Mixed Study Group	-0.0661	-0.0219	-0.00630	-0.0168
	[0.0646]	[0.0666]	[0.0377]	[0.0347]
MX Mixed Study Group	-0.0812	-0.0961	-0.0230	0.0122
	[0.0642]	[0.0669]	[0.0380]	[0.0345]
Movie X Mixed Study Group	-0.0375	-0.0666	0.171***	0.184***
	[0.0705]	[0.0705]	[0.0386]	[0.0481]
Movie-Curriculum X Mixed Study Group	-0.0406	-0.0358	0.299***	0.333***
	[0.0671]	[0.0733]	[0.0349]	[0.0347]
Playing with Opposite Gender	Yes	Yes	Yes	Yes
Individual Controls & School FE	Yes	Yes	Yes	Yes
Observations	9,145	9,145	9,145	9,145
R-squared	0.008	0.013	0.610	0.331

AEARCTR-0007465, Mehmood, Naseer, and Chen, American Economic J: Policy R&R students looking up to teachers can explain oblique transmission

Mixed-Gender Study Groups

Increased cooperation and coordination with the opposite gender

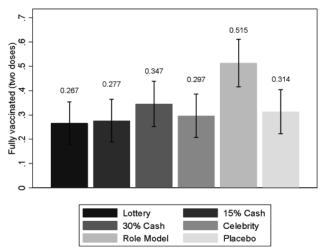
Panel A: Responses when facing op	posite gender			
	(1)	(2)	(3)	(4)
	Redistribution	Competitiveness	Cooperation	Coordination
UX Mixed Study Group	-0.0661	-0.0219	-0.00630	-0.0168
	[0.0646]	[0.0666]	[0.0377]	[0.0347]
MX Mixed Study Group	-0.0812	-0.0961	-0.0230	0.0122
	[0.0642]	[0.0669]	[0.0380]	[0.0345]
Movie X Mixed Study Group	-0.0375	-0.0666	0.171***	0.184***
	[0.0705]	[0.0705]	[0.0386]	[0.0481]
Movie-Curriculum X Mixed Study Group	-0.0406	-0.0358	0.299***	0.333***
	[0.0671]	[0.0733]	[0.0349]	[0.0347]
Playing with Opposite Gender	Yes	Yes	Yes	Yes
Individual Controls & School FE	Yes	Yes	Yes	Yes
Observations	9,145	9,145	9,145	9,145
R-squared	0.008	0.013	0.610	0.331

AEARCTR-0007465, Mehmood, Naseer, and Chen, American Economic J: Policy R&R students looking up to teachers can explain oblique transmission

Role Models Matter for Covid Vaccinations

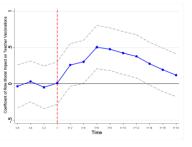
and Cash Incentives Do Not

Figure 1: Impact on Full Vaccinations

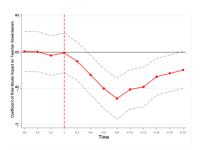


$.. Reducing\ Absentee is m$

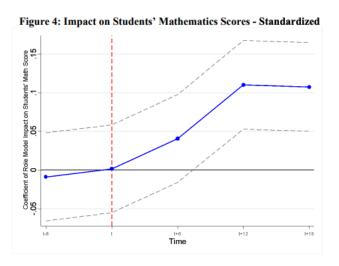
Panel A: Impact of Role Model on Teachers' Vaccinations



Panel B: Impact of Role Model on Teachers' Absenteeism



..Increasing Student Achievement



Empathy Elevates Receptiveness to Messenger (theory of mind)

Table 2: Impact on Vaccinations - Standardized				
		Fully V	accinated	
	(1)	(2)	(3)	(4)
Lottery	-0.144	-0.150	-0.137	-0.152
	(0.140)	(0.137)	(0.140)	(0.137)
Cash 15%	-0.0782	-0.0599	-0.0796	-0.0542
	(0.137)	(0.138)	(0.138)	(0.139)
Cash 30%	0.0591	0.0655	0.0636	0.0656
	(0.139)	(0.137)	(0.139)	(0.138)
Celebrity	0.00251	0.00582	0.00415	0.00486
	(0.138)	(0.139)	(0.138)	(0.139)
Role Model	0.374**	0.198	0.390**	0.211
	(0.150)	(0.147)	(0.151)	(0.148)
Role Model X Female RMET		0.219**		0.204*
		(0.102)		(0.109)
Role Model X Male RMET			0.00508	0.110
			(0.110)	(0.107)
Female RMET		0.127***		0.146**
		(0.0468)		(0.0593)
Male RMET			0.0454	-0.0324
			(0.0455)	(0.0566)
Individual Teacher Controls	Yes	Yes	Yes	Yes
School Fixed Effects	Yes	Yes	Yes	Yes
Observations	607	607	607	607
R-squared	0.163	0.197	0.165	0.199

PROGRESSIVE CENDER ATTITUDES CAN BE FOSTERED

AND TRANSMITTED THROUGH ROLE MODELS

WHAT STYMIES RIGHTS REVOLUTIONS?

Empathy Elevates Receptiveness to Messenger (theory of mind)

Table 2: Impact on Vaccinations - Standardized				
		Fully V	accinated	
	(1)	(2)	(3)	(4)
Lottery	-0.144	-0.150	-0.137	-0.152
	(0.140)	(0.137)	(0.140)	(0.137)
Cash 15%	-0.0782	-0.0599	-0.0796	-0.0542
	(0.137)	(0.138)	(0.138)	(0.139)
Cash 30%	0.0591	0.0655	0.0636	0.0656
	(0.139)	(0.137)	(0.139)	(0.138)
Celebrity	0.00251	0.00582	0.00415	0.00486
	(0.138)	(0.139)	(0.138)	(0.139)
Role Model	0.374**	0.198	0.390**	0.211
	(0.150)	(0.147)	(0.151)	(0.148)
Role Model X Female RMET		0.219**		0.204*
		(0.102)		(0.109)
Role Model X Male RMET			0.00508	0.110
			(0.110)	(0.107)
Female RMET		0.127***		0.146**
		(0.0468)		(0.0593)
Male RMET			0.0454	-0.0324
			(0.0455)	(0.0566)
Individual Teacher Controls	Yes	Yes	Yes	Yes
School Fixed Effects	Yes	Yes	Yes	Yes
Observations	607	607	607	607
R-squared	0.163	0.197	0.165	0.199

PROGRESSIVE GENDER ATTITUDES CAN BE FOSTERED

AND TRANSMITTED THROUGH ROLE MODELS

WHAT STYMIES RIGHTS REVOLUTIONS?

