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1 Introduction

The theory and practical applications involving the allocation and exchange of indivisible resources
without monetary transfers have recently been attracting attention of economists. Market designers
have tailored new models and mechanisms to solve real-life problems such as the allocation of students
to on-campus dormitory rooms at US colleges [cf. Abdulkadiroğlu and Sönmez, 2003] and exchanges
of live donor kidney transplants [cf. Roth et al., 2004].

There are common features of these real-life problems. There is a group of agents each of whom
would like to consume a single indivisible object to which we will refer to as a house using the
terminology coined by Shapley and Scarf [1974]. Agents have strict preferences over the houses.
Some of the houses are agents’ common endowment, while others belong to private endowments of
the agents. The outcome of the problem is a matching of agents and houses. Since we provide a
unified treatment of both house allocation (from social endowment) and house exchange (among
agents with private endowments), we refer to our environment as house allocation and exchange.
We study direct revelation mechanisms, that is, agents reveal their preferences over houses, and the
mechanism matches each agent with a house (or agent’s outside option).

The direct mechanisms studied in the literature have two essential properties: group strategy-
proofness and Pareto efficiency.1 Group strategy-proofness means that no group of agents can jointly
manipulate so that all of them weakly benefit from this manipulation, while at least one in the
group strictly benefits. Such mechanisms are not only non-manipulable but also impose minimal
computational costs on the participants and do not discriminate agents based on their ability to
strategize and their access to information [cf. Vickrey, 1961, Dasgupta et al., 1979, Pathak and
Sönmez, 2008].

We introduce a new class of direct mechanisms that we call trading cycles with brokers and owners
(or simply trading cycles), and show that (i) each mechanism in the class is group strategy-proof
and Pareto efficient, and (ii) each group strategy-proof and Pareto-efficient direct mechanism can be
implemented through a mechanism from the class. Thus, we characterize the full class of relevant
direct mechanisms, and lay down the structure of the house allocation and exchange problem. The
new trading-cycles-with-brokers-and-owners mechanisms can be used to address design problems that
were beyond the reach of the previously known mechanisms.

1The group strategy-proofness is the right strategy-proofness concept in applications such as kidney exchange,
see Section 6. In our environment, group strategy-proofness may be formulated as a non-cooperative property: it is
equivalent to dominant-strategy incentive compatibility and non-bossiness. For a group strategy-proof mechanism,
Pareto efficiency is equivalent to assuming that each allocation is feasible, and thus is implied by, for instance,
unanimity. See Section 2.2 for details.
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A trading-cycles-with-brokers-and-owners algorithm matches houses and agents in a sequence of
rounds. At each round some agents and houses are matched and removed from the problem. At the
beginning of the round, each previously unmatched house is controlled by an unmatched agent. We
distinguish two forms of control over a house which we call ownership and brokerage (at any round,
there is at most one broker and one brokered house). Each house points to the agent that controls it,
and each agent points to his most preferred unmatched house. The only exception is the broker (if
there is one) who points to his most preferred unmatched house other than the brokered house. In
the resultant directed graph, there exists at least one exchange cycle. Each agent in each exchange
cycle is matched with the house he points to.2

The allocation of control rights in each round is fully determined by how agents and houses
were matched prior to that round. The above-described procedure takes as given the mapping from
partial matchings to control rights. Each such mapping that satisfies certain consistency conditions
determines a mechanism in our class. For expositional purposes, we first formulate our main result
for settings in which all houses are social endowments, and hence there are no additional exogenous
constraints on the allocation of control rights [cf. Hylland and Zeckhauser, 1979]. For instance,
at some universities, the dormitory rooms are treated as social endowments. At other universities
however, some students, such as sophomores, have the right to stay in the room they lived in the
preceding year. In kidney exchange, patients (interpreted as agents) come with a paired-donor
(interpreted as a house) and have to be matched with at least their paired-donor. Such exogenous
control rights are straightforwardly accommodated by our mechanism class, and we derive corollaries
of our main result for problems in which some houses are private endowments of agents and the
participation in the mechanism has to be individually rational. The class of group strategy-proof,
efficient, and individually rational direct mechanism equals the class of individually rational trading
cycles mechanisms. Trading cycle mechanisms are individually rational if and only if they may be
represented by a consistent control right structure in which each agent is given ownership rights over
all houses from his endowment.

The above class of mechanisms is built on the top-trading cycles idea attributed to David Gale
by Shapley and Scarf [1974], and developed by Abdulkadiroğlu and Sönmez [1999] and Pápai [2000].
The subclass of our mechanisms without brokers was introduced by Pápai [2000]; it is the largest
class of group strategy-proof and Pareto-efficient mechanisms previously known. As a corollary of
our main results, we give an elegant characterization of top trading cycles in environments in which

2We study environments without outside options as well as environments with outside options. The results are the
same in both environments but the above algorithm needs to be slightly generalized in the case of outside options
by allowing agents to point to houses or their outside options. We also need to postpone matching a broker with his
outside option till a round an agent who owns a house lists the brokered house as his most preferred one.
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each agent has a nonempty endowment, a condition satisfied for instance in kidney exchange of Roth
et al. [2004]. In such environments top trading cycles mechanisms are the unique mechanisms which
are group strategy-proof, efficient, and individually rational.

On the technical side, our main innovations lies in introducing the brokerage control rights.
Previously only ownership control rights were studied in the context of house allocation and exchange.
Recognizing the role of brokers in house allocation and exchange is crucial to obtaining the entire
class of group strategy-proof and Pareto-efficient mechanisms. The introduction of brokers is also
useful in some design problems.

As an example of a mechanism design problem in which brokerage rights are useful, consider a
manager who assigns n tasks t1, ..., tn to n employees w1, ..., wn with strict preferences over the tasks.
The manager wants the allocation to be Pareto efficient with regard to the employees’ preferences.
Within this constraint, she would like to avoid assigning task t1 to employee w1. She wants to use
a group strategy-proof direct mechanism, because she does not know employees’ preferences. The
only way to do it using the previously known mechanisms is to endow employees w2, ..., wn with
the tasks, let them find the Pareto-efficient allocation through a top-trading cycles procedure, such
as hierarchical exchange of Pápai [2000], and then allocate the remaining task to employee w1. Ex
ante each such procedure is unfair to the employee w1. Using a trading-cycles-with-brokers-and-
owners mechanism, the manager can achieve her objective without the extreme discrimination of the
employee w1. To do so, she makes w1 the broker of t1, allocates the remaining tasks among w2, ..., wn

(for instance she may make wi the owner of ti, i = 2, ..., n), and runs trading cycles with brokers and
owners. The allocation of employee w1 in this trading-cycles-with-brokers-and-owners mechanism
is better than in any top-trading cycles procedures satisfying manager’s constraints; the allocation
is weakly better regardless of agents’ preference profile, and it is strictly better for some preference
profiles.

There are many studies that characterize desirable properties of house allocation and exchange
through variants of top-trading cycles mechanisms. The most general class of mechanisms in the
literature prior to our study was constructed by Pápai [2000]. Her class characterizes group strategy-
proofness and Pareto efficiency together with an additional property which she refers to as reallocation-
proofness. A mechanism is reallocation-proof in the sense of Papai (2000) if there does not exist a
profile of preferences, a pair of agents and a pair of preference misrepresentations such that (i) if
both of them misrepresent their preferences, both of them weakly gain and one of them strictly gain
by swapping their assignments, and (ii) if only one of them misrepresents his preferences, he cannot
change his assignment. Papai also notes that the stronger reallocation-proofness-type property ob-
tained by dropping condition (ii) conflicts with group strategy-proofness and Pareto efficiency. We
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do not use reallocation-proofness in our results.3

In matching and house allocation and exchange literature, the standard modeling approach has
been to use strict preferences instead of the full preference domain. Participants are frequently
allowed to submit only strict preference orderings to real-life direct mechanisms in various markets,
such as dormitory room allocation, school choice, matching of interns and hospitals. As Ehlers [2002]
shows “one cannot go much beyond strict preferences if one insists on efficiency and group strategy-
proofness.” He characterizes group strategy-proof and Pareto-efficient mechanisms in the maximal
subset of full preference domain such that such a mechanism exists. The full preference domain gives
rise to an impossibility result, i.e., when agents can be indifferent among houses, there exists no
mechanism that is group strategy-proof and Pareto efficient. Under strict preferences, his class of
mechanisms is a subclass of ours, and substantially different from the general class.4

The study of strategy-proof mechanisms has a long tradition. Gibbard [1973] and Satterthwaite
[1975] have shown that all strategy-proof and unanimous voting rules are dictatorial. Satterthwaite
and Sonnenschein [1981] extended this result to public good economies with production, and Zhou
[1991] extended it to pure public good economies. In social choice models, Dasgupta et al. [1979] have
proved that every Pareto-efficient and strategy-proof social choice rule is dictatorial. In exchange
economies, Barberà and Jackson [1995] showed that strategy-proof mechanisms are Pareto-inefficient.

Even with additional structure, it has been difficult to characterize Pareto-efficient and strategy-
proof mechanisms that are non-dictatorial. Such characterizations have been obtained by Green and
Laffont [1977] for decision problems with monetary transfers and quasi-linear utilities [cf. Vickrey,
1961, Clarke, 1971, Groves, 1973, Roberts, 1979], Barberà et al. [1997] for sharing a perfectly divisible
good among agents with single-peaked preferences over their shares, and by Barberà et al. [1993] for
voting problems with single-peaked preferences [cf. Moulin, 1980].5

3Ma [1994], Svensson [1999], Ergin [2000], Miyagawa [2002], Ehlers et al. [2002], Ehlers and Klaus [2003, 2007],
Kesten [2009], Velez-Cardona [2008], Sönmez and Ünver [2010] characterize subclasses of group strategy-proof, Pareto-
efficient, and reallocation-proof mechanisms.

4See Bogomolnaia et al. [2005] for another characterization with indifferences.
5Sönmez [1999] studies generalized matching problems in which each agent is endowed with a good. The class of

such problems non-trivially intersects with the class of house allocation and exchange problems studied in this paper.
He shows that there exists a Pareto-efficient, strategy-proof, and individually rational mechanism if and only if the
core is nonempty and agents are indifferent between all core allocations. He also shows that any such mechanism is
group strategy-proof [cf. Shapley and Scarf, 1974, Roth and Postlewaite, 1977, Roth, 1982, Ma, 1994].
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2 Model of House Allocation (The Case of Social Endowments)

2.1 Environment

Let I be a set of agents and H be a set of houses. We use letters i, j,k to refer to agents and h, g,e
to refer to houses. Each agent i has a strict preference relation over H, denoted by �i.6 Let Pi

be the set of strict preference relations for agent i, and let PJ denote the Cartesian product ×i∈JPi

for any J ⊆ I. Any profile from �= (�i)i∈I from P ≡ PI is called a preference profile. For all
�∈ P and all J ⊆ I, let �J= (�i)i∈J ∈ PJ be the restriction of � to J .

To simplify the exposition, we initially make two assumptions. Both of these assumptions are
fully relaxed in subsequent sections. First, we initially restrict attention to house allocation problems.
A house allocation problem is the triple �I,H,��. Throughout the paper, we fix I and H, and
thus, a problem is identified with its preference profile. In Section 6, we generalize the setting and
the results to house allocation and exchange by allowing agents to have initial rights over houses.
The results on allocation and exchange turn out to be straightforward corollaries of the results on
(pure) allocation. Second, we initially follow the tradition adopted by many papers in the literature
[cf. Svensson, 1999, Bogomolnaia and Moulin, 2001] and assume that |H| ≥ |I| so that each agent
is allocated a house. This assumption is satisfied in settings in which each agent is always allocated
a house (there are no outside options), as well as in settings in which agents’ outside options are
tradeable, effectively being indistinguishable from houses. In Section 7, we allow for non-tradeable
outside options and show that analogues of our results remain true irrespective of whether |H| ≥ |I|

or |H| < |I|.
An outcome of a house allocation problem is a matching. To define a matching, let us start with

a more general concept that we will use frequently. A submatching is an allocation of a subset
of houses to a subset of agents, such that no two different agents get the same house. Formally,
a submatching is a one-to-one function σ : J → H; where for J ⊆ I, using the standard function
notation, we denote by σ(i) the assignment of agent i ∈ J under σ, and by σ

−1(h) the agent that
got house h ∈ σ(J) under σ. Let S be the set of submatchings. For each σ ∈ S, let Iσ denote the
set of agents matched by σ and Hσ ⊆ H denote the set of houses matched by σ. For all h ∈ H, let
S−h ⊂ S be the set of submatchings σ ∈ S such that h ∈ H −Hσ, i.e., the set of submatchings at
which house h is unmatched. In virtue of the set-theoretic interpretation of functions, submatchings
are sets of agent-house pairs, and are ordered by inclusion. A matching is a maximal submatching,
that is µ ∈ S is a matching if Iµ = I. Let M ⊂ S be the set of matchings. We will write Iσ for
I − Iσ, and Hσ for H −Hσ for short. We will also write M for S −M.

6By �i we denote the induced weak preference relation; that is, for any g, h ∈ H, g �i h ⇐⇒ g = h or g �i h.
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A (direct) mechanism is a mapping ϕ : P −→M that assigns a matching for each preference
profile (or, equivalently, allocation problem).

2.2 Group Strategy-Proofness and Pareto Efficiency

A mechanism is group strategy-proof if there is no group of agents that can misstate their preferences
in a way such that each one in the group gets a weakly better house, and at least one agent in the
group gets a strictly better house. Formally, a mechanism ϕ is group strategy-proof if for all
�∈ P, there exists no J ⊆ I and ��

J
∈ PJ such that

ϕ[��
J
,�−J ](i) �i ϕ[�](i) for all i ∈ J,

and
ϕ[��

J
,�−J ](j) �j ϕ[�](j) for at least one j ∈ J.

In our domain group strategy-proofness has a non-cooperative interpretation, and is equivalent to
the conjunction of two non-cooperative properties: individual strategy-proofness and non-bossiness.
Strategy-proofness of a mechanism means that the truthful revelation of preferences is a weakly
dominant strategy: a mechanism ϕ is (individually) strategy-proof if for all �∈ P, there is no
i ∈ I and ��

i
∈ Pi such that

ϕ[��
i
,�−i](i) �i ϕ[�](i).

Non-bossiness [Satterthwaite and Sonnenschein, 1981] means that no agent can misreport his pref-
erences in such a way that his allocation is not changed but the allocation of some other agent is
changed: a mechanism ϕ is non-bossy if for all �∈ P, there is no i ∈ I and ��

i
∈ Pi such that

ϕ[��
i
,�−i](i) = ϕ[�](i) and ϕ[��

i
,�−i] �= ϕ[�].

The following lemma due to Pápai [2000] states the non-cooperative interpretation of group strategy-
proofness:

Lemma 1. Pápai [2000]A house-allocation mechanism is group strategy-proof if and only if it is
individually strategy-proof and non-bossy.

Another useful formulation of group strategy-proofness builds on Maskin [1999]. A mechanism ϕ

is Maskin-monotonic if ϕ[��] = ϕ[�] whenever ��∈ P is a ϕ-monotonic transformation of �∈ P.

A preference profile ��∈ P is a ϕ-monotonic transformation of �∈ P if

{h ∈ H : h �i ϕ[�](i)} ⊇ {h ∈ H : h �
�
i
ϕ[�](i)} for all i ∈ I.
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Thus, for each agent, the set of houses better than the base-profile allocation weakly shrinks when we
go from the base profile to its monotonic transformation. The following lemma is due to Takamiya
[2001]:

Lemma 2. [Takamiya, 2001] A house-allocation mechanism is Maskin-monotonic if and only if it
is group strategy-proof.

A matching is Pareto efficient if no other matching would make everybody weakly better off, and
at least one agent strictly better off. That is, a matching µ ∈M is Pareto efficient if there exists no
matching ν ∈M such that for all i ∈ I, ν(i) �i µ(i), and for some i ∈ I, ν(i) �i µ(i). A mechanism
is Pareto efficient if it finds a Pareto-efficient matching for every problem.

Pareto efficiency is a very weak requirement when imposed on group strategy-proof mechanisms.
Every group strategy-proof mechanism that maps P onto the entire set of matchings M is Pareto
efficient. This surjectivity property is implied for instance by unanimity of Gibbard [1973] and
Satterthwaite [1975]. A house allocation mechanism is unanimous if the mechanism allocates all
agents their most-preferred houses whenever no two agents put the same house as their most-preferred
choice (that is the overall matching most preferred by all agents obtains whenever the agents agree
on what is the most preferred matching).

3 Beyond Top Trading Cycles

3.1 Top Trading Cycles

To set the stage for our trading-cycles-with-brokers-and-owners (TCBO) mechanism, let us look at
the well-known top trading cycles (TTC) algorithm adapted by Pápai [2000] to house allocation
problems.7 The class of mechanisms presented in this section is identical to Pápai’s “hierarchical
exchange” class. Our presentation however is novel and aims to simultaneously simplify the earlier
constructions of Pápai’s class, and to introduce some of the terminology we will later use to introduce
our class of all group strategy-proof and efficient mechanisms (TCBO).

