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Abstract

We study asset pricing in economies with large information networks. We derive closed form
expressions for price, volatility, profitability and several other key variables, as a function of the
topological structure of the network. We focus on networks that are sparse and have power law
degree distributions, in line with empirical studies of large scale human networks. Our analysis
allows us to rank information networks along several dimensions and to derive several novel
results. For example, price volatility is a non-monotone function of network connectedness,
as are average expected profits. Moreover, the profit distribution among investors is intimately
linked to the properties of the information network. We also examine which networks are stable,
in the sense that no agent has an incentive to change the network structure. We show that if
agents are ex ante identical, then strong conditions are needed to allow for non-degenerate
network structures, including power-law distributed networks. If, on the other hand, agents
face different costs of forming links, which we interpret broadly as differences in social skills,
then power-law distributed networks arise quite naturally.

∗Comments are welcome. Helpful discussions with Jonathan Berk, Tina Eliassi-Rad, Nicolae Garleanu, Pete
Kyle, Dmitry Livdan, Santiago Oliveros, Christine Parlour, Richard Stanton and Marko Tervio are gratefully ac-
knowledged. We benefited from comments by seminar audience at the 2008 Oxford Financial Research Summer
Symposium and at UC Berkeley.

†Said Business School, University of Oxford, Park End Street, Oxford, OX1 1HP, United Kingdom.
E-mail: han.ozsoylev@sbs.ox.ac.uk, Phone: +44-1865-288490. Fax: +44-1865-278826.

‡Haas School of Business, University of California at Berkeley, 545 Student Services Building #1900, CA 94720-
1900. E-mail: walden@haas.berkeley.edu, Phone: +1-510-643-0547. Fax: +1-510-643-1420. Support from the
Institute for Pure and Applied Mathematics (IPAM) at UCLA is gratefully acknowledged.



1 Introduction

Network theory provides a promising tool to help us understand how information is incorporated
into asset prices. Empirically, social networks — or more generally information networks1 — have
been shown to be important in explaining investors’ decisions and portfolio performance; see, e.g.,
Hong, Kubik, and Stein (2004) and Cohen, Frazzini, and Malloy (2007).

There is also casual evidence that information networks may play an important role for investors.
Hedge fund manager John Paulson profited USD 15 billion in 2007, speculating against the subprime
mortgage market by shorting risky collateralized debt obligations and buying credit default swaps.
During the same time period, mogul Jeff Greene, a friend of Mr. Paulson, used similar mortgage-
market trading strategies and made USD 500 million, after having been informed by Mr. Paulson
about his ideas in the spring of 2006.2 Clustering of investors in financial communities on the
Internet, as well as geographical clustering of investors in financial hubs, is also consistent with a
world in which information networks play an important role for financial markets.

Theoretically, the presence of information networks leads to several important questions, as,
e.g., analyzed in recent papers by Ozsoylev (2005) and Colla and Mele (2008). Ozsoylev (2005)
studies how informational efficiency depends on the structure — that is, the topology — of a social
network, in which investors share information with their friends, and shows that for economies with
large liquidity variance, price volatility decreases with the average number of information sources
agents have. Colla and Mele (2008) study a cyclical network and show that agents who are close in
the network have positively correlated trades, whereas agents who are distant may have negatively
correlated trades.

One limitation of current theoretical models is the absence of closed form solutions, due to the
complexity of combining networks, rational agents and endogenous price formation.3 For example,
the analysis in the static model of Ozsoylev (2005), although it allows for general networks, does
not lead to closed form solutions for prices, which restricts the analysis to cases when liquidity
variance is high. The analysis in Colla and Mele (2008), on the other hand, leads to strong asset
pricing implications in a dynamic model with strategic investors, but only for the very special
cyclical network topology. These limitations are not surprising, given the large number of degrees
of freedom of a general large-scale network.4

A slightly different approach, however, may be possible. Several studies have shown remarkable
similarities between different large-scale networks that arise when humans interact, like friendship
networks, networks of coauthorship and networks of e-mail correspondence – see e.g., Milgram
(1967), Barabasi and Albert (1999), Watts and Strogatz (1998), and also Chung and Li (2006) for

1In this paper, we study general information networks. Social networks, i.e., personal and professional relationships
between individuals may make two individuals “close” in an information network, as may other factors, e.g., if two
investors base their trading on the same information source. For our analysis, the sources of the “closeness” between
investors are not important, being modeled by a general metric.