Empathy Elevates Receptiveness to Messenger (theory of mind)

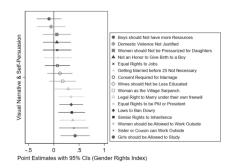
Table 2: Impact on Vaccinations - Standardized				
		Fully V	accinated	
	(1)	(2)	(3)	(4)
Lottery	-0.144	-0.150	-0.137	-0.152
	(0.140)	(0.137)	(0.140)	(0.137)
Cash 15%	-0.0782	-0.0599	-0.0796	-0.0542
	(0.137)	(0.138)	(0.138)	(0.139)
Cash 30%	0.0591	0.0655	0.0636	0.0656
	(0.139)	(0.137)	(0.139)	(0.138)
Celebrity	0.00251	0.00582	0.00415	0.00486
	(0.138)	(0.139)	(0.138)	(0.139)
Role Model	0.374**	0.198	0.390**	0.211
	(0.150)	(0.147)	(0.151)	(0.148)
Role Model X Female RMET		0.219**		0.204*
		(0.102)		(0.109)
Role Model X Male RMET			0.00508	0.110
			(0.110)	(0.107)
Female RMET		0.127***		0.146**
		(0.0468)		(0.0593)
Male RMET			0.0454	-0.0324
			(0.0455)	(0.0566)
Individual Teacher Controls	Yes	Yes	Yes	Yes
School Fixed Effects	Yes	Yes	Yes	Yes
Observations	607	607	607	607
R-squared	0.163	0.197	0.165	0.199

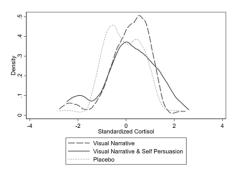
PROGRESSIVE GENDER ATTITUDES CAN BE FOSTERED

AND TRANSMITTED THROUGH ROLE MODELS

WHAT STYMIES RIGHTS REVOLUTIONS?

Progressive Gender Rights Increases Stress





elevated stress in blood cortisol

Progressive Gender Rights Increases Domestic Violence

Panel A: Impact on Domestic Violen	-	-	(2)	(4)	(5)	(6)
	(1)	(2)	(3)	(4)	(5)	(6)
		'Domestic		ut Domestic	$Victim\ of$	
	Viole	епсе	Viol	ence	Viole	епсе
					(Marlowe	-Crowne)
Visual Narrative	0.285**	0.273**	-0.216*	-0.205	0.274*	0.267*
	[0.129]	[0.128]	[0.128]	[0.129]	[0.162]	[0.161]
Visual Narrative & Self-Persuasion	0.375***	0.357**	0.0996	0.114	0.344**	0.332*
	[0.144]	[0.144]	[0.135]	[0.135]	[0.172]	[0.173]
Individual Controls	No	Yes	No	Yes	No	Yes
School Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
Observations	607	607	607	607	526	526
R-squared	0.093	0.101	0.123	0.130	0.096	0.106
Mean of Dep. Variable	0.000	0.000	0.000	0.000	0.000	0.000

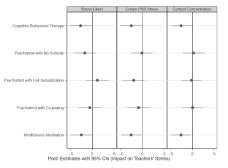
Novel nonconformist ideas can be fostered but it comes with costs to norm subverters

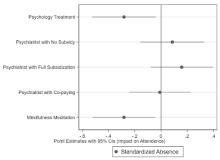
Some costs dissipate once the new norms diffuse in society

reduction of 1.8 standard deviations in blood cortisol stress when all peers are also treated

	(1)	(2)	(3)	(4)
	Stress Likert	Stress Dummy	Cortisol Raw	Standardized
		ř		Cortisol
Fraction of Joint Treated	0.854	-0.120	-5.988**	-1.810**
Teachers X Joint Treatment	[1.160]	[0.317]	[2.666]	[0.806]
Visual Narrative & Self- Persuasion	0.217	0.263**	2.729***	0.825***
1 or small or	[0.362]	[0.102]	[0.823]	[0.249]
Individual Controls	Yes	Yes	Yes	Yes
School Fixed Effects	Yes	Yes	Yes	Yes
Observations	607	607	607	607
R-squared	0.157	0.293	0.151	0.151
Mean of Dep. Variable	2.269	0.091	11.152	0.000

More so than cognitive behavioral therapy, meditation, or psychiatry





Mental health support reduces stress by 0.2 sd

and reduces absenteeism, improving test scores

AEARCTR-0007465, Psychological Well-Being and Civil Servants

Social solidarity increases the efficacy of mental health interventions

to 0.8 standard deviations of cortisol stress

·	(1)	(2)	(3)	(4)	(5)	(6)
	Stress	Likert	Cohen F	SS Stress	Cor	tisol
					Concer	itration
Cognitive Behavioral Therapy X Wristband (CBT x T)	0.00584	-0.0876	-0.153	-0.185	-0.124	-0.106
	[0.412]	[0.412]	[0.345]	[0.353]	[0.349]	[0.373]
Psychiatrist No Subsidy X Wristband (PNS x T)	-0.0254	-0.00854	0.0326	0.127	-0.708	-0.628
	[0.428]	[0.432]	[0.410]	[0.417]	[0.500]	[0.504]
Psychiatrist Full Subsidization X Wristband (PFS x T)	-0.839*	-0.839*	-0.913**	-0.848**	-0.841**	-0.714*
	[0.475]	[0.456]	[0.410]	[0.408]	[0.376]	[0.378]
Psychiatrist with Co-paying X Wristband (PCP x T)	-0.786*	-0.695*	-0.891**	-0.827**	-0.742**	-0.715*
	[0.407]	[0.409]	[0.393]	[0.401]	[0.369]	[0.370]
Mindfulness Meditation X Wristband (MM x T)	0.236	0.222	-0.0744	-0.0526	-0.195	-0.206
	[0.433]	[0.434]	[0.393]	[0.405]	[0.391]	[0.407]
Wristband	-0.0913	-0.0723	0.206	0.166	0.275	0.221
	[0.326]	[0.319]	[0.264]	[0.270]	[0.251]	[0.260]

How Can We Train Judges?

are there principles that extend to training judges and apply to human-centric AI?