TTC is a recursive algorithm that matches houses to agents in a sequence of rounds. In each
round some agents and houses are matched. The matches will not be changed in subsequent rounds
of the algorithm.

At the beginning of each round, each unmatched house is “owned” by an unmatched agent. The
algorithm creates a directed graph in which each unmatched house points to the agent who owns it,

7The algorithm was originally proposed by David Gale for the special case of house exchange [cf. Shapley and Scarf,
1974].
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and each unmatched agent points to his most preferred house among the unmatched houses. In the
resultant directed graph there exists at least one exchange cycle in which agent 1’s most preferred
house is owned by agent 2, agent 2’s most preferred house is owned by agent 3, ..., and finally, for
some k = 1, 2, ..., agent k’s most preferred house is owned by agent 1. Moreover, no two exchange
cycles intersect. The algorithm matches all agents in exchange cycles with their most preferred
houses.

The algorithm terminates when all agents are matched. As at least one agent-house pair is
matched in every round, the algorithm terminates after finitely many rounds.

As we see the outcome of the TTC algorithm is determined by two types of inputs: agents’
preferences and agents’ rights of ownership over houses. The preferences are, of course, submitted by
the agents. The ownership rights are defined exogenously as part of the mechanism.8 We formalize
this aspect of the mechanism via the following concept.

Definition 1. A structure of ownership rights is a collection of mappings
�
cσ : Hσ → Iσ

�
σ∈M.

The structure of ownership rights {cσ}σ∈M is consistent if

c
−1
σ

(i) ⊆ c
−1
σ� (i) if σ ⊆ σ

�
∈M and i ∈ Iσ� .

The structure of ownership rights tells us at each submatching which unmatched agent owns any
particular unmatched house. Agent i owns house h at submatching σ when cσ(h) = i. Consistency
means that whenever an agent owns a house at a submatching (σ) then he also owns it at any larger
submatching (σ�) as long as he is unmatched.

Each consistent structure of ownership rights {cσ}σ∈M determines a hierarchical exchange mech-
anism of Pápai [2000]. This class of mechanisms consists of mappings from agents’ preferences P

to matchings M obtained by running the TTC algorithm with consistent structures of ownership
rights. Because of this, we will also refer to hierarchical exchange as TTC mechanisms. Pápai
showed that all TTC mechanisms are group strategy-proof and Pareto efficient.

As an example consider the TTC mechanism to allocate four houses h1, ..., h4 to three agents
i1, ..., i3 given by the structure of ownership rights that allocates ownership of houses according to
the following table:

h1 h2 h3 h4

i1 i2 i3 i1

i3 i1 i2 i3

i2 i3 i1 i2

8Recall that we are studying an allocation problem in which objects are a collective endowment. In Section 6 we
will enlarge the analysis to include exchange problems among agents with private endowments. In exchange problems,
some of the mechanism’s ownership rights are determined by individual rationality constraints.
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That is: for example, house h1 is initially owned by i1; at submatchings i1 is matched, it and i3 are
not matched, it is owned by i3; at submatchings i1 and i3 are matched and it is not matched, it
is owned by i2. Notice that the owner is uniquely determined and that the ownership structure is
consistent.

To see how the TTC algorithms run, let us apply this mechanism to the preference profile in
which all agents i have the same preferences �i:

agent i preferences: h1 �i h2 �i h3 �i h4.

In the first round, all agents point to house h1, houses h1 and h4 point to agent i1, house h2 points
to i2, and house h3 points to i3. In this round, there is one exchange cycle, in which i1 is matched
with h1.

In the second round, agents i2,i3 and houses h2, h3, h4 are unmatched. House h2 is still owned
by i2 while houses h3, h4 are still owned by i3. In the resultant directed graph, there is again one
exchange cycle in which i2 points to h2 and h2 points to i2, and they are matched.

In the third round agent i3 owns all unmatched houses, is matched with h3, and the algorithm
terminates.

The second round of this example illustrates two phenomena. First, we cannot allocate the
ownership unconditionally as this would leave unresolved the ownership of house h4 after its initial
owner, agent i1, is matched with house h1. Second, it illustrates the need for the consistency condition.
If the ownership structure was not consistent, and say h2 was owned by i3 at σ = {(i1, h1)} (that is
after i1 left with h1), then agent i2 would like to misreport his preferences and claim that he prefers
h2 over all other houses.

While under the above preference structure, all exchange cycles involve only one agent and one
house, this is not generally true. Consider, for instance, the following preference profile in which i2

preference between h2 and h3 is reversed,

agent i1 preferences: h1 �i1 h2 �i1 h3 �i1 h4,

agent i2 preferences: h1 �i2 h3 �i2 h2 �i3 h4,

agent i3 preferences: h1 �i3 h2 �i3 h3 �i3 h4.

When this profile is reported, the first round is the same as above, but the exchange cycle in the
second round has agent i2 pointing to h3, h3 pointing to i3, and i3 pointing to h2.

To appreciate the generality of the Pápai’s class, notice that the serial dictatorship of Satterth-
waite and Sonnenschein [1981] and Svensson [1994] is a special case of the TTC mechanisms in which
at each submatching there is an agent who owns all unmatched houses.
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3.2 Beyond Top Trading Cycles: An Example

How a group strategy-proof and efficient non-TTC mechanism might look like? To give an example,
we will modify the TTC mechanism for three agents i1, ..., i3 and three houses h1, ..., h3 and an
ownership structure that allocates ownership of houses according to the following table (obtained by
dropping house h4 in the ownership structure of the example of Subsection 3.2):

h1 h2 h3

i1 i2 i3

i3 i1 i2

i2 i3 i1

The owner is uniquely determined and the ownership structure is consistent. Given this structure
let us run TTC with one modification: agent i1 is not allowed to point to house h1 as long as there
are other unmatched agents. In rounds with other unmatched agents (and hence other unmatched
houses), agent i1 will point to his most preferred house among unmatched houses other than h1.9

For instance, if each agent i has the preference h1 �i h2 �i h3 then in the first round agents i2

and i3 will point to h1 but agent i1 will point to his second choice house, h2. We will then have an
exchange cycle, in which i1 is matched with h2 and i2 is matched with h1. In the second round, the
algorithm matches agent i3 and house h3, and terminates.

This mechanism is group strategy-proof and Pareto efficient. An easy recursion may convince us
that at each round the submatching formed is Pareto efficient for matched agents. Indeed, if an agent
matched in the first round does not get his top choice then he gets the second choice and getting
the first choice would hurt another agent matched in that round. In general, agents matched in the
n-th round get their first or second choice among houses available in the n-th round, and giving one
of these agents a better house would hurt some other agent matched at the same or earlier round.
The intuition behind its group strategy-proofness is more complex and we skip discussing it until
our formal results.

This mechanism turns out to be different from all TTC mechanisms. To see this point, first
observe that the mechanism matches house h1 with agent i2 under the illustrative preference profile
analyzed above, while it would match h1 with another agent, i3, if agent i1 submitted preferences
h1 �i1 h3 �i1 h2 (and other agents i �= i1 continued to have preferences h1 �i h2 �i h3). However,
any TTC mechanism would match h1 with the same agent in these two preference profiles. Indeed,

9Pápai [2000] gives an example of a non-TTC mapping from P to M. Her construction is different from ours
though the resultant mappings are identical. As we will show in the next section, the advantage of our construction
lies in its generalizability to cover the whole class of group strategy-proof and efficient mechanisms.
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TTC ownership structure uniquely determines the agent who owns h1 at the empty submatching,
and this agent would be matched with h1 in the first round of the algorithm under any preference
profile in which all agents put h1 as their first choice.

For future use, let us notice that in the above example, agent i1 does not have the full ownership
right over h1. Unless he is the only agent left, he cannot form the trivial exchange cycle that would
match him with h1. He does have some control right over h1 however: he can trade h1 for houses
owned by other agents. In our general trading-cycles-with-brokers-and-owners algorithm, we will
refer to such weak control rights as “brokerage”.

4 Trading Cycles with Brokers and Owners

We are now turning to our new algorithm, trading cycles with brokers and owners (TCBO), an
example of which we have seen in the previous section. Like TTC, the TCBO is a recursive algorithm
that matches agents and houses in exchange cycles over a sequence of rounds. TCBO is more flexible
however as it allows two types of intra-round control rights over houses that agents bring to the
exchange cycles: ownership and brokerage.

In our description of the TTC class, each TTC mechanism was determined by a consistent own-
ership structure. Similarly, each TCBO mechanism is determined by a consistent structure of control
rights.

Definition 2. A structure of control rights is a collection of mappings

�
(cσ, bσ) : Hσ → Iσ × {ownership,brokerage}

�
σ∈M .

The functions cσ of the control rights structure tell us which unmatched agent controls any
particular unmatched house at submatching σ. Agent i controls house h ∈ Hσ at submatching σ

when cσ(h) = i. The type of control is determined by functions bσ. We say that the agent cσ(h)

owns h at σ if bσ(h) =ownership, and that the agent cσ(h) brokers h at σ if bσ(h) =brokerage. In
the former case we call the agent an owner and the controlled house an owned house. In the latter
case we use terms broker and brokered house. Notice that each controlled (owned or brokered)
house is unmatched at σ, any unmatched house is controlled by some uniquely determined agent.

The consistency requirement on TCBO control rights structures consists of three constraints on
brokerage at any given submatching (the within-round requirements) and three constraints on how
the control rights are related across different submatchings (the across-rounds requirements).
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Within-round Requirements. Consider any σ ∈M.

(R1) There is at most one brokered house at σ.

(R2) If i is the only unmatched agent at σ then i owns all unmatched houses at σ.

(R3) If agent i brokers a house at σ, then i does not own any houses at σ.

The conditions allow for different houses to be brokered at different submatchings, even though there
is at most one brokered house at any given submatching.

Requirements R1-R2 are what we need for the TCBO algorithm to be well defined (R3 is necessary
for Pareto efficiency and individual strategy-proofness, see Appendix A). With these requirements in
place, we are ready to describe the TCBO algorithm, postponing the introduction of the remaining
consistency requirements till the next section.

The TCBO algorithm. The algorithm consists of a finite sequence of rounds r =

1, 2, .... In each round some agents are matched with houses. By σ
r−1 we denote the

submatching of agents and houses matched before round r. Before the first round the
submatching is empty that is σ

0 = ∅. If σ
r−1 ∈ M that is when every agent is matched

with a house, the algorithm terminates and gives matching σ
r−1 as its outcome. If

σ
r−1 ∈M then the algorithm proceeds with the following three steps of round r:

Step 1. Pointing. Each house h ∈ Hσr−1 points to the agent who controls it at σ
r−1. If

there exists a broker at σ
r−1, then he points to his most preferred house among the ones

owned at σ
r−1. Every other agent i ∈ Iσr−1 points to his most preferred house in Hσr−1 .

Step 2. Trading cycles. There exists n ∈ {1, 2, ...} and an exchange cycle

h
1
→ i

1
→ h

2
→ ...h

n
→ i

n
→ h

1

in which agents i
� ∈ Iσr−1 point to houses h

�+1 ∈ Hσr−1 and houses h
� points to agents i

�

(here � = 1, ..., n and superscripts are added modulo n);

Step 3. Matching. Each agent in each trading cycle is matched with the house he is
pointing to; σ

r is defined as the union of σ
r−1 and the set of newly matched agent-house

pairs.
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The algorithm terminates when all agents or all houses are matched.

Looking back at the example of the previous section we see that it was TCBO and that agent
i1 brokered house h1 while other agents owned houses. We may now also see that requirements R1
and R2 are needed to make sure that in Step 1 there always is an owned house for the broker to
point to. The difference between TTC and TCBO is encapsulated in Step 1, the other steps are
standard and were present already in Gale’s TTC idea [Shapley and Scarf, 1974]. The existence of
the trading cycle follows from there being a finite number of nodes (agents and houses), each pointing
at another. The matching of Step 3 is well defined as (i) each agent points to exactly one house, and
(ii) each matched house is allocated to exactly one agent (no two different agents pointing to the
same house h can belong to trading cycles because there is a unique pointing path that starts with
house h. Finally, since we match at least one agent-house pair in every round, and since there are
finitely many agents and houses, the algorithm stops after finitely many rounds.

Our algorithm builds upon Gale’s top-trading-cycles idea described in Section 3.1, but allows
more general trading cycles than top cycles. In TCBO, brokers do not necessarily point to their
top choice houses. In contrast, all previous developments of the Gale’s idea such as the top-trading
cycles algorithm with newcomers [Abdulkadiroğlu and Sönmez, 1999], hierarchical exchange [Pápai,
2000], top trading cycles for school choice [Abdulkadiroğlu and Sönmez, 2003], and top trading cycles
and chains algorithm [Roth et al., 2004] allowed only top trading cycles and had all agents point to
their top choice among unmatched houses. All these previous developments may be viewed as using
a subclass of TCBO in which all control rights are ownership rights and there are no brokers.10

The terminology of owners and brokers is motivated by a trading analogy. In each round of
the algorithm, an owner can either be matched with the house he controls or with another house
obtained from an exchange. A broker cannot be matched with the house he controls; the broker can
only be matched with a house obtained from an exchange with other agents. At any submatching
(but not globally throughout the algorithm), we can think of the broker of house h as representing
a latent agent who owns h but prefers any other house over it. The analogy is of course imperfect
and, ultimately, our choice of terminology is arbitrary.

5 Main Results on Allocation

Introduced in the previous section, the TCBO algorithm with a control right structure satisfying R1-
R3 gives a Pareto-efficient mechanism mapping profiles from P to matchings in M. The recursive

10In particular, TCBO can easily handle private endowments as explained in Section 6.
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argument for efficiency of the non-TTC mechanism from Section 3.2 applies.

Proposition 1. The TCBO algorithm produces a Pareto-efficient matching for all control rights
structures that satisfy R1-R3.

We are about to see that the TCBO-induced mapping is group strategy-proof if the control right
structure also satisfies the following across-round consistency requirements.

Across-round Requirements. Consider any submatchings σ, σ
� such that |σ�| = |σ|+1

and σ ⊂ σ
� ∈M, and any agent i ∈ Iσ�

(R4) If i owns house h at σ then i owns h at σ
�.

(R5) Assume that at least two agents from Iσ� own houses at σ. If i brokers house h at
σ then i brokers h at σ

�.

(R6) Assume that there is exactly one agent i
� ∈ Iσ� who owns a house at σ. If i brokers

house h at σ but does not broker it at σ
� then i

� owns h at σ
�, and i owns all houses in

c
−1
σ

(i�) (that is all houses i
� owned at σ) at σ

� ∪ {(i�, h)}.

The requirements R4 and R5 postulate that control rights persist: agents hold on to control rights as
we move from smaller to larger submatchings, or through the rounds of the algorithm. R4 (persistency
of ownership) is identical to the consistency assumption we imposed on TTC. The first example of
Section 3.1 illustrated why we need such persistency assumption for the resultant mechanism to be
individually strategy-proof. A similar example might convince us that individual strategy-proofness
relies also on requirement R5 (persistency of brokerage), see appendix. The requirement R6 includes
a stipulation that whenever an agent i

� takes over the control of the brokered house, then the broker
i is in line for ownership rights of i

� after i
� is matched (i becomes the heir to i

�). For this reason
we sometime call this requirement a broker-to-heir transition. R6 is needed to guarantee both non-
bossiness and individual strategy-proofness of the mechanisms, see Appendix A.

To sidestep the complications of R5 and R6 in the first reading, the reader is invited to keep
in mind a smaller class of control right structures in which both of these requirements are replaced
by the following strong form of brokerage persistence: “If |σ�| < |I| − 1 and agent i brokers house h

at σ then i brokers h at σ
�.” We think that by restricting attention to this smaller class of control

right structures, we are not missing much of the flexibility of the TCBO class of mechanism. We
must stress however that the complication is there for a reason: there are group strategy-proof and
efficient mechanisms that cannot be replicated by TCBO control right structures satisfying the above
strengthening of R5-R6 (the relevant example is presented in Appendix A).
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We are now ready to define our mechanism class and state our main results.

Definition 3. A control right structure is consistent if it satisfies requirements R1-R6. The class
of TCBO mechanisms (trading cycles with brokers and owners) consists of mappings from agents’
preference profiles P to matchings M obtained by running the TCBO algorithm with consistent
control right structures.

The TTC mechanisms of Section 3.1 and the non-TTC mechanism of Section 3.2 are examples
of TCBO. We will denote by ψ

c,b the TCBO mechanism obtained from a consistent control right
structure (cσ, bσ)

σ∈M.

We will now show that the TCBO class of mechanisms coincides with the class of Pareto-efficient
and group strategy-proof direct mechanisms.

Theorem 1. Every TCBO mechanism is group strategy-proof and Pareto efficient.

Theorem 2. Every group strategy-proof and Pareto-efficient direct mechanism is TCBO.

Before discussing the proof of Theorem 1, let us make the following observation about the TCBO
algorithm.

Lemma 3. If an agent i is unmatched at a round r of the algorithm under preference profiles [�i,�−i]

and [��
i
,�−i], then the control rights structure is the same under [�i,�−i] and [��

i
,�−i].

The lemma obtains because under the assumption of the lemma it must be that σ
r−1[�i,�−i] =

σ
r−1[��

i
,�−i] that is the same submatching was formed before round r. Hence, also the control rights

structures must be the same at round r.

