Lasso Regression

Cristián Aguilera-Arellano
UMN

February 8, 2021
Introduction

- Least squares estimates often have low bias but large variance
 - Prediction accuracy might improve by shrinking or setting some coefficients to zero

- The mean squared error of an estimator $\hat{\beta}$

 $$MSE(\hat{\beta}) = E(\hat{\beta} - \beta)^2$$
 $$MSE(\hat{\beta}) = Var(\hat{\beta}) + \left[E(\hat{\beta}) - \beta \right]^2$$

 Bias

- Gauss-Markov theorem \rightarrow Least square estimator has the smallest MSE of all linear estimators with no bias

- May exist biased estimators with smaller mean squared error \rightarrow trade a little bias for a larger reduction in variance
Bias-Variance trade-off
Example

- The objective is to create a model that has the best out of sample prediction
Lasso

- Lasso (least absolute shrinkage and selection operator) is a shrinkage method

- The lasso estimate is defined by

\[
\hat{\beta}_{\text{lasso}} = \arg\min_{\beta} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2
\]

subject to

\[
\sum_{j=1}^{p} |\beta_j| \leq t
\]

if it is replaced with \((\beta_j)^2\) then it is called a Ridge regression

- Making \(t\) sufficiently small will cause some of the coefficients to be exactly zero

- We can tune \(t\) to minimize the \(MSE\) → will help to avoid over-fitting

- If we choose \(t_0 = \sum_{j=1}^{p} |\hat{\beta}_j^{ls}|\), then the lasso estimates are also the least squares coefficients
When to use Lasso?

- If we have too many variables (p) relative to the number of observations (n)
- If we are willing to increase the bias of the estimates with the objective to reduce the mean squared errors
- If we want a subset of predictors that can produce an interpretable model
Standardize data

- Since we are penalizing the coefficients of the regression it is important to standardize the predictors

\[\tilde{x} = \frac{x - \bar{x}}{\sigma_x} \]

- This ensures all inputs are treated equally in the regularization process
Example-Prostate cancer

- Objective: Predict the prostate-specific antigen levels
- Predictors: log cancer volume (lcavol), log prostate weight (lweight), age, etc.
- \[s = \frac{t}{\sum_{j=1}^{p} |\hat{\beta}_j|} \]
Optimal t

- To determine the optimal $t \rightarrow 10$-fold cross-validation

- Randomly select 9 of the 10 folds to train the algorithm and the remaining fold as a test-fold

- After predicting the output in the test-fold, repeat so that each cross-validation fold is used once as a test-fold

- Let $\kappa : \{1, \ldots, N\} \rightarrow \{1, \ldots, 10\}$ be a function that indicates the partition to which observation i is allocated

- Denote $\hat{f}^{-k}(x)$ the fitted function, computed with the $k \in \{1, \ldots, 10\}$ test-fold

- The cross-validation estimate of prediction error is

$$CV(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}^{-\kappa(i)}(x_i))$$

- Select the t^* following the “one-standard error” rule \rightarrow choose the most parsimonious model whose error is no more than one standard error above the error of the best model
Cross-validation prediction error
- When $s = 1$ the coefficients are the least squares estimates
Ridge regression and Lasso

- The only difference is that the constraint for the ridge regression is: \(\sum_{j=1}^{p} (\beta_j)^2 \leq t \)
- Blue areas represent the constraints of each problem (lasso (left) and ridge (right))
- The red ellipses are the errors of the least squared error function
- The main difference is that if the solution in lasso hits a corner, one \(\beta_j \) will equal zero
Elastic Net

- Zou and Hastie (2005) introduced the elastic net penalty

$$\sum_{j=1}^{p} \alpha |\beta_j| + (1 - \alpha)(\beta_j)^2 \leq t$$

- α determines the mix of the penalties – we can choose α and t by cross-validation

- It shrinks the coefficients of correlated predictors like ridge, and selects variables like lasso
R package

- **glmnet** – package that fits a generalized linear model via penalized maximum likelihood

- The regularization path is computed for the lasso, elastic net or ridge penalty at a grid of values for t

- glmnet algorithm uses cyclical coordinate descent – successively optimizes the objective function over each parameter, and cycles until convergence
Conclusions

- Bias-Variance trade-off

- Tune the parameter t to avoid over-fitting

- Approaches to regularization - Lasso and Ridge regression