- SELF-REFLECTION (effective altruism, econometrics, gender rights)
- DEMAND FOR LEARNING (effective altruism)
- SOCIAL-EMOTIONAL LEARNING (effective altruism, econometrics)
- COMMUNITY FOR NORM CHANGE (gender rights, mental health)

Civil Servants	
Effective Altruism	Community of Practice (Stage 6)
Econometrics	Socratic Method (Stage 2)
Al Fairness	Self Reflection (IATs) (Stage 3)
Gender Rights	Social Emotional Learning (SEL) (Stage 4)
Role Models	Simplified Feedback (Stage 1)
Moral Bandwagoning	Social Comparison (Stage 5)

How Can We Train Judges?

are there principles that extend to training judges and apply to human-centric AI?

- SELF-REFLECTION (effective altruism, econometrics, gender rights)
- DEMAND FOR LEARNING (effective altruism)
- SOCIAL-EMOTIONAL LEARNING (effective altruism, econometrics)
- COMMUNITY FOR NORM CHANGE (gender rights, mental health)

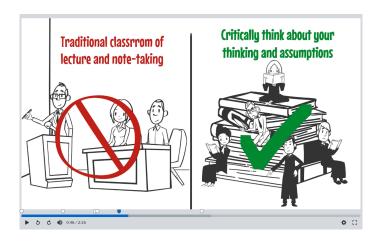
Civil Servants	Judges
Effective Altruism	Community of Practice (Stage 6)
Econometrics	Socratic Method (Stage 2)
AI Fairness	Self Reflection (IATs) (Stage 3)
Gender Rights	Social Emotional Learning (SEL) (Stage 4)
Role Models	Simplified Feedback (Stage 1)
Moral Bandwagoning	Social Comparison (Stage 5)

Setting

- Judicial Academy of Peru is working on the transition from theory to case-based teaching, which was already the primary method of teaching in American law schools since the 1970s (Moskovitz 1992).
- In this two-year engagement, we engaged in three randomized light-touch interventions.

Socratic Method (Study 1)

a pedagogical innovation from antiquity focusing on reflective inquiry



Socratic Treatment

 Socratic treatment encourages student to think critically - challenging their own as well as their teachers and classmates assumptions about the material covered in class.

THINK ABOUT THESE QUESTIONS

- 1. WHAT OPINIONS do you have about today's topic?
- 2. What ASSUMPTIONS are you making towards that opinion?
 - 3. During the class, are your assumptions proving TRUE or getting CHALLENGED?
- 4. WHEN are your assumptions the SAME as your classmates?
- 5. WHEN are your assumptions DIFFERENT from your classmates?

Control treatment reminded students to focus on the teacher's ideas and take notes

Socratic Training improved Performance

Students assigned to Socratic treatment were 2.6 percentage points more likely to pass and increased grades by 0.23 standardized units

	IT	T	To	T
	(1)	(2)	(3)	(4)
VARIABLES	grade	pass	grade	pass
Assigned to Socratic	0.311*	0.026*		
	(0.173)	(0.014)		
Saw Socratic	[0.088]	[0.088]	0.950* (0.542)	0.080* (0.045)
Constant	15.633*** (0.195)	0.844*** (0.015)	[0.080] 15.633*** (0.195)	[0.080] 0.844*** (0.015)
Observations R-squared	1,368 0.001	1,370 0.001	1,368	1,370
Individuals	1368	1370	1368	1370

Click data shows larger treatment effects on those who finished the 4-minute video (ToT)

Socratic Training reduced Motivated Reasoning

Students assigned to Socratic treatment were 6.5 percentage points more curious

		ITT			ToT	
	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	VDO	SBU	Curiosity	VDO	SBU	Curiosity
Assigned to Socratic	-0.016	0.028	0.065**			
Thoughed to booldine	(0.042)	(0.047)	(0.027)			
	[0.904]	[0.896]	[0.030]			
Saw Socratic			[]	-0.038	0.066	0.122**
				(0.100)	(0.109)	(0.053)
				[0.910]	[0.896]	[0.020]
Constant	0.980***	0.980***	0.874***	0.980***	0.980***	0.874***
	(0.030)	(0.029)	(0.023)	(0.030)	(0.029)	(0.023)
Observations	498	498	300	498	498	300
R-squared	0.000	0.001	0.013		0.004	
Individuals	498	498	300	498	498	300

and requested additional information on the supreme court case vignette

Community of Practice (Study 2)

- Community of Practice (Wenger 1991) a pedagogical innovation focusing on regular and concrete learning from peers.
 - ► The peer met the teacher to provide feedback
 - ★ teaching strategies: case method, role play, student participation

Community of Practice increases Grades and Satisfaction

			Satisfaction				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Forum grade	Reading grade	Homework grade	Exam grade	Final grade	With teacher	With course
Monitoring	0.0702	0.0818**	0.0794	0.1609	0.1196**	0.0964*	0.0875*
	(0.0759)	(0.0347)	(0.0499)	(0.0956)	(0.0578)	(0.0553)	(0.0504)
Observations \mathbb{R}^2	4,968	4,988	5,017	5,000	5,021	10,023	9,967
	0.13221	0.16559	0.12541	0.06765	0.09313	0.02617	0.03810
Dependent variable mean	0.04144	0.01453	0.05110	0.08771	0.07569	0.06086	0.06448
Round fixed effects Course fixed effects	4	4	√	1	√	<i>4</i>	√

- 0.12 standard devations (SD) in final grades
- 0.10 and 0.09 SDs in satisfaction

Community of Practice increases Case Clearance Rates

	(1)	(2)	(3)	(4)	(5)	(6)
	Ruling favors plaintiff	Appeal of ruling	Reversal of ruling	Clearance rate	Time to disposition	Timely Resolved
Panel A: Post Treatment						
Monitoring	0.0866	-0.1017	-0.0038	0.1683**	-0.2410	0.1799*
	(0.1189)	(0.1384)	(0.0591)	(0.0759)	(0.2485)	(0.1047)
Observations	169	169	169	203	219	219
R Squared	0.102	0.326	0.158	0.101	0.182	0.191
Dependent variable mean	0.8182	0.4915	0.0899	0.3220	-0.0496	0.4622

Note: Standard errors are clustered at the judge level. Time to disposition is standardized with respect to the control group mean. All regressions include strata controls. All regressions include judge pre treatment covariates including age, sex, years of tenure, years in the bar association. They also include case speciality covariates. Panel A shows regression coefficients from a post-treatment specification. Panel B shows coefficients from a DiD specification. * $^*p^* < 0.10$, * $^*p^* < 0.05$, * $^*p^* < 0.01$.

