
Neural Networks

Cristián Aguilera-Arellano
UMN

March 22, 2021

1 / 23



Introduction

- A neural network is a two-stage regression or classification model

- A single-layer neural network is a specific case of a project pursuit regression

- Cybenko (1989) proved a single-layer neural network is a universal approximator

- The central idea is to extract linear combinations of the inputs, and then model the
target as a nonlinear function of these features

2 / 23



Projection Pursuit Regression
- Input vector X ∈ Rp and a target Y ∈ Rk

- αm m = 1, ...,M is a unit p-vector of unknown parameters
- gm are unspecified functions to be estimated along with αm – use smoothers

(smoothing splines or local regressions) to approximate gm
- The project pursuit regression (PPR) model has the form:

f (X ) =
M

∑
m=1

gm(α
T
mX )

- The model can approximate any continuous function in Rp – global approximator
- Given training data (xi , yi) i = 1,2, ...,n the objective is to,

min
{gm,wm}M

m=1

n

∑
i=1

[
yi −

M

∑
m=1

gm(α
T
mxi)

]2

- Neural Networks – Fix gm(αT
mX ) = βmσ(α0m + αT

mX ) where βm is a parameter and
σ(·) is a sigmoid function

Solution Algorithm
3 / 23



Neural Networks
- Nonlinear statistical models
- For regression, usually there is only one output unit at the top (Y1)
- For K-class classification (diagram), there are K target measurements Yk , k = 1, ...,K

each being coded as a 0− 1
- Zm m = 1, ...,M hidden units (neurons) are created from linear combinations of the

inputs and Yk as a function of linear combinations of Zm

Zm = σ(α0m + αT
mX ), m = 1, ...M

Tk = β0k + βT
k Z , k = 1, ...K

fk (X ) = gk (T ), k = 1, ...K

- σ(v) is called the activation function and is usually chosen to be the sigmoid
σ(v) = 1/(1 + e−v )

- For a regression usually gk (T ) = Tk , and for the K-class classification
gk (T ) = eTk / ∑K

l=1 eTl

4 / 23



Neural Networks diagram

5 / 23



Fitting Neural Networks
- The unknown parameters of the model, also called weights consists of

α ≡ {α0m, αm;m = 1, ...,M} M(p + 1)weights
β ≡ {β0k , βk ; k = 1, ...,K} K (M + 1)weights

θ ≡ (α, β)

- For regression, we use sum-of-squared errors as a measure of fit,

R(θ) =
K

∑
k=1

N

∑
i=1

(yik − fk (xi))
2

- For classification,

R(θ) = −
K

∑
k=1

N

∑
i=1

yik log fk (xi)

- To avoid overfitting some regularization is needed (penalty term)
- The goal is to minimize R(θ) – gradient descent (back-propagation)

6 / 23



Neural Networks-Back Propagation (1/3)
- Let A ≡ α0m + αT

mX , zmi = σ(α0m + αT
mxi), and zi = (z1i , ..., zmi)

- The overall model,

X α−→ A σ−→ Z
β−→ T

g−→ f̂

- Our task is to compute ∇θR(θ),

∂R(θ)

∂βkm
= −2

N

∑
i=1

(yik − fk (xi))g ′k (βT
k zi)zmi

∂R(θ)

∂αml
= −

N

∑
i=1

K

∑
k=1

2(yik − fk (xi))g ′k (βT
k zi)βkmσ′(αT

mxi)xil

- A gradient descent update at the (r + 1)st iteration has the form,

β
(r+1)
km = β

(r )
km − γr

∂R(θ)

∂β
(r )
km

α
(r+1)
ml = α

(r )
ml − γr

∂R(θ)

∂α
(r )
ml 7 / 23



Neural Networks-Back Propagation (2/3)
- γr is the learning rate – it is usually a constant. It can also be optimized by a grid

search that minimizes the error function at each update
- Rewriting the FOC,

∂R(θ)

∂βkm
= −2

N

∑
i=1

(yik − fk (xi))g ′k (βT
k zi)zmi ≡

N

∑
i=1

δkizmi

∂R(θ)

∂αml
= −

N

∑
i=1

K

∑
k=1

2(yik − fk (xi))g ′k (βT
k zi)βkmσ′(αT

mxi)xil ≡
N

∑
i=1

smixil

- smi can be expressed in terms of δki ,

smi = σ′(αT
mxi)

K

∑
k=1

βkmδki

8 / 23



Neural Networks-Back Propagation -Summary (3/3)
1. In the forward pass, the current weights are fixed

X α−→ A σ−→ Z
β−→ T

g−→ f̂

2. In the backward pass, the errors δki are computed and back-propagated by

smi = σ′(αT
mxi)

K

∑
k=1

βkmδki

3. δki and smi are used to compute the gradients

∂R(θ)

∂βkm
=

N

∑
i=1

δkizmi and ∂R(θ)

∂αml
=

N

∑
i=1

smixil

4. Update

β
(r+1)
km = β

(r )
km − γr

∂R(θ)

∂β
(r )
km

and α
(r+1)
ml = α

(r )
ml − γr

∂R(θ)

∂α
(r )
ml

9 / 23



Some Issues in Training Neural Networks (1/2)
- Starting values: usually starting values for weights are chosen to be random values

near zero
- Use of exact zero weights leads to zero derivatives and perfect symmetry, and the

algorithm never moves
- Starting with large weights often leads to poor solutions

- Overfitting: An explicit method for regularization is weight decay. We add a penalty
to the error function R(θ) + λJ(θ), where

J(θ) = ∑
km

β2
km + ∑

ml
α2

ml

λ ≥ 0 is a tuning parameter. We can use cross-validation to estimate λ (weight decay)
- Scaling inputs: Since the scaling of the inputs determines the effective scaling of the

weights in the bottom layer, it is recommended to standardize all inputs to have zero
mean and standard deviation one.

