The Macroeconomic Consequences of Early Childhood Development Policies

Diego Daruich
University of Southern California (Marshall)

December 2020
Early childhood investments increase education and income

- Effects can be large (e.g., Garcia, Heckman, Leaf, and Prados, 2020)
Motivation

Early childhood investments increase education and income

- Effects can be large (e.g., Garcia, Heckman, Leaf, and Prados, 2020)
- Based on small-scale and short-run programs
Motivation

Early childhood investments increase education and income
- Effects can be large (e.g., Garcia, Heckman, Leaf, and Prados, 2020)
- Based on small-scale and short-run programs

Consequences of large-scale and long-run policy depend on
- GE effects on capital and labor markets
- Deadweight loss of raising taxes
- Intergenerational dynamics
What is the impact of a permanent and universal early childhood government investment policy?

Particularly on: income, inequality, intergenerational mobility, and welfare

Use an overlapping generations (OLG) model

- with distortionary taxes
- in general equilibrium
What is the impact of a permanent and universal early childhood government investment policy?

Particularly on: income, inequality, intergenerational mobility, and welfare

Use an OLG model with distortionary taxes and in general equilibrium

GE Life-cycle Aiyagari + Endogenous Intergenerational Links

- Wage depends on skills
- Parental investments of time and money to build child’s skills

• Potential role for government investments because of:
 • Imperfect capital and insurance markets
 • Inability to write contracts with children
1. **Model**: GE Life-cycle Aiyagari + Endogenous Intergenerational Links
 - Wage depends on **skills**
 - Parental investments of time and money to build child's skills

2. **Estimation**:
 - Skill production function based on Cunha, Heckman, Schennach (2010)
 - Key moments on parental investments and transfers from PSID

3. **Validation**
 - Model replicates small-scale short-run RCT evidence
 (Garcia, Heckman, Leaf, and Prados, 2020)

4. **Policy**: large-scale government investments in early childhood
 - Long-run effects
 - Transition (with alternative ways to finance it)
 - Alternative policy in paper: parenting education
Preview of Results

Large long-run effects

- **Average income** grows by 7%
- **↓Inequality, ↑Int. mobility** \(\approx\) half of gap between US and Canada
- **Welfare** gains of 9%
 Welfare: Consumption equivalence for a newborn under veil of ignorance
Preview of Results

Large long-run effects

- **Average income** grows by 7%
- ↓**Inequality**, ↑**Int. mobility** ≈ half of gap between US and Canada
- **Welfare** gains of 9%
 - Welfare: Consumption equivalence for a newborn under veil of ignorance

Short-run small-scale policy would underestimate gains by one-half

- Large-scale tax increase reduces gains
- But long-run intergenerational dynamics more than compensate for the losses
Preview of Results

Large long-run effects

- **Average income** grows by 7%
- ↓**Inequality**, ↑**Int. mobility** ≈ half of gap between US and Canada
- **Welfare** gains of 9%
 Welfare: Consumption equivalence for a newborn under veil of ignorance

Short-run small-scale policy would underestimate gains by one-half

- Large-scale tax increase reduces gains
- But long-run intergenerational dynamics more than compensate for the losses

Investing in a child today will make him a better parent tomorrow

- **Transition**: Large increase in gains after first generation has its own children
Preview of Results

Large long-run effects
- Average income grows by 7%
- \(\downarrow \) Inequality, \(\uparrow \) Int. mobility \(\approx \) half of gap between US and Canada
- Welfare gains of 9%
 - Welfare: Consumption equivalence for a newborn under veil of ignorance

Short-run small-scale policy would underestimate gains by one-half
- Large-scale tax increase reduces gains
- But long-run intergenerational dynamics more than compensate for the losses

Investing in a child today will make him a better parent tomorrow
- Transition: Large increase in gains after first generation has its own children

Who does not benefit from the reform?
- Older individuals at the time the policy is introduced
- But this depends on how the transition is financed
Related Literature

Inequality and social mobility

- **GE Quantitative Life-cycle Aiyagari**: De Nardi (2004); Conesa and Krueger (2006); Bakis, Kaymak, and Poschke (2015); Abbott, Gallipoli, Meghir, Violante (2019)...

- **Contribution**: Endogenous early childhood development

Early childhood development

- **Structural**: Cunha (2013); Del Boca, Flinn, and Wiswall (2014); Abbott (2016); Caucutt and Lochner (2017)...

- **Contribution**: Large-scale policy evaluation framework (labor and savings choices, general equilibrium, multiple generations)

- **Contribution**: alternative policies and transition (crucial to observe intergenerational dynamics)
Model

Estimation: USA 2000

Policy
Model: Timeline

- **Birth**
- **Independent**
- **Child born**
- **Transfer to child**
 - Child is independent
- **Retire**
- **Death**

- Live w/ parent
- Parent invests in skills
- Transfer at 16
- College or work
- College is costly but changes wage profile
- Work
 - Wage depends on: skill, education, age, and shock
 - Direct Investment on child: time and money
 - Multiple periods ⇒ Builds child’s skills
- Retirement
 - Retirement income:
 - Savings
 - Social Security
Model: Timeline

- **Birth**
 - Parent invests in skills
 - Transfer at 16

- **Live w/ parent**

- **Independent**

- **Child born**

- **Transfer to child**
 - Child is independent

- **Retire**

- **Death**
 - Retirement income:
 - Savings
 - Social Security

- **College or work**
 - College is costly but changes wage profile
 - Wage depends on: skill, education, age, and shock
 - Direct investment on child: time and money in multiple periods ⇒ builds child’s skills
Model: Timeline

- **Birth**
 - Live w/ parent
 - Parent invests in skills
 - Transfer at 16

- **16**
 - College born
 - College is costly but changes wage profile

- **20**
 - Child born

- **28**
 - College or work

- **44**
 - Transfer to child
 - Child is independent

- **68**
 - Retire

- **80**
 - Death

- Retirement income:
 - Savings
 - Social Security
Model: Timeline

- **Birth (0)**
 - Live w/ parent
 - Parent invests in **skills**
 - Transfer at 16

- **Child born (28)**
 - College or work
 - College is **costly** but changes wage profile

- **Child is independent (44)**
 - College
 - Work
 - Wage depends on: **skill**, education, age, and shock
 - **Direct Investment on child**: time and money
 - Multiple periods ⇒ Builds child’s skills

- **Retire (68)**
 - Retirement income
 - Savings
 - Social Security

- **Death (80)**
Model: Timeline

0
Birth
Live w/ parent
• Parent invests in skills
• Transfer at 16

16
Independent
College or work

20
Child born

28
Transfer to child
Child is independent

44
Work

68
Retire
Retirement income:
• Savings
• Social Security

80
Death

• Wage depends on: skill, education, age, and shock
• Direct Investment on child: time and money
 Multiple periods ⇒ Builds child’s skills

Stationary Equilibrium
\[V_j(a, \theta, e, \eta, \theta_k) = \max_{c, a', h, m} u(c, h, a') + \beta \mathbb{E} \left[V_{j+1}(a', \theta, e, \eta', \theta_k') \right] \]

\[c + a' + m = y + a(1 + r) - T(y, a, c) \]

\[y = w_e E_{e,j}(\theta, \eta) h, \quad a' \geq a_{e,j}, \quad 0 \leq h + t \leq 1, \quad \eta' \sim \Gamma_{e,j}(\eta) \]

where

- \(a \): assets
- \(\theta \): agent’s skills
- \(t \): time with child
- \(e \): education
- \(\theta_k \): child’s skills
- \(m \): money towards child
- \(\eta \): wage shock
Early Childhood Investments

\[
V_j(a, \theta, e, \eta, \theta_k) = \max_{c, a', h, t, m} \ u(c, h, t) + \beta \mathbb{E} \left[V_{j+1}(a', \theta, e, \eta', \theta'_k) \right]
\]

\[
c + a' + m = y + a (1 + r) - T(y, a, c)
\]

\[
y = w_e E_{e,j}(\theta, \eta) h, \quad a' \geq a_{e,j}, \quad 0 \leq h + t \leq 1, \quad \eta' \sim \Gamma_{e,j}(\eta)
\]

where

- \(a\) : assets
- \(\theta\) : agent’s skills
- \(t\) : time with child
- \(e\) : education
- \(\theta_k\) : child’s skills
- \(m\) : money towards child
- \(\eta\) : wage shock
Early Childhood Investments

<table>
<thead>
<tr>
<th>0</th>
<th>16</th>
<th>20</th>
<th>28</th>
<th>32</th>
<th>68</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth</td>
<td>Independent</td>
<td>Child Born + Investment</td>
<td></td>
<td></td>
<td>Retirement</td>
</tr>
</tbody>
</table>

\[
V_j(a, \theta, e, \eta, \theta_k) = \max_{c, a', h, t, m} u(c, h, t) + \beta \mathbb{E} \left[V_{j+1}(a', \theta, e, \eta', \theta'_k) \right]
\]

\[
c + a' + m = y + a (1 + r) - T(y, a, c)
\]

\[
y = w_e E_{e,j}(\theta, \eta) h, \quad a' \geq a_{e,j}, \quad 0 \leq h + t \leq 1, \quad \eta' \sim \Gamma_{e,i}(\eta)
\]

where

- \(a\): assets
- \(\theta\): agent’s skills
- \(t\): time with child
- \(e\): education
- \(\theta_k\): child’s skills
- \(m\): money towards child
- \(\eta\): wage shock

In the paper: include child consumption \(c_k\) in utility, \(\delta u(c_k, 0)\)
Early Childhood Investments

Timeline

<table>
<thead>
<tr>
<th>0</th>
<th>16</th>
<th>20</th>
<th>28</th>
<th>32</th>
<th>68</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth</td>
<td>Independent</td>
<td>Child Born + Investment</td>
<td></td>
<td></td>
<td>Retirement</td>
</tr>
</tbody>
</table>

Equation

\[
V_j(a, \theta, e, \eta, \theta_k) = \max_{c, a', h, t, m} u(c, h, t) + \beta \mathbb{E} \left[V_{j+1}(a', \theta, e, \eta', \theta'_k) \right]
\]

\[
c + a' + m = y + a(1 + r) - T(y, a, c)
\]

\[
y = w_e E_{e,j}(\theta, \eta) h, \quad a' \geq a_{e,j}, \quad 0 \leq h + t \leq 1, \quad \eta' \sim \Gamma_{e,j}(\eta)
\]

Parameters

\[
\theta'_k = \left[\alpha_{1j} \theta^\rho_k + \alpha_{2j} \theta^\rho + \alpha_{3j} \frac{\rho_j}{\rho_j} \right]^{1/\rho_j} \exp(v), \quad v \sim N(0, \sigma_{j,v})
\]

\[
l = \tilde{A} \left[\alpha_m (m + g)^\gamma + (1 - \alpha_m) t^\gamma \right]^{1/\gamma}
\]