The lemma has an important implication: as long as an agent is unmatched, he cannot influence
when he becomes an owner, a broker, or enters the broker-to-heir transition (see R6) by choosing
what preferences to submit.

Beginning of the proof of Theorem 1. Proposition 1 demonstrates Pareto efficiency. By Lemma
1, to prove group strategy-proofness it is enough to show that every TCBO mechanism is individually
strategy-proof and non-bossy. We will prove individual strategy proofness below, and non-bossiness
in Appendix B. Let ψ

c,b be a TCBO mechanism. Let � be a preference profile. We fix an agent
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i ∈ I. We will show that i cannot benefit by submitting ��
i
�=�i while the other agents submit �−i.

Let s be the round i leaves (with house h) at �i and s
� be the time i leaves (with h

�) at ��
i
in the

algorithm. We will consider two cases.

Case 1. s ≤ s
�
: At round s, same houses and agents are in the market at both �i and ��

i
by a

straightforward inductive application of Lemma 3. If i is not a broker at time s under �i, then, by
submitting �i, agent i gets the top house among the remaining ones in round s, implying that he
cannot be better off by submitting ��

i
.

Assume now that i is a broker at time s under �i. Let e be the brokered house at time s. If e is
not agent i’s top choice house remaining under �i, then by submitting �i, agent i gets the top house
among the remaining ones in round s, implying that he cannot be better off by submitting ��

i
.

It remains to consider the situation in which e is broker i’s top choice remaining house, and
to show that i cannot get e by submitting the profile ��

i
. For an argument through contradiction,

assume that under ��
i
agent i leaves at round s

� with house e. Because agent i is a broker when he
leaves at �i, there is an agent j who is matched with house e at time s. At this time, j is an owner
of some owned house hj, and e is his top choice house. By Lemma 3, the control rights structure at
round s is the same under both �i and ��

i
. Hence, i is also a broker at time s after submitting ��

i
,

and j is an owner of hj. Moreover, j’s top choice is still house e. That means that under ��
i
agent j

will stay unmatched till s
� + 1. Since agent i leaves with e at s

�, he cannot be the broker of e at this
round, because a broker cannot leave with the brokered house, while another owner j is unmatched.
Thus, there is a round s

�� ∈ {s + 1, ..., s�} at which agent i stops being the broker of e. Since e is still
unmatched at this round, there is a broker-to-heir transition between s

��−1 and s
�� (by R6). Because

j is an owner of hj at both s
�� − 1 and s

��, he would have inherited e at s
�� (by R6). Then, however,

j would have left with e at s
��
, as e is j’s top choice among houses left at s (and hence those left at

s
��). A contradiction.

Case 2. s > s
�
: At round s

�, same houses and agents are in the market at both �i and ��
i

by
Lemma 3. Consider round s

� at both �i and ��
i
. Under ��

i
, agent i points to house h

� = h
1 that

points to agent i
1 that points to ... that points to object h

n that points to agent i = i
n (and this

cycle leaves at round s
�). If the cycle is trivial (n = 1) and h

� points back to i, then i owns h
�. Since

ownership persist by R4, i will own h
� at s > s

�, and thus at round s, agent i would leave with a
house at least as good as h

�.
In the sequel, assume that there is at least one other agent i

n in the cycle (that is n ≥ 2).
If each house h

� is owned by i
�, for all � ∈ {1, ..., n}, then the chain h

� = h
1 → i

1 → h
2 → ... →

h
n → i will stay in the system as long as i is in the system (by persistency of ownership implied
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through R4). Thus, at round s agent i would leave with a house at least as good as h
� under �i.

If i
� brokers h

� for some � ∈ {1, ..., n}, then the chain h
� = h

1 → i
1 → h

2 → ... → h
n → i will

stay in the system as long as i
� continues brokering h

� (since there are no other brokerages and the
ownerships persist by R4). If i

� brokers h
� at round s under �i, then we are done, since the same

cycle would have formed. Thus suppose that at a round s
�� ∈ {s� + 1, ..., s} broker i

� loses his broker
status. Because n ≥ 2, agent i

�+1 is an owner both at rounds s
�� − 1 and s

��. Hence, the loss of
brokerage status means that i

� enters broker-to-heir transition. We must then have n = 2 (since by
R6, only 1 previous owner can remain unmatched during broker-to-heir transition). There are two
cases: either i

1 owns h
1 = h

� and h
2 (and i

2 = i
� is the heir) or i

2 = i owns h
1 and h

2. In the former
case, i

1 who wants h
2, will leave with it at round s

�� under �i, and i will inherit h
1 = h

� at s
�� + 1 by

R6. In the latter case, i owns h
1 = h

� already at round s
��. In both cases, at s ≥ s

�� agent i can only
leave with a house at least as good as h

� under �i. QED

Let us finish this section with an overview of the proof of Theorem 2 (the proof is in Appendix
C). In the proof we fix a coalitionally strategy-proof and Pareto-efficient direct mechanism ϕ and
construct a TCBO mechanism ψ

c,b that is equivalent to ϕ. We proceed in three steps: we first
construct the candidate control rights structure (c, b), then show it satisfies conditions R1-R6, and
finally show that the resultant TCBO mechanism ψ

c,b equals ϕ.
We define a candidate control right structure in terms of how ϕ allocates objects for preferences

from some special preference classes. To see how this is done consider an empty submatching and a
house h. If ϕ were a TCBO and h was owned by an agent then at all preference profiles in which
all agents rank h as their most preferred house, ϕ would allocate h to the same agent – the owner of
h at the empty submatching. We thus check whether ϕ allocates h to the same agent at all above
profiles, and if it does, we call this agent the candidate owner of h (in the proof, for shortness, we
refer to candidate owner as owner*). If ϕ does not allocate h to the same agent at all above profiles,
h is a candidate brokered house. Notice, that if ϕ were a TCBO and h was brokered by an agent
then at every profile at which every agent ranks h as his most preferred house and some other house
h
� as his second most preferred house, ϕ would allocate h

� to the same agent – the broker of h at
the empty submatching. We thus check whether there is an agent who always gets his second most
preferred house at the above profiles, and if there is such an agent we call this agent the candidate
broker of h (broker* for shortness). Finally, we prove the key lemma that every house h either has
a candidate owner or a candidate broker.

The construction of candidate control rights at non-empty other submatchings is similar. The
only modification is that instead of looking at preferences at which all agents agree on their most
preferred house (or two most preferred houses), we impose this commonality only on unmatched
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agents, and at the same time assume the matched agents rank the houses they are matched with
at the top, while all other agents rank matched houses at the bottom. Thanks to the simplifying
assumption that |H| ≥ |I|, Pareto efficiency of TCBO mechanisms implies that the above procedure
would work well if ϕ was a TCBO, and we prove that indeed it works well whenever ϕ is group
strategy-proof and efficient.11

The second step of the proof is to show that the above candidate control right structure indeed
satisfies properties R1-R6. The argument is non-trivial and we flesh it out in several lemmas. These
lemmas show that the candidate control right structure is indeed consistent. Thus, we have con-
structed a TCBO mechanism ψ

c,b. The last step of the proof is to show that ψ
c,b = ϕ. We rely on

the recursive structure of TCBO, and proceed by induction with respect to the rounds of ψ
c,b.

6 Allocation and Exchange (The Case of Private and Social
Endowments)

In this section, we generalize the model by allowing agents to have private endowments. The char-
acterizations in the resultant allocation and exchange domains are straightforward corollaries of our
main results. We also relate the results to allocation and exchange market design environments.

6.1 Model of House Allocation and Exchange

Let H = {Hi}i∈{0}∪I
be a collection of |I|+1 pairwise-disjoint subsets of H (some of which might be

empty) such that ∪i∈{0}∪IHi = H. We interpret houses from H0 as social endowment of the agents,
and houses from Hi, i ∈ I, as private endowment of agent i. A house allocation and exchange

problem is a list �H, I,H,�� . Since we allow some of the agents to have empty endowment, the
allocation model of Section 2 is contained as a special case with H = {H, ∅, ..., ∅}. We may fixed
H, I and H, and identify the house allocation and exchange problem just by its preference profile �.
Matchings and mechanisms are defined as in the allocation model of Section 2.

Pareto efficiency and group strategy-proofness are defined in the same way as in Section 2. In par-
ticular, the equivalence between group strategy-proofness and the conjunction of individual strategy-
proofness and non-bossiness continues to hold true. In addition to efficiency and strategy-proofness,
satisfactory mechanisms in this problem domain should be individually rational. A mechanism is
individually rational if it always selects an individually rational matching. A matching is individ-
ually rational, if it assigns each agent a house that is at least as good as the house he would choose

11This point in the construction requires more care in the case |H| < |I|, see Appendix ??.
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from among his endowment. Formally a matching µ is individually rational if

µ(i) �i h ∀i ∈ I,∀h ∈ Hi.

For agents with empty endowments, Hi = ∅, this condition is tautologically true.

6.2 Results

Our main characterization result for house allocation and exchange is now an immediate corollary of
Theorems 1-2.

Theorem 3. In house allocation and exchange problems, a mechanism is individually rational,
Pareto efficient, and group strategy-proof if and only if it is an individually rational TCBO mecha-
nism.

Furthermore, it is straightforward to identify individually rational TCBO mechanisms. Referring
to control rights at the empty submatching as the initial control rights, let us formulate the criterion
for individual rationality as follows.

Proposition 2. In house allocation and exchange problems, a TCBO mechanism is individually
rational if and only if it may be represented by a consistent control rights structure in which each
agent is given the initial ownership rights of all houses from his endowment.

Proof of Proposition 2. To prove individual rationality of the above subclass of TCBO mecha-
nisms, consider an agent i and assume that i owns at the empty submatching a house h from his
endowment. Then R4 ensures that i owns h throughout the execution of the TCBO algorithm. Thus,
the TCBO mechanism will allocate to i house h or a house that i prefers to h.
Now, let ψ be an individually rational TCBO mechanism. Recall that ownership* was defined in
the proof of Theorem 2. For any agent i and house h from i’s endowment, i is owner* of h because
individual rationality implies that ψ[�](i) = h for any �∈ P[∅, h]. The construction from the proof
of Theorem 2 thus yields a control right structure that assigns to each agent the initial ownership
rights over the houses form his endowment, and represents ψ. QED

Notice, that when one agent is endowed with all houses, there are individually rational mechanisms
that might be represented both by a control right structure that assigns this agent initial ownership
right over all houses, and by an alternative control right structure that assigns this agent ownership
rights over all houses but one. Except for such situations however, any control right structure of
an individually rational TCBO mechanism assigns to each agent the initial ownership rights of all
houses from his endowment.
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As a corollary of the above two results, we obtain a powerful and non-trivial characterization for
an important subdomain of allocation and exchange problems:

Theorem 4. In house allocation and exchange problems where each agent has a nonempty endow-
ment, a mechanism is individually rational, Pareto efficient, and group strategy-proof if and only
if it is a TTC mechanism (aka hierarchical exchange) that assigns all agents the initial ownership
rights of houses from their endowment.

Proof of Theorem 4. By Corollary 3, a mechanism ϕ is individually rational, Pareto-efficient
and group strategy-proof if and only if there exists an individually rational and consistent control
right structure (c, b) such that ϕ = ψ

c,b. By Proposition 2 we may assume that each agent has
initial ownership rights over the houses from their endowment. By condition R4 of consistency all
unmatched agents own a house throughout the mechanism, and hence R3 implies that no agent is a
broker. ψ

c,b is thus a TTC mechanism. QED

This result is a generalization of the result stated by Ma (1994) for the housing market of Shapley
and Scarf (1974). A housing market is a house allocation and exchange problem in which |I| = |H|

and each agent is endowed with a house. In this environment, Ma characterized TTC (in which
agents own their endowments) as the unique mechanism that is individually rational, strategy-proof,
and Pareto efficient.

6.3 Market Design Environments

The assumptions of Theorem 3 are satisfied by the house allocation problem with existing tenants of
Abdulkadiroğlu and Sönmez [1999]. Theirs is the subclass of house allocation and exchange problems
in which each agent is endowed with one or zero houses. In the former case, the agent is referred to
as existing tenant. The house allocation problem with existing tenants is modeled after the real-life
dormitory allocation problems in the US college campuses. In each such college, at the beginning of
the academic year, there are new senior, junior, sophomore students, each of whom already occupies
a room from the last academic year. There are vacated rooms by the graduating class and there are
new freshmen who would like to obtain a room, though they do not currently occupy any.

The assumptions of Theorem 4 are satisfied by the kidney exchange with strict preferences [Roth
et al., 2004], and the kidney exchange problem with good Samaritan donors [Sönmez and Ünver,
2006]. Kidney transplant patients are the agents and live kidney donors are the houses. Each
agent is endowed with a live donor, who would like to donate a kidney if his paired-donor receives
a transplant in return. Thus, all agents have nonempty endowments. The model also allows for
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unattached donors known as good Samaritan donors who would like to donate a kidney to any
patient. In the US, good Samaritan donors have been the driving force behind kidney exchange since
2006. Many regional programs such as Alliance for Paired Donation (centered in Toledo, Ohio) and
New England Program for Kidney Exchange (centered in Newton, Massachusetts) have used good
Samaritan donors in majority of kidney exchanges that they conducted since 2006 [cf. Rees et al.,
2009].

The kidney exchange context underscores the importance of group strategy-proofness. The doc-
tors of patients are the ones who have the information about patients’ preferences over kidneys and
it is known that doctors (or transplant centers) themselves manipulate the system, if it will benefit
their patients.12 An individually strategy-proof mechanism which is not group strategy-proof could
thus by manipulated by the doctors. Group strategy-proofness guarantees that no doctor is able to
manipulate the mechanism on behalf of his or her patients without hurting at least one of them.

7 Outside Options

In this final section, we drop the assumption that |H| ≥ |I| and allow agents to prefer their (non-
tradeable) outside options to some of the houses. Thus, some agents may be matched with their
outside options, and we need to slightly modify some of the definitions. As before I is the set of
agents and H is the set of houses. Each agent i has a strict preference relation �i over H and his
outside option, denoted yi. We denote the set of outside options by Y . The houses preferred to the
outside option are called acceptable (to the agent); the remaining houses are called unacceptable to
this agent. As before we denote by Pi the set of agent i’s preference profiles, and PJ = ×i∈JPi for
any J ⊆ I.

Let us initially restrict the attention to house allocation problems. This restriction can be easily
relaxed as in Section 6, and we do it at the end of the section. As before, a house allocation problem
is the triple �I,H,��. We impose no assumption on cardinalities of I and H, in particular we allow
both |H| ≥ |I| and |H| < |I|.

We generalize the concept of submatching as follows. For J ⊆ I, a submatching is a one-to-one
function σ : J → H ∪ Y such that each agent is matched with a house or his outside option.

A terminological warning is in order. A natural interpretation of the outside option is remaining
unmatched. We will not refer to the outside option in this way however in order to avoid confusion

12Deceased-donor queue procedures are gamed by physicians acting as advocates for their patients. In particular,
in 2003 two Chicago hospitals settled a Federal lawsuit alleging that some patients had been fraudulently certified as
sicker than they were to move them up on the liver transplant queue [Warmbir, 2003].
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with our submatching terminology. As in the main body of the paper, whenever we say that an agent
is unmatched at σ, we refer to agents from Īσ = I − Iσ. An agent is considered matched even if he
is matched to his outside option.

As before S is the set of submatchings, Iσ denotes the set of agents matched by σ, and Hσ ⊆ H

denote the set of houses matched by σ, and we use the standard function notation so that σ(i)

is the assignment of agent i ∈ Iσ, σ
−1(h) is the agent that got house h ∈ σ(Iσ), and σ

−1 (Y ) is
the set of agents matched to their outside options. A matching is a maximal submatching, that is
µ ∈ S is a matching if Iµ = I. As before M⊂ S is the set of matchings. A (direct) mechanism is a
mapping ϕ : P −→M that assigns a matching for each preference profile (or, equivalently, allocation
problem). Mechanisms, efficiency, and group strategy-proofness are defined as before.

The control right structures (c, b) and their consistency R1-R6 are defined in the same words as
before (notice though that the meaning of the words such as submatching has changed as explained
above). In particular, (i) only houses are owned or brokered; the outside options are not, and (ii)
the control rights are defined for all submatchings, including submatchings in which some agents
are matched with their outside options. Notice that if a control right structure is consistent on the
domain with outside options, and |H| ≥ |I|, then the restriction of the control right structure to
submatchings in which all agents are matched with houses is a consistent control right structure in
the sense of Sections 4-5.

We will adjust the definition of the TCBO algorithm by adding two clauses.
Clause (a). We add the following provision to Step 1 (pointing) of round r:
- If an agent prefers his outside option to all unmatched houses, the agent points to the outside

option. If there is a broker for whom the brokered house is the only acceptable house; such broker
also points to his outside option. The outside option of each agent points to the agent.

