Results from the Gentrepreneur Consortium

Philipp Koellinger (Economics, Erasmus U Rotterdam)

3rd SSGAC Workshop • 19 May 2012

GWAS on entrepreneurship

- Earliest large-scale GWAS initiative on an economic outcome
 - 17+1 studies
 - Started in 2008
 - Replication stage finished in fall 2011
- Main analysts:
 - Matthijs van der Loos (Rotterdam), Niina Eklund (FIMM, THL, Finland),
 Niels Rietveld (Rotterdam)
- Two proxies, two research strategies:
 - At least once self-employment (n = 59,549 + 3,271)
 - Serial self-employment (n = 5,930 + 2,771)
- Why entrepreneurship?
 - It is an economically important phenomenon
 - It is moderately heritable
- Calibrating expectations about genetic effects in economics

Participating studies

- AGES
- ARIC
- ASPS
- ERF*
- FHS
- GHS
- H2000
- HBCS
- KORA S4

- NFBC1966
- NTR
- RS*
- SardiNIA
- SHIP
- STR* **
- THISEAS
- TwinsUK
- YFS

^{*} for studies that also have serial self-employment

^{**} for replication study

Twin study and GREML results

		Twin study				GREML			
Proxy		h ²	(95%	CI)	n	h ² _{SNPs}	se	p	n
0	nce	0.54	(0.25-	-0.63)	4,464 (0.25	0.14	0.034	6,223
Se	Males	0.67	(0.33-	-0.76)	1,776	0.26	0.24	0.140	2,986
	Females	0.38	(0.00-	-0.53)	2,688	0.00	0.28	0.498	3,835
	erial	0.61	(0.18-	-0.82)	3,404	0.17	0.28	0.272	5,672
	Males	0.60	(0.13-	-0.87)	1,224 (0.73	0.44	0.047	2,602
	Females	0.59	(0.00-	-0.79)	2,180	0.00	0.70	0.500	3,592

- Twin study estimates for STR
- GREML estimates for RS and STR
- Twin study controls for sex
- GREML controls for sex, birth year, birth year², birth year³, cohort, and the first ten PCs of genotypic data

Manhattan plots discovery stage - pooled

Once self-employment

Manhattan plots discovery stage - males

Once self-employment

Serial self-employment

Manhattan plots discovery stage females

Once self-employment

Serial self-employment

Q-Q plots discovery stage - pooled

Once self-employment

Serial self-employment

Q-Q plots discovery stage - males

Once self-employment

Serial self-employment

Q-Q plots discovery stage females

Once self-employment

Serial self-employment

Manhattan plot combined meta-analysis

Serial self-employment

Posterior probability of a true association

Bayes' rule:

$$\Pr(true \mid significant) = \frac{\Pr(significant \mid true) \times \Pr(true)}{\Pr(significant \mid true) \times \Pr(true) + \Pr(significant \mid false) \times \Pr(false)}$$

- Pr(significant | false)
 - Genome-wide significance level: 5×10⁻⁸
- Pr(significant | true)
 - power at 5×10^{-8} in n = 8,701, given OR $1.042(1.07 \times 10^{-7})$
- Pr(true | significant)
 - > 50% if Pr(true) > 32%
 - More realistic prior:
 - 1000 SNPs \rightarrow prior: 1,000/1,000,000 SNPs = 0.1%
 - Posterior probability then only 0.21%
- Sample size required for 80% power at p = 0.05: n = 1.2M

VEGAS results candidate genes

	<i>p</i> -value				
Candidate gene	Once	Serial			
ADORA2A	0.223	0.730			
ADRA2A	0.003	0.871			
COMT	0.128	0.095			
DDC	0.411	0.345			
DRD1	0.804	0.908			
DRD2	0.276	0.034			
DRD3	0.050	0.171			
DRD4	0.238	0.668			
DRD5	0.573	0.606			
DYX1C1	0.643	0.663			
HTR1B	0.371	0.812			
HTR1E	0.904	0.273			
HTR2A	0.518	0.745			
KIAA0319 (DYX2)	0.142	0.980			
ROBO1	0.940	0.885			
SLC6A3 (DAT1)	0.398	0.792			
SNAP25	0.254	0.648			

- VEGAS results are based on the discovery stage metaanalyses
- 17 genes \rightarrow Bonferroniadjusted p = 0.05 / 17 = 0.003
- Different analyses for males, females, and two phenotypes
 → Bonferroni-adjusted
 p = 0.05 / 102 = 4.9×10⁻⁴

Prediction results

- Predicting once/serial self-employment in STR using the discovery stage meta-analysis results
- Variance explained (Nagelkerke pseudo R^2 from logistic regression of phenotype on genetic score) vs. p-value threshold p_T for including SNPs in the genetic score calculation

Main lessons

- GREML results:
 - GWAS and prediction are in principle possible
- GWAS results:
 - Effects of individual SNPs are very low
 - Even larger sample sizes are needed for GWAS
- Challenges we faced:
 - Phenotype measurement
 - Entrepreneurship is a multifaceted, biologically distal outcome
 - Are results poolable across countries?
- Ways forward:
 - Larger N?
 - Endophenotypes?
 - New statistical approaches?