Money \quad Time
Early Childhood Investments

<table>
<thead>
<tr>
<th>0</th>
<th>16</th>
<th>20</th>
<th>28</th>
<th>32</th>
<th>68</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth</td>
<td>Independent</td>
<td>Child Born + Investment</td>
<td></td>
<td></td>
<td>Retirement</td>
</tr>
</tbody>
</table>

\[V_j(a, \theta, e, \eta, \theta_k) = \max_{c,a',h,t,m} u(c, h, t) + \beta E \left[V_{j+1}(a', \theta, e, \eta', \theta_k') \right] \]

\[c + a' + m = y + a (1 + r) - T(y, a, c) \]

\[y = w_e E_{e,j}(\theta, \eta) h, \quad a' \geq a_{e,j}, \quad 0 \leq h + t \leq 1, \quad \eta' \sim \Gamma_{e,j}(\eta) \]

\[\theta_k' = \left[\alpha_{1j} \theta_{\rho j}^k + \alpha_{2j} \theta_{\rho j} + \alpha_{3j} l_{\rho j} \right]^{1/\rho_j} \exp(\nu), \nu \sim N(0, \sigma_{j,\nu}) \]

\[l = \bar{A} \left[\alpha_m (m + g)^{\gamma} + (1 - \alpha_m) t^{\gamma} \right]^{1/\gamma} \quad t, m \geq 0 \]
• Just before child becomes independent, choose transfer \hat{a}

$$V_{\text{Transfer}}(a, \theta, e, \eta, \theta_k) = \max_{\hat{a}} V_{44}(a - \hat{a}, \theta, e, \eta) + \delta E[V_{16}(\hat{a}, \theta_k, \phi_k)]$$

Parents’ Continuation

Child’s Utility

$\hat{a} \geq 0, \quad \varepsilon_k \sim N(\bar{\varepsilon}, \sigma_\varepsilon)$

Draw of school taste shock, depends on parent’s education
Role for Government Investments

Why may government investments increase welfare?
Welfare: Consumption equivalence for a newborn under veil of ignorance

1. **Parent can’t borrow against child’s income created by investing**
 - I. Lack of compensation mechanism
 - II. **Life-cycle borrowing constraints** \Rightarrow Timing of compensation matters
Role for Government Investments

Why may government investments increase welfare?
Welfare: Consumption equivalence for a newborn under veil of ignorance

1. Parent can’t borrow against child’s income created by investing
 I. Lack of compensation mechanism
 II. Life-cycle borrowing constraints \(\Rightarrow \) Timing of compensation matters

2. Life-cycle borrowing constraints
 • Parent may not be able to use her own future income

3. Lack of insurance
 • Investing in child is risky, so more incentives to consume and invest in safe asset
Model: Timeline

Birth → Independent
 - Live w/ parents

Child → Transfer to child
 - College or work
 - Child is independent

Work
 - Earnings: wage life cycle by education + hours worked
 - Direct Investment on child: time and money
 Multiple periods ⇒ Builds child’s skills

Retirement → Death
 - Retirement income:
 - savings
 - social security

Parents invest in skill and transfer
Cobb-Douglas with constant returns to scale:

\[Y = AK^\alpha H^{1-\alpha} \]

where \(H \) is the CES aggregator

\[H = \left[sH_0^\Omega + (1-s)H_1^\Omega \right]^{\frac{1}{\Omega}} \]
Outline

Model

Estimation: USA 2000

Policy
Child’s Skill Production Function

Based on Cunha, Heckman and Schennach (ECTA, 2010)

\[
\theta_k' = \left[\alpha_1 j \theta_k + \alpha_2 j \theta_{\rho j}^p + \alpha_3 j I_{\rho j}^p \right]^{1/\rho_j} \exp(\nu), \quad \nu \sim N(0, \sigma_{j,\nu})
\]

- Investment’s productivity depends on child/parent’s skills
- Parameters can vary with child’s age
Child’s Skill Production Function

Based on Cunha, Heckman and Schennach (ECTA, 2010)

\[
\theta_k' = \left[\alpha_{1j} \theta_k^{\rho_j} + \alpha_{2j} \theta^{\rho_j} + \alpha_{3j} \rho_j^{-1} \exp(\nu) \right]^{1/\rho_j} \\
\text{Next period} \quad \text{Current} \quad \text{Parent's} \quad \text{Parental} \quad \nu \sim N(0, \sigma_{\nu})
\]

- Investment’s productivity depends on child/parent’s skills
- Parameters can vary with child’s age

Parameter values

- **Baseline estimation from CHS (2010)**
 - Estimated on a representative sample
 - Skills are more malleable when children are young
- **Estimation concerns** (e.g., Agostinelli and Wiswall, 2016)
 - Test robustness of results when we move away from CHS estimation

Parameter values

- **Baseline estimation from CHS (2010)**
 - Estimated on a representative sample
 - Skills are more malleable when children are young
- **Estimation concerns** (e.g., Agostinelli and Wiswall, 2016)
 - Test robustness of results when we move away from CHS estimation
Child’s Skill Production Function

Based on Cunha, Heckman and Schennach (ECTA, 2010)

\[\theta'_k = \left[\alpha_1 j \theta_k^{\rho_j} + \alpha_2 j \theta^{\rho_j} + \alpha_3 j I^{\rho_j} \right]^{1/\rho_j} \exp(\nu), \quad \nu \sim N(0, \sigma_{j,\nu}) \]

- Investment’s productivity depends on child/parent’s skills
- Parameters can vary with child’s age

Model requires specifying and estimating investment function \(I \)

\[I = \bar{A} \left[\alpha_m (m + g)^\gamma + (1 - \alpha_m) t^\gamma \right]^{1/\gamma} \]
Estimated to **match household level** data

Important moments for early childhood development

- **Parental investments**
 - **Hours:** Use *PSID Child Development Supplement* (CDS)
 - **Expenses:** CDS misses child care and school fees. Use CEX

- **Parental transfers**
 - Informative about altruism
 - Estimate from *PSID Rosters and Transfers Supplement*
Estimation: Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Std. Error</th>
<th>Description</th>
<th>Moment</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>176.8</td>
<td>(9.12)</td>
<td>Mean labor disutility</td>
<td>Avg. hours worked</td>
<td>65.2</td>
<td>65.9</td>
</tr>
<tr>
<td>δ</td>
<td>0.475</td>
<td>(0.011)</td>
<td>Altruism</td>
<td>Parent-to-child transfer as share of avg. annual income</td>
<td>0.75</td>
<td>0.73</td>
</tr>
<tr>
<td>School Taste:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>5.38</td>
<td>(1.61)</td>
<td>Avg. taste for college</td>
<td>College share</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td>α_{oc}</td>
<td>-0.55</td>
<td>(0.35)</td>
<td>College taste and cog. skills relation</td>
<td>College: cog skills slope</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>α_{nc}</td>
<td>-1.15</td>
<td>(0.36)</td>
<td>College taste and non-cog. skills relation</td>
<td>College: non-cog skills slope</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>σ_{ϵ}</td>
<td>2.51</td>
<td>(0.46)</td>
<td>SD of college taste shock</td>
<td>College: residual variance</td>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>$\bar{\epsilon}$</td>
<td>-1.55</td>
<td>(0.63)</td>
<td>Draw of school taste: mean by parent’s education</td>
<td>Intergenerational persistence of education</td>
<td>0.70</td>
<td>0.75</td>
</tr>
<tr>
<td>Skill Formation Productivity:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ξ</td>
<td>0.12</td>
<td>(0.03)</td>
<td>Parental time disutility of time with children</td>
<td>Avg. hours with children</td>
<td>18.0</td>
<td>17.2</td>
</tr>
<tr>
<td>\bar{A}</td>
<td>32.4</td>
<td>(1.30)</td>
<td>Returns to investments</td>
<td>Average log(skill)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>α_m</td>
<td>0.91</td>
<td>(0.02)</td>
<td>Money productivity</td>
<td>Ratio of money to hours</td>
<td>218</td>
<td>183</td>
</tr>
<tr>
<td>γ</td>
<td>-0.20</td>
<td>(0.45)</td>
<td>Money-time substitutability</td>
<td>Money-time correlation</td>
<td>0.93</td>
<td>0.88</td>
</tr>
<tr>
<td>Interest rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ι ($\times 10^2$)</td>
<td>4.9</td>
<td>(1.22)</td>
<td>Borrow-save wedge</td>
<td>Share of borrowers</td>
<td>4.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ω ($\times 10$)</td>
<td>2.05</td>
<td>(0.04)</td>
<td>Lump-sum transfer</td>
<td>Income variance ratio: Disposable to pre-gov</td>
<td>0.69</td>
<td>0.70</td>
</tr>
</tbody>
</table>
Estimation: Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Std. Error</th>
<th>Description</th>
<th>Moment</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu)</td>
<td>176.8</td>
<td>(9.12)</td>
<td>Mean labor disutility</td>
<td>Avg. hours worked</td>
<td>65.2</td>
<td>65.9</td>
</tr>
<tr>
<td>(\delta)</td>
<td>0.475</td>
<td>(0.011)</td>
<td>Altruism</td>
<td>Parent-to-child transfer as share of avg. annual income</td>
<td>0.75</td>
<td>0.73</td>
</tr>
<tr>
<td>School Taste:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>5.38</td>
<td>(1.61)</td>
<td>Avg. taste for college</td>
<td>College share</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td>(\alpha_{0c})</td>
<td>-0.55</td>
<td>(0.35)</td>
<td>College taste and cog. skills relation</td>
<td>College: cog skills slope</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>(\alpha_{0nc})</td>
<td>-1.15</td>
<td>(0.36)</td>
<td>College taste and non-cog. skills relation</td>
<td>College: non-cog skills slope</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>(\sigma_{e})</td>
<td>2.51</td>
<td>(0.46)</td>
<td>SD of college taste shock</td>
<td>College: residual variance</td>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>(\bar{\varepsilon})</td>
<td>-1.55</td>
<td>(0.63)</td>
<td>Draw of school taste: mean by parent’s education</td>
<td>Intergenerational persistence of education</td>
<td>0.70</td>
<td>0.75</td>
</tr>
<tr>
<td>Skill Formation Productivity:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\xi)</td>
<td>0.12</td>
<td>(0.03)</td>
<td>Parental time disutility</td>
<td>Avg. hours with children</td>
<td>18.0</td>
<td>17.2</td>
</tr>
<tr>
<td>(\bar{A})</td>
<td>32.4</td>
<td>(1.30)</td>
<td>Returns to investments</td>
<td>Average log(skill)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(\alpha_m)</td>
<td>0.91</td>
<td>(0.02)</td>
<td>Money productivity</td>
<td>Ratio of money to hours</td>
<td>218</td>
<td>183</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>-0.20</td>
<td>(0.45)</td>
<td>Money-time substitutability</td>
<td>Money-time correlation</td>
<td>0.93</td>
<td>0.88</td>
</tr>
<tr>
<td>Interest rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t \times 10^2)</td>
<td>4.9</td>
<td>(1.22)</td>
<td>Borrow-save wedge</td>
<td>Share of borrowers</td>
<td>4.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\omega \times 10)</td>
<td>2.05</td>
<td>(0.04)</td>
<td>Lump-sum transfer</td>
<td>Income variance ratio: Disposable to pre-gov</td>
<td>0.69</td>
<td>0.70</td>
</tr>
</tbody>
</table>