- We modify the definition of σ
r in Step 3 (matching); σ

r is defined as the union of σ
r−1 and of

the set of agent-house pairs and agent-outside option pairs matched in Step 3.
Clause (b). In Step 3, we do not match agents in the cycle containing the broker except if

leaving this cycle unmatched implies that no cycle is matched in the current round.
Clause (a) accommodates outside options. Clause (b) is added to make sure that we do not match

a broker with his outside option when he prefers the brokered house to the outside option and the
brokered house is not allocated to any other agent. Notice that the broker is matched only if any
pointing sequence that starts with an owner ends by pointing to the broker.

We will refer to the mechanism of Section 4 modified by clauses (a) and (b) as outside options
TCBO, and when there is no risk of confusion, simply as TCBO. We will refer to the mechanism ψ

c,b

resulting from running the outside options TCBO on consistent control right structure as outside
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options TCBO, or TCBO. Using the same name is justified because the mechanism described above
can be used to allocate houses in the setting of Sections 2-6, and – when restricted to the case of
|H| ≥ |I| and the subdomain of preferences in which all agents prefer any house to their outside
option in the setting – is identical with the TCBO mechanism of Section 5. Indeed, in the restricted
setting clause (a) is never invoked, and presence or absence of clause (b) has no impact on the
allocation. This follows from the group strategy-proofness of TCBO of Section 5. Given a profile
of agents’ preferences, agents who are brokers along the run of the TCBO without clause (b) can
replicate the run of TCBO with clause (b) as follows. The first agent who becomes a broker along
the path of the algorithm, reports all houses which are matched in cycles not involving the broker
ahead of the house the broker will be allocated, while keeping his preference profile otherwise intact.
If another agent becomes a broker after the first broker is matched or looses his brokerage right, we
modify this agent preferences in the same way, and same for other brokers. Were the outcomes of the
mechanism dependent on whether the brokers simulate clause (b) or not, there would be a preference
profile in which one of the brokers could either improve his outcome or bossy other agents contrary
to group strategy-proofness. By Theorem 1 this is not possible. The fact that clause (b) does not
impact allocation in the setting without outside option is analogous to the well known fact that in
TTC the order in which we match cycles of agents does not matter.

In the presence of outside options, the TCBO class of mechanisms again coincides with the class
of Pareto-efficient and group strategy-proof direct mechanisms. The proof resembles the proofs of
Theorems 1 and 2; the required modifications are discussed in Appendix D.

Theorem 5. In the environment with outside options, every TCBO mechanism is group strategy-
proof and Pareto efficient. Moreover, every group strategy-proof and Pareto-efficient direct mecha-
nism is TCBO.

We are now ready to extend the characterization to the general allocation and exchange setting
with outside options. As in Section 6, the social endowment H0 ⊂ H and agents’ endowments
Hi ⊂ H, i ∈ I, are disjoint and sum up to H. A house allocation and exchange problem is a list
�H, I,H,�� where H = {Hi}i∈{0}∪I

. The results of Section 6 translates to the setting with outside
options; the proofs rely on Theorem 5 instead of Theorems 1 and 2, and are otherwise unchanged.

Theorem 6. In house allocation and exchange problems with outside options, a mechanism is
individually rational, Pareto efficient, and group strategy-proof if and only if it is an individually
rational TCBO mechanism.

As before, it is straightforward to identify individually rational TCBO mechanisms.
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Proposition 3. In house allocation and exchange problems with outside options, a TCBO mecha-
nism is individually rational if and only if it may be represented by a consistent control rights structure
in which each agent is given the initial ownership rights of all houses from his endowment.

In the environment with outside options, we define the TTC mechanisms as TCBO with no
brokers. Our characterization of TTC remains true.

Theorem 7. In house allocation and exchange problems with outside options, if each agent has
a nonempty endowment, then a mechanism is individually rational, Pareto efficient, and group
strategy-proof if and only if it is a TTC mechanism (with outside options) that assigns all agents
the initial ownership rights of houses from their endowment.

A Appendix: Comments on Consistency Requirements

This appendix explains the consistency requirements R3, R5, and R6. The remaining requirements,
R1, R2, and R4, were discussed in the main text.

R3 postulates that a broker does not own any houses. Dropping this assumption would violate
efficiency. For instance, consider the case of two agents 1 and 2 such that agent 1 brokers house h1

and owns house h2 while 2 has no control rights. If agent 1 prefers h1 over h2 while agent 2 prefers
h2 over h1 then running the TCBO algorithm (with the above inconsistent control right structure)
would allocate h2 to agent 1 and h1 to agent 2 which is inefficient.

R5 might be called limited persistence of brokerage, and is the counterpart of R4 for brokers. R5
states that a brokerage right persist when we move from smaller to larger submatching provided two
or more owners from the smaller submatching remain unmatched at the larger submatching. The
following example illustrates why we need this requirement to keep TCBO individually strategy-
proof:

Example 1. Why do we need R5 to prevent individual manipulation? Consider four agents
i1, ..., i4. Assume that at the empty submatching agent i2 brokers a house and other agents own one
house each. Denote by hk the house controlled by agent ik. Let us maintain R1-R3, R4 and R6,
and violate R5 by assuming that h2 is owned by i4 at submatching {(i1, h1)}. Now, there are two
previous owners unmatched at {(i1, h1)}, i3 and i4. Moreover, i2 is no longer a broker. Consider now
a preference profile such that h1 is i1’s and i2’s mutual first choice house, h2 is the first choice of
other agents, and h3 is the second choice of i2 and i3. Under this preference profile and control rights
structure, i2 would benefit by misrepresenting his preferences and declaring h3 to be his first choice.
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R6 refers to the case where a broker loses his right at a submatching at which only a single previous
owner is unmatched. In this case, the broker requires some protection against losing his right. That
is to say, when the previous owner gets matched with the ex-brokered house, the ex-broker owns the
houses of this owner. This is the broker-to-heir transition of the ex-broker.

The following two examples illustrate why we need R6 to keep TCBO both individually strategy-
proof and non-bossy. The first one is similar to the above one:

Example 2. Why do we need R6 to prevent individual manipulation? Consider four agents
i1, ..., i4. Assume that at the empty submatching agent i2 brokers h2, i1 owns h1, h4, and i3 owns h3.
At submatching {(i1, h1)}, assume that i3 owns h2 as well, and i2 loses his brokerage right. Now, i4

inherits h4 as an owner. We assume R1-R5, while violate R6. R5 is not violated as there is a single
previous owner unmatched at {(i1, h1)}, and he is i3. However, R6 is violated as at the submatching
{(i1, h1), (i3, h2}, i2 is not the heir to i3. That is, i2 does not own ex-owned house h3 of i3, but i4

does. Consider the preference profile at which, agents i1 and i2 have house h1, i2 has h2 and i4 has h3

as their first choices; and agent i2’s second choice is h3. Then, i2 would benefit by ranking h3 first.

Example 3. Why do we need R6 to prevent bossiness? Consider the same control rights
structure as in Example 2. Consider the preference profile at which i1 and i3’s first choices are h1,
and i2 and i4’s first choice is h3; second choice of i3 is h2. Agent i3 will be bossy by ranking h2 first.
In both cases he receives house h2. However, in the first case, i2 receives h4; while in the latter, he
receives h3.

Our last example shows that the complexity of R5-R6, while likely second order in terms of
applications of the TCBO mechanisms, is inherent to the full class of group strategy proof and
efficient mechanisms.

Example 4. Why R5 and R6 cannot be strengthened (consistent control rights with

broker-to-heir transition). In the remark below we show that the following TCBO mechanism
does not satisfy a natural strengthening (and simplification) of R5-R6. Consider an environment
with four agents, i1, i2, i3, i4, four houses, h1, h2, h3, h4, and a TCBO mechanism ψ

c,b whose control
rights structure (c, b) is illustrated by the table in Figure 1 and is explained below.

Houses h1, h3 are owned by agent i1 (denoted by “o” next to i1 in the figure; when he is matched
the unmatched of the two houses is owned by i3 (if he is still unmatched), then i2, and i4 (in each
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(c,b)

h1 h2 h3 h4

i1,o i2,o i1,o i4,b
i3,o (i1, h1)(i2, h4) � � otherwise i3,o (i1, h1)� � (i1, x)(i2, y)(i3, z) x �= h1

i2,o i4,o i1,o i2,o i2,o i4,o
i4,o i3,o i3,o i4,o i4,o

i4,o i3,o

Figure 1: A control rights structure with broker-to-heir transition

of these cases, and in the below ownership situations, as the owner remains as an owner until he is
matched, R1 is satisfied).

House h2 is owned by i2, and unless i1 is matched with h1 and i2 is matched with h4 then next
owners of h2 are i1, i3, and i4, in order. The other case will be explained after we explain the control
rights of h4.

Agent i4 has the brokerage right over h4 initially (i.e., at the empty submatching, denoted by “b”
next to i4 in the figure). He remains as the broker as long as he is unmatched except the cases that
i1 is matched with h1 and he is the only remaining unmatched agent. In the prior case, we have
a broker-to-heir transition (as all houses are owned initially by i1 or i2, at this point i2 is the only
remaining owner left from the previous round, hence R6 is satisfied). Then, agent i2 becomes the
owner of h4, and then i4 and i3 own h4, in order. The above transition has an implication on control
right structure of h2 (by R6). When i2 gets matched with the ex-brokered house, h4, then i4, the
ex-broker, who is now heir to i2 owns h2, the sole unmatched and previously owned house of i2. In
the second case, as the broker is the only agent left unmatched, he owns all existing houses, in this
case it is h4 (thus, R2 is satisfied).

Notice, that R3 is satisfied as broker i4 is the last inheritor of all owned houses unless he exits
brokerage.

Remark 1. The TCBO mechanism defined by the consistent control rights structure in Example 4,
(c, b), is different from all TCBO mechanisms with consistent control right structures in which the
simple analogue of R4 for brokers holds true: “if |σ�| < |I| − 1 and agent i brokers house h at σ and
is unmatched at σ

� ⊃ σ, then i brokers h at σ
� .”

Proof of Remark 1. By way of contradiction, let us assume that there is a TCBO mechanism
ψ with control right structure satisfying the above strong form of brokerage persistence and that
produces the same allocation as ψ

c,b for each profile of agents’ preferences.
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First, notice that at the empty submatching, i4 is the broker of h4 in ψ. This is so, because h4 is
not owned by any agent at the empty submatching ∅ as (ψ[�])−1(h4) = (ψc,b[�])−1(h4) varies with
�∈ P (that is across profiles at which all agents rank h4 first). Hence, there is an agent who has the
brokerage right over h4 and it must be i4 as ψ[�](i4) = ψ

c,b[�](i4) = g for all �∈ P such that all
agents rank h4 first and any g ∈ {h1, h3, h2} second.

Second, consider the submatching σ = {(i1, h1)} and a preference profile �∈ P such that i1 ranks
h1 first, others rank h4, h3, h2, and h1 in this order. In mechanism ψ, agent i4 would continue to be
the broker of h4 at σ and thus

ψ[�](i4) = h3.

However,
ψ

c,b[�](i4) = h2.

This contradiction concludes the proof. QED

B Appendix: Proof of Theorem 1

Proof of Theorem 1. In the main text we showed that TCBO is Pareto efficient and individually
strategy-proof. By Papai’s Lemma 1, it is enough to show that TCBO is non-bossy. Let ψ

c,b be a
TCBO mechanism. Fix an agent i∗ ∈ I and two preference profiles�= [�i∗ ,�−i∗ ] and��= [��

i∗ ,�−i∗ ]

such that
h∗ = ψ

c,b[��](i∗) = ψ
c,b[�](i∗).

Let s be the round i∗ leaves (with house h∗) submitting �i∗ and s
� be the time i∗ leaves (with h∗)

submitting ��
i∗ . By symmetry, it is enough to consider the case s ≤ s

�. In order to show that

ψ
c,b[�](i) = ψ

c,b[��](i) ∀ i ∈ I,

we will prove the following stronger statement:

Hypothesis: If a cycle of agents h
1 → i

1 → h
2 → ... → h

n → i
n → h

1 forms and is removed at round
r when preferences � were submitted, then either

• same cycle h
1 → i

1 → h
2 → ... → h

n → i
n → h

1 forms when preferences �� are submitted, or

• n = 2 and two cycles h
2 → i

1 → h
2 and h

1 → i
2 → h

1 form when preferences �� are submitted,
or
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• n = 1 and there exists agent j �= i
1 and house h �= h

1 such that the cycle h → i
1 → h

1 → j → h

forms when preferences �� are submitted.

Whenever in the proof we encounter cycles of length n, the superscripts on houses and agents will
be understood to be modulo n, that is i

n+1 = i
1 and h

n+1 = h
1.

By Lemma 3, the above hypothesis is true for all r < s. The proof for r ≥ s will proceed by
induction over the round r.

Initial step. Consider r = s. Under �, house h
1
∗ points to agent i∗ = i

1
∗ points to house h∗ = h

2
∗ that

points to agent i
2
∗ that points to ... that agent i

n

∗ that points to house h
1
∗, and the cycle

h
1
∗ → i

1
∗ → h

2
∗ → ... → h

n

∗ → i
n

∗ → h
1
∗

is removed at round s. Lemma 3 implies that the same houses and agents are in the market at time
s under both � and �� and that all agents from Iσs[�]−{i

1
∗, ..., i

n

∗} are matched by σ
s[��] in the same

way as in σ
s[�].

Lemma 3 also implies that the chain h
2
∗ → ... → h

n

∗ → i
n

∗ → h
1
∗ → i

1
∗ forms at round s under

preferences ��.
If all pairs (i�∗, h

�

∗), for all � ∈ {2, ..., n}, are σ
s[�]-o-pairs, then they are σ

s[��]-o-pairs and the
chain h

2
∗ → ... → h

n

∗ → i
n

∗ → h
1
∗ → i

1
∗ will stay in the system as long as i

1
∗ is in the system (by

persistency of o-pairs through R4). Thus, at s
� all agents i

1
∗, ..., i

n

∗ would leave with same houses as
under � .

If n > 1, and (i�∗, h
�

∗) is a broker-brokered house pair for some � ∈ {2, ..., n}, then the chain
h

2
∗ → ... → h

n

∗ → i
n

∗ → h
1
∗ → i

1
∗ will stay in the system as long as (i�∗, h

�

∗) continues to be a broker-
brokered house pair. If (i�∗, h

�

∗) continues to be a broker-brokered house pair till round s
� under �,

then the initial step is proved. Otherwise, there is a round s
�� ∈ {s + 1, ..., s�} such that agent i

�

∗ has
brokerage right over h

�

∗ at rounds s, ..., s
�� − 1 but not at round s

��. By R6’s broker-to-heir transition
property, n = 2 and i

�+1
∗ owns h

�

∗ at σ
s
��
[��] because he owns h

�+1
∗ at both σ

s
��−1[��] and σ

s
��
[��]. As

i
�+1
∗ top preference is then h

�

∗, he will leave with it at s
��. By R6’s broker-to-heir transition property,

agent i
�

∗ will inherit h
�+1
∗ at s

�� + 1 and will be matched with it. This case ends the proof of the the
inductive hypothesis for r = s.

Inductive step. Now, take any round r > s such that σ
r[�]− σ

r−1[�] is non-empty, and assume that
the inductive hypothesis is true for all rounds up to r − 1. Consider agents and houses

h
1
→ i

1
→ h

2
→ ... → h

n
→ i

n
→ h

1
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that form a cycle at round r under �. Since all agents but i
∗ have same preferences in both profiles

� and ��, so do agents i
1
, ..., i

n.
Let r

� be the earliest round in which one of these agents is matched under ��, and let i
� be an

agent matched at r
�. Recall that ψ

c,b[�](i�) = h
�+1

. The argument will be divided into ten claims,
the first of which follows directly from the inductive hypothesis.

Claim 1. Suppose that a house h ∈ σ
r−1[�] forms a cycle with at least two agents under �. Then:

• If agent i ∈ I belongs to the cycle of house h under ��, then i belongs to the cycle of h under
�.

• If house h
� belongs to the cycle of h under ��, then h

� belongs to the cycle of h under �.

Claim 2. Suppose ν = σ
r−1[�] ∪ σ

r
��−1[��] and agent i owns house h at ν, such that h belongs to

a cycle at some round r
�� under �� and at round r under �. If j controls h at σ

r
��−1[��] and is

unmatched at ν, then i is in one cycle with h at round r
�� under ��.

Proof of Claim 2: If i = j, then the result is true. Assume i �= j. Then j does not control h at ν.
Thus, j brokers it at σ

r
��−1[��] and hence the cycle of h at round r

�� under �� contains some other
agent j

� and house h
� that j

� owns. By Claim 1, j
�
/∈ Iσr−1[�] and h

�
/∈ Hσr−1[�], and thus j

�
/∈ Iν and

h
�
/∈ Hν . By R4, R5, and R6, j

� owns h at ν, and thus i = j
�. QED

Claim 3. Suppose that n > 1 and agents j, i
1
, ..., i

n, and house h
1 are unmatched at ν = σ

r−1[�

] ∪ σ
r
��−1[��], such that j and h

�+1 are part of a cycle matched at some round r
�� ≤ r

� under ��. If
agent j controls h

�+1 at σ
r
��−1[��], then, under ��, i

�+1 and h
�+1 are both matched at round r

�.

Proof of Claim 3: If j owns h
�+1 at σ

r
��−1[��] then R4 implies that both j and i

�+1 own h
�+1 at ν.