8-month training program

Community of Practice effects are larger for females

Females in treated classes had higher grades and satisfaction

		Grades					Satisfaction	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
	Forum grade	Reading grade	Homework grade	Exam grade	Final grade	With teacher	With course	
Panel A: Males								
Monitoring	0.0556	0.0467	0.0536	0.1425	0.0829	0.0567	0.0332	
9	(0.0813)	(0.0470)	(0.0590)	(0.0950)	(0.0663)	(0.0592)	(0.0567)	
Observations	3108	3123	3142	3129	3145	6248	6248	
R Squared	0.137	0.162	0.119	0.057	0.088	0.035	0.042	
Dependent variable mean	0.0371	-0.0076	0.0496	0.0836	0.0644	0.0518	0.0685	
Panel B: Females								
Monitoring	0.0971	0.1437***	0.1012*	0.1769	0.1555**	0.1389	0.1794*	
3	(0.0734)	(0.0511)	(0.0518)	(0.1108)	(0.0672)	(0.0951)	(0.0969)	
Observations	1860	1865	1875	ì871	1876	3719	3719	
R Squared	0.140	0.200	0.169	0.105	0.129	0.050	0.061	
Dependent variable mean	0.0487	0.0516	0.0537	0.0945	0.0946	0.0747	0.0576	

Community of Practice reduces Gender IAT bias

especially for male judges and prosecutors

	Baseline			Baseline+Controls			
	(1) All	(2) Females	(3) Males	(4) All	(5) Females	(6) Males	
Monitoring	0.3580** (0.1469)	0.1451 (0.2268)	0.4183** (0.1929)	0.3575** (0.1498)	0.1362 (0.2332)	0.4192** (0.1957)	
Lee Lower bound	-0.0065	-0.0571	-0.0057	-0.0065	-0.0571	-0.0057	
Lee Upper bound	0.5551	0.2424	0.7446	0.5551	0.2424	0.7446	
Observations	292	112	180	291	112	179	
\mathbb{R}^2	0.02836	0.07132	0.03628	0.03820	0.10496	0.06437	
Dependent variable mean	0.15741	0.09413	0.19678	0.15607	0.09413	0.19482	

highlights potential for cultivating active participation in mixed groups in reducing implicit bias in high-stakes decision-makers

AEARCTR-0007113, Training and Bureaucratic Performance

WHAT ABOUT DIRECTLY ADDRESSING IMPLICIT BIAS

STEREOTYPED DECISION-MAKING, EARLY PREDICABILITY, AND INATTENTIVENESS

Community of Practice reduces Gender IAT bias

especially for male judges and prosecutors

		Baseline			Baseline + Controls			
	(1)	(2)	(3)	(4)	(5)	(6)		
	All	Females	Males	All	Females	Males		
Monitoring	0.3580**	0.1451	0.4183**	0.3575**	0.1362	0.4192**		
	(0.1469)	(0.2268)	(0.1929)	(0.1498)	(0.2332)	(0.1957)		
Lee Lower bound	-0.0065	-0.0571	-0.0057	-0.0065	-0.0571 0.2424	-0.0057		
Lee Upper bound	0.5551	0.2424	0.7446	0.5551		0.7446		
Observations \mathbb{R}^2 Dependent variable mean	$\begin{array}{c} 292 \\ 0.02836 \\ 0.15741 \end{array}$	112 0.07132 0.09413	$180 \\ 0.03628 \\ 0.19678$	$\begin{array}{c} 291 \\ 0.03820 \\ 0.15607 \end{array}$	112 0.10496 0.09413	179 0.06437 0.19482		

highlights potential for cultivating active participation in mixed groups in reducing implicit bias in high-stakes decision-makers

AEARCTR-0007113, Training and Bureaucratic Performance

WHAT ABOUT DIRECTLY ADDRESSING IMPLICIT BIAS

STEREOTYPED DECISION-MAKING, EARLY PREDICABILITY, AND INATTENTIVENESS

Community of Practice reduces Gender IAT bias

especially for male judges and prosecutors

		Baseline			Baseline+Controls			
	(1)	(2)	(3)	(4)	(5)	(6)		
	All	Females	Males	All	Females	Males		
Monitoring	0.3580**	0.1451	0.4183**	0.3575**	0.1362	0.4192**		
	(0.1469)	(0.2268)	(0.1929)	(0.1498)	(0.2332)	(0.1957)		
Lee Lower bound	-0.0065	-0.0571	-0.0057	-0.0065	-0.0571	-0.0057		
Lee Upper bound	0.5551	0.2424	0.7446	0.5551	0.2424	0.7446		
Observations \mathbb{R}^2 Dependent variable mean	$\begin{array}{c} 292 \\ 0.02836 \\ 0.15741 \end{array}$	112 0.07132 0.09413	$180 \\ 0.03628 \\ 0.19678$	$\begin{array}{c} 291 \\ 0.03820 \\ 0.15607 \end{array}$	112 0.10496 0.09413	179 0.06437 0.19482		

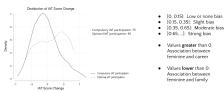
highlights potential for cultivating active participation in mixed groups in reducing implicit bias in high-stakes decision-makers

AEARCTR-0007113, Training and Bureaucratic Performance

WHAT ABOUT DIRECTLY ADDRESSING IMPLICIT BIAS

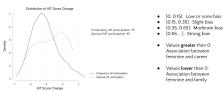
STEREOTYPED DECISION-MAKING, EARLY PREDICABILITY, AND INATTENTIVENESS

- Weak evidence for implicit bias training programs (Paluck, et al. 2021)
 - ► Implicit bias training programs involve compulsory self-reflection
 - ➤ The more people feel that their autonomy is protected and that they are in control of the conversation—able to choose when feedback is given—the better they respond to it (West, et al. 2018)
 - ▶ Does the choice to learn about implicit biases reduce implicit bias?
- Judges randomly assigned to
 - have the option to take IAT became less biased in their IATs



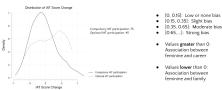
AEARCTR-0007113, Impact of Legal Training on Cognitive Reasoning, Biases and Judicial Performance

- Weak evidence for implicit bias training programs (Paluck, et al. 2021)
 - ▶ Implicit bias training programs involve compulsory self-reflection
 - ► The more people feel that their autonomy is protected and that they are in control of the conversation—able to choose when feedback is given—the better they respond to it (West, et al. 2018)
 - ▶ Does the choice to learn about implicit biases reduce implicit bias?
- Judges randomly assigned to
 - have the option to take IAT became less biased in their IATs