- **Moments’ Information**: [Link]
- **Non-targeted Moments**: [Link]
- **Back to Robustness**: [Link]
Estimation: Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Std. Error</th>
<th>Description</th>
<th>Moment</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu)</td>
<td>176.8</td>
<td>(9.12)</td>
<td>Mean labor disutility</td>
<td>Avg. hours worked</td>
<td>65.2</td>
<td>65.9</td>
</tr>
<tr>
<td>(\delta)</td>
<td>0.475</td>
<td>(0.011)</td>
<td>Altruism</td>
<td>Parent-to-child transfer as share of avg. annual income</td>
<td>0.75</td>
<td>0.73</td>
</tr>
<tr>
<td>School Taste:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>5.38</td>
<td>(1.61)</td>
<td>Avg. taste for college</td>
<td>College share</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td>(\alpha_{tc})</td>
<td>-0.55</td>
<td>(0.35)</td>
<td>College taste and cog. skills relation</td>
<td>College: cog skills slope</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>(\alpha_{tn})</td>
<td>-1.15</td>
<td>(0.36)</td>
<td>College taste and non-cog. skills relation</td>
<td>College: non-cog skills slope</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>(\sigma_x)</td>
<td>2.51</td>
<td>(0.46)</td>
<td>SD of college taste shock</td>
<td>College: residual variance</td>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>(\bar{\epsilon})</td>
<td>-1.55</td>
<td>(0.63)</td>
<td>Draw of school taste: mean by parent’s education</td>
<td>Intergenerational persistence of education</td>
<td>0.70</td>
<td>0.75</td>
</tr>
<tr>
<td>Skill Formation Productivity:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\xi)</td>
<td>0.12</td>
<td>(0.03)</td>
<td>Parental time disutility</td>
<td>Avg. hours with children</td>
<td>18.0</td>
<td>17.2</td>
</tr>
<tr>
<td>(\bar{A})</td>
<td>32.4</td>
<td>(1.30)</td>
<td>Returns to investments</td>
<td>Average log(skill)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(\alpha_m)</td>
<td>0.91</td>
<td>(0.02)</td>
<td>Money productivity</td>
<td>Ratio of money to hours</td>
<td>218</td>
<td>183</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>-0.20</td>
<td>(0.45)</td>
<td>Money-time substitutability</td>
<td>Money-time correlation</td>
<td>0.93</td>
<td>0.88</td>
</tr>
<tr>
<td>Interest rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\iota\ (\times 10^2))</td>
<td>4.9</td>
<td>(1.22)</td>
<td>Borrow-save wedge</td>
<td>Share of borrowers</td>
<td>4.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\omega\ (\times 10))</td>
<td>2.05</td>
<td>(0.04)</td>
<td>Lump-sum transfer</td>
<td>Income variance ratio: Disposable to pre-gov</td>
<td>0.69</td>
<td>0.70</td>
</tr>
</tbody>
</table>

[Moments' Information] [Non-targeted Moments] [Back to Robustness] [Back to Robustness SR-PE]
Model

Estimation: USA 2000

Policy
Government investments in early childhood

- Government invests money g directly:

\[
l = \bar{A} \left[\alpha_m (m + g)^\gamma + (1 - \alpha_m) t^\gamma \right]^{1/\gamma}
\]
Validation: Experimental Evidence

Use **RCT to validate the estimated model**

- **Garcia, Heckman, Leaf, and Prados (2020):**
 - Two US early childhood programs (ABC, CARE) in 1970s
 - Cost ≈ $13.5k per year for 5 years, i.e., total $67.5k per child
 - Followed up into adulthood and observe education/income
Use **RCT to validate the estimated model**

- **Garcia, Heckman, Leaf, and Prados (2020):**
 - Two US early childhood programs (ABC, CARE) in 1970s
 - Cost \approx $13.5k$ per year for 5 years, i.e., total $67.5k$ per child
 - Followed up into adulthood and observe education/income

- **Apply similar policy in model:**
 - **Small scale:** prices and taxes are not affected
 - **Target:** disadvantaged children of low-educated and low-income parents
 - **One-generation:** policy is not received by following generations
Validation: Experimental Evidence

Use **RCT to validate the estimated model**

- **Garcia, Heckman, Leaf, and Prados (2020):**
 - Two US early childhood programs (ABC, CARE) in 1970s
 - Cost $\approx 13.5k$ per year for 5 years, i.e., total $67.5k$ per child
 - Followed up into adulthood and observe education/income

- (a) College
- (b) Income (Age 30)
- (c) Return per Dollar
Large Scale and Permanent Policy

Evaluate universal version of policy
- **General Equilibrium:** Wages (and interest rate) adjust
- **Budget Balance:** Labor income tax adjusts

Outcomes of interest
- Average income, inequality, and intergenerational mobility
- Consumption equivalence under veil of ignorance

 How much extra % consumption would an agent have to get in order to be indifferent between being born in initial SS and alternative?

Outline

1. **Long-run effects**
 - (i) Alternative levels of g, (ii) Importance of long run, GE, budget-balance...
2. **Transition** (with alternative ways to finance it)
Intergenerational mobility: $\text{ChildRank}_i = \alpha + \beta \text{ParentRank}_i + \epsilon_i$
Results Decomposition

<table>
<thead>
<tr>
<th>Alternative Exercises</th>
<th>Change from Baseline (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Consumption Equivalence</td>
</tr>
<tr>
<td>Long Run</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Short-run small-scale policy would underestimate gains by one-half.
- Long-run intergenerational dynamics generate over 1/2 of welfare gains.
- Large-scale higher taxes reduce gains by 1/10th.
- Large-scale GE effects explain most of inequality reduction.
- Increase wage of HS-grads relative to college-grads.
 - Increase gains by 1/10th.
Results Decomposition

<table>
<thead>
<tr>
<th>Alternative Exercises</th>
<th>Change from Baseline (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Consumption Equivalence</td>
</tr>
<tr>
<td>Long Run</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Short-run small-scale policy would underestimate gains by one-half.
Results Decomposition

<table>
<thead>
<tr>
<th>Alternative Exercises</th>
<th>Change from Baseline (%)</th>
<th>Consumption Equivalence</th>
<th>Average Income</th>
<th>Labor Returns</th>
<th>Inequality</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Run</td>
<td>General Equilibrium</td>
<td>Budget Balanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
<td>3.9</td>
<td>8.0</td>
<td>8.4</td>
<td>5.3</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>9.1</td>
<td>11.7</td>
<td>13.4</td>
<td>5.6</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>9.4</td>
<td>7.2</td>
<td>8.4</td>
<td>-7.9</td>
</tr>
</tbody>
</table>

Short-run small-scale policy would underestimate gains by one-half

- Long-run intergenerational dynamics generate over 1/2 of welfare gains
Results Decomposition

<table>
<thead>
<tr>
<th>Alternative Exercises</th>
<th>Consumption Equivalence</th>
<th>Change from Baseline (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average Income</td>
</tr>
<tr>
<td>Long Run</td>
<td>General Equilibrium</td>
<td>Balanced</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Short-run small-scale policy would underestimate gains by one-half
- Long-run intergenerational dynamics generate over 1/2 of welfare gains

Large-scale GE effects explain most of inequality reduction
- Increase wage of HS-grads relative to college-grads
- Increase gains by 1/10th
Results Decomposition

<table>
<thead>
<tr>
<th>Alternative Exercises</th>
<th>Change from Baseline (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Consumption Equivalence</td>
</tr>
<tr>
<td>Long Run</td>
<td>General Equilibrium</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Short-run small-scale policy would underestimate gains by one-half

- Long-run intergenerational dynamics generate over 1/2 of welfare gains
- Large-scale higher taxes reduce gains by 1/10th

Large-scale GE effects explain most of inequality reduction

- Increase wage of HS-grads relative to college-grads
- Increase gains by 1/10th
Transition Dynamics

Many alternatives on how to transition to new steady state

First:

- Immediate introduction of investments g and labor-income tax
- Balance budget every period using lump-sum tax
Intergenerational mobility: $\text{ChildRank}_i = \alpha + \beta \text{ParentRank}_i + \epsilon_i$
Intergenerational mobility: \(\text{ChildRank}_i = \alpha + \beta \text{ParentRank}_i + \epsilon_i \)
Transition Dynamics

Intergenerational mobility: $\text{ChildRank}_i = \alpha + \beta \text{ParentRank}_i + \epsilon_i$
Who Loses? Older Agents at Time of Introduction
Alternative Transitions

Two ways to reduce cost paid by older agents and earlier cohorts

- Government borrowing ⇒ Transfer costs to future cohorts
- Slow introduction of investments ⇒ Reduce earlier costs

Combination makes gains more homogenous across cohorts
Transition: Only Intervened Pay + Slow Intro
Move each parameter one std. dev. above and below

- Calculate steady-state and introduce same policy as before

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Cons. Equiv. Change from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta)</td>
<td>Altruism</td>
<td>Down</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Labor Disutility</td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Avg. distaste for College</td>
<td></td>
</tr>
<tr>
<td>(\alpha_{\theta_c})</td>
<td>College taste-Cog Skills relation</td>
<td></td>
</tr>
<tr>
<td>(\alpha_{\theta_{nc}})</td>
<td>College taste-NonCog Skills relation</td>
<td></td>
</tr>
<tr>
<td>(\bar{\epsilon})</td>
<td>Mean college taste shock</td>
<td></td>
</tr>
<tr>
<td>(\sigma_{\epsilon})</td>
<td>SD of college taste shock</td>
<td></td>
</tr>
<tr>
<td>(\bar{A})</td>
<td>Returns to investments</td>
<td></td>
</tr>
<tr>
<td>(\alpha_m)</td>
<td>Money productivity</td>
<td></td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Money-Time substitutability</td>
<td></td>
</tr>
<tr>
<td>(\xi)</td>
<td>Parental time disutility</td>
<td></td>
</tr>
<tr>
<td>(\iota)</td>
<td>Borrow-save wedge</td>
<td></td>
</tr>
<tr>
<td>(\omega)</td>
<td>Lump-sum transfer</td>
<td></td>
</tr>
</tbody>
</table>