Hence, i
�+1 = j, and he is matched at r

�� under ��. Because r
� is the earliest round one of the agents

i
1
, ..., i

n is matched, it must be that r
� = r

�� and the claim is true.
If j brokers h

�+1 at σ
r
��−1[��], then let σ0 be a minimal submatching in

�
σ ∈ S : σ

r
��−1[��] ⊆ σ ⊆ ν

�

at which j is not a broker of h
�+1. Let j

� �= j belong to the cycle of h
�+1 at round r

�� under ��. Then
j
� is an owner of a house h

� at σ
r
��−1[��]. Because n > 1, Claim 1 gives j

�
/∈ Iσr−1[�] and h

�
/∈ Hσr−1[�].

Thus, (j�, h�) is an owner-owned house pair at σ0 ⊆ ν. By R5 and R6, agent j
� becomes the owner of

h
�+1 at σ0, and thus by R4, i.e., persistence of an ownership, (j�, h�+1) is an owner-owned house pair

30



at ν. Thus, j
� = i

�+1 and he is matched at r
�� in the same cycle as h

�+1 under ��. A fortiori, r
�� = r

�.
QED

Claim 4. Assume i
� is a σ

r−1[�]-owner. Under ��, agent i
� will not be matched as long as house h

�+1

is unmatched. Furthermore, if i
� and h

�+1 are matched in the same round then they are matched
with each other.

Proof of Claim 4: House h
�+1 is agent i

�’s top choice among houses unmatched at σ
r−1[�]. By the

inductive assumption, all houses matched before round r under � are also matched with the same
agents under � . Since h

�+1 = ψ
c,b[�](i�) is the top choice of houses remaining at round r under �,

ψ
c,b[��](i�) is weakly worse than h

�+1. Hence, at the round i
� is matched he points to h

�+1 (and then
is matched with it) or a worse house (and then h

�+1 was matched earlier). QED

Claim 5. Suppose that agents j, i
1
, ..., i

n
, and house h

�+1 are unmatched at ν = σ
r−1[�] ∪ σ

r
��−1[��],

i
�+1 brokers h

�+1 at σ
r−1[�], agent j controls h

�+1 at σ
r
��−1[��], such that agent j and house h

�+1

are part of a cycle matched at some round r
�� ≤ r

� under ��. Then, house h
�+1 is matched at round

r
� = r

�� under ��.

Claim 6. Furthermore, the inductive hypothesis is true for round r or i
�+1 is matched at round r

�

under ��.

Proofs of Claim 5 and Claim 6: We will first prove Claim 5 and continue from that point on proving
Claim 6. For convenience, assume � = n that is �+1 = 1. Since, i

1 is a broker when he was matched
under �, n > 1, and thus, we can use Claim 1. Moreover, if i

1 = j, then i
1 controls h

1 at σ
r
��−1[��],

and thus he is matched at round r
�� under ��. Because r

� is the earliest round one of the agents
i
1
, ..., i

n is matched, it must be that r
� = r

�� and the claim is true. Hence, assume that i
1 �= j.

Notice that

• If j controls h
1 at ν then i

1 does not.

• If j does not control h
1 at ν then j brokers it at σ

r
��−1[��], and thus, the cycle of h

1 contains some
σ

r
��−1[��]-owner j

� and some house h
� owned by j

�. By Claim 1, j
�
/∈ Iσr−1[�] and h

�
/∈ Hσr−1[�],

and thus j
� and h

� are not matched at ν. By R5 and R6, if j stops brokering h
1, then j

� owns
h

1 at ν, and hence i
1 cannot broker it at ν.

In either case, i
1 does not broker h

1 at ν while he brokers it at σ
r−1[�]. Thus, R5 and R6 imply that

n = 2, i2 owns h
1 at ν, and i

1will own h
2 if i

2is matched with h
1 at ν. (1)
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If i
2(= i

�) �= j, then Claim 2 implies that i
2 is in the cycle of h

1 that forms at round r
�� under ��,

and thus r
� = r

��.
If i

2(= i
�) = j, Claim 4 implies that i

2 is matched at r
�� under �� in the cycle

h
1
→ i

2
→ h

1
.

Thus, r
�� = r

� and h
1(= h

�+1) is matched at round r
� under ��. That proves Claim 5.

In order to prove Claim 6, let r
1 be the time i

1 is matched, and r
2 be the time h

2 is matched
under ��. By Claim 7 (whose proof depends on Claim 5 but not on Claim 6), r

2 ≤ r
1. Let j

2 be the
agent controlling h

2 at σ
r
2−1[��]. By Claim 1, j

2
/∈ Iσr−1[�]. Let

ν
� = σ

r−1[�] ∪ σ
r
2−1[��].

If r
2

> r
� then i

2 is matched to h
1 at ν

� ⊇ σ
r
2−1[��] ⊇ σ

r
�
[��]. By Statement in (1), i

1 owns h
2

at ν
�. By Claim 2, i

1 is in one cycle with h
2 at r

2.
If r

2 ≤ r
� then i

2, the σ
r−1[�]-owner of h

2, is unmatched at σ
r
2−1[��] and hence, owns h

2 at ν
�.

By Claim 2, i
2(= i

�) is in one cycle with h
2(= h

�) at r
2 under ��. That means that r

2 = r
�. Let i be

the agent controlling h
1 at σ

r
�−1[��]. Since the cycle of h

1 contains i
1 and i

2, and i
2 gets h

1, hence
i �= i

2. Because, i
2 owns h

1 and h
2 at ν

�, R5 and R6 imply that i inherits h
2 if i

2 is matched with h
1

at ν
�. By Statement in (1), i

1 inherits h
2 if i

2 is matched with h
1 at ν, and hence also at ν

�. Thus,
i
2(= i

�) = i belongs to the cycle of h
1(= h

�+1) under ��. QED

Claim 7. Assume i
� is a σ

r−1[�]-broker. Under ��, agent i
� will not be matched as long as house h

�+1

is unmatched. Furthermore, if i
� and h

�+1 are matched in the same round, then they are matched
with each other.

Proof of Claim 7: Notice that n > 1 and for notational convenience assume that � = 1. By the
inductive assumption, There exists r

∗ such that σ
r−1[�] ⊆ σ

r
∗
[��]. Thus, if (i1, h2) does not satisfy

the claim then the top preference of i
1 must be h

1, the house he brokers at σ
r−1[�], and i

1 must get
h

1 under ��. Let j be the agent controlling h
1 at σ

r
�−1[��]. Notice that j is matched in the same

cycle as h
1 at round r

� under ��. Since h
1

/∈ Hσr−1[�] and n > 1, Claim 1 implies that j /∈ Iσr−1[�].
Thus, agents j, i

1
, ..., i

n and house h
1 are unmatched at the submatching ν = σ

r−1[�]∪σ
r
��−1[��]. By

Claim 5, h
1 is matched at r

�, and by Claim 4, i
n gets h

1, a contradiction. QED

Claim 8. If n = 1 then either h
1 → i

1 → h
1 form a cycle under ��, or there exists an agent j and a

house h such that h → i
1 → h

1 → j → h form a cycle under ��.
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Proof of Claim 8 : Claim 2 implies that h
1 is matched at round r

�� ≤ r
� when preferences are ��. Let

j be the agent controlling h
1 at σ

r
��−1[��]. Notice that j is matched in the same cycle as h

1 at round
r
�� under ��. Two cases are possible about j:

Case 1. j ∈ Iσr−1[�]: Then j �= i
1 and the inductive assumption and h

1
/∈ Hσr−1[�] imply that

• j is matched at round r under � in a cycle h → j → h (for some house h �= h
1), and

• there exists agent i such that the cycle h → i → h
1 → j → h is matched at round r

�� under
��

.

To finish the proof of the current case, it remains to be shown that i = i
1.

• If i ∈ Iσr−1[�] then the inductive assumption implies that i is matched with h
1 under ��, and

hence i = i
1.

• If i /∈ Iσr−1[�] then i and i
1 are unmatched at σ

r−1[�] ∪ σ
r
��−1[��], and by R4, i.e., persistence

of o-pairs, i
1 owns h

1 at this submatching. Notice that j is an owner of h at σ
r−2[�], and

hence at σ
r−2[�] ∪ σ

r
��−1[��]. Thus, i must have been a broker of h at σ

r
��−1[��] and stopped

being a broker at a submatching σ between σ
r
��−1[��] and σ

r−2[�] ∪ σ
r
��−1[��]. Because there

might be only one broker at each submatching, j is an owner of h
1 at σ

r
��−1[��]. Thus j is

an owner at σ, and inherits h when i loses the broker status. When j is matched with h, the
broker-to-heir transition rule R6 implies that i becomes the owner of h

1. Hence, i is the owner
of h

1 at σ
r−1[�] ∪ σ

r
��−1[��] as is i

1. Thus, i = i
1.

Case 2. j /∈ Iσr−1[�]: Then, agents j, i
1 are unmatched at the submatching ν = σ

r−1[�] ∪ σ
r
��−1[��],

and by R4, i.e., persistence of o-pairs, i
1 owns h

1 at this submatching. Hence, either

• j = i
1 controls h

1 at σ
r
��−1[��], or

• j �= i
1 is a broker of h

1 at σ
r
��−1[��], and loses the brokerage right at some submatching σ

between σ
r
��−1[��] and σ

r−1[�] ∪ σ
r
��
[��].

In the former subcase, i
1 is matched at r

�� as h
1 is matched under ��. Thus, r

�� = r
�, and a fortiori

i
1 is matched with h

1(= i
�) and hence owns h

1 at r
�. The claim is then proved.

In the latter subcase, let j
� �= j be an agent matched in the same cycle as h

1 at round r
�� under

��. Then j
� is an owner of a house h

� at σ
r
��−1[��].

We have j
�
/∈ Iσr−1[�] and h

�
/∈ Hσr−1[�], as otherwise the inductive assumption and h

1
/∈ Hσr−1[�]

would imply that j
� is matched at σ

r−1[�] before round r under � in a cycle h
� → j

� → h
�, and there
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would exist an agent i such that the cycle h
� → i → h

1 → j
� → h

� is matched at r
�� under ��. The

inductive assumption would further imply that h
1 is matched to i at � and thus i

1 = i. Since j is in
the cycle of h

1 and j �= j
� and j �= i

1, we would obtain a contradiction showing that j
�
/∈ Iσr−1[�].

Thus j
� and h

� are unmatched at σ
r−1[�]∪ σ

r
��−1[��], and hence they are unmatched at σ. Thus,

R5 and R6’s broker-to-heir transition property implies that agent j
� is the owner of h

1 at σ, and by
persistence of o-pairs through R4, (j�, h1) is an owner-owned house pair at σ

r−1[�]∪σ
r
��−1[��]. Thus,

i
1 = j

� and he is matched with h
1 at r

�� = r
�. Thus, at round r

� under �� the cycle in which i
1 is

matched is h
� → i

1 → h
1 → j → h

�. QED

Claim 9. Suppose n > 1. If i
�+1 is σ

r−1[�]-owner, then i
� is matched with h

�+1 at round r
� under �,

and i
�+1 is also matched at round r

� under ��.

Proof of Claim 9: By Claim 2, house h
�+1 is matched at round r

�� ≤ r
� under ��. Let j be the

owner or broker of the house h
�+1 at σ

r
��−1[��]. Notice that j is matched in the same cycle as h

�+1

at round r
�� under ��. Since h

�+1
/∈ Hσr−1[�] and n > 1, Claim 1 implies that j /∈ Iσr−1[�]. Thus,

agents j, i
1
, ..., i

n are unmatched at the submatching σ
r−1[�]∪σ

r
��−1[��], and Claim 3 yields that i

�+1

is matched at r
�� = r

� and then Claim 2 shows that i
� is matched with h

�+1. QED

Claim 10. If i
�+1 is a σ

r−1[�]-broker, then either the inductive hypothesis is true or i
� is matched

with h
�+1 at round r

� under ��, and i
�+1 is also matched at round r

� under ��.

Proof of Claim 10: For convenience let us assume that � = n and � + 1 = 1. Agent i
n is a σ

r−1[�]-
owner because n > 1 and i

1 is a σ
r−1[�]-broker. By Claim 2, house h

1 is matched at round r
�� ≤ r

�

under ��. Let j be the owner or broker of the house at σ
r
��−1[��]. Notice that j is matched in

the same cycle as h
1 at round r

�� under ��. Since h
1

/∈ Hσr−1[�] and n > 1, Claim 1 implies that
j /∈ Iσr−1[�]. Thus, agents j, i

1
, ..., i

n are unmatched at the submatching σ
r−1[�]∪σ

r
��−1[��]. Claim 5

yields r
�� = r

� and thus Claim 4 shows that i
n is matched with h

1 under ��. Claim 6 ends the proof.
QED

Claim 8 proves the inductive hypothesis for cycles of length n = 1 and Claim 9 and Claim 10
applied iteratively prove the hypothesis for cycles of length n > 1. This ends the proof of the theorem.
QED

C Appendix: Proof of Theorem 2 (Implementation Result)

Let ϕ be a group strategy-proof and Pareto-efficient mechanism (fixed throughout the proof). We
are to prove that ϕ may be represented as a TCBO mechanism. We will first construct the candidate
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control rights structure (c, b) and then show that the induced TCBO mechanism ψ
c,b is equivalent to

ϕ.
Let us start by introducing some useful terms and notation. Let σ ∈M, n ≥ 0 and h

1
, h

2
, ..., h

n ∈

Hσ, and i ∈ I.
Pi[σ, h

1
, ..., h

n] is the set of preferences �i of agent i such that

• if i ∈ Iσ, then
σ(i) �i g for all g ∈ H − {σ(i)} ,

• if i ∈ Iσ, then

h
1
�i h

2
� ... �i h

n
�i g �i g

� for all g ∈ Hσ −
�
h

1
, ..., h

n
�

and all g
�
∈ Hσ.

That is, if i is not matched in submatching σ, Pi[σ, h
1
, ..., h

n] is the set of preferences that rank
h

1,...,hn in order over the remaining houses unmatched under σ, and rank those over the houses
matched under σ; otherwise, Pi[σ, h

1
, ..., h

n] is the set of preferences that rank agent i’s match under
σ over all other houses (observe that Pi[∅] ≡ Pi).

P[σ, h
1
, ..., h

n] ⊆ P is the Cartesian product of Pi[σ, h
1
, ..., h

n] over all i ∈ I. We define

P∗[σ, h] = ∪
h�∈Hσ−{h}P[σ, h, h

�],

i.e., the set of preference profiles generated by P[σ, h] that rank the same house as the second choice
across all agents unmatched under σ.

When σ is fixed, we will occasionally write �h1
, ..., h

n
, ...� instead of Pi[σ, h

1
, ..., h

n].

We are ready to introduce some new terminology for the mechanism ϕ that is similar to the control
rights structure terminology of the TCBO mechanisms. To distinguish the two classes defined for
TCBO and ϕ, we will suffix these new definitions with *.

A house h ∈ Hσ is an owned* house at σ ∈ M if ϕ[�]−1(h) = i for all �∈ P[σ, h] for some
i ∈ Iσ; we refer to i as the owner* of h at σ.

A house e ∈ Hσ is a brokered* house at σ ∈ M if there exist some � and ��∈ P∗[σ, e] such
that ϕ[�]−1(e) �= ϕ[��]−1(e). Agent k is the broker* of e at σ if e is a brokered* house at σ and
for all �∈ P∗[σ, e] house ϕ[�](k) is the second choice of k in �k.13

13It may appear from the definitions that there is a third option for an unmatched house besides being owned* and
brokered* at a submatching. However, Corollary 2 below show that these are the only two options.
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Notice that if ϕ is a TCBO mechanism and i is an owner at σ then i is an owner* at σ, similarly for
broker*. Thus, owners* and brokers* are the candidate owners and brokers in the TCBO mechanism
that we will construct. We will show that the starred terms can be used to determine a consistent
control rights structure (c, b) and a TCBO mechanism ψ

c,b. The proof of Theorem 2 will be finished
after we show that ϕ = ψ

c,b.

Two lemmata proved in Pápai [2000] will be useful. Following her definition, we say that j envies

i at � if
ϕ[�](i) �j ϕ[�](j).

Lemma 4. (Pápai 2000) For all i, j ∈ I, all �∈ P, and all �∗
j
∈ Pj, if j envies i at � and

ϕ[�∗
j
,�−j](i) �= ϕ[�](i), then

ϕ[�](i) �i ϕ[�∗
j
,�−j](i).

Lemma 5. (Pápai 2000) For all i, j ∈ I, all �∈ P, and all �∗
j
∈ Pj, if j envies i at � and

ϕ[�∗
j
,�−j](i) �= ϕ[�](i), then there exists �∗

i
∈ Pi such that

ϕ[�∗
i
,�

∗
j
,�−{i,j}](i) = ϕ[�](j).

The following is an immediate corollary of strategy-proofness and Lemma 5:

Corollary 1. For all i, j ∈ I, all �∈ P, and all �∗
j
∈ Pj, if j envies i at � and ϕ[�∗

j
,�−j](i) �= ϕ[�

](i), then
ϕ[�∗

j
,�−j](i) �i ϕ[�](j).