2See The Wall Street Journal, January 15, 2008. Mr. Paulson and Mr. Greene are now former friends.
3If one is willing to drop the assumption of rationality, i.e., of having networks of expected utility optimizing

agents with rational expectations, then the analysis is significantly simplified.
4The theoretical literature on networks of individuals and asset pricing is quite limited. There are, however, several

other papers that apply network theory to finance. For example, Khandani and Lo (2007) argue that networks of
hedge funds, linked through their portfolio holdings can explain liquidity driven systemic risks in capital markets.
Brumen and Vanini (2008) show how firms, linked in buyer-supplier networks, will have similar credit risk.
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a general survey of the literature. Specifically, these networks tend to be sparse (the number of
connections between nodes are of the same order as number of nodes, where in our networks the
nodes represent individuals), they have small effective diameter (the so-called small world property)
and power laws govern their degree distributions (i.e., the distribution of the number of connections
associated with a specific node is power law distributed).

It may therefore be fruitful to study a subclass of the general class of large-scale networks that
satisfy these properties, and focus on asset pricing implications for this subclass of networks. Such
an approach — in the spirit of statistical mechanics — rests on the assumption that for large-
scale networks, the overwhelming majority of degrees of freedom average out, and only a few key
statistical properties are important.

Indeed, the number of agents in the stock market’s investor network is very large. For example,
the number of investors participating in the stock market in the United States is in the tens of
millions. A large economy approximation to the economy with a finite number of investors therefore
seems to be in place. Theoretically, such an approximation may be helpful, since we know, e.g.,
from the study of noisy rational expectations equilibria, that tractable solutions often can be found
in large economies, see Hellwig (1980) and Admati (1985).

In this paper, we carry out a large economy analysis for a general class of large-scale networks.
It turns out that the analysis, indeed, simplifies significantly compared with the economy with a
finite number of agents. We find closed form expressions for price, expected profits, price volatility,
trading volume and value of connectedness for specific networks. We compare networks with
respect to connectedness, and see how connectedness influences, e.g., volatility and expected profits
of different agents in the model. The distribution of expected profits among traders is a simple
function of the topological properties of the network, which allows us to understand the wealth
implications of information networks, i.e., to understand what type of networks that lead to more
disperse wealth distributions. The first contribution of the paper is thus the general existence
theorem and the subsequent analysis of implications for asset pricing and welfare of agents.

The second contribution of the paper is to study the welfare of different networks, in terms of
agents’ certainty equivalents, and relate this to the conditions under which a network will be stable
in the sense that no agent has an incentive to change his position in the network, by either adding or
dropping connections. In our model, if there are no dispersion in social skill among investors, strong
conditions are needed for any other network than a fully symmetric one to be stable. Specifically,
entry costs need to be high and the cost function of forming connections needs to have a specific
concave form. In contrast, when there is dispersion in agents’ social skills, power-law distributed
stable networks arise quite naturally. Our analysis is related to the endogenous network formation
literature, but the concept of stable networks is weaker, since it does not take into account how a
network was formed.5

The rest of the paper is organized as follows. In section 2 we describe the notational conventions
employed in the paper. In section 3 we present the model and derive equilibrium prices in closed

5The dynamic question of how power-law distributed networks form, although of high interest, is outside of the
scope of this paper. Many different network formation models that lead to power law degree distributions have been
introduced since the original work by Simon (1955). For economic models, see, e.g., Jackson and Rogers (2007) and
references therein.
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form for large economies. In section 4 we elaborate on the types of information networks that are
socially plausible and the role such networks play in our analysis. Section 5 examines asset pricing
implications of information networks while section 6 focuses on welfare and stability. Finally, we
make some concluding remarks in section 7. Proofs are delegated to the Appendix.