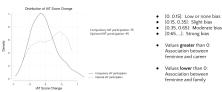
AEARCTR-0007113, Impact of Legal Training on Cognitive Reasoning, Biases and Judicial Performance

- Weak evidence for implicit bias training programs (Paluck, et al. 2021)
 - ▶ Implicit bias training programs involve compulsory self-reflection
 - ► The more people feel that their autonomy is protected and that they are in control of the conversation—able to choose when feedback is given—the better they respond to it (West, et al. 2018)
 - ▶ Does the choice to learn about implicit biases reduce implicit bias?
- Judges randomly assigned to
 - have the option to take IAT became less biased in their IATs



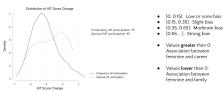
AEARCTR-0007113, Impact of Legal Training on Cognitive Reasoning, Biases and Judicial Performance

- Weak evidence for implicit bias training programs (Paluck, et al. 2021)
 - ▶ Implicit bias training programs involve compulsory self-reflection
 - ► The more people feel that their autonomy is protected and that they are in control of the conversation—able to choose when feedback is given—the better they respond to it (West, et al. 2018)
 - Does the choice to learn about implicit biases reduce implicit bias?
- Judges randomly assigned to
 - have the option to take IAT became less biased in their IATs



Option to Self-Reflect (Study 3)

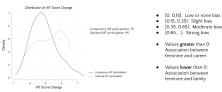
- Weak evidence for implicit bias training programs (Paluck, et al. 2021)
 - Implicit bias training programs involve compulsory self-reflection
 - ► The more people feel that their autonomy is protected and that they are in control of the conversation—able to choose when feedback is given—the better they respond to it (West, et al. 2018)
 - Does the choice to learn about implicit biases reduce implicit bias?
- Judges randomly assigned to
 - have the option to take IAT became less biased in their IATs



AEARCTR-0007113, Impact of Legal Training on Cognitive Reasoning, Biases and Judicial Performance

Option to Self-Reflect (Study 3)

- Weak evidence for implicit bias training programs (Paluck, et al. 2021)
 - Implicit bias training programs involve compulsory self-reflection
 - ► The more people feel that their autonomy is protected and that they are in control of the conversation—able to choose when feedback is given—the better they respond to it (West, et al. 2018)
 - Does the choice to learn about implicit biases reduce implicit bias?
- Judges randomly assigned to
 - have the option to take IAT became less biased in their IATs



AEARCTR-0007113, Impact of Legal Training on Cognitive Reasoning, Biases and Judicial Performance
WHAT ARE OTHER WAYS TO INCREASE RECOGNITION?

Reshaping Beliefs about Oneself and Others

Teaching civil servants about malleability of disadvantaged reduces implicit biases

Table 3: Impact on IAT scores

	(1)	(2)	(3)	(4)
VARIABLES	IAT Score	IAT Score	IAT score - standardized	IAT score - standardized
Growth Mindset (T1)	0.081*	0.092*	0.235*	0.267*
	(0.049)	(0.048)	(0.141)	(0.140)
Role-model (T2)	-0.053	-0.043	-0.153	-0.124
	(0.044)	(0.044)	(0.128)	(0.127)
Evidence (T3)	-0.070	-0.073	-0.203	-0.213
	(0.048)	(0.048)	(0.140)	(0.140)
Constant	-0.010	0.162	0.028	0.526
	(0.031)	(0.170)	(0.091)	(0.493)
Observations	400	400	400	400
R-squared	0.029	0.061	0.029	0.061
Controls	No	Yes	No	Yes
Mean of dependent variable	-0.0191	-0.0191	0	0

Relevant for debates on disparate treatment or sentencing severity

AEARCTR-0008786, Reshaping Beliefs About Ourselves and Others

Reshaping Beliefs about Oneself and Others

Teaching civil servants about malleability of disadvantaged reduces implicit biases

Table 3: Impact on IAT scores

	(1)	(2)	(3)	(4)
VARIABLES	IAT Score	IAT Score	IAT score - standardized	IAT score - standardized
Growth Mindset (T1)	0.081*	0.092*	0.235*	0.267*
	(0.049)	(0.048)	(0.141)	(0.140)
Role-model (T2)	-0.053	-0.043	-0.153	-0.124
	(0.044)	(0.044)	(0.128)	(0.127)
Evidence (T3)	-0.070	-0.073	-0.203	-0.213
	(0.048)	(0.048)	(0.140)	(0.140)
Constant	-0.010	0.162	0.028	0.526
	(0.031)	(0.170)	(0.091)	(0.493)
Observations	400	400	400	400
R-squared	0.029	0.061	0.029	0.061
Controls	No	Yes	No	Yes
Mean of dependent variable	-0.0191	-0.0191	0	0

Relevant for debates on disparate treatment or sentencing severity

AEARCTR-0008786, Reshaping Beliefs About Ourselves and Others

Can digital platforms increase recognition-respect through better

measurement of normative commitments?

COVID-19 within families amplifies the prosociality gap between adolescents of high and low socioeconomic status

Camille Terrier* (a), Daniel L. Chen*, and Matthias Sutter*.4.4.1 (a)

"Department of Economics, University of Lausanne, 1015 Lausanne, Switzerland; "Toulouse School of Economics, 21880 Toulouse, France; "Experimental Economics Group, Max Flarks Institute for Research on Collectin Goods Ecry, 53115 Bonn, Gennary, "Department of Economics, University of Cologne, 55093 Cologne, Germany, and "Ospertment of Abid Timese, University of Institute, South President, Auditory (Cologne, 5509) Cologne, 6509 Cologn

50035 Cologne, Germany; and "Department of Public Finance, University of Insobruck, 6020 Innobruck, Austria
Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved October 1, 2021 (neceived for review June 12, 2021)

COVID-19 has had soone health, education, and labor marker effects on groups with low socioeconotic status (SSS) has not those with high \$52. Little is known, however, about whether COVID-19 has had hood differential effects on nonceptive saids that are important for life outcomes, Using pased data from before that it is important for life outcomes. Using pased data from before more considerable with the contract of the contra

er officeroox oles implies that disnering life creats (33) souls in the other direction and the morbor code in lengths and the code of the