C.1 The Starred Control Right Structure is Well Defined

The lemma below show that if a house does not have a well-defined owner*, then it has a well-defined
broker*. Thus the starred (candidate) control right structure is well defined. All lemmata in this
section are formulated and proven at a fixed submatching σ ∈M.

Lemma 6. Let σ ∈M. For all i ∈ Iσ and all h ∈ Hσ,

ϕ[�](i) = σ(i) for all �∈ P[σ, h].

Proof of Lemma 6. Suppose that an agent in i ∈ Iσ does not get σ(i) at ϕ[�]. Then we can create
a matching by assigning all agents in Iσ that get a house in Hσ a house in Hσ that was assigned to
an agent in Iσ, all other agents j in Iσ the house ϕ[�](j), and all agents j in Iσ the house σ(j). Since

36



each agent in Iσ ranks houses in Hσ lower than houses in Hσ and each agent in Iσ ranks his σ-house
as his first choice, this new matching Pareto dominates ϕ[�], contradicting ϕ is Pareto efficient.QED

Lemma 7. Let σ ∈ M and e, h ∈ Hσ. Then there exists some agent i ∈ Iσ such that ϕ[�](i) = e

for all �∈ P[σ, e, h].

Proof of Lemma 7 By way of contradiction suppose that �,��∈ P[σ, e, h] are such that ϕ[�](i) = e

and ϕ[��](i�) = e for some i
� �= i.

Without loss of generality, we assume that � and �� differ only in preferences of a single agent
j ∈ Iσ. Let g = ϕ[�](j) and gP = ϕ[��](j). By non-bossiness, g �= g

�. By strategy-proofness,
j �∈ {i, i�}, and hence, e �∈ {g, g

�}. Moreover by Maskin monotonicity, if it were true that g = h, then
ϕ[��] = ϕ[�] would be true, contradicting ϕ[��] �= ϕ[�]. Thus, g �= h. Similarly g

� �= h. Moreover,
by Maskin monotonicity for j, without loss of generality, we further assume that

�j∈ �e, h, g, g
�
, ...� and �

�
j
∈ �e, h, g

�
, g, ....� ,

and that the only difference between �j and ��
j

is in relative ranking of g and g
�.

Let k �= i, i
�
, j be some agent.

Define

�
∗
k
∈ �e, g, h, ...� ,

�
∗
i
∈ �h, e, ...� , and

�
∗
i�∈ �h, e, ...� .

where the relative ordering of all other houses coincide under �∗
k
,�∗

i
,�∗

i� with that under �k,�i,�i� ,

respectively.
We will first prove a number of claims.

Claim 1. (1) ϕ[�∗
i
,�−i](i) = h and ϕ[�∗

i� ,�
�
−i� ](i

�) = h.

(2) Moreover, if ϕ[�](k) = h and ϕ[��](k) = h, then ϕ[�∗
i
,�−i](j) = g.

Proof of Claim 1.
(1) By strategy-proofness for i, ϕ[�∗

i
,�−i](i) �∗

i
e. Everybody else in Iσ ranks e over h. Thus, by

Lemma 6 and Pareto efficiency, i should get h at [�∗
i
,�−i]. The symmetric argument implies that

ϕ[�∗
i� ,�

�
−i� ](i

�) = h.

(2) Let ϕ[�](k) = h and ϕ[��](k) = h. By Maskin monotonicity regarding i, ϕ[�∗
i
,�−i] = ϕ[��].

Thus, j gets g
� at [�∗

i
,��

−i
]. By strategy-proofness for j, agent j gets at least g

� and no house better
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than g at [�∗
i
,�−i] (recall that between �−i and ��

−i
only j changes his preferences). Suppose j gets

g
� at [�∗

i
,�−i]. Then, by Maskin monotonicity regarding j, we have ϕ[�∗

i
,��

−i
] = ϕ[�∗

i
,��

−i
]. In

particular, ϕ[�∗
i� ,�−i� ](i�) = ϕ[�∗

i� ,�
�
−i� ](i

�) = h. By Maskin monotonicity regarding i
�, ϕ[�∗

i� ,�−i�

] = ϕ[�]. On the other hand, we have ϕ[�](k) = h, contradicting ϕ[�∗
i� ,�−i� ](i�) = ϕ[�](i�) = h.

Therefore, ϕ[�∗
i� ,�−i� ](j) = g

�. QED

Claim 2. If ϕ[�](k) = h, then ϕ[�∗
k
,�−k](k) = g and ϕ[�∗

k
,��

−k
] = ϕ[�∗

k
,�−k].

Proof of Claim 2. Let ϕ[�](k) = h. Recall that �∗
k
∈ �e, g, h, ...�. By strategy-proofness, since k gets

h at �, agent k cannot get e and gets at least h at [�∗
k
,�−k]. Thus, k gets h or g at [�∗

k
,�−k].

Everybody else in Iσ ranks h over g. Thus, by Lemma 6 and Pareto efficiency, agent k should get g

at [�∗
k
,�−k].

These two profiles, [�∗
k
,��

−k
] and [�∗

k
,�−k], only differ in preferences of agent j who ranks g

above g
� at �j and the other way at ��

j
. We established above that j does not get g at [�∗

k
,�−k].

Maskin monotonicity regarding j implies ϕ[�∗
k
,��

−k
] = ϕ[�∗

k
,�−k]. QED

Claim 3. If ϕ[�](k) = h, then ϕ[�∗
k
,�−k](i) ∈ {e, h}; furthermore if it is also true that ϕ[��](k) = h,

then {ϕ[�∗
k
,�−k](i), ϕ[�∗

k
,�−k](i�)} = {e, h}.

Proof of Claim 3. Let ϕ[�](k) = h. Agent k envies agent i at �. Thus, by Corollary 1, agent i gets
at least h = ϕ[�](k) at [�∗

k
,�−k]. Hence ϕ[�∗

k
,�−k](i) ∈ {e, h} . By Claim 2, ϕ[�∗

k
,��

−k
](i) ∈ {e, h} .

Also let ϕ[��](k) = h. The symmetric argument as above using �� instead of � and i
� instead of

i shows that ϕ[�∗
k
,��

−k
](i�) ∈ {e, h}. Furthermore, Claim 2 implies that ϕ[�∗

k
,�−k](i�) = ϕ[�∗

k
,��

−k

](i�). Thus, ϕ[�∗
k
,�−k](i) and ϕ[�∗

k
,�−k](i�) are different and both belong to {e, h}. .QED

Claim 4. If �k∈ �e, h, g, ...�, ϕ[�](k) = h, and ϕ[��](k) = h, then ϕ[�∗
k
,�−k](i) = e and ϕ[�∗

k
,�−k

](i�) = h.

Proof of Claim 4. Let �k∈ �e, h, g, ...�, ϕ[�](k) = h, and ϕ[��](k) = h. Suppose that ϕ[�∗
k
,�−k](i) �=

e for an indirect argument. Then, Claim 3 implies that ϕ[�∗
k
,�−k](i) = h and ϕ[�∗

k
,�−k](i�) = e.

By Maskin monotonicity for i, ϕ[�∗
k
,�−k] = ϕ[�∗

k
,�∗

i
,�−{k,i}]. By this equivalence and Claim 2, we

have ϕ[�∗
k
,�∗

i
,�−{k,i}](k) = g. By strategy-proofness, agent k gets at least g and not e at [�∗

i
,�−i].

Thus, ϕ[�∗
i
,�−i](k) = h. This contradicts Claim 1.

Thus, by Claim 3, ϕ[�∗
k
,�−k](i) = e and ϕ[�∗

k
,�−k](i�) = h. QED

Claim 5. If ϕ[�](k) = h and ϕ[��](k) = h then ϕ[�∗
i� ,�

�
−i� ](i) �= e.
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Proof of Claim 5. Let ϕ[��](k) = h. First suppose that ϕ[�∗
{i,i�},�

�
−{i,i�}](i) = h. We will show that

this will lead to a contradiction: By Maskin monotonicity for i
�, ϕ[�∗

i
,��

−i
] = ϕ[�∗

{i,i�},�
�
−{i,i�}], and in

particular, ϕ[�∗
i
,��

−i
](i) = h. By strategy-proofness for i, ϕ[��](i) �i h, contradicting ϕ[��](i�) = e,

ϕ[��](k) = h, and thus, ϕ[��](i) ≺i h. A contradiction. Hence, ϕ[�∗
{i,i�},�

�
−{i,i�}](i) �= h.

Since �∗
i

replaces the ranking of h and e with respect to �i, by Maskin monotonicity for i,

ϕ[�∗
{i,i�},�

�
−{i,i�}] = ϕ[�∗

i� ,�
�
−i� ]. (2)

Let ϕ[�](k) = h. Symmetric argument with the above one implies that ϕ[�∗
{i,i�},�−{i,i�}](i�) �= h

and ϕ[�∗
{i,i�},�−{i,i�}] = ϕ[�∗

i
,�−i]. This and Claim 1 imply that ϕ[�∗

{i,i�},�−{i,i�}](i) = h.
Contrary to the claim, suppose that ϕ[�∗

i� ,�
�
−i� ](i) = e. Then, ϕ[�∗

{i,i�},�
�
−{i,i�}](i) = e by Equa-

tion 2. Observe that at [�∗
{i,i�},�

�
−{i,i�}], j envies i. By submitting �j, agent j makes i better off

(since ϕ[�∗
{i,i�},�−{i,i�}](i) = h), contradicting Lemma 4. Thus, we showed that ϕ[�∗

i� ,�
�
−i� ](i) �= e.

QED

Claim 6. If ϕ[�](k) = h and �i∈ �e, h, g, ...�, then ϕ[��](k) = h.

Proof of Claim 6. Let ϕ[�](k) = h and �i∈ �e, h, g, ...� . Since agent j envies i at � and ϕ[�](j) = g,
these and Corollary 1 imply that i gets at least g at ��. Hence, ϕ[��](i) ∈ {h, g} .However, by
Lemma 4, j cannot continue envying i at ��. Hence, ϕ[��](i) = g.

Let us first prove the claim under the additional assumption that �k∈ �e, h, g, ...�. Since agent j

envies k at � and ϕ[�](j) = g, these and Corollary 1 imply that

ϕ[��](k) �k g (3)

Since k �= i
� and ϕ[��](i�) = e, we have ϕ[��](k) ∈ {h, g}. Suppose contrary to the claim that

ϕ[��](k) �= h = ϕ[�](k). Thus, by Lemma 4, j cannot envy k also at �; hence, ϕ[��](k) �= e.
We know that ϕ[�](i) = g and i �= k. Thus, ϕ[��](k) �= g. Last three statements contradict
Equation 3. We showed that j cannot change the allocation of k between � and ��, and thus,
ϕ[��](k) = ϕ[�](k) = h.

Finally, the claim for general �k∈ �e, h, ...� follows by Maskin monotonicity of ϕ for k: for all
�k∈ �e, h, ...� we have ϕ[��](k) = h. QED

We are ready to complete the proof of the lemma as follows using the above claims:
Let’s choose k = ϕ

−1[�](h). Thus, k �= i, i
�
, j. By Maskin monotonicity, without loss of generality,

we also choose �i∈ �e, h, g, ...� , and �k∈ �e, h, g, ...� (recall that ϕ[�](i) = e and ϕ[�](k) = h). By
Claim 6, ϕ[��](k) = h. Thus, the hypotheses of Claims 1-5 hold. By Claim 1, ϕ[�∗

i� ,�
�
−i� ](i

�) = h.

39



Hence, ϕ[�∗
i� ,�

�
−i� ](k) = e, ϕ[�∗

i� ,�
�
−i� ](k) = g, or ϕ[�∗

i� ,�
�
−i� ](k) ≺k g. We will show that either

of these cases leads to a contradiction, thus completing the indirect proof. First, we establish the
following equations:

By Claim 2, we have ϕ[�∗
k
,�−k](k) = g. By Claim 4, ϕ[�∗

k
,�−k](i�) = h. By Maskin monotonicity

for i
�,

ϕ[�∗
k
�
∗
i� ,�−{k,i�}] = ϕ[�∗

k
,�−k]. (4)

Hence,
ϕ[�∗

k
,�

∗
i� ,�−{k,i�}](k) = g. (5)

By Maskin monotonicity for j, we have

ϕ[�∗
k
�
∗
i� ,�

�
−{k,i�}] = ϕ[�∗

k
�
∗
i� ,�−{k,i�}]. (6)

Hence,
ϕ[�∗

k
,�

∗
i��

�
−{k,i�}](k) = g. (7)

Case 1. ϕ[�∗
i� ,�

�
−i� ](k) = e : Agent k improves his allocation in Equation 7 by submitting �k

instead of �∗
k
, contradicting strategy-proofness.

Case 2. ϕ[�∗
i� ,�

�
−i� ](k) = g : By non-bossiness for k and Equation 7,

ϕ[�∗
k
,�

∗
i��

�
−{k,i�}] = ϕ[�∗

i� ,�
�
−i� ]. (8)

Equations 4, 6, and 8 imply that

ϕ[�∗
i� ,�

�
−i� ] = ϕ[�∗

k
,�−k]. (9)

By Claim 4, ϕ[�∗
k
,�−k](i) = e. By Equation 9, ϕ[�∗

i� ,�
�
−i� ](i) = e. However, this contradicts Claim

5.
Case 3. ϕ[�∗

i� ,�
�
−i� ](k) ≺k g: When k submits �∗

k
instead of �k, he improves his own allocation

(since ϕ[�∗
k
,�∗

i� ,�
�
−{k,i�}](k) = g by Equation 7), a contradiction to strategy-proofness.

Thus, none of the three cases holds, implying that initial assumption i
� �= i cannot be correct.

QED

Lemma 8. (Existence and uniqueness of a broker* for each brokered* house) Let σ ∈ M

and e be a brokered* house at σ. Then there exists an agent k ∈ Iσ who is the unique broker* of e at
σ.
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Proof of Lemma 8. Let σ ∈ M and e be a brokered* house at σ. We start with the following
preparatory:

Claim 1. Let h, h
� ∈ Hσ − {e} be such that h �= h

�, and let �,��∈ P[σ, e, h, h
�]. Then ϕ[��]−1(h) =

ϕ[�]−1(h).

Proof of Claim 1. By Lemma 7, ϕ[��]−1(e) = ϕ[�]−1(e). Let i = ϕ[�]−1(e). Also let �∗ and
��∗be monotonic extensions of � and �� respectively such that i ranks e first, all agents in Iσ rank
e below all houses in Hσ − {e}, and the relative ranking of all other houses at �∗, � and ��∗,
�� are respectively the same. By Maskin monotonicity, ϕ[�∗�] = ϕ[��] and ϕ[�∗] = ϕ[�]. Also
�∗

,��∗∈ P[σ ∪ {(i, e)} , h, h
�]. Thus, by Lemma 7, ϕ[�∗]−1(h) = ϕ[�∗�]−1(h). Hence, ϕ[��]−1(h) =

ϕ[��∗]−1(h) = ϕ[�∗]−1(h) = ϕ[�]−1(h). QED

Claim 2. Let h, h
� ∈ Hσ − {e} be such that h �= h

� and let �∈ P[σ, e, h, h
�] and ��∈ P[σ, e, h

�] such
that ϕ[��]−1(e) �= ϕ[�]−1(e). Then ϕ[��]−1(h�) = ϕ[�]−1(h).

Proof of Claim 2. Let k
� = ϕ[��]−1(h�) and �∗∈ P[σ, e, h

�
, h] be such that the only difference between

�∗ and � is the relative ranking of house h
�. Since by Claim 1 ϕ[�∗]−1(h�) = ϕ[��]−1(h�) = k

�

and since we push down house h
� in everybody’s preferences except k

� at [�∗
k� ,�−k� ], by Maskin

monotonicity ϕ[�∗
k� ,�−k� ] = ϕ[�∗]. In particular, ϕ[�∗

k� ,�−k� ](k�) = h
�. By strategy-proofness for

k
�
, we have ϕ[�](k�) ∈ {h, h

�}. On the other hand, by Lemma 7, ϕ[�∗]−1(e) = ϕ[��]−1(e). Since
ϕ[�∗

k� ,�−k� ] = ϕ[�∗], we have ϕ[�∗
k� ,�−k� ]−1(e) = ϕ[��]−1(e).

We also have, ϕ[�]−1(e) �= ϕ[��]−1(e) = ϕ[�∗
k� ,�−k� ]−1(e). Thus, by non-bossiness, agent k

�

should change his own allocation between the two profiles � and [�∗
k� ,�−k� ], implying that ϕ[�

](k�) = h. QED

Claim 3. Let h, h
� ∈ Hσ − {e} be such that h �= h

�, �∈ P[σ, e, h], and ��∈ P[σ, e, h
�
, h]. Then,

ϕ[�]−1(h) = ϕ[��]−1(h�).

Proof of Claim 3. If ϕ[�]−1(e) �= ϕ[��]−1(e), then we are done by Claim 2. Therefore, assume that
ϕ[�]−1(e) = ϕ[��]−1(e). Because e is a brokered* house at σ, there exists some h

�� ∈ Hσ − {e} such
that for some ���∈ P[σ, e, h

��],

ϕ[���]−1(e) �= ϕ[�]−1(e) = ϕ[��]−1(e).