Baseline 9.4
Move each parameter one std. dev. above and below

- Calculate steady-state and introduce same policy as before

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cons. Equiv. Change from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Long-Run GE</td>
</tr>
<tr>
<td></td>
<td>Down</td>
</tr>
<tr>
<td>δ Altruism</td>
<td>0.34</td>
</tr>
<tr>
<td>μ Labor Disutility</td>
<td>0.13</td>
</tr>
<tr>
<td>α Avg. distaste for College</td>
<td>-0.66</td>
</tr>
<tr>
<td>α_{θ_c} College taste-Cog Skills relation</td>
<td>0.00</td>
</tr>
<tr>
<td>$\alpha_{\theta_{nc}}$ College taste-NonCog Skills relation</td>
<td>-0.13</td>
</tr>
<tr>
<td>$\bar{\varepsilon}$ Mean college taste shock</td>
<td>-0.21</td>
</tr>
<tr>
<td>σ_{ε} SD of college taste shock</td>
<td>0.70</td>
</tr>
<tr>
<td>\bar{A} Returns to investments</td>
<td>-0.11</td>
</tr>
<tr>
<td>α_m Money productivity</td>
<td>-0.38</td>
</tr>
<tr>
<td>γ Money-Time substitutability</td>
<td>-0.21</td>
</tr>
<tr>
<td>ξ Parental time disutility</td>
<td>-0.19</td>
</tr>
<tr>
<td>ι Borrow-save wedge</td>
<td>-0.07</td>
</tr>
<tr>
<td>ω Lump-sum transfer</td>
<td>-0.09</td>
</tr>
</tbody>
</table>

Baseline: 9.4
Move each parameter one std. dev. above and below

- Calculate steady-state and introduce same policy as before

<table>
<thead>
<tr>
<th></th>
<th>Cons. Equiv. Change from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Long-Run GE</td>
</tr>
<tr>
<td></td>
<td>Down</td>
</tr>
<tr>
<td>(\delta)</td>
<td>0.34</td>
</tr>
<tr>
<td>(\mu)</td>
<td>0.13</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>-0.66</td>
</tr>
<tr>
<td>(\alpha_{\theta_c})</td>
<td>0.00</td>
</tr>
<tr>
<td>(\alpha_{\theta_{nc}})</td>
<td>-0.13</td>
</tr>
<tr>
<td>(\bar{\varepsilon})</td>
<td>-0.21</td>
</tr>
<tr>
<td>(\sigma_{\varepsilon})</td>
<td>0.70</td>
</tr>
<tr>
<td>(\bar{A})</td>
<td>-0.11</td>
</tr>
<tr>
<td>(\alpha_m)</td>
<td>-0.38</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>-0.21</td>
</tr>
<tr>
<td>(\xi)</td>
<td>-0.19</td>
</tr>
<tr>
<td>(\iota)</td>
<td>-0.07</td>
</tr>
<tr>
<td>(\omega)</td>
<td>-0.09</td>
</tr>
</tbody>
</table>

Baseline 9.4
Results Robustness: Estimated Parameters Importance

Move each parameter one std. dev. above and below

- Calculate steady-state and introduce same policy as before

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Long-Run GE</th>
<th>Cons. Equiv. Change from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>Altruism</td>
<td>0.53</td>
<td>0.34 Down, -0.19 Up</td>
</tr>
<tr>
<td>μ</td>
<td>Labor Disutility</td>
<td>0.07</td>
<td>0.13 Down, -0.06 Up</td>
</tr>
<tr>
<td>α</td>
<td>Avg. distaste for College</td>
<td>1.47</td>
<td>-0.66 Down, 0.81 Up</td>
</tr>
<tr>
<td>α_{θ_c}</td>
<td>College taste-Cog Skills relation</td>
<td>0.56</td>
<td>0.00 Down, -0.56 Up</td>
</tr>
<tr>
<td>$\alpha_{\theta_{nc}}$</td>
<td>College taste-NonCog Skills relation</td>
<td>0.01</td>
<td>-0.13 Down, -0.14 Up</td>
</tr>
<tr>
<td>$\bar{\varepsilon}$</td>
<td>Mean college taste shock</td>
<td>0.02</td>
<td>-0.21 Down, -0.20 Up</td>
</tr>
<tr>
<td>σ_{ε}</td>
<td>SD of college taste shock</td>
<td>1.48</td>
<td>0.70 Down, -0.78 Up</td>
</tr>
<tr>
<td>\bar{A}</td>
<td>Returns to investments</td>
<td>0.11</td>
<td>-0.11 Down, -0.23 Up</td>
</tr>
<tr>
<td>α_m</td>
<td>Money productivity</td>
<td>0.36</td>
<td>-0.38 Down, -0.02 Up</td>
</tr>
<tr>
<td>γ</td>
<td>Money-Time substitutability</td>
<td>0.01</td>
<td>-0.21 Down, -0.20 Up</td>
</tr>
<tr>
<td>ξ</td>
<td>Parental time disutility</td>
<td>0.02</td>
<td>-0.19 Down, -0.21 Up</td>
</tr>
<tr>
<td>ι</td>
<td>Borrow-save wedge</td>
<td>0.12</td>
<td>-0.07 Down, -0.19 Up</td>
</tr>
<tr>
<td>ω</td>
<td>Lump-sum transfer</td>
<td>0.17</td>
<td>-0.09 Down, -0.27 Up</td>
</tr>
</tbody>
</table>

Baseline: 9.4
Move each parameter one std. dev. above and below

- Re-estimate, obtain steady-state, and introduce same policy as before

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Cons. Equiv. Change from Baseline Long-Run GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>Child’s Skills Importance</td>
<td>Down</td>
</tr>
<tr>
<td>α_2</td>
<td>Parents’ Skills Importance</td>
<td></td>
</tr>
<tr>
<td>α_3</td>
<td>Investments Importance</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>Substitutability</td>
<td></td>
</tr>
<tr>
<td>σ_v</td>
<td>Std. Dev. of Shock</td>
<td></td>
</tr>
<tr>
<td>$\text{Var} (\theta_{k_0})$</td>
<td>Var of Initial Skills</td>
<td></td>
</tr>
<tr>
<td>$\text{Corr} (\theta, \theta_{k_0})$</td>
<td>IGE Corr of Initial Skills</td>
<td></td>
</tr>
</tbody>
</table>

Baseline: 9.4
Move each parameter one std. dev. above and below

- Re-estimate, obtain steady-state, and introduce same policy as before

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Cons. Equiv. Change from Baseline Long-Run GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_1)</td>
<td>Child’s Skills Importance</td>
<td>Down 1.64, Up -2.70, Total 4.34</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>Parents’ Skills Importance</td>
<td>Down 0.98, Up -1.48, Total 2.46</td>
</tr>
<tr>
<td>(\alpha_3)</td>
<td>Investments Importance</td>
<td>Down 0.03, Up -0.89, Total 0.92</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Substitutability</td>
<td>Down -1.26, Up 0.96, Total 2.21</td>
</tr>
<tr>
<td>(\sigma_v)</td>
<td>Std. Dev. of Shock</td>
<td>Down 0.07, Up -0.66, Total 0.73</td>
</tr>
<tr>
<td>Var ((\theta_{k0}))</td>
<td>Var of Initial Skills</td>
<td>Down -0.66, Up -0.67, Total 0.01</td>
</tr>
<tr>
<td>Corr ((\theta, \theta_{k0}))</td>
<td>IGE Corr of Initial Skills</td>
<td>Down -0.69, Up -0.44, Total 0.25</td>
</tr>
</tbody>
</table>

Baseline 9.4
Results Robustness: CHS Parameters Importance

Move each parameter one std. dev. above and below

- Re-estimate, obtain steady-state, and introduce same policy as before

<table>
<thead>
<tr>
<th>Parameter/Importance</th>
<th>Cons. Equiv. Change from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Down</td>
</tr>
<tr>
<td>α_1 (Child's Skills Importance)</td>
<td>1.64</td>
</tr>
<tr>
<td>α_2 (Parents’ Skills Importance)</td>
<td>0.98</td>
</tr>
<tr>
<td>α_3 (Investments Importance)</td>
<td>0.03</td>
</tr>
<tr>
<td>ρ (Substitutability)</td>
<td>-1.26</td>
</tr>
<tr>
<td>σ_v (Std. Dev. of Shock)</td>
<td>0.07</td>
</tr>
<tr>
<td>$\text{Var} (\theta_{k_0})$ (Var of Initial Skills)</td>
<td>-0.66</td>
</tr>
<tr>
<td>$\text{Corr} (\theta, \theta_{k_0})$ (IGE Corr of Initial Skills)</td>
<td>-0.69</td>
</tr>
</tbody>
</table>

Baseline: 9.4
Move each parameter one std. dev. above and below

- Re-estimate, obtain steady-state, and introduce same policy as before

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Cons. Equiv. Change from Baseline Long-Run GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>Child's Skills Importance</td>
<td>Down: 1.64, Up: -2.70, Total: 4.34</td>
</tr>
<tr>
<td>α_2</td>
<td>Parents’ Skills Importance</td>
<td>Down: 0.98, Up: -1.48, Total: 2.46</td>
</tr>
<tr>
<td>α_3</td>
<td>Investments Importance</td>
<td>Down: 0.03, Up: -0.89, Total: 0.92</td>
</tr>
<tr>
<td>ρ</td>
<td>Substitutability</td>
<td>Down: -1.26, Up: 0.96, Total: 2.21</td>
</tr>
<tr>
<td>σ_v</td>
<td>Std. Dev. of Shock</td>
<td>Down: 0.07, Up: -0.66, Total: 0.73</td>
</tr>
<tr>
<td>$\text{Var}(\theta_{k_0})$</td>
<td>Var of Initial Skills</td>
<td>Down: -0.66, Up: -0.67, Total: 0.01</td>
</tr>
<tr>
<td>$\text{Corr}(\theta, \theta_{k_0})$</td>
<td>IGE Corr of Initial Skills</td>
<td>Down: -0.69, Up: -0.44, Total: 0.25</td>
</tr>
</tbody>
</table>

Baseline: 9.4
Alternative Policy: Parenting Education Program

Parenting education program
- Extend model to allow parents to acquire minimum parenting skills
- Use experimental evidence to estimate costs and gains of programs

Two alternative implementations
1. Paid by Government
 - Welfare benefits of 8%
 - Reduces inequality by 5% and increases mobility by 15%

2. Paid by Households
 - Welfare benefits of 7%
 - Reduces inequality by 5% and increases mobility by 13%

As with ECD investments: long-run large-scale gains are larger than short-run small-scale ones
Conclusion

Consequences of large-scale early childhood policies depend on

- (i) GE effects; (ii) cost of raising taxes; (iii) intergenerational dynamics

Model

- Introduce endogenous parental investments into a GE OLG incomplete markets model with distortionary taxes

Government early childhood investments increase welfare by 9%

- Small-scale short-run programs underestimate gains
 - Large-scale higher taxes reduce gains by 1/10th
 - Large-scale GE reduces inequality and increases gains by 1/10th
 - Long-run intergenerational dynamics generate over 1/2 of welfare gains

- Effects on inequality and mobility
 - Large enough to close gap with Canada by 50%
Some suggestions

Computation and data skills are very valuable
- Software: your choice
- Guides: Judd’s or Miranda-Fackler’s books, Violante’s notes
- Practice is key so start early

For heterogeneous-agents models
- Endogeneous grid method–look at Pijoan-Mas notes
- Simulation using kronecker products
- But these methods evolve quickly...
 - Maybe approximation methods based on machine learning?