10 / 23



Weight Decay - Example

11 / 23



Some Issues in Training Neural Networks (2/2)

- Multiple minima: The error function R(θ) is nonconvex, possessing many local
minima. As a result, the final solution depends on initial weights −→ try different
random starting configurations

- Number of hidden units and layers: cross-validation can be used to estimate the
optimal number of hidden units. Choice of the number of hidden layers is guided by
background knowledge and experimentation

12 / 23



Example 1: Simulated Data
- Data is generated from two additive error models Y = f (X ) + ε:

Sum of sigmoids :Y = σ(aT
1 X ) + σ(aT

2 X ) + ε1

Radial :Y =
10

∏
m=1

φ(Xm) + ε2

where X T = (X1, ...,Xp), each Xj being a standard Gaussian variate, with p = 2 in the
first model, and p = 10 in the second.

- For the sigmoid model a1 = (3,3), a2 = (3,−3); for the radial model,
φ(t) = (1/2π)1/2exp(−t2/2)

- ε1 and ε2 are Gaussian errors, with variance chosen so that the signal-to-noise ratio
Var (E(Y |X ))

Var (Y − E(Y |X ))
=

Var (f (X ))

Var (ε)

is 4 in both models.
- Training sample of size 100 and test sample of size 10,000

13 / 23



Example 1- Performance (λ = 0.0005)
- Hidden units (0-10), weight decay λ = 0.0005, one hidden layer
- 10 random starting weights
- In the figures, it is reported the test error relative to Bayes error

14 / 23



Example 1- Performance of Sigmoid Model (λ = 0 vs λ = 0.1)
- True function is a sum of two sigmoids

15 / 23



Example 1- Performance of Sigmoid model (for different λ’s)
- True function is a sum of two sigmoids

16 / 23



Example 2: ZIP Code Data
- The objective is to classify handwritten numerals
- Total of 256 inputs (16×16 pixels)

17 / 23



Example 2-Structure

- Net-1: No hidden layer, equivalent to multinomial logistic regression

- Net-2: One hidden layer, 12 hidden units fully connected

Constrained networks:
- Net-3: Two hidden layers locally connected

- Each unit in the first hidden layer (8x8 array) takes inputs from a 3x3 patch of the input
layer (each patch is two pixels apart from the next patch) NN diagram

- The second layer (4x4 array) takes inputs from a 5x5 patch of the first layer
- Weights of all other connections are set to zero

- Net-4: Two hidden layers, locally connected with weight sharing

- Net-5: Two hidden layers, locally connected, two levels of weight sharing

18 / 23



Example 2- Test performance
- An epoch is a single pass over the entire data set

19 / 23



Example 2- Test performance

20 / 23



Applications

- Kaji, Manresa, and Pouliot (2020) propose a new simulation-based estimation method
that uses neural networks for structural models

- Neff (2021) adapts neural network methods for text analysis to analyze how the
wording in statements of the Federal Open Market Committee (FOMC) impacts fed
funds futures (FFF) prices

21 / 23



Conclusions

- Project Pursuit Regression

- Fit Neural Networks

- Issues training Neural Networks

22 / 23



References

- Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical learning
(Vol. 1, No. 10). New York: Springer series in statistics.

- Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

23 / 23



Neural Networks diagram
back

1 / 4



Example 2-diagram

2 / 4



Projection Pursuit Regression-Solution Algorithm back

- Impose constraints on the gm, to avoid overfit solutions
- Suppose M = 1, given w , we have a one-dimensional smoothing problem
- Given g we want to minimize the objective function over w , we can use a

Gaussian-Newton search,
g(wT xi) ≈ g(wT

oldxi) + g ′(wT
oldxi)(w −wold )

T xi

n

∑
i=1

[
yi − g(wT X )

]2

≈
n

∑
i=1

g ′(wT
oldxi)

2
[(

wT
oldxi +

yi − g(wT
oldxi)

g ′(wT
oldxi)

)
−wT xi

]2

where wold is the current estimate for w
- Minimize the right-hand side and get a new vector wnew
- Estimation of g and w are iterated until convergence
- If M > 1 the model is built in a forward stagewise manner, adding a pair (wm,gm) at

each stage
- After each step the gm’s can be readjusted using backfitting
- M is usually estimated as part of the forward stagewise strategy. The model building

stops when the next term does not improve the fit of the model
3 / 4



Linear smoothers
- A linear smoother is a regression function of the training outputs

f̂ (x∗) = ∑
i

wi(x∗)yi

where f̂ is the predicted value of the output and x∗ are the inputs.
- Examples of Linear smoothers: kernel regression, locally weighted regression,

Gaussian process regression, k-nearest-neighbors︸ ︷︷ ︸, smoothing splines, etc.

f̂ (x∗) =
1
k ∑

i∈Nk (x∗)︸ ︷︷ ︸
k-neighbor set of x

yi

wi(x∗) =

{
0 if i /∈ Nk (x∗)
1/k if i ∈ Nk (x∗)

4 / 4


	Appendix