2 Notation

We use the following conventions: lower case thin letters represent scalars, upper case thin letters
represent sets and functions, lower case bold letters represent vectors and upper case bold letters
represent matrices. For a general set, W , |W | denotes the number of elements in the set. For two
sets, A and B, A\B represents the set {i ∈ A : i /∈ B}. The i:th element of the vector v is (v)i, and
the n elements vi, i = 1, . . . , n form the vector [vi]i. We use T to denote the transpose of vectors
and matrices. One specific vector is 1n = (1, 1, . . . , 1︸ ︷︷ ︸

n

)T , (or just 1 when n is obvious).

For vectors, y, we define the vector norms ‖y‖p = (
∑

i(y)pi )
1/p and ‖y‖∞ = maxi |(y)i|. Sim-

ilarly, we define the matrix norms, ‖A‖p = sup{y:‖y‖p=1} ‖Ay‖p, p ∈ [1,∞]. For a vector, d, we
define the diagonal matrix D = diag(d), with (D)ii = (d)i. A matrix is defined by the [·] operator
on scalars, e.g., A = [aij ]ij . We write (A)ij for the scalar in the ith row and jth column of the
matrix A, or, if there can be no confusion, Aij.

Calligraphed letters represent structures, e.g. graphs, and relations. The set of natural numbers
is N = {1, 2, 3, . . .}, the set of real numbers is R, and the set of strictly positive real numbers is
R+ = {x ∈ R : x ≥ 0} . For x ∈ R, �x� denotes the largest integer not larger than x, and 	x

denotes the smallest integer not smaller than x.

We say that f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0. Moreover, we say that f(n) = O(g(n))
if there is a C such that f(n) ≤ Cg(n) for all n. Similarly, if the conditions hold in probability, we
say that f(n) = op(g(n)) and f(n) = Op(n) respectively. If there is a constant C > 0, such that
limn→∞ f(n)/g(n) = C then we say that f(n) ∼ g(n), and similarly we define f(n) ∼p g(n). Also,
for a function z : R → R, we define f ∼ g at x if limε↘0 f(x + ε)/g(x + ε) = C for some C > 0.

The expectation and variance of a random variable, ξ̃, are denoted by E[ξ̃] and var(ξ̃) respec-
tively. The correlation and covariance between two random variables are denoted by cov(ξ̃1, ξ̃2)
and corr(ξ̃1, ξ̃2) respectively.

We will use the unit simplex over the natural numbers, S∞ = {x ∈ R
N, x(i) ≥ 0,

∑∞
i=1 x(i) =

1}. Similarly, we define Sn to be the unit simplex in R
n
+, with the natural interpretation that

S1 ⊂ · · · ⊂ Sn ⊂ Sn+1 ⊂ · · · ⊂ S∞. The support of an element d ∈ S∞ is supp[d] = {i : d(i) > 0}.
If |supp[d]| ≤ 2, then we say that d is degenerate. A specific degree distribution is δi ∈ S∞, which
has δi(i) = 1.

3 Model

We follow the large economy analysis in Hellwig (1980) closely, but extend to allowing for networks
relationships between agents in the model in the sense that agents can infer information about the
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signals given to their neighbors. This is similar to the approaches taken in Ozsoylev (2005) and
Colla and Mele (2008).

We first study a network, Gn, with a fixed number, n, of agents (also called nodes) and then use
the results to study a growing sequence of networks (G1, . . . ,Gn, . . .) to infer asymptotic properties,
when n approaches infinity.