Take advantage of HPC
- Provides lots of computational power
- May need advisor/professor’s sponsorship
APPENDIX
Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment’s Information

Additional Results
Early Childhood Development Programs around the world

Programs inspired by ABC/CARE around the world:

- Infant Health and Development Program (Spiker et al, 1997)
- John’s Hopkins Cerebral Palsy Study (Schneider and McDonald, 2007)
- Classroom Literacy Interventions and Outcomes (Sparling, 2010)
- Massachusetts Family Child Care Study (Collins, 2010)
- Many more in US, Manitoba, Australia (Garcia, Heckman, Leaf, and Prados, 2020)
Evidence on Early Childhood Programs

It is important to observe adult follow-ups (Garcia et al, 2020)

• Rather than using early measures to project adult outcomes

Most US evidence is from three programs:

• Large increases in education and income, and social gains

• Perry Preschool Program (ages 3–5)

• Carolina Abecedarian Project (ABC) and Carolina Approach to Responsive Education (CARE)

Head Start

• It is the largest program, between ages 4 (or 3) and 5

• Experimental evidence predicted smaller gains than non-experimental

• Larger gains if program substitution is accounted for (Kline and Walters, 2016)
Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment’s Information

Additional Results
Preliminaries: Skills and Wages

Labor income of individual of age j, education e, and skills θ is product of:

1. Wage of your education group: w_e.
2. **Labor efficiency units**: $E_{i,e,j} = \epsilon_{e,j}\psi_{i,e,j}$.
3. Hours worked: h.

Labor efficiency units evolve stochastically as sum of three components:

$$\log(E_{i,e,j}) = \log(\epsilon_{e,j}) + \lambda_e \log(\theta_{ic}) + \eta_{i,e,j}$$

where

- λ_e is education-specific return to skills.
- $\epsilon_{e,j}$ is education-specific age profile.
- $\psi_{i,e,j}$ is stochastic component with persistent cdf $\Gamma_{j,e}$.
During working years

- Can borrow: limits by education group.
- Interest rate $r^b = r + \iota$ where r is the returns to saving and ι is the wedge between borrowing and lending capital.
Preliminaries: Market Structure

During working years

- Can borrow: limits by education group.
- Interest rate $r^b = r + \iota$ where r is the returns to saving and ι is the wedge between borrowing and lending capital.

College Loans

- Pay subsidized interest rate r^c:
During working years

- Can borrow: limits by education group.
- Interest rate $r^b = r + \iota$ where r is the returns to saving and ι is the wedge between borrowing and lending capital.

College Loans

- Pay subsidized interest rate r^c:

Today: Presentation of model abstracts from different interest rates.
College Choice

<table>
<thead>
<tr>
<th>0</th>
<th>16</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth</td>
<td>Independent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>College or work</td>
<td></td>
</tr>
</tbody>
</table>

Work \((e = 0) \)

\[
V_j^w (a, \theta, e, \eta) = \max_{c, a', h} u(c, h) + \beta \mathbb{E} \left[V_{j+1}^w (a', \theta, e, \eta') \right],
\]

\[
c + a' = y + a (1 + r) - T(y, a, c),
\]

\[
y = w_e E_{e,j} (\theta, \eta) h, \quad a' \geq a_{e,j}, \quad 0 \leq h \leq 1, \quad \eta' \sim \Gamma_{e,j}(\eta).
\]
College Choice

<table>
<thead>
<tr>
<th>0</th>
<th>16</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth</td>
<td>Independent</td>
<td>College or work</td>
</tr>
</tbody>
</table>

Work \((e = 0)\)

\[
V_j^w (a, \theta, e, \eta) = \max_{c, a', h} u(c, h) + \beta \mathbb{E} \left[V_{j+1}^w (a', \theta, e, \eta') \right],
\]

\[
c + a' = y + a (1 + r) - T(y, a, c),
\]

\[
y = w_e E_{e,j}(\theta, \eta) h, \quad a' \geq a_{e,j}, \quad 0 \leq h \leq 1, \quad \eta' \sim \Gamma_{e,j}(\eta).
\]

College \((e = 1)\)

\[
V_j^s (a, \theta, e) = \max_{c, a', h} u(c, h + \bar{h}) + \beta \mathbb{E}_{\eta|e} V_{j+1}^w (a', \theta, e, \eta)
\]

\[
c + a' + p^s = y + a (1 + r) - T(y, a, c)
\]

\[
y = w_0 E_{e,j}(\theta) h, \quad a' \geq a_{e,j}, \quad 0 \leq h \leq 1 - \bar{h}
\]
Work ($e = 0$)

$$V_j^w (a, \theta, e, \eta) = \max_{c, a', h} u(c, h) + \beta \mathbb{E} \left[V_{j+1}^w (a', \theta, e, \eta') \right],$$

$$c + a' = y + a(1 + r) - T(y, a, c),$$

$$y = w_e E_{e,j} (\theta, \eta) h, \quad a' \geq a_{e,j}, \quad 0 \leq h \leq 1, \quad \eta' \sim \Gamma_{e,j}(\eta).$$

College ($e = 1$)

$$V_j^s (a, \theta, e) = \max_{c, a', h} u(c, h + \bar{h}) + \beta \mathbb{E}_{\eta|e} V_{j+1}^w (a', \theta, e, \eta)$$

$$c + a' + p^s = y + a(1 + r) - T(y, a, c)$$

$$y = w_0 E_{e,j} (\theta) h, \quad a' \geq a_{e,j}, \quad 0 \leq h \leq 1 - \bar{h}$$

Work or college:

$$V_j^{sw} (a, \theta, \phi) = \max \{ \mathbb{E}_{\eta|e=0} V_j^w (s, \theta, 0, \eta), V_j^s (s, \theta, 1, \varepsilon) - \kappa(\varepsilon, \theta) \}$$
Social Security: Received every period, relative to education e and permanent skill θ.

\[
V_j(a, \theta, e) = \max_{c, a'} u(c, 0) + \beta V_{j+1}^w(a', \theta, e),
\]

\[
c + a' = \pi(\theta, e) + a (1 + r) - T(0, a, c),
\]

\[
a' \geq 0
\]
Stationary Equilibrium

- **Distributions:**
 - Cross-sectional distribution of any cohort of age j is invariant over time periods.
 - Distribution of initial states is determined by older generations.

- **Household optimize:** Household make choices of education, consumption, labor, parental time and expenditures, transfers such that maximize utility.

- **Firms maximize profits.**

- **Prices clear markets.**
Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment’s Information

Additional Results
1. Standard parameters from literature.
 - e.g., discounting; intertemporal elasticity of substitution; Frisch elasticity...

2. Externally calibrated.
 - e.g., income process; borrowing limits...

3. Simulated Method of Moments.
 - Key moments to match novel elements of model (e.g., parental investments).
 - Estimated to match household level data.
Utility function is:

\[u(c, h) = \frac{c^{1-\gamma_c}}{1-\gamma_c} - \mu \frac{h^{1+\gamma_h}}{1+\gamma_h} \]
Utility function is:

\[u(c, h) = \frac{c^{1-\gamma_c}}{1-\gamma_c} - \mu \frac{h^{1+\gamma_h}}{1+\gamma_h} \]

Disutility of investing time \(t \) on children’s skills:

\[v(t) = \xi t \]

- From literature: \(\gamma_c = 2, \gamma_h = 3 \).
- To estimate: \(\mu \) and \(\xi \).
Parental investments

Sample Means

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Parents Together</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly Hours</td>
<td>18.0</td>
<td>20.6</td>
</tr>
<tr>
<td>(0.3071)</td>
<td>(0.6721)</td>
<td></td>
</tr>
<tr>
<td>Yearly Expenditures</td>
<td>1,966</td>
<td>1,553</td>
</tr>
<tr>
<td>(35.53)</td>
<td>(57.31)</td>
<td></td>
</tr>
</tbody>
</table>

Regression Coefficients

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Parents Together</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours on College</td>
<td>3.734***</td>
<td>2.473**</td>
</tr>
<tr>
<td>(0.518)</td>
<td>(1.179)</td>
<td></td>
</tr>
<tr>
<td>Log(Hours) on Log(Income)</td>
<td>0.123***</td>
<td>0.0481</td>
</tr>
<tr>
<td>(0.0234)</td>
<td>(0.0760)</td>
<td></td>
</tr>
<tr>
<td>Expenditures on College</td>
<td>732.4***</td>
<td>665.7***</td>
</tr>
<tr>
<td>(67.80)</td>
<td>(106.75)</td>
<td></td>
</tr>
<tr>
<td>Log(Expenditures) on Log(Income)</td>
<td>0.391***</td>
<td>0.634***</td>
</tr>
<tr>
<td>(0.0285)</td>
<td>(0.0624)</td>
<td></td>
</tr>
</tbody>
</table>

Expenditures: child-care expenditures in CEX.
Weekly Hours: based on time reading and playing in PSID-CDS.
Government Taxes

- **Tax function** has form: $T(y, a, c) = \tau_y y + \tau_k a r 1_{a \geq 0} + \tau_c c - \omega$.
- **Tax rates** from McDaniel (2014): $\tau_y = 0.22$, $\tau_c = 0.07$, and $\tau_k = 0.27$.
- Estimate lump-sum transfer ω such that ratio of the variances of disposable and pre-government log-income is 0.69 (PSID).
<table>
<thead>
<tr>
<th></th>
<th>Cognitive Skills</th>
<th>Non-Cognitive Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Stage</td>
<td>2nd Stage</td>
</tr>
<tr>
<td>Current Cognitive Skills</td>
<td>0.479</td>
<td>0.831</td>
</tr>
<tr>
<td>Current Non-Cognitive Skills</td>
<td>0.070</td>
<td>0.001</td>
</tr>
<tr>
<td>Investments</td>
<td>0.161</td>
<td>0.044</td>
</tr>
<tr>
<td>Parent’s Cognitive Skills</td>
<td>0.031</td>
<td>0.073</td>
</tr>
<tr>
<td>Parent’s Non-Cognitive Skills</td>
<td>0.258</td>
<td>0.051</td>
</tr>
<tr>
<td>Complementarity parameter</td>
<td>0.313</td>
<td>-1.243</td>
</tr>
<tr>
<td>Variance of Shocks</td>
<td>0.176</td>
<td>0.087</td>
</tr>
</tbody>
</table>
Cunha, Heckman and Schennach (2010) — Only Cognitive

<table>
<thead>
<tr>
<th></th>
<th>Cognitive Skills</th>
<th>Non-Cognitive Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Stage</td>
<td>2nd Stage</td>
</tr>
<tr>
<td>Current Cognitive Skills</td>
<td>0.303</td>
<td>0.448</td>
</tr>
<tr>
<td>Investments</td>
<td>0.319</td>
<td>0.098</td>
</tr>
<tr>
<td>Parent’s Cognitive Skills</td>
<td>0.378</td>
<td>0.454</td>
</tr>
<tr>
<td>Complementarity parameter</td>
<td>-0.180</td>
<td>-0.781</td>
</tr>
<tr>
<td>Variance of Shocks</td>
<td>0.193</td>
<td>0.050</td>
</tr>
</tbody>
</table>

	Cognitive Skills	Non-Cognitive Skills		
	1st Stage	2nd Stage	1st Stage	2nd Stage
Current Cognitive Skills	0.479	0.831	0.000	0.000
Current Non-Cognitive Skills	0.070	0.001	0.585	0.816
Investments	0.161	0.044	0.065	0.051
Parent’s Cognitive Skills	0.031	0.073	0.017	0.000
Parent’s Non-Cognitive Skills	0.258	0.051	0.333	0.133
Complementarity parameter	0.313	-1.243	-0.610	-0.551
Variance of Shocks	0.176	0.087	0.222	0.101
Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment’s Information

Additional Results
Panel Study of Income Dynamics (PSID):
- Longitudinal household survey.
- Information on education, income, marriage, children, ... and expenditures on children: toys, vacations, school supplies, clothes, food and medical.
- Sampling: Core sample of approximately 5k families, in 1968. Over time it includes those born in these families.
Child Development Data: PSID + CDS

- **Panel Study of Income Dynamics (PSID):**
 - Longitudinal household survey.
 - Information on education, income, marriage, children,... and expenditures on children: toys, vacations, school supplies, clothes, food and medical.
 - Sampling: Core sample of approximately 5k families, in 1968. Over time it includes those born in these families.