By Lemma 7, h
�� �= h. By the same lemma, without loss of generality, we further assume that

���∈ P[σ, e, h
��
, h].
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By Claim 2, ϕ[���]−1(h��) = ϕ[�]−1(h) and ϕ[���]−1(h��) = ϕ[��]−1(h�), implying that ϕ[�]−1(h) =

ϕ[��]−1(h�). QED

Claim 4. Let h ∈ Hσ − {e} and �, ��∈ P[σ, e, h]. Then, ϕ[�]−1(h) = ϕ[��]−1(h).

Proof of Claim 4. By Lemma 7, ϕ[�]−1(e) = ϕ[��]−1(e). Because e is a brokered* house at σ, there
exists some h

�� ∈ Hσ − {e} such that for some ���∈ P[σ, e, h
��],

ϕ[���]−1(e) �= ϕ[�]−1(e) = ϕ[��]−1(e).

By Lemma 7, h
�� �= h. Let �∗∈ P[σ, e, h

��
, h]. By Claim 3, ϕ[�∗]−1(h��) = ϕ[�]−1(h) and ϕ[�∗

]−1(h��) = ϕ[��]−1(h), implying that ϕ[�]−1(h) = ϕ[��]−1(h). QED

We complete the proof of the lemma as follows: Let h and h
� ∈ Hσ − {e}, �∈ P[σ, e, h], ��∈

P[σ, e, h
�]. Two cases are needed:

Case 1. h = h
� : Then ϕ[��]−1(h) = ϕ[�]−1(h) by Claim 4.

Case 2. h �= h
�: Then let �∗∈ P[σ, e, h, h

�]; by Claim 3 ϕ[��]−1(h) = ϕ[�∗]−1(h�) and by Claim 4
ϕ[�∗]−1(h) = ϕ[�]−1(h), implying that ϕ[�]−1(h) = ϕ[��]−1(h�).

Thus, the agent ϕ[�]−1(h) is the unique broker* of e at σ. QED

Lemma 9. Let σ ∈M, i ∈ Iσ, and h ∈ Hσ. If ϕ[�](i) = h for all �∈ P∗[σ, h] then i owns* h at σ.

Proof of Lemma 9. Let us start with two preparatory claims:

Claim 1. Let σ ∈ M, houses g and h ∈ Hσ be such that g �= h, and agent i ∈ Iσ be such that
ϕ[��](i) = h for all ��∈ P[σ, g, h]. Then ϕ[�∗

i
,�−i](i) = g for all �∗

i
∈ �g, ...� and all �−i∈ P−i[σ, h].

Proof of Claim 1. Let �−i∈ P−i[σ, h]. Take any �i∈ �h, g, ...�. If ϕ[�](i) = h, then Pareto efficiency
and strategy-proofness imply that ϕ[�∗

i
,�−i](i) = g for all �∗

i
∈ �g, h, ...�, and furthermore, by

strategy-proofness, for all �∗
i
∈ �g, ...�. It remains to consider the case ϕ[�](i) �= h.

Take ��∈ P[σ, h, g] such that �� and � coincide other than unmatched agents’ ranking of house
g. We have ϕ[��](i) = h by the hypothesis of the claim. Two cases are possible: ϕ[�](i) = g and
ϕ[�](i) �= g. If ϕ[�](i) = g, then by strategy-proofness, ϕ[�∗

i
,�−i](i) = g and we are done. Thus,

in the remainder assume that there exists some agent k = ϕ[�]−1(g) �= i. By Maskin monotonicity,
ϕ[��

{i,k},�−{i,k}](i) = h and ϕ[��
{i,k},�−{i,k}](k) = g.

Let �∗
i
∈ �g, h, ...�. By strategy-proofness, agent i gets at least h at [�∗

i
,��

k
,�−{i,k}]; and by

Pareto efficiency, agent i gets g. Also recall that ϕ[�](i) ≺i g and ϕ[�](k) = g. Thus, ϕ[�∗
i
,��

k
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,�−{i,k}](k) �= h because otherwise agents i and k could jointly improve upon their ϕ[�] allocation
by submitting [�∗

i
,��

k
] at �, contradicting group strategy-proofness. Thus, g ��

k
ϕ[�∗

i
,��

k
,�−{i,k}

](k), and furthermore, Maskin monotonicity implies ϕ[�∗
i
,��

k
,�−{i,k}] = ϕ[�∗

i
,�−i]. In particular,

ϕ[�∗
i
,�−i](i) = g. QED

Claim 2. Let σ ∈ M, houses g and h ∈ Hσ be such that g �= h, �∈ P[σ, h], and agent i ∈ Iσ such
that ϕ[��](i) = h for all ��∈ P[σ, g, h]. If there is some ��∈ P[σ, h, g] such that �k∈ �h, g, ...� for
k = ϕ[��]−1(g), then ϕ[�](i) = h.

Proof of Claim 2. By way of contradiction, assume that i is the owner* of h at σ, that ��∈ P[σ, h, g],

and that k = ϕ[��]−1(g), but there is some �∈ P[σ, h] such that �k∈ �h, g, ...� and ϕ[�]−1(h) �= i.
By strategy-proofness, we can choose �i∈ �h, g, ...�. Furthermore, we can choose � such that � and
�� differ only in preferences of a single agent j ∈ Iσ and in how house g is ranked by the agents.

Let �∗∈ P[σ, h] be the unique profile, such that �∗ and � differ only in the preferences of agent
j, and �∗ and �� differ only in how house g is ranked by the agents. Notice that j �= k as otherwise
Maskin monotonicity would imply that i gets h at �. Thus, �∗

k
∈ �h, g, ...� , and Maskin monotonicity

implies that ϕ[�∗](i) = h.
Let h

� be the house that j gets at � and let ��� be the unique profile in P[σ, h, g] such that ���

and � differ only in how house g is ranked by agents. By Maskin monotonicity, we may assume that
���

j
∈ �h, g, h

�
, ...�.

By Claim 1 and strategy-proofness, ϕ[���
j
,�−j](i) equals either h or g. At the same time strategy-

proofness implies that ϕ[���
j
,�−j](j) equals either g or h

�. In either case, agent j prefers the allocation
of agent i at [���

j
,�−j]. If ϕ[���

j
,�−j](i) = g, this would be a contradiction with Lemma 3, as j could

improve the allocation of i by switching from [���
j
,�−j] to [�∗

j
,�−j] =�∗. Hence, ϕ[���

j
,�−j](i) = h,

and by non-bossiness ϕ[���
j
,�−j](j) = g. However, k �= j gets g at �� and by strategy-proofness j

cannot get it at [���
j
,��

−j
]. This is a contradiction because [���

j
,�−j] = [���

j
,��

−j
]. QED

We are ready to finish the proof of the lemma. Fix σ ∈M. We proceed by way of contradiction.
Let i ∈ Iσ be such that ϕ[��](i) = h for all ��∈ P∗[σ, h]. Let �∈ P[σ, h] be such that ϕ[�]−1(h) =

j �= i. For all unmatched houses g �= h at σ, define �g to be the unique profile in P[σ, h, g] that
differs from � only in how agents rank g.

Take a house g1 �= h unmatched at σ, and let k1 be the agent that gets g1 at �g1 . By Claim 2,
agent i gets h at any profile in P[σ, h] at which k1 ranks g1 second. Hence, by Maskin monotonicity
i also gets h at any profile in P[σ, h] at which k1 gets g1.

Let g2 = ϕ[�](k1) and let k2 be the agent that gets g2 at �g2 . Because i does not get h at �, the
previous paragraph yields g2 �= g1 and k2 �= k1. As in the previous paragraph, Claim 2 and Maskin
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monotonicity imply that i gets h at any profile in P[σ, h] at which k2 gets g2 or ranks g2 second.
Furthermore, we will show that i gets h at any profile ��∈ P[σ, h] at which k2 ranks g1 second.

Indeed, suppose ��
k2
∈ �h, g1, ...� and i does not get h at ��. Let ���

i
∈ �h, g1, ...�. By Claim 1 and

strategy-proofness, agent i gets g1 at [���
i
,��

−i
]. By the previous paragraph and strategy-proofness,

k2 does not get h at [���
i
,��

−i
], and thus k2 envies i at [���

i
,��

−i
]. However, by the previous paragraph

k2 can improve the outcome of agent i, contrary to Lemma 4. Thus, i gets h at any profile in P[σ, h]

at which k2 ranks g1 second.
Let g3 be the house that k2 gets at � and let k3 be the agent that gets g3 at �g3 . As above, we

can show that i gets h at any profile in P[σ, h] at which k3 ranks g3 or g2 or g1 second.
Since the number of agents is finite, by repeating the procedure we arrive at an agent kn who

ranks one of the houses g1, ..., gn second at �. That means that i gets h at �, a contradiction that
concludes the proof. QED

Lemmas 8 and 9 give us the key result of this subsection:

Corollary 2. (Houses are either brokered* or owned*) For any σ ∈M, any house h ∈ Hσ is
either owned* or brokered* at σ.

C.2 The Starred Control Right Structure Satisfies R1-R6

Before proving R1-R6 let us state and prove one more auxiliary result.

Lemma 10. (Relationship between brokerage* and ownership*). Let σ ∈ M, agent k be a
broker* of house e at σ, and ���∈ P∗[σ, e]. Then agent ϕ[���]−1(e) is the owner* of house ϕ[���](k)

at σ.

Proof of Lemma 10. Let ���∈ P∗[σ, e] and h = ϕ[���](k). Because k is a broker* at σ, Lemma 8
implies that house h is agent k’s second choice. Since ���∈ P∗[σ, e], house h is the second choice of
all agents in Iσ at ���, and thus,

�
��
∈ P[σ, e, h].

There exists an agent i ∈ (Iσ) − {k} such that ϕ[���]−1(e) = i. By Lemma 7, for all �∈ P[σ, e, h],

agent i gets e at �. We are to show that i is the owner* of h at σ.

Claim 1. If �∈ P[σ, e, h], then ϕ[�](i) = e and ϕ[�](k) = h.

Proof of Claim 1. The first claim follows from Lemma 7, and the second from Lemma 8. QED

Claim 2. ϕ[�](i) = e and ϕ[�](k) = h.
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Proof of Claim 2.Let preference profile � be such that �i�=���
i� for all i

� ∈ {k, i}∪Iσ and all houses in
Hσ are ranked above the houses in Hσ by i

� ∈ Iσ. By Claim 1 and Maskin monotonicity, ϕ[�](i) = e

and ϕ[�](k) = h. QED.

Claim 3. ϕ[�∗
i
,�−i](i) = h.

Proof of Claim 3. Let �∗
i
∈ �h, e, ....�. By strategy-proofness of ϕ, since ϕ[�](i) = e, agent i gets at

least e at [�∗
i
,�−i], and since all other agents in Iσ prefer e over h, Pareto efficiency of ϕ implies

that ϕ[�∗
i
,�−i](i) = h.

Claim 4. ϕ[�∗
k
,�−k] = ϕ[�].

Proof of Claim 4. Let �∗
k
∈ �h, e, ....�. Since ϕ[�](k) = h, profile [�∗

k
,�−k] is a monotonic trans-

formation of � and by Maskin monotonicity of ϕ, we have ϕ[�∗
k
,�−k] = ϕ[�]. Claim 5. ϕ[�∗

{i,k}

,�−{i,k}](i) = h.

Proof of Claim 5. By Claim 4, ϕ[�∗
k
,�−k](i) = ϕ[�](i) = e, and, by strategy-proofness of ϕ, i gets

at least e at [�∗
{i,k},�−{i,k}]. Thus, if i does not get h at [�∗

{i,k},�−{i,k}] then one of the following
two cases would have to obtain.

Case 1. An agent j �∈ {i, k} gets h at [�∗
{i,k},�−{i,k}]: Then i gets e, and k gets some house worse

than e. But then jointly i and k can report �{i,k} instead of �∗
{i,k} and they would jointly improve

at �∗
{i,k}, i.e., ϕ[�](i) = e = ϕ[�∗

i,k
,�−i,k](i) and ϕ[�](k) = h �∗

k
ϕ[�∗

i,k
,�−i,k](k), contradicting ϕ is

group strategy-proof.
Case 2. Agent k gets h at [�∗

i,k
,�−i,k]: By strategy-proofness of ϕ, agent k should at least get h

at [�∗
i
,�−i]. But we know by Step 2 that ϕ[�∗

i
,�−i](i) = h, thus we should have ϕ[�∗

i
,�−i](k) = e.

Then by Maskin monotonicity of ϕ, we have ϕ[�∗
i,k

,�−i,k](i) = ϕ[�∗
i
,�−i](i) = h where the last

equality follows by Step 2. A contradiction that proves the claim. QED

Claim 6. If ϕ[�∗
{i,k},�−{i,k}](i) = h, then ϕ[�∗

{i,k},�−{i,k}](k) �= e.

Proof of Claim 6. For an indirect argument, suppose that ϕ[�∗
{i,k},�−{i,k}](i) = h and ϕ[�∗

{i,k},�−{i,k}

](k) = e. Then, ϕ[�∗
i
,�−i](k) = e by strategy-proofness of ϕ. Since e is a brokered* house at σ,

there exist some house g �∈ {e, h} and some preference profile ��∈ P[σ, e, g] such that ϕ[��]−1(e) = j

for some agent j �∈ {i, k}. By Lemma 7, we may assume that each agent i
� ∈ Iσ ranks houses other

than g and h in the same way at ��
i� and �i� and that ��

i�∈ �e, g, h, ...�. Since k is the broker* of e

at σ, we have ϕ[��](k) = g. By Maskin monotonicity,

ϕ[��] = ϕ[��
{i,k},�−{i,k}].
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Now i gets a house weakly worse than h at [��
{i,k},�−{i,k}]. However, if i and k manipulated and

submitted �∗
{i,k} instead of ��

{i,k}, they would get h and e respectively at [�∗
{i,k},�−{i,k}]. Both agents

weakly improve, while k strictly improves. This contradicts the fact that ϕ is group strategy-proof.
QED

Now, Claims 5 and 6 imply that ϕ[�∗
{i,k},�−{i,k}](i) = h and ϕ[�∗

{i,k},�−{i,k}](k) �= e. By Maskin
monotonicity, we can drop the ranking of e in �∗

i
and �∗

k
, and yet, the outcome of ϕ will not change.

Recall that �−{i,k} was an arbitrary profile in which all houses in Hσ are ranked above the houses in
Hσ by i

� ∈ Iσ − {i, k}. Thus, i gets h at all profiles of P[σ, h]. QED

The following six lemmas show that the starred control right structure satisfies R1-R6 (respec-
tively).

Lemma 11. (R1; Uniqueness of a brokered* house). Let σ ∈ M. If e is a brokered* house
at σ, then no other house is a brokered* house at σ (and all other unmatched houses are owned*
houses).

Proof of Lemma 11. Let e be a brokered* house at σ. By Lemma 8, there is a broker* of e at σ,
let us denote him as k. Consider a house h ∈ Iσ − {e}. By Lemma 7, there is an agent i who gets e

at all profiles in P[σ, e, h]. By Lemma 9, i is the owner* of h. Thus h is not a brokered* house at σ.

QED

Lemma 12. (R2; Last unmatched agent is an owner). Let σ ∈ M, such that there exists a
unique agent i unmatched at σ. Then i owns* all unmatched houses at σ ∈ Iσ.

Proof of Lemma 12. Let �∈ P[σ, h] for h ∈ Hσ. By Pareto efficiency of ϕ, ϕ[�](i) = h, implying
that i owns* h at σ. QED

Lemma 13. (R3; Broker* does not own*). Let σ ∈ M. If agent k is the broker* of house e at
σ, then he cannot own* any houses at σ.

Proof of Lemma 13. Suppose that k owns* a house h �= e at σ. By Lemma 7, there exists some
agent i �= k who gets e at all profiles in P[σ, e, h]. Thus, i gets h at all �∈ P∗[σ, h], contradicting
that k owns* h. QED

Lemma 14. (R4; Persistence of ownership*). Let i own* h at some σ ∈ M. If σ
� � σ, and

i and h are unmatched at σ
�, then i owns* h at σ

�.
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Proof of Lemma 14. Imagine to the contrary that i gets h at all �∈ P[σ, h], but there is some
��∈ P[σ�, h] such that some agent j ∈ Iσ� − Iσ, such that j �= i, gets h at ��. Take �∈ P[σ, h] such
that

• for each agent k �∈ Iσ� − Iσ, �k=��
k
, and

• each agent k ∈ Iσ� − Iσ ranks σ
�(k) as his second choice (just behind h) in �k .

Each k ∈ Iσ� − Iσ is indifferent between �� and � because:

• at �� agent k gets σ
�(k) by Lemma 6,

• at � agent k gets σ
�(k) by Pareto efficiency of ϕ and the fact that ϕ[�](i) = h.

The only difference between the profiles �� and � are the preferences of the agents in Iσ� − Iσ.
Thus, agents Iσ� − Iσ are indifferent between � to �� while agent j is strictly better off at ��. This
contradicts the fact that ϕ is group strategy-proof. QED

Lemma 15. (R5; Limited persistence of brokerage*) Let σ, σ
� ∈ M be such that σ

� � σ.
Suppose that agent k is the broker* of house e at σ, agent i is the owner* of house h at σ, and agent
i
� �= i is the owner* of house h

� at σ. If k, i, i
�
, e, h, h

� are unmatched at σ
�, then k brokers* e at σ

�.