3.1 Networks of agents

There are n agents (investors) enumerated by the natural numbers, N = {1, 2, . . . , n}, connected
in a network. The relation, E ⊂ N × N , describes whether agent i and j are linked. Specifically,
the edge (i, j) ∈ E , if and only if there is a link between agent i and j. We use the convention that
agent i is connected with herself, (i, i) ∈ E for all i, and that connections are undirected. Thus, E
is reflexive and symmetric. Formally, the network is described by the duple G = (N, E). One way
of representing E is by the matrix E ∈ R

N×N , with (E)i,j = 1 if (i, j) ∈ E and (E)i,j = 0 otherwise.
We define the distance function D(i, j) as the number of steps in the shortest path between

i and j, where we use the conventions that D(i, i) = 0, and D(i, j) = ∞ whenever there is no
path between node i and j. The set of nodes adjacent to node i (i.e., node i’s neighbors) is
Qi = {j �= i : (i, j) ∈ E} = {j : D(i, j) = 1}. More generally, the set of nodes at distance m from
node i is Qm

i = {j : D(i, j) = m}, and the set of nodes at distance not further away than m is then

Rm
i

def= ∪m
j=0Q

j
i .

The number of nodes not further away from node i than m is W m
i

def= |Rm
i |. For m = 1, we

simply write Ri and Wi, so Wi is the degree of node i, which we also call the node i’s connectedness.
The degree distribution is the function, d : N → [0, 1], such that

d(i) =

∣∣{j : Wj = i}∣∣
n

.

The common neighbors of nodes i and j are Rij = Ri ∩ Rj , and the number of such common
neighbors is Wij = |Rij |, which can be used to define the symmetric neighborhood matrix W =
[Wij ]ij. The element on row i and column j of W thus represents the number of nodes that are
common neighbors to nodes i and j, (including nodes i and j if nodes i and j are linked). The
relation W = E2 follows from standard graph theory.

Clearly, we have

(W)ij ∈ N, (1)

(W)ij ≤ min{Wi,Wj}, (2)

(W)ii = Wi ≥ 1. (3)

3.2 Information structure

Following Hellwig (1980), we make the following assumptions: The economy operates in times t = 0
and t = 1. There are n CARA agents, and for simplicity we assume that they all have risk-aversion
of unity, U = −E[e−ξ̃]. There is one asset, paying a liquidating dividend at t = 1 of X̃ ∼ N(X̄, σ2)
with X̄ ≥ 0.
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The supply of the asset is stochastic, Z̃n = n× Z̃, where Z̃ ∼ N(Z̄,Δ2) and Z̄ ≥ 0. Thus, σ2 is
the value variance and Δ2 is the liquidity variance. There are also n information signals {yk}n

k=1

about the asset payoff X̃: signal yk communicates X̃ with some error εk so that yk = X̃ + εk, where
εk ∼ N(0, s2). The random variables X̃, Z̃ and {εk}n

k=1 are jointly independent. The certainty
equivalent of a CARA agent, facing a normally distributed gamble, is

CE(ξ̃) = E[ξ̃] − var(ξ̃)
2

. (4)

Agents are price takers and they trade in period t = 0. Prior to trading, each agent receives a
signal about the asset payoff. The relationship between agents’ signals depends on the network’s
topology. Formally, agent i has the signal

xi = Fi(y1, . . . , yn|Gn),

for some function Fi, such that E[xi] = E[X̃ ]. In general, we wish the topological properties of the
network to carry over to the following network signal properties:

• Agents with more neighbors receive more precise signals, Wi > Wj ⇒ var(xi) < var(xj).

• If two agents have no common neighbors, then their signal’s error terms are uncorrelated,

Ri ∩ Rj = ∅ ⇒ cov(xi, xj) = var(X̃).

• Two agents, who have the same neighbors, receive the same signal, Ri = Rj ⇒ xi = xj .

• All else equal, the correlation between agent i’s and j’s signal is higher if they are connected
than if they are not connected, i.e., given two economies, G and G′ that are identical, except
for that (i, j) ∈ E , but (i, j) /∈ E ′, then corr(xi, xj) > corr(x′

i, x
′
j).