- **Child Development Supplement (CDS):**
 - Multiple **Assessments of Child Skills:**
 - **Time Diary:** Detailed description of child’s activities (weekday and weekend). Information on active and passive participation of parents.
Active time with parents

- Using time diaries I calculate “active” time with parents.
- “Active:” parent is performing activity with kid.
 Assumption: If two parents are active, double the hours.
Parental investments

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Parents Together 2 Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Means</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekly Hours</td>
<td>18.0</td>
<td>20.6</td>
</tr>
<tr>
<td></td>
<td>(0.3071)</td>
<td>(0.6721)</td>
</tr>
<tr>
<td>Yearly Expenditures</td>
<td>1,966</td>
<td>1,553</td>
</tr>
<tr>
<td></td>
<td>(35.53)</td>
<td>(57.31)</td>
</tr>
<tr>
<td>Regression Coefficients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours on College</td>
<td>3.734***</td>
<td>2.473**</td>
</tr>
<tr>
<td></td>
<td>(0.518)</td>
<td>(1.179)</td>
</tr>
<tr>
<td>Log(Hours) on Log(Income)</td>
<td>0.123***</td>
<td>0.0481</td>
</tr>
<tr>
<td></td>
<td>(0.0234)</td>
<td>(0.0760)</td>
</tr>
<tr>
<td>Expenditures on College</td>
<td>732.4***</td>
<td>665.7***</td>
</tr>
<tr>
<td></td>
<td>(67.80)</td>
<td>(106.75)</td>
</tr>
<tr>
<td>Log(Expenditures) on Log(Income)</td>
<td>0.391***</td>
<td>0.634***</td>
</tr>
<tr>
<td></td>
<td>(0.0285)</td>
<td>(0.0624)</td>
</tr>
</tbody>
</table>

Expenditures: child-care expenditures in CEX.
Weekly Hours: based on time reading and playing in PSID-CDS.
Estimation: Labor income risk

Labor income of individual of age \(j \), education \(e \), and skills \(\theta \) is product of:

1. Wage of your education group: \(w_e \).
2. **Labor efficiency units**: \(E_{i,e,j} = \epsilon_{e,j} \psi_{i,e,j} \).
3. Hours worked: \(h \).

Labor efficiency units evolve stochastically as sum of three components:

\[
\log(E_{i,e,j}) = \log(\epsilon_{e,j}) + \lambda_e \log(\theta_{ic}) + \eta_{i,e,j}
\]

where

- \(\lambda_e \) is education-specific return to skills.
- \(\epsilon_{e,j} \) is education-specific age profile.
- \(\psi_{i,e,j} \) is stochastic component with persistent cdf \(\Gamma_{j,e} \).
Estimation: Return to Skill

<table>
<thead>
<tr>
<th></th>
<th>(1) High School</th>
<th>(2) College</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(AFQT)</td>
<td>0.471***</td>
<td>1.008***</td>
</tr>
<tr>
<td></td>
<td>(0.0335)</td>
<td>(0.0768)</td>
</tr>
<tr>
<td>Observations</td>
<td>7,015</td>
<td>3,378</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.045</td>
<td>0.082</td>
</tr>
<tr>
<td># of households</td>
<td>988</td>
<td>487</td>
</tr>
</tbody>
</table>

*Source: NLSY. Robust standard errors in parentheses. *, **, *** denote statistical significance at the 10, 5, and 1 percent, respectively. log(AFQT) refers to the natural logarithm of the AFQT89 raw score. The regression includes year fixed effects. Methodology is explained in the main text.*

Note: The standard deviation of log-AFQT in the data is approximately 0.21.
Age Profile

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1) HS Grad</th>
<th>(2) College</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.0312***</td>
<td>0.0557***</td>
</tr>
<tr>
<td></td>
<td>(0.00387)</td>
<td>(0.00577)</td>
</tr>
<tr>
<td>Age2</td>
<td>-0.000271***</td>
<td>-0.000530***</td>
</tr>
<tr>
<td></td>
<td>(4.65e-05)</td>
<td>(6.89e-05)</td>
</tr>
<tr>
<td>Constant</td>
<td>2.084***</td>
<td>1.927***</td>
</tr>
<tr>
<td></td>
<td>(0.0779)</td>
<td>(0.118)</td>
</tr>
<tr>
<td>Observations</td>
<td>9,130</td>
<td>6,015</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.051</td>
<td>0.093</td>
</tr>
<tr>
<td># of households</td>
<td>1357</td>
<td>864</td>
</tr>
</tbody>
</table>

Source: PSID.
\[\eta_{i,e,j} = \rho_e \eta_{i,e,j-1} + Z_{i,e,j}, \quad Z_{i,e,j} \sim i.i.d. N(0, \sigma_{e,z}), \eta_0^e \sim N(0, \sigma_{\eta_0}^e) \]

<table>
<thead>
<tr>
<th></th>
<th>(1) High School</th>
<th>(2) College</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_e)</td>
<td>0.924</td>
<td>0.966</td>
</tr>
<tr>
<td>(\sigma_{e,z})</td>
<td>0.029</td>
<td>0.046</td>
</tr>
<tr>
<td>(\sigma_{e,\eta_0})</td>
<td>0.050</td>
<td>0.047</td>
</tr>
</tbody>
</table>

Source: NLSY. A period is 4 years long. Methodology is explained in the main text.
Other elements of estimation

- Aggregate Production Function.
- Borrowing limits.
- Price of college.
- Retirement benefits.
Aggregate Production Function

- Cobb-Douglas Form with constant returns to scale:
 \[Y = K^\alpha H^{1-\alpha} \]

 where \(H \) is the nested CES aggregator
 \[H = \left[sL_1^\Omega + (1 - s)L_2^\Omega \right]^{\frac{1}{\Omega}} \]

- Set \(\alpha = 1/3 \).
- Estimate using FOCs as in Katz and Murphy (1992) or Heckman et al (1998):
 - \(s = 0.53 \).
 - \(\frac{1}{1-\Omega} = 1.75 \).
Borrowing limits

Individuals can (unsecured) borrow **during working years**:

- Interest rate $r^b = r + \iota$ where r is the returns to saving and ι is the wedge between borrowing and lending capital.

- Borrowing limits estimated from self-reported limits by education in SCF: $20k$ and $34k$ for HS graduates and college graduates.
Borrowing limits

Individuals can (unsecured) borrow during working years:

- Interest rate $r^b = r + \iota$ where r is the returns to saving and ι is the wedge between borrowing and lending capital.
- Borrowing limits estimated from self-reported limits by education in SCF: $20k$ and $34k$ for HS graduates and college graduates.

Borrowing is allowed for college at subsidized interest rate r^c:

- Pay interest rate $r^c = r + \iota^c$ where ι^c was estimated to be 1% annually in federal student loans (Mix of no interest rate loans and 2.6% loans). Note $\iota^c < \iota$.
- Borrowing limit estimated to be $23k$.
College:

- Based on Delta Cost Project, yearly cost of college $\approx 6,588.
- This only considers tuition costs paid by individuals, i.e. it removes grants and scholarships.
• Replacement benefits are based on current US Social Security (OASDI).

• Use education and FE in model to estimate average lifetime income, on which the system is based.
Replacement rate

- h is the last level of human capital before retirement. The average lifetime income is summarized by $\hat{y}(h,e)$.

- Progressive formula based on SSA

\[
\pi(h) = \begin{cases}
0.9\hat{y}(h,e) & \text{if } \hat{y}(h,e) \leq 0.3\bar{y} \\
0.9(0.3\bar{y}) + 0.32(\hat{y}(h,e) - 0.3\bar{y}) & \text{if } 0.3\bar{y} \leq \hat{y}(h,e) \leq 2\bar{y} \\
0.9(0.3\bar{y}) + 0.32(2 - 0.3)\bar{y} + 0.15(\hat{y}(h,e) - 2\bar{y}) & \text{if } 2\bar{y} \leq \hat{y}(h,e) \leq 4.1\bar{y} \\
0.9(0.3\bar{y}) + 0.32(2 - 0.3)\bar{y} + 0.15(4.1 - 2)\bar{y} & \text{if } 4.1\bar{y} \leq \hat{y}(h,e)
\end{cases}
\]

where $\hat{y}(h,e) = [0.98\ 1.17\ 0.98] \times h$ and \bar{y} is approximately $70,000$.

Back to model
Back to calibration
Model Time Line
Model Inputs
Estimation: Age

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jb</td>
<td>16</td>
<td>Independent - start with 12 years of education</td>
</tr>
<tr>
<td>Je</td>
<td>20</td>
<td>Max educ - average years of schooling 13.42</td>
</tr>
<tr>
<td>Jc</td>
<td>28</td>
<td>Fertility</td>
</tr>
<tr>
<td>Jk</td>
<td>36</td>
<td>Transfer to children</td>
</tr>
<tr>
<td>Jt</td>
<td>40</td>
<td>Transfers to parents</td>
</tr>
<tr>
<td>Jr</td>
<td>68</td>
<td>Retire</td>
</tr>
<tr>
<td>Jd</td>
<td>80</td>
<td>Death</td>
</tr>
</tbody>
</table>
Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment’s Information

Additional Results
Estimation: 2-Steps Methodology

Step 1: Target moments
- Estimate target moments using whole sample
- Using bootstrap, obtain moments M_n for $n = 1, \ldots, N$

Step 2: Global estimation
- Draw parameters from “large” uniform iid hypercube (sobol sequence)
- Trade-offs:
 - Obtain combination of parameters that best fits whole-sample moments
 - For moments M_n ($n = 1, \ldots, N$), obtain an estimated parameters P_n
 - Calculate standard deviations or confidence intervals of P_n
 - But very costly to do if number of parameters is large
Preferences

Transfers to children

[Graph showing relationship between altruism (δ) and transfers to children with data points at δ = 0.46, 0.47, 0.48, 0.49, 0.68, 0.7, 0.72, 0.74, 0.76, 0.78, 0.8, 0.82.]