Table 4 Rehavioral Grit Survey Grit, and Pre- and Post-Covid. Performance Change Regression 1 Regression 2 Regression 3 Regression 4 Change in Math Change in Change in Math Change in Science Score Score Science Score Change in 0.17*** 0.1** Behavioral (<0.001) (0.01)Grit Survey Grit (0.94)(0.64)Male 11.1 -8.2 11 35.4** Indicator (0.36)(0.49) (0.30)(0.01) 0.32 0.31 0.35 0.34 1738 1714 1714

PNAS 2021

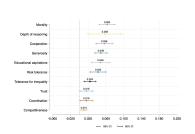
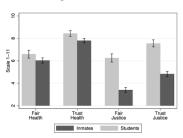
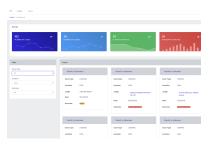


Figure 11: Institutional Trust



Personalized Case-Based Teaching?

using the tools of machine learning



Leverages history of judge's own written decisions to evaluate how such judge would decide on a case similar to a curricular example (predicted self)

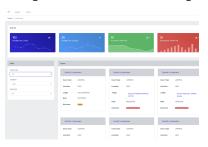
- Bringing case-based teaching to the next level
- Community of practice, Role models (predictions of others)
- Helping create culture of precedent

EVALUATING JUSTICE IS NOT ONLY ABOUT ECONOMIC OUTCOMES,

BUT ALSO ABOUT PERCEIVED LEGITIMACY, TYPICALLY MEASURED BY SURVEYS

Personalized Case-Based Teaching?

using the tools of machine learning



Leverages history of judge's own written decisions to evaluate how such judge would decide on a case similar to a curricular example (predicted self)

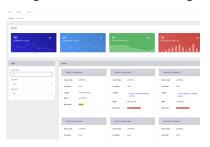
- Bringing case-based teaching to the next level
- Community of practice, Role models (predictions of others)
- Helping create culture of precedent

EVALUATING JUSTICE IS NOT ONLY ABOUT ECONOMIC OUTCOMES,

BUT ALSO ABOUT PERCEIVED LEGITIMACY, TYPICALLY MEASURED BY SURVEYS

Personalized Case-Based Teaching?

using the tools of machine learning



Leverages history of judge's own written decisions to evaluate how such judge would decide on a case similar to a curricular example (predicted self)

- Bringing case-based teaching to the next level
- Community of practice, Role models (predictions of others)
- Helping create culture of precedent

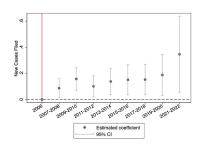
EVALUATING JUSTICE IS NOT ONLY ABOUT ECONOMIC OUTCOMES,

BUT ALSO ABOUT PERCEIVED LEGITIMACY, TYPICALLY MEASURED BY SURVEYS

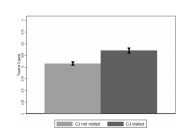
CAN AI HELP CITIZENS BE HEARD?

Civil society

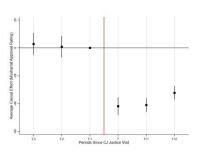
lawyer's movement



increased access to justice



increased trust in courts



and shaped political attitudes

Network Effects in Democratic Reform

Digital Democracy

Measurement

- Talk is cheap
 - Trump, Brexit-all mispredicted
 - Sophisticated adjustments of polls still failed

- Model Make costly the expression of moral and ideological
 - Revealed preference heuristic
 - Marginal benefit of an additional "vote" scales linearly,
 - ▶ Implies quadratic costs $\sum_{i=1}^{N} (v_i^j)^2 = B$

Digital Democracy

Measurement

- Talk is cheap
 - Trump, Brexit—all mispredicted
 - Sophisticated adjustments of polls still failed

Model

- Make costly the expression of moral and ideological beliefs in surveys
- Revealed preference heuristic
 - Marginal benefit of an additional "vote" scales linearly, so should the marginal cost
 - ▶ Implies quadratic costs $\sum_{i=1}^{N} (v_i^j)^2 = B$

Digital Democracy

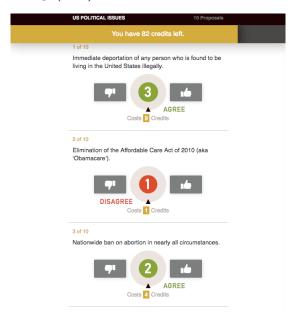
Measurement

- Talk is cheap
 - Trump, Brexit—all mispredicted
 - Sophisticated adjustments of polls still failed

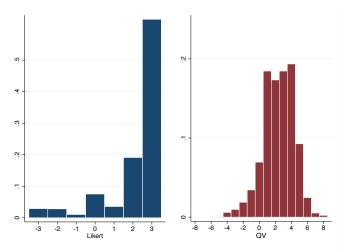
Model

- Make costly the expression of moral and ideological beliefs in surveys
- Revealed preference heuristic
 - Marginal benefit of an additional "vote" scales linearly, so should the marginal cost
 - Implies quadratic costs $\sum_{i=1}^{N} (v_i^j)^2 = B$

Quadratic Voting (QV) interface



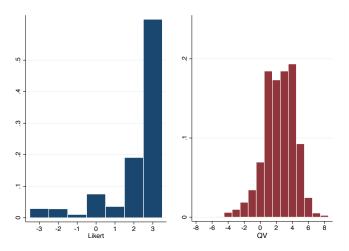
QV vs. Likert: Equal Pay



Do you favor or oppose requiring employers to pay women and men the same amount for the same work?

- With Likert, responses are strongly right-skewed
- With quadratic costs, less so

QV vs. Likert: Equal Pay

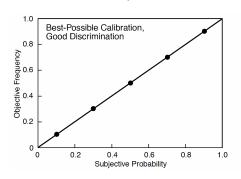


Do you favor or oppose requiring employers to pay women and men the same amount for the same work?

- With Likert, responses are strongly right-skewed
- With quadratic costs, less so

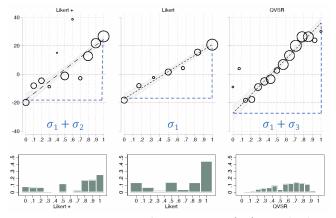
Calibration and Discrimination (Tetlock 2006)

predict behavior and explain variance





Who Cares Caville, Chen, and Van der Straeten, Political Science Research and Methods 2024 Laws making it more difficult for people to buy a gun



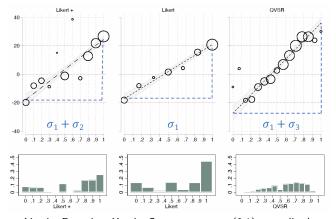
Y-axis: Donation, X-axis: Survey responses (0,1) normalized, Circles size proportional to observations

- Likert (center) exhibits bunching, i.e. less ability to discriminate
- QVSR (right) exhibits variance in Y, i.e. greater ability to calibrate

 OVER IS RETURN AT ABBRICATION DOWNSTONS WHAT ABOUT BEYOND IN THE PROPERTY.