A signal structure that satisfies these properties, which will be very convenient to work with, is
given by

xi
def=

∑
k∈Ri

yk

Wi
, (5)

which immediately implies that xi = X̃ + ηi, where the η’s are multivariate normally distributed
with mean zero and covariance matrix, S = [cov(ηi, ηj)]ij ,

S = s2D−1WD−1, (6)

where D = diag((W)11 , . . . , (W)nn). Agent i’s information set is thus6

Ii = {xi, p} , (7)
6Since xi is a sufficient statistic for X̃ conditioned on {yk : k ∈ Ri}, agent i’s information set Ii is essentially

equivalent to
n

E[X̃|{yk : k ∈ Ri}], p
o
. A slightly different approach is taken in Ozsoylev (2005), who assumes that

agent i’s information set is Ii =
n

yi, E[X̃|{yk : k ∈ Ri\{i}}], p
o
. We have also carried out the analysis with Ozsoylev’s

(2005) approach, with qualitatively similar — although somewhat more complex — results. The analysis is available
upon request.
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and his demand schedule takes the form di(xi, p). Clearly, {ηi}i, being linear combinations of {εi}i,
are independent of Z̃, and X̃ .

In our model the topology of the network maps to the information structure, which — as we
shall see — in turn determines the asset pricing properties of the model. Such a mapping from
networks to information structures is also present in the models of Ozsoylev (2005) and Colla and
Mele (2008). The approach provides a powerful way to use information networks to put restrictions
on the information structure, in line with real world observations.

3.3 Interpretation of links

Although it is natural to think of (i, j) ∈ E as representing the relationship of agent i being
acquainted with agent j, our analysis is perfectly general and holds for other interpretations of E ,
and thereby of W. As long as there is a set of nodes, Ri, associated with each node, i, where
the only requirement is that i ∈ Ri, we can define [W]ij

def= |Ri ∩ Rj |, which leads to (W)ij ∈ N ,
(W)ij ≤ min{(W)ii , (W)jj} and (W)ii ≥ 1. These are the conditions needed in the subsequent
analysis.

For example, given a connection relation E , we can define the connection relation Ê = {(i, j) :
D(i, j) ≤ 2}, representing a situation in which an agent’s signal is also related to signals of neighbors
to neighbors. This leads to a neighborhood matrix, Ŵ, and degrees, Ŵi = (Ŵ)ii. The new relation,
Ê , represents a situation in which centrality is important for an agent’s signal, as opposed to E ,
which only depends on direct links.

As a specific example, consider the network with 21 agents shown in Figure 1 below. Under
the relation E , agent 2 receives a more precise signal about the asset’s value than agent 1, since
R1 = 5 and R2 = 6. One might argue, however, that agent 1 is more central than agent 2 in the
sense that although he has fewer connections than agent 2, his connections are themselves better
connected, which should work to his advantage. This is captured in the Ê definition, which also
takes into account neighbors to neighbors. Since agent 1 can reach all agents in two steps, his
degree is Ŵ1 = 21 in the Ê metric, whereas agent 2’s degree is only 9. Thus, in the Ê metric,
agent 1 is the one who is most connected.

The concept of centrality is not new to the asset pricing literature. In Das and Sisk (2005), the
centrality score, which measures how central a node is, taking into account the connectedness of
its neighbors, neighbors’ neighbors, etc., is used to apply network methods to asset pricing. Their
interpretation of what constitutes a network is somewhat different, however, since their nodes are
interpreted as stocks, and links represent overlapping posters in Internet stock message boards.

Our analysis is valid for arbitrary connection relations, as long as some technical conditions
are satisfied. We could assume that signals travel even further distances, perhaps with increased
noisiness as distances increase. The degree would, in this case, be similar to the centrality score used
in Das and Sisk (2005). Thus, general interpretations of W are allowed, although, for convenience
we interpret E as representing direct links, going forward.
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Figure 1: Network: For direct neighbor relation, E , W1 = 5, W2 = 6, W3 = 2, so agent 2 receives most
precise signal. For Ê , Ŵ1 = 21, Ŵ2 = 9, Ŵ3 = 6, so agent 1 receives most precise signal, due to centrality.