Altruism (δ)
Preferences

Transfers to children

Altruism (δ)

0.46 0.47 0.48 0.49
0.68
0.7
0.72
0.74
0.76
0.78
0.8
0.82

Hours worked

Disutility of work (μ)

0.58 0.6 0.62 0.64 0.66
63.5
64
64.5
65
65.5
66
66.5

Hours with child

Disutility of time w/child (ξ)

1 2 3
10
15
20
25
30

Back to Methodology Back to Parameters
School Taste

Share of college grads (%)

Mean school taste (α)

College: cog skills slope

School taste-cog skill relation (α_c)

College: noncog skills slope

School taste-noncog skill relation (α_{nc})

College: residual variance

SD of taste shock (σ_ϕ)
Skill Formation Productivity

High-Low skilled ratio

Ratio money-time

Prod. of Investments (\bar{A})

Money multiplier (α_m)

Money-time correlation

IGE persistence of education

Money-time substitutability (γ)

Mean school taste shock ($\bar{\varepsilon}$)
Tax Progressivity

Redistribution of income

Lump-sum transfer (ω)
Financial Services

Share of borrowers

Borrowing-saving wedge (i)
Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment’s Information

Additional Results
Validation: NotTargeted Moments

<table>
<thead>
<tr>
<th>Moment</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression of parental investments to parents’ characteristics (PSID-CDS and CEX)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Families</td>
<td>Homogeneous Families</td>
<td></td>
</tr>
<tr>
<td>Hours on college ed. parent</td>
<td>3.7</td>
<td>2.5</td>
</tr>
<tr>
<td>Expenditures on college ed. parent</td>
<td>732</td>
<td>666</td>
</tr>
<tr>
<td>Log hours on log parent income</td>
<td>0.12</td>
<td>0.05</td>
</tr>
<tr>
<td>Log expenditures on log parent income</td>
<td>0.39</td>
<td>0.63</td>
</tr>
<tr>
<td>Intergenerational Mobility (Chetty et al, 2016 and PSID-CDS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank-Rank coefficient</td>
<td>0.26–0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>Regression of college to log-parent income</td>
<td>0.24</td>
<td>0.18</td>
</tr>
<tr>
<td>Inequality (PSID)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gini</td>
<td>0.32</td>
<td>0.27</td>
</tr>
<tr>
<td>Top-Bottom</td>
<td>3.7</td>
<td>3.1</td>
</tr>
<tr>
<td>Savings (Inklaar and Timmer, 2013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital-Output Ratio (annualized)</td>
<td>≈ 3</td>
<td>2.8</td>
</tr>
<tr>
<td>Return to College (PSID and Heckman et al, 2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income Ratio: College – HS Graduate</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>Yearly return</td>
<td>≈ 10%</td>
<td>12%</td>
</tr>
</tbody>
</table>
Consumption equivalence under veil of ignorance

Let utility under policy P with extra % consumption λ be:

$$
\tilde{V}_{ji}^P (a, \theta, \phi, \lambda) = \mathbb{E}^P \left\{ \sum_{j=J_i}^{j=J_d} \beta^{(j-J_i)} u(c_j^P (1 + \lambda), h_j^P) + \beta^{J_c} b \tilde{V}_{ji}^P (\varphi, \theta_k, \phi, \lambda) \right\}
$$

So average utility is:

$$
\bar{V}^P (\lambda) = \int_{a, \theta, \phi} \tilde{V}_{ji}^P (a, \theta, \phi, \lambda) \mu_P (a, \theta, \phi)
$$

Then, welfare gain from going from policy $P = 0$ to $P = p$ is given by λ^p where:

$$
\bar{V}^0 (\lambda^p) = \bar{V}^p (0)
$$

By definition, welfare gains come from 2 sources

- **Changes in values** of becoming independent in each state, i.e., $\tilde{V}_{ji}^P (a, \theta, \phi, 0)$
- **Changes in probabilities** of each state, i.e., $\mu_P (a, \theta, \phi)$
By definition, welfare gains come from 2 sources

- Changes in values of becoming independent in each state, i.e., \(V(a, \theta, \varphi) \)
- Changes in probabilities of each state, i.e., \(\mu(a, \theta, \varphi) \)

Most welfare gains are driven by change in distribution \(\mu \)

- Fixing \(\mu \): Gains are 2.5%
- Fixing \(V \): Gains are 7.3%
Transition Dynamics

- Prices (%)
- Var Log-Lifetime-Earnings (%)
- Cons. Equiv. (%)
- Investment ($1,000)
- IGE Mobility (%)
- Share Change (%)
- Labor Tax (%)
- Lump-Sum Tax ($1,000)
- Gov. Deficit (%)
Early Childhood Investments

Graphs showing the relationship between budget per child ($1,000) and various metrics:
- Tax Rate (%)
- Consumption Equivalents (%)
- Variance of Log-Lifetime Earnings (%)
- IGE Mobility (%)
- Income: Mean (%)
- Labor Productivity (%)

Legends include:
- Ages 0-3: 100%
- Ages 0-3: 75%
- Ages 0-3: 50%
- Ages 0-3: 0%
Transition: Only Intervened Pay

Cohort

Cons. Equiv. (%)
Transition: Only Intervened Pay
Transition: Only Intervened Pay + Slow Intro

![Graph showing the changes in Cons. Equiv. (%) across Cohort from 0 to 40. The graph displays a steady increase in Cons. Equiv. (%) as Cohort increases.]
Transition: Only Intervened Pay + Slow Intro

Parent Types (Skills-Education)

Cons. Equiv. (%)
With Early Childhood Production Function
Assume early childhood good’s only input is college labor

- Price of early childhood is now wage of college graduate
Assume early childhood good’s only input is college labor

- Price of early childhood is now wage of college graduate

Short-run vs Long-run

1. **Short run**: scarcity of college graduates increases costs
2. **Long run**: increased supply of college reduces costs
With Early Childhood Production Function

![Graphs showing the impact of Early Childhood Development (ECD) on various economic metrics over different cohorts. The graphs illustrate changes in consumption equivalents, ECD/College attainment, wage gap, and variance in lifetime earnings when compared to baseline scenarios.](image-url)
Parenting Education
Endogenous parental investments allows for new policy:

- **Parenting Education**: teach techniques and games to solve discipline problems, foster confidence and capability,...

- **Estimated cost of program**: $11,400 per family
Recall production function is:

\[
\theta'_k = \left[\alpha_{1j} \theta^p_{k} + \alpha_{2j} \theta^p_{j} + \alpha_{3j} I^p_{j} \right]^{1/\rho_j} \exp(\nu)
\]

Next period child's skills

\(\theta'_k \)

Current child's skills

\(\theta^p_{k} \)

Parent's skills

\(\theta^p_{j} \)

Parental investments

\(I^p_{j} \)
Recall production function is:

$$\theta_k' = \left[\alpha_{1j} \theta_k^\rho_j + \alpha_{2j} \theta_j^\rho_j + \alpha_{3j} l_j^\rho_j \right]^{1/\rho_j} \exp(v)$$

Next period child’s skills

Current child’s skills

Parent’s skills

Parental investments

With parenting education:

$$\theta_k' = \left[\alpha_{1j} \theta_k^\rho_j + \alpha_{2j} \max\{\theta, \theta_{PE}\}^\rho_j + \alpha_{3j} l_j^\rho_j \right]^{1/\rho_j} \exp(v)$$

Next period child’s skills

Current child’s skills

Program provides basic skills θ_{PE}

Parental investments
Gertler et al (2013) study effect of parenting education in Jamaica

- **RCT** on growth-stunted and poor children, ages 0–2, in 1986
- Children around age 22 \(\Rightarrow\) income grew by 12% (at least)
Gertler et al (2013) study effect of parenting education in Jamaica

- **RCT** on growth-stunted and poor children, **ages 0–2**, in 1986
- Children **around age 22** ⇒ **income grew by 12%** (at least)

Mimic RCT in model

- **Small scale** and **one-time policy**
- Focus on children with low initial draws of skills
 And of low-income, low-skilled, low-educated parents

Look for increase in productivity that increases income by 12%
Benchmarking productivity of parenting education

Gertler et al (2013) study effect of parenting education in Jamaica
• **RCT** on growth-stunted and poor children, **ages 0–2**, in 1986
• Children **around age 22 ⇒ income grew by 12%** (at least)

Mimic RCT in model
• **Small scale** and **one-time policy**
• Focus on children with low initial draws of skills
And of low-income, low-skilled, low-educated parents

Look for increase in productivity that increases income by 12%

<table>
<thead>
<tr>
<th>θ_{PE}</th>
<th>Change from Baseline (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std. Dev. of θ</td>
<td>Income Bottom</td>
</tr>
<tr>
<td>-1.6 SD</td>
<td>0.00</td>
</tr>
<tr>
<td>-1.0 SD</td>
<td>2.13</td>
</tr>
<tr>
<td>-0.4 SD</td>
<td>5.22</td>
</tr>
<tr>
<td>0.0 SD</td>
<td>7.22</td>
</tr>
<tr>
<td>+0.4 SD</td>
<td>9.48</td>
</tr>
<tr>
<td>+0.8 SD</td>
<td>11.48</td>
</tr>
<tr>
<td>+1.0 SD</td>
<td>12.31</td>
</tr>
<tr>
<td>+1.2 SD</td>
<td>13.10</td>
</tr>
</tbody>
</table>
Benchmarking productivity of parenting education

Gertler et al (2013) study effect of parenting education in Jamaica

- **RCT** on growth-stunted and poor children, ages 0–2, in 1986
- Children **around age 22** ⇒ income grew by **12%** (at least)

Mimic RCT in model

- **Small scale** and **one-time policy**
- Focus on children with low initial draws of skills
 And of low-income, low-skilled, low-educated parents

Look for increase in productivity that increases income by **12%**

<table>
<thead>
<tr>
<th>θ_{PE}</th>
<th>Change from Baseline (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std. Dev. of θ</td>
<td>Income Bottom</td>
</tr>
<tr>
<td>-2.6 SD</td>
<td>0.00</td>
</tr>
<tr>
<td>-2.0 SD</td>
<td>2.13</td>
</tr>
<tr>
<td>-1.4 SD</td>
<td>5.22</td>
</tr>
<tr>
<td>-1.0 SD</td>
<td>7.22</td>
</tr>
<tr>
<td>-0.6 SD</td>
<td>9.48</td>
</tr>
<tr>
<td>-0.2 SD</td>
<td>11.48</td>
</tr>
<tr>
<td>Benchmark = 0</td>
<td>12.31</td>
</tr>
<tr>
<td>+0.2 SD</td>
<td>13.10</td>
</tr>
<tr>
<td>θ_{PE} relative to benchmark</td>
<td>Cons. Equiv.</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>-1.4 SD</td>
<td>2.87</td>
</tr>
<tr>
<td>-1.0 SD</td>
<td>3.79</td>
</tr>
<tr>
<td>-0.6 SD</td>
<td>5.48</td>
</tr>
<tr>
<td>-0.2 SD</td>
<td>6.95</td>
</tr>
<tr>
<td>Benchmark</td>
<td>7.65</td>
</tr>
<tr>
<td>0.2 SD</td>
<td>8.19</td>
</tr>
</tbody>
</table>

Even if parenting education is 1.4 standard deviation less effective, it still has positive welfare effects in the long run. Large effects on intergenerational mobility and inequality.