 OVER IS RETURNED BY THE PROPERTY OF T

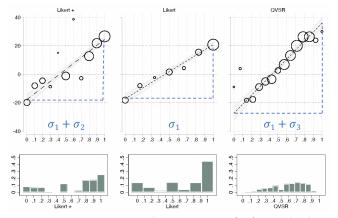
Who Cares Caville, Chen, and Van der Straeten, Political Science Research and Methods 2024 Laws making it more difficult for people to buy a gun



Y-axis: Donation, X-axis: Survey responses (0,1) normalized, Circles size proportional to observations

- Likert (center) exhibits bunching, i.e. less ability to discriminate
- QVSR (right) exhibits variance in Y, i.e. greater ability to calibrate

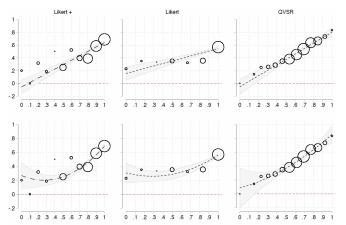
Who Cares Caville, Chen, and Van der Straeten, Political Science Research and Methods 2024 Laws making it more difficult for people to buy a gun



Y-axis: Donation, X-axis: Survey responses (0,1) normalized, Circles size proportional to observations

- Likert (center) exhibits bunching, i.e. less ability to discriminate
- QVSR (right) exhibits variance in Y, i.e. greater ability to calibrate over is better at predicting donations, what about revealing self-interest?

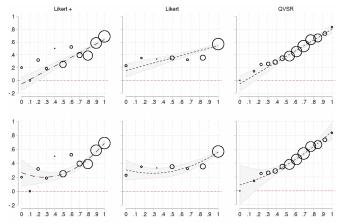
Requiring employers to pay women and men the same amount for the same work



Y-axis: Gender (female =1, 0 otherwise), X-axis: Survey responses (0,1) normalized, Circles size proportional to observations

- Likert (center) exhibits bunching, i.e. less ability to discriminate
- QVSR (right) exhibits variance, i.e. greater ability to calibrate
- More calibration with quadratic fit in lower panel (POTENTIALLY NON-LINEAR)

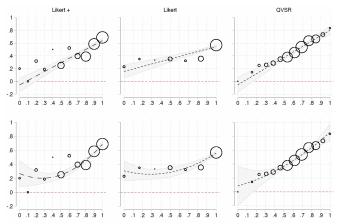
Requiring employers to pay women and men the same amount for the same work



Y-axis: Gender (female =1, 0 otherwise), X-axis: Survey responses (0,1) normalized, Circles size proportional to observations

- Likert (center) exhibits bunching, i.e. less ability to discriminate
- QVSR (right) exhibits variance, i.e. greater ability to calibrate
- More calibration with quadratic fit in lower panel (POTENTIALLY NON-LINEAR)

Requiring employers to pay women and men the same amount for the same work



Y-axis: Gender (female = 1, 0 otherwise), X-axis: Survey responses (0,1) normalized, Circles size proportional to observations

- Likert (center) exhibits bunching, i.e. less ability to discriminate
- QVSR (right) exhibits variance, i.e. greater ability to calibrate
- More calibration with quadratic fit in lower panel (POTENTIALLY NON-LINEAR)

- Survey design often approximates a prediction problem: the goal is to select instruments (tools or questions) that best predict the value of an unobserved construct or a future outcome.
- Step 1: Build a prediction model using the survey responses and the demographic covariates
 - ► Track prediction error DONATION
 - ► Repeat for each survey method
 - Estimate "treatment" effect on the prediction error
- Step 2: Policy learning (Athey and Wager, 2021)
 - Maps covariates to a treatment that results in lowest prediction error

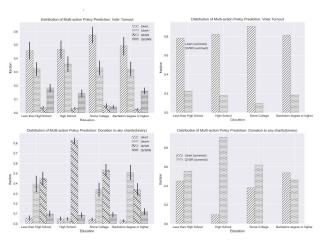
- Survey design often approximates a prediction problem: the goal is to select instruments (tools or questions) that best predict the value of an unobserved construct or a future outcome.
- Step 1: Build a prediction model using the survey responses and the demographic covariates
 - ► Track prediction error DONATION
 - Repeat for each survey method
 - Estimate "treatment" effect on the prediction error
- Step 2: Policy learning (Athey and Wager, 2021)
 - Maps covariates to a treatment that results in lowest prediction error

- Survey design often approximates a prediction problem: the goal is to select instruments (tools or questions) that best predict the value of an unobserved construct or a future outcome.
- Step 1: Build a prediction model using the survey responses and the demographic covariates
 - ► Track prediction error DONATION
 - Repeat for each survey method
 - Estimate "treatment" effect on the prediction error
- Step 2: Policy learning (Athey and Wager, 2021)
 - Maps covariates to a treatment that results in lowest prediction error

- Survey design often approximates a prediction problem: the goal is to select instruments (tools or questions) that best predict the value of an unobserved construct or a future outcome.
- Step 1: Build a prediction model using the survey responses and the demographic covariates
 - ► Track prediction error DONATION
 - Repeat for each survey method
 - Estimate "treatment" effect on the prediction error
- Step 2: Policy learning (Athey and Wager, 2021)
 - Maps covariates to a treatment that results in lowest prediction error

- Survey design often approximates a prediction problem: the goal is to select instruments (tools or questions) that best predict the value of an unobserved construct or a future outcome.
- Step 1: Build a prediction model using the survey responses and the demographic covariates
 - ► Track prediction error DONATION
 - Repeat for each survey method
 - Estimate "treatment" effect on the prediction error
- Step 2: Policy learning (Athey and Wager, 2021)
 - Maps covariates to a treatment that results in lowest prediction error

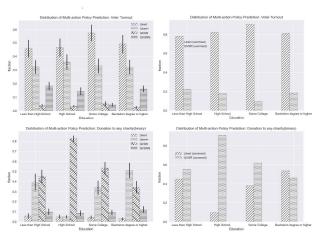
Optimal Assignment based on Education



Each panel plots, by education level, % of respondents assigned to a given survey method.