3.4 Equilibrium

A linear noisy rational expectations equilibrium (NREE) in the model with n agents is defined as
a price function

p̃ = π0 +
n∑

i=1

πix̃i − γZ̃n, (8)

such that

• Markets always clear : Z̃n =
∑n

i=1 di(x̃i, p̃) for all realizations of {x̃i}i, X̃, and Z̃n.

• Agents optimize rationally : Each agent optimizes expected utility under rational expectations,
given the agent’s information,

di(x̃i, p) =
E[X̃ |Ii] − p

V ar[X̃|Ii]
. (9)

We are interested in the existence of a linear NREE in a “large” market. We note that, contrary
to the analysis in Hellwig (1980), the existence of a NREE for a fixed number of agents, n, is not
guaranteed, since the x̃i’s have correlated noise terms for connected agents and agents with common
neighbors in our set-up. However, as we shall show, under some additional assumptions, for large
enough n, a NREE is guaranteed.

We study a sequence of markets, G1, . . . Gn, . . . , with increasing number of agents, n. Our main
result for a sequence of markets with covariance matrices defined by (6) is:
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Theorem 1 Assume a sequence of n-agent markets, Mn, n = 1, 2, . . ., in which agents’ informa-
tion sets are defined by (7), the covariance matrix Sn of market Mn is defined via equation (6),
where each matrix Wn satisfies equations (1)-(3), and also

‖Wn‖∞ = op(n), (10)

lim
n→∞

∑n
i=1(W

n)ii
s2n

= B + op(1) > 0. (11)

Then, with probability one, the equilibrium price converges to

p̃ = π∗
0 + π∗X̃ − γ∗Z̃, (12)

where

π∗ = γ∗B, (13)

γ∗ =
σ2Δ2 + σ2B

Bσ2Δ2 + Δ2 + B2σ2
, (14)

π∗
0 = γ∗ X̄Δ2 + Z̄Bσ2

σ2Δ2 + σ2B
. (15)

Theorem 1 is our main work horse in analyzing economies with large information networks.

Remark 1 Since an agent is aways connected to himself, B ≥ 1/s2.

It is clear that the average number of links, B, is a crucial statistic for asset prices. It is natural
to think of B as a measure of the network’s connectedness, since it — up to a scaling factor, s2, —
measures how many connections agents have on average (including their connection to themselves).

Even though Theorem 1 does not depend on the existence of an asymptotic degree distribution,
d, as n tends to infinity, we will throughout the rest of the paper restrict our attention to sequences
of networks for which such a distribution exists, i.e., we assume that

Assumption 1 There is a degree distribution, d ∈ S∞, such that limn→∞
∑n

i=1 |dn(i) − d(i)| = 0,
with probability one, where dn is the degree distribution for the economy with n agents.

We call d the degree distribution of the large network.
In our subsequent analysis of individual agents, we will focus on agents for which the asymptotic

degree exists, i.e., for which limn→∞ Wn
ii exists and is finite (with probability one). Similarly, when

we compare pairs of agents in section 5.4, an additional underlying assumption is that limn→∞ Wn
ij

exists and is finite. We could, alternatively, have focused on networks for which limn→∞ Wn
ii exist

for all i, but this would be unnecessarily restrictive and would rule out many important random
network models. The issue can be avoided completely by interpreting “agent i” with connectedness
Wii as a sequence of different agents i1, . . . , in, . . ., such that limn→∞ Winin exists and is finite, but
we avoid this approach since it leads to a cumbersome notation.
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4 Socially plausible networks

Given the enormous number of degrees of freedom in constructing a general large network, it is
not surprising that any degree distribution can be supported by a large economy. We have the
following existence result.