Partial Equilibrium Back
Parenting Education: Long Run, GE

<table>
<thead>
<tr>
<th>θ_{PE} relative to benchmark</th>
<th>Cons. Equiv.</th>
<th>Avg. Income</th>
<th>Inequality</th>
<th>Mobility</th>
<th>College</th>
<th>Tax Revenue</th>
<th>Tax Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.4 SD</td>
<td>2.87</td>
<td>2.29</td>
<td>-3.12</td>
<td>9.29</td>
<td>2.61</td>
<td>2.60</td>
<td>-0.28</td>
</tr>
<tr>
<td>-1.0 SD</td>
<td>3.79</td>
<td>2.85</td>
<td>-4.29</td>
<td>11.03</td>
<td>3.32</td>
<td>2.93</td>
<td>-0.44</td>
</tr>
<tr>
<td>-0.6 SD</td>
<td>5.48</td>
<td>4.36</td>
<td>-4.79</td>
<td>13.85</td>
<td>5.00</td>
<td>3.39</td>
<td>-0.76</td>
</tr>
<tr>
<td>-0.2 SD</td>
<td>6.95</td>
<td>5.39</td>
<td>-4.98</td>
<td>15.32</td>
<td>6.30</td>
<td>3.64</td>
<td>-1.05</td>
</tr>
<tr>
<td>Benchmark</td>
<td>7.65</td>
<td>5.68</td>
<td>-5.14</td>
<td>15.47</td>
<td>6.40</td>
<td>3.95</td>
<td>-1.16</td>
</tr>
<tr>
<td>0.2 SD</td>
<td>8.19</td>
<td>6.05</td>
<td>-5.35</td>
<td>16.70</td>
<td>6.87</td>
<td>4.06</td>
<td>-1.26</td>
</tr>
</tbody>
</table>

- Even if parenting education is **1.4 standard deviation less effective** it still has positive welfare effect in the long run.
Parenting Education: Long Run, GE

<table>
<thead>
<tr>
<th>θ_{PE} relative to benchmark</th>
<th>Cons. Equiv.</th>
<th>Avg. Income</th>
<th>Change from Baseline (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inequality</td>
</tr>
<tr>
<td>-1.4 SD</td>
<td>2.87</td>
<td>2.29</td>
<td>-3.12</td>
</tr>
<tr>
<td>-1.0 SD</td>
<td>3.79</td>
<td>2.85</td>
<td>-4.29</td>
</tr>
<tr>
<td>-0.6 SD</td>
<td>5.48</td>
<td>4.36</td>
<td>-4.79</td>
</tr>
<tr>
<td>-0.2 SD</td>
<td>6.95</td>
<td>5.39</td>
<td>-4.98</td>
</tr>
<tr>
<td>Benchmark</td>
<td>7.65</td>
<td>5.68</td>
<td>-5.14</td>
</tr>
<tr>
<td>0.2 SD</td>
<td>8.19</td>
<td>6.05</td>
<td>-5.35</td>
</tr>
</tbody>
</table>

- Even if parenting education is 1.4 standard deviation less effective, it still has positive welfare effect in the long run.
- Large effect on **Intergeneration mobility** and **inequality**
Now program can be purchased by families

<table>
<thead>
<tr>
<th>Change from Baseline (%)</th>
<th>Cons. Equiv.</th>
<th>Avg. Income</th>
<th>Inequality</th>
<th>Mobility</th>
<th>College</th>
<th>Tax Revenue</th>
<th>Tax Rate</th>
<th>Take-Up Low</th>
<th>Take-Up Medium</th>
<th>Take-Up High</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.4 SD</td>
<td>1.61</td>
<td>1.66</td>
<td>-2.08</td>
<td>5.63</td>
<td>1.47</td>
<td>0.45</td>
<td>-0.35</td>
<td>82.54</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>-1.0 SD</td>
<td>3.15</td>
<td>2.75</td>
<td>-2.72</td>
<td>6.54</td>
<td>2.49</td>
<td>0.78</td>
<td>-0.68</td>
<td>93.93</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>-0.6 SD</td>
<td>4.87</td>
<td>3.87</td>
<td>-4.20</td>
<td>10.42</td>
<td>4.23</td>
<td>1.47</td>
<td>-0.98</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>-0.2 SD</td>
<td>6.28</td>
<td>4.82</td>
<td>-5.29</td>
<td>11.90</td>
<td>5.58</td>
<td>1.72</td>
<td>-1.28</td>
<td>100.00</td>
<td>19.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Benchmark</td>
<td>7.02</td>
<td>5.43</td>
<td>-4.85</td>
<td>13.40</td>
<td>6.45</td>
<td>1.82</td>
<td>-1.44</td>
<td>100.00</td>
<td>33.41</td>
<td>0.00</td>
</tr>
<tr>
<td>0.2 SD</td>
<td>7.64</td>
<td>5.95</td>
<td>-5.16</td>
<td>13.17</td>
<td>6.91</td>
<td>2.10</td>
<td>-1.54</td>
<td>100.00</td>
<td>50.17</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Market provided program provides slightly smaller gains.
Cost of parenting education program is hard to estimate
Cost of parenting education program is hard to estimate

- Estimate from Colombia (Attanasio et al, 2016) ⇒ US$450-750 per child.
- Program employed mostly women with high-school degree education. Assuming requires college graduate in US, would suggest costs per child of $3,400-5,700 in the US.
- **Choose upper bound**: $2 \times $5,700 per family (2 children).
Parenting Education: Short Run, PE

<table>
<thead>
<tr>
<th>θ_{PE} relative to benchmark</th>
<th>Cons. Equiv.</th>
<th>Avg. Income</th>
<th>Inequality</th>
<th>Mobility</th>
<th>College</th>
<th>Tax Revenue</th>
<th>Tax Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.4 SD</td>
<td>1.38</td>
<td>3.02</td>
<td>2.59</td>
<td>7.09</td>
<td>8.46</td>
<td>3.91</td>
<td>0.00</td>
</tr>
<tr>
<td>-1.0 SD</td>
<td>1.86</td>
<td>4.17</td>
<td>3.79</td>
<td>9.77</td>
<td>11.33</td>
<td>5.33</td>
<td>0.00</td>
</tr>
<tr>
<td>-0.6 SD</td>
<td>2.84</td>
<td>6.18</td>
<td>5.88</td>
<td>12.91</td>
<td>16.39</td>
<td>8.20</td>
<td>0.00</td>
</tr>
<tr>
<td>-0.2 SD</td>
<td>3.69</td>
<td>7.92</td>
<td>7.54</td>
<td>15.99</td>
<td>20.70</td>
<td>10.69</td>
<td>0.00</td>
</tr>
<tr>
<td>Benchmark</td>
<td>4.06</td>
<td>8.66</td>
<td>8.21</td>
<td>16.98</td>
<td>22.57</td>
<td>11.78</td>
<td>0.00</td>
</tr>
<tr>
<td>0.2 SD</td>
<td>4.40</td>
<td>9.34</td>
<td>8.79</td>
<td>17.83</td>
<td>24.28</td>
<td>12.78</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Robustness and Parameters Importance
Results Robustness: Estimated Parameters Importance

Move each parameter one std. dev. above and below

- Calculate steady-state and introduce same policy as before

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cons. Equiv. Change from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short-Run PE</td>
</tr>
<tr>
<td></td>
<td>Down</td>
</tr>
<tr>
<td>δ</td>
<td>0.06</td>
</tr>
<tr>
<td>μ</td>
<td>-0.01</td>
</tr>
<tr>
<td>α</td>
<td>0.06</td>
</tr>
<tr>
<td>α_{θ_c}</td>
<td>0.09</td>
</tr>
<tr>
<td>α_{θ_n}</td>
<td>0.01</td>
</tr>
<tr>
<td>$\bar{\theta}$</td>
<td>-0.01</td>
</tr>
<tr>
<td>σ_{ϵ}</td>
<td>-0.16</td>
</tr>
<tr>
<td>\bar{A}</td>
<td>0.01</td>
</tr>
<tr>
<td>α_m</td>
<td>-0.05</td>
</tr>
<tr>
<td>γ</td>
<td>-0.00</td>
</tr>
<tr>
<td>ξ</td>
<td>-0.00</td>
</tr>
<tr>
<td>ι</td>
<td>-0.00</td>
</tr>
<tr>
<td>ω</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Baseline 3.9 9.4
Move each parameter one std. dev. above and below

- Re-estimate, obtain steady-state, and introduce same policy as before

<table>
<thead>
<tr>
<th></th>
<th>Change from Baseline</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cons. Equiv. SR-PE</td>
<td>Cons. Equiv. LR-GE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Down</td>
<td>Up</td>
<td>Total</td>
<td>Down</td>
<td>Up</td>
</tr>
<tr>
<td>α_1</td>
<td>0.51</td>
<td>-0.56</td>
<td>1.07</td>
<td>1.64</td>
<td>-2.70</td>
</tr>
<tr>
<td>α_2</td>
<td>0.48</td>
<td>-0.44</td>
<td>0.92</td>
<td>0.98</td>
<td>-1.48</td>
</tr>
<tr>
<td>α_3</td>
<td>0.11</td>
<td>-0.20</td>
<td>0.31</td>
<td>0.03</td>
<td>-0.89</td>
</tr>
<tr>
<td>ρ</td>
<td>-0.32</td>
<td>0.39</td>
<td>0.71</td>
<td>-1.26</td>
<td>0.96</td>
</tr>
<tr>
<td>σ_ν</td>
<td>0.18</td>
<td>-0.08</td>
<td>0.26</td>
<td>0.07</td>
<td>-0.66</td>
</tr>
<tr>
<td>$Var (\theta_{k_0})$</td>
<td>-0.06</td>
<td>-0.07</td>
<td>0.01</td>
<td>-0.66</td>
<td>-0.67</td>
</tr>
<tr>
<td>$Corr (\theta, \theta_{k_0})$</td>
<td>-0.06</td>
<td>-0.07</td>
<td>0.00</td>
<td>-0.69</td>
<td>-0.44</td>
</tr>
<tr>
<td>Baseline</td>
<td>3.9</td>
<td></td>
<td>9.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>