QVSR outperforms Likert for the majority in predicting donations

Optimal Assignment based on Education



Each panel plots, by education level, % of respondents assigned to a given survey method.

QVSR outperforms Likert for the majority in predicting donations

Signpost

Applications

- ► Changes in menu: Consideration sets, Slutsky Matrix
- ► Affecting policymaking: RESPONSIVENESS
- ► Enhancing legitimacy: DIGITAL DEMOCRACY

Theory

- ▶ Curvature of preferences: Perfectionism & Implications for Integration
- Attitudes as assets: Consumer Theory

Tools

- Open-source code for asking fielding new surveys
- Civicbase.io and oTree

Signpost

Applications

- ► Changes in menu: Consideration sets, Slutsky Matrix
- ► Affecting policymaking: RESPONSIVENESS
- ► Enhancing legitimacy: DIGITAL DEMOCRACY

Theory

- ► Curvature of preferences: Perfectionism & Implications for Integration
- ► Attitudes as assets: CONSUMER THEORY

Tools

- Open-source code for asking fielding new surveys
- Civichase io and oTree

Signpost

- Applications
 - ► Changes in menu: Consideration sets, Slutsky Matrix
 - ► Affecting policymaking: RESPONSIVENESS
 - ► Enhancing legitimacy: DIGITAL DEMOCRACY
- Theory
 - ► Curvature of preferences: Perfectionism & IMPLICATIONS FOR INTEGRATION
 - ► Attitudes as assets: CONSUMER THEORY
- Tools
 - Open-source code for asking fielding new surveys
 - Civicbase.io and oTree

Budget Constraints

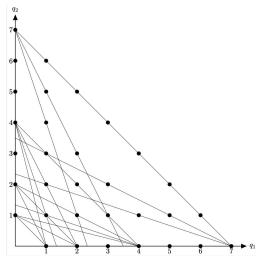


Figure: The horizontal axis represents a subject's answer to statement 1, while the vertical axis represents a subjects' answer to statement 2. The line represents the various budget constraints. Each point in the figure on a budget constraint represents a possible answer.

Graphic intuition

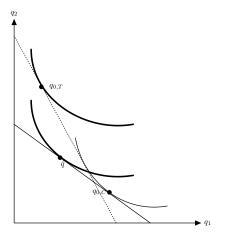


Figure: Recovering the counterfactual \hat{q} , which corresponds to the attitudes expressed by a hypothetical individual with the average preferences of the treated facing the shadow prices of the untreated.

Application

	(1) Conservative Overall effect	(2) Conservative Preferences	(3) Conservative Shadow budget	(4) Liberal Overall effect	(5) Liberal Preferences	(6) Liberal Shadow budget
Conservative treatment	1.709***	0.0654	1.643***			
Conservative treatment						
	(0.192)	(0.176)	(0.0779)			
Liberal treatment				1.281***	1.774***	-0.493**
				(0.313)	(0.241)	(0.200)
Mean dep. var.	8.164	8.164	8.164	4.735	4.735	4.735
Observations	323	323	323	339	339	339

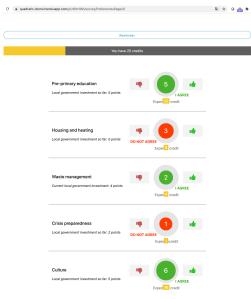
Robust standard errors in parentheses. The dependent variables for conservative and liberal treatments are conservative and liberal statements in Likert scale respectively. The overall effect of each treatment is decomposed into the effect due to the change in preferences and due to the change in shadow budget. In columns (1), (2), and (3), the sample considered includes all the subjects in the conservative treatment and in the control group. In column (4), (5), and (6), the sample considered includes all the subjects in the liberal treatment and in the control group. Subjects whose Likert scale answers correspond to a comer solution of the maximization problem are excluded.

Po-(5.**po-(5.**

- **1** Exposure to the liberal preach makes subjects' \leq more liberal.
- 2 Exposure to the conservative preach increases the cost of disagreeing with a conservative opinion but does not fundamentally affect \leq .

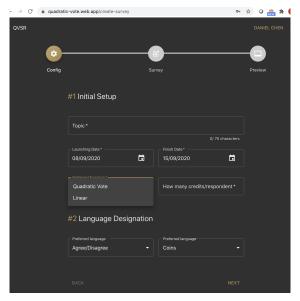
Modular and Extensible (court user satisfaction surveys)

Estonian IE of public-facing dashboard for local government accountability



Self-service Quadratic Voting

Giving civil servants and citizens the ability to ask questions of each other



Civicbase.io (Bassetti, Chen, Das, Dias, Mortoni, Al Magazine 2023)

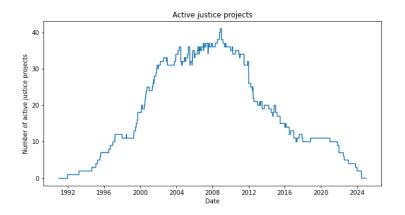
Al can increase Access, Efficiency, and Fairness of Justice reduce market level constraints to economic development

Judges	Citizens	
Static dashboards	Search	
Static dashboards with nudges	E-access	
Dynamic dashboards	E-resolution	
Top-down smart assignments	Chatbots	
Bottom-up smart assignments	Decision-Support	
Static peer-to-peer exchange	Missing Cases	
Dynamic peer-to-peer exchange	Legitimacy	
Training attitudes and preferences	Recognition-Respect	

Mexico Australia Colombia Taiwan Vietnam China Canada Asylum Brazil Germany

Do multilaterial organizations care about justice?

Decline in Justice Projects at the World Bank

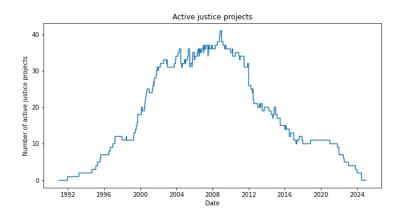


Should we invest more in justice?

What questions do you want to ask?

Do multilaterial organizations care about justice?

Decline in Justice Projects at the World Bank

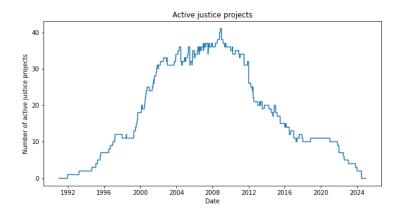


Should we invest more in justice?

What questions do you want to ask?

Do multilaterial organizations care about justice?

Decline in Justice Projects at the World Bank



Should we invest more in justice?
What questions do you want to ask?