Proof of Lemma 15. First, notice that i gets e at all �∈ P[σ, e, h] and i
� gets e at all �∈ P[σ, e, h

�],
and k gets h and h

�
, respectively by Lemma 10. Take �h∈ P[σ, e, h] and �h

�
∈ P[σ, e, h

�] such that
each agent j ∈ Iσ� − Iσ has σ

�(j) as his third choice and each agent j ∈ I − Iσ� ranks each house
unmatched at σ

� above all houses matched at σ
� at both preference profiles. Let profile ��h be

obtained from �h by moving σ
�(j) for all j ∈ Iσ� − Iσ up to be the first choice of j. Let ��h�be

obtained analogously from �h
� . By Maskin monotonicity, ϕ[��h]−1(e) = i �= i

� = ϕ[��h� ]−1(e). Since
��h and ��h� ∈ P∗[σ�, e], house e is a brokered* house at σ

�.
For an indirect argument for the second part of the proof, suppose that k is not the broker* of e

at σ
�. Then, by Lemma 8 there exists some other agent k

� �= k who brokers* e at σ
�.

Let ��∈ P[σ�, e, h] be arbitrary and �∈ P[σ, e, h] be such that each agent j in Iσ� − Iσ lists σ
�(j)

as his third choice at �, each agent in I − Iσ� lists houses in Hσ� lower than houses in Hσ� − Hσ

at �, and rest of the relative rankings of the houses are the same between � and ��. Since k

brokers* e at σ and i owns* h at σ, by Lemma 10 ϕ[�](k) = g and ϕ[�](i) = e. Then, by Pareto
efficiency, ϕ[��](j) = σ

�(j) for all j ∈ Iσ� − Iσ, and thus, by Maskin monotonicity, ϕ[��] = ϕ[�].
Now, ϕ[��](k) = h , however, this contradicts the fact that agent k

� �= k brokers* e at σ
� and thus,

ϕ[��](k�) = h. Therefore, k brokers* e at σ
�, as well. QED
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Lemma 16. (R6; Broker*-to-heir* transition) Let σ ∈M, k, j, i ∈ Iσ, and e, g, h ∈ Hσ be such
that k �= j brokers* e �= g at σ, i is the only owner* who is unmatched at both σ and σ

� = σ∪{(j, g)}

and owns* h both at σ and σ
�. Further suppose that k no longer brokers e at σ

�. Then i owns* e at
σ
� and k owns* h at σ

� ∪ {(i, e)}.

Proof of Lemma 16. By Lemmata 9 and 10 and Maskin monotonicity, for all profiles �∈ P[σ]

such that �i∈ �e, ...�, �k∈ �e, h, ...� at σ, we have ϕ[�](i) = e and ϕ[�](k) = h. Since P[σ�] ⊂ P[σ],
Corollary 2 implies that either i owns* e at σ

� or k brokers* e at σ
�. The latter is not true by an

assumption made in the lemma, hence i owns* e at σ
�. Let ��∈ P[σ� ∪ {(i, e)} , h]. Fix a profile �

as described above with the further restriction that �∈ P[σ�, e] and relative ranking of all houses
except h and e coincides with that of ��. Thus, �� is a monotonic transformation of �, implying
that ϕ[��] = ϕ[�], and in particular, ϕ[��](k) = ϕ[�](k) = h. Thus, k owns* h at σ

�∪{(i, e)}. QED

C.3 The TCBO Mechanism Defined by the Starred Control Right Struc-
ture Equals ϕ

We showed above that the starred control right structure (c, b) is well-defined and consistent (satisfies
R1-R6). We will now close the prove of Theorem 2 by showing that the resulting TCBO mechanism,
ψ

c,b, maps preferences to outcomes in the same way as ϕ does. We will proceed by induction on
rounds of ψ

c,b.
Fix �∈ P. We will show that ϕ[�] = ψ

c,b[�]. Let I
r be the set of agents removed in round r

of ψ
c,b. For each agent i ∈ I

r, there is a unique house that points to him and is removed in the
same cycle as i; let us denote this house hi. Let us construct the following preference profile �∗ by
modifying �.

• If ψ
c,b[�](i) = hi, then �∗

i
=�i.

• If ψ
c,b[�](i) �= hi and if no brokered house was removed in the same cycle as i or the brokered

house was assigned to i, then we construct �∗
i

from �i by moving hi just after ψ
c,b[�](i) (we

do not change the ranking of other houses).

• If i is removed as owner and a brokered house e
r �= ψ

c,b[�](i) was removed in the same cycle as
i, then we construct �∗

i
from �i by moving e

r just after ψ
c,b[�](i) and moving hi just after e

r.

• If a broker k
r was removed in the cycle

hi1 → i
1
→ hi2 → i

2
→ ...hin → i

n
→ e

r
→ k

r
→ hi1 ,
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then we construct �∗
kr from �kr by moving hin just below hi1 .

Observe that ψ
c,b[�∗] = ψ

c,b[�]. Moreover, since




h ∈ H : h �i ψ

c,b[�](i)� �� �
=ψc,b[�∗](i)





=





h ∈ H : h �

∗
i

ψ
c,b[�](i)� �� �

=ψc,b[�∗](i)





∀i ∈ I, (10)

�∗ is a monotonic transformation of � at ψ
c,b and � is a monotonic transformation of �∗ at ψ

c,b.
We will next prove that

ϕ[�∗](i) = ψ
c,b[�∗](i) ∀i ∈ ∪s≤rI

s = Iσr , ∀r = 0, 1, 2, ... (11)

by induction over r. The claim is trivially true for r = 0. Fix round r ≥ 1 and let σ
r−1 be the

matching fixed before round r (in particular, σ
0 = ∅). For the inductive step, assume that

ϕ[�∗](i) = ψ
c,b[�∗](i) ∀i ∈ ∪s≤r−1I

s = Iσr−1 (12)

We will prove that the same expression holds for agents in I
r using the following three claims

(Editorial comment: fix numbering of claims; there is no claim 1 anymore).

Claim 2. ϕ[�∗](i) �∗
i

hi for all owners i ∈ I
r.

Proof of Claim 2. Let ��∈ P[σr−1
, hi] be a preference profile such that the relative ranking of all

houses in H−Hσr−1−{hi} in ��
j
is the same as in �∗

j
for all j ∈ (I−Iσr−1)−{i}, and let ���∈ P[σr−1]

be a preference profile such that the relative ranking of all houses in H −Hσr−1 in ���
j

is the same as
in �∗

j
for all j ∈ (I − Iσr−1)− {i}.

If i
� ∈ Iσr−1 then

ϕ[��](i�) = ϕ[���](i�) = σ
r−1(i�) = ψ

c,b[�∗](i�) = ϕ[�∗](i�),

by construction of P[σr−1
, hi],P[σr−1], and σ

r−1, and by the inductive assumption. Since i owns hi

at σ
r−1, he owns* it by construction of (c, b), and thus,

ϕ[��](i) = hi. (13)

Thus, no agent j ∈ (I − Iσr−1)− {i} gets a house in {hi} ∪Hσr−1 at ϕ[��].
By Maskin monotonicity,

ϕ[�∗] = ϕ[���
(I−Iσr−1 )−{i},�

∗
Iσr−1∪{i}] (14)

= ϕ[���
(I−Iσr−1 )−{i},�

�
Iσr−1

,�
∗
i
],
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and
ϕ[��] = ϕ[���

(I−Iσr−1 )−{i},�
�
Iσr−1∪{i}]. (15)

By Equation 14, strategy-proofness of ϕ, and Equations 15 and 13, we have

ϕ[�∗](i) = ϕ[���
(I−Iσr−1 )−{i},�

�
Iσr−1

,�
∗
i
](i) �∗

i
ϕ[���

(I−Iσr−1 )−{i},�
�
Iσr−1∪{i}](i) = ϕ[��](i) = hi.

QED

Claim 3. If i ∈ I
r and no brokered house was removed in the cycle of i, then ϕ[�∗](i) = ψ

c,b[�∗](i).

Proof of Claim 3. The inductive assumption implies that all houses better than ψ
c,b[�∗](i) are already

given to other agents, hence
ψ

c,b[�∗](i) �∗
i

ϕ[�∗](i).

For an indirect argument, suppose ϕ[�∗](i) �= ψ
c,b[�∗](i). Then, Claim 2 and the construction of �∗

imply that
ϕ[�∗](i) = hi.

Let
hi → i → hi2 → i

2
→ ... → hin → i

n
→ hi

be the cycle in which i is removed under ψ
c,b[�∗]. From

ϕ[�∗](i) = hi = ψ
c,b[�∗](in),

we conclude that ϕ[�∗](in) �= ψ
c,b[�∗](in), and Claim 2 and the construction of �∗ imply that

ϕ[�∗](in) = hin = ψ
c,b[�∗](in−1).

As we continue iteratively, we obtain that

ϕ[�∗](j) = hj

for all j ∈ {i, i2, ..., in}. Hence, the matching obtained by assigning ψ
c,b[�∗](j) to each agent

j ∈ {i, i2, ..., in} and ϕ[�∗](j) to each agent j ∈ I − {i, i2, ..., in} Pareto dominates ϕ[�∗] at �∗,
contradicting that ϕ[�∗] is Pareto efficient. QED

Claim 4. If i ∈ I
r and a brokered house was removed in the cycle of i, then ϕ[�∗](i) = ψ

c,b[�∗](i).

Proof of Claim 4. Let e be the brokered house at σ
r−1

hi1 → i
1
→ hi2 → ... → i

n
→ e → k → hi1
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Let
hin+1 ≡ e and i

0
≡ k.

For all i
� ∈ {i1, ..., in}, by the inductive assumption, all houses better than hi�+1 are already given to

other agents, hence Claim 2 implies that

ϕ[�∗](i�) ∈ {hi�+1 , e, hi�} , (16)

where h
∗
i�+1 �

∗
i�

e �i� hi� . We prove the claim in two steps:

• First, we show that
ϕ[�∗](in) = e = ψ

c,b[�∗](in).

Suppose on the contrary that ϕ[�∗](in) �= e. Then, ϕ[�∗](in) = hin by Equation 16. By
iteration of the same argument for � = n− 1, n− 2, ..., 1, we have

ϕ[�∗](i�) ∈ {e, hi�} . (17)

Recall that by construction e �∗
i�

hi� . Let ��∈ P[σr−1] be such that the relative ranking of all
houses in H −Hσr−1 at ��

j
is the same as at �∗

j
for all j ∈ I − {k, i

1} and ��
k
,��

i1
∈ �e, hi1 , ...�.

Then by Lemma 10, ϕ[��](i1) = e and ϕ[��](k) = hi1 . Thus, by Maskin monotonicity, ϕ[��

] = ϕ[�∗], implying that ϕ[�∗](i1) = e and ϕ[��](k) = hi1 . Moreover, Equation 17 implies
that ϕ[�∗](i�) = hi� ∀� ∈ {1, ..., n− 1} . However, the matching that assigns each agent in
i
� ∈ {i1, ..., in} the house hi�+1 and every other agent j the house ϕ[�∗](j) Pareto dominates

ϕ[�∗], contradicting Pareto efficiency of ϕ.

• Next, we show that

ϕ[�∗](i�) = hi�+1 = ψ
c,b[�∗](i�) ∀ � ∈ {0, ..., n− 1} .

On the contrary, suppose there exists some � ∈ {0, ..., n− 1} such that ϕ[�∗](i�) �= hi�+1 . Thus,
by Equation 16 and the fact that ϕ[�∗](in) = e, we have ϕ[�∗](i�) = hi� . By iteration of
this argument for all m = � − 1, � − 2, ..., 1, ϕ[�∗](im) = him . Thus, ϕ[�∗](k) �= hi1 . Let
��∈ P[σr−1] be such that the relative ranking of all houses in H − Hσr−1 at ��

j
is the same

as at �∗
j

for all j ∈ I − {k, i
n} , and ��

k
,��

in∈ �e, hin , ...�. Then by Lemma 10, ϕ[��](in) = e

and ϕ[��](k) = hin . By ϕ[�∗](k) �= hi1 and then Maskin monotonicity, ϕ[�∗] = ϕ[��], and in
particular, ϕ[�∗](k) = hin . Thus, by Equation 16, ϕ[��](in−1) = hin−1 . By iteration of the same
argument for all � = n − 2, n − 3, ..., � + 1,ϕ[��](im) = him . On the other hand, the matching
which assigns each agent i

� ∈ {i1, ..., in−1} house hi�+1 , agent k house hi1 and all other agents
their houses at ϕ[�∗] Pareto dominates ϕ[�∗], contradicting Pareto efficiency of ϕ. QED
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Let σ
r be the matching fixed after Round r. By the inductive assumption, and by Claims 3 and 4,

ϕ[�∗](i) = ψ
c,b[�∗](i) for all i ∈ Iσr . This completes the induction, and the proof of Statement in

(11) (i.e., Equation 11).

The theorem follows from

ψ
c,b[�] = ψ

c,b[�∗], ψ
c,b[�∗] = ϕ[�∗], and ϕ[�∗] = ϕ[�].

The first of these observations is straightforward through the construction of �∗. The second one
follows from Equation 11. The third one follows from Maskin monotonicity of ϕ, because ψ

c,b[�∗] =

ϕ[�∗] and Equation 10 together imply that

{h ∈ H : h �i ϕ[�∗](i)} = {h ∈ H : h �
∗
i

ϕ[�∗](i)} for all i ∈ I.

QED

D Appendix: Proof of Theorem 5

The argument for Pareto efficiency of TCBO remains the same as in the TCBO example of Section 3.2.
As before group strategy-proofness is equivalent to individual strategy-proofness and non-bossiness.

Lemma 1. In the environment with outside options, a mechanism is group strategy-proof if and only
if it is individually strategy-proof and non-bossy.

The proof follows word-by-word the proof of Lemma 1 in Pápai [2000]. QED

Our arguments for individual strategy-proofness and non-bossiness go through with two modifi-
cations. First, when in the proof of Theorem 1 we assume that an agent is matched with a house,
we should now substitute “a house or the agent’s outside option.” If the agent is matched in a cycle
of length above 1, we can then conclude that the agent is indeed matched with a house. Second, in
some steps of the proof we consider separately the case when a broker is matched with his outside
option. We handle these cases below. This allows us to assume this case away in the relevant parts
of the original proof.

Consider the proof of individual strategy-proofness. In Case 1: s ≤ s
�, let i be a broker of house

e and under �i leaves with his outside option in round s. Since the same houses are matched under
�i and ��

i
, under ��

i
the best the broker can do is to leave either with his outside option, or – if he

prefers the brokered house e to his outside option – to leave with the brokered house e. We need
to prove that the latter cannot happen. By Lemma 3, in round s of TCBO under ��

i
, agent i is a
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broker of e and there is an owner j whose first preference is e. For i to be matched with e, he would
need to lose brokerage right but by R5-R6 if this happens then j becomes the owner of e, and is
then matched with it, ending the argument for Case 1. In Case 2: s > s

�, if i be a broker of house e

matched with his outside option under ��
i
, then submitting this preference profile cannot be better

than submitting the true profile �i as under any profile agent i is matched at least with his outside
option.

Consider the proof of non-bossiness. We run the same induction as in the proof without outside
options. In the initial step of the induction, consider the additional case when i∗ is a broker and is
matched with his outside option at time s under �. By assumption i∗ is matched with his outside
option under �� and the inductive hypothesis is true. In the inductive step, consider the additional
case in which i

1 is a broker and is matched with his outside option at time r > s under � (handling
this case separately allows us to assume this case away in all claims of the inductive step). By the
inductive assumption, there is r

∗ such that σ
r−1 [�] ⊆ σ

r
∗
[��]. At σ

r−1 [�], i
1 brokers a house h

and all houses other than h that i
1 prefers to his outside option are matched. Since i

1 gets at least
his outside option, he either gets his outside option (and the inductive step is true) or he gets h. In
the latter case, as in the proof of individual strategy-proofness, at σ

r−1 [�], there is an owner j at
whose top preference is h. He remains unmatched as long as h is unmatched. Since for i

1 to obtain
h he would need to lose his brokerage right, conditions R5-R6 imply that j would get ownership over
h, and would match with h. Hence i

1 cannot be matched with h and is matched with his outside
option.

To prove that any group strategy-proof and efficient mechanism is TCBO we follow the same
steps as in the proof of Theorem 2 with one important modification. For σ ∈ M, n ≥ 0 and
h

1
, h

2
, ..., h

n ∈ Hσ, and i ∈ I, we re-define Pi[σ, h
1
, ..., h

n] to be the set of preferences �i of agent i

such that

• if i ∈ Iσ, then
σ(i) �i g for all g ∈ H − {σ(i)} ,

• if i ∈ Iσ, then
h

1
�i h

2
� ... �i h

n
�i yi � g for all g ∈ Hσ.

In particular, the definitions of ownership* and brokerage* are repeated word-by-word, but the
meaning of Pi[σ, h

1
, ..., h

n] is changed as above. With this modification, the proof goes through.
QED
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