Proposition 1 Given a degree distribution d ∈ S∞, there is a sequence of networks, Gn, with
degree distributions, dn ∈ Sn, such that limn→∞

∑n
i=1 |dn(i) − d(i)| = 0.

If d(i) = O(i−α), α > 2, then the sequence of networks can be constructed to satisfy the conditions
of Theorem 1. If d(i) ∼ i−α, α ≤ 2, then condition (10) will fail.

Networks that satisfy
d(i) ∼ i−α,

are said to have power-law distributed degree distributions, with tail exponent α, or simply to be
power-law distributed.7 Power-law distributed networks with low α’s are said to be heavy-tailed.

Theorem 1 derives a large-economy equilibrium by studying the limit of a sequence of economies
with increasing number of agents. A large-economy scenario makes sense for US and European
capital markets, where market participation is in the tens of millions. However, one may question
the plausibility of network topologies that arise in our large-economy equilibrium. After all, certain
conditions are needed, namely (10)-(11), which constrain the types of network topologies that can
be analyzed.

Condition (11) ensures that the average number of connections for agents in the network is well
defined as the economy grows. Condition (10) imposes a restriction on the asymptotic behavior
of agents’ degrees, as shown in Proposition 1. Below we argue that our results are applicable to
socially plausible networks.

If we were to generate a social network in a random manner by creating links between people
independently with some probability p, then the fraction of people with k many links would decrease
exponentially in k. This is a classical random network approach and, the tail exponent is α = ∞,
so our theory applies.

However, most large social networks, including collaboration networks, friendship networks,
networks of e-mail correspondence and the World Wide Web do not fit into the random network
framework.8 Instead, in these social networks, the fraction of people with k many links decreases
only polynomially in k. In other words, the degree distributions of many large social networks
satisfy power-laws.9

7An alternative is to define the tail exponent to be α̂ when
P∞

i=n d(i) ∼ n−α̂, as e.g., done in Gabaix (1999). Such
a definition is based on the c.d.f. (or, strictly speaking, on one minus the c.d.f.), whereas our definition is based on
the p.d.f. The correspondence between α̂ and α is then α̂ = α − 1.

8Newman (2001) shows that the data on scientific collaboration are well fitted by a power-law form with an expo-
nential cutoff. Grabowskia (2007) study friendship networks, Adamic and Adar (2005) look at e-mail correspondences,
and Kumar, Raghavan, Rajagopalan, and Tomkins (1999) at the World Wide Web.

9Simon (1955) wrote arguably the first paper which rigorously defined and analyzed a model for power-law
distributions.

10



Our focus is on how information disseminates in social networks, i.e., we are interested in
information networks. Recent studies show that information flow in social groups also exhibit
a pattern which is consistent with an underlying network with a power-law degree distribution.10

Therefore, we specifically study the implications of Theorem 1 in the context of power-law networks.
In order to keep the number of parameters down, we will throughout most of the paper assume

that

Assumption 2 s2 = 1.

It is convenient to study networks that are Zipf-Mandelbrot distributed, dn ∼ ZM(α, n), which is a
particular form of power-law distribution. Under Zipf-Mandelbrot distribution, dn(i) = c(α, n)i−α,
where c(α, n) = (

∑n
i=1 i−α)−1. For α > 2, this implies that c(α, n) → ζ(α)−1 as n → ∞, where ζ is

the Riemann Zeta function (see Abramowitz and Stegun (1970), page 807). For the large network
degree distribution, we write d ∼ ZM(α). We have

Proposition 2 For large networks, satisfying assumptions 1 and 2, with degrees that are Zipf-
Mandelbrot distributed, d ∼ ZM(α) with tail exponent α > 2, the conditions for Theorem 1 are
satisfied with B(α) = ζ(α − 1)/ζ(α), where B is defined in (11). If the tail-exponent, α ≤ 2, then
B = ∞.11

This immediately leads to

Corollary 1 B(α) is a decreasing, strictly convex function of α, such that limα→∞ B(α) = 1,
limα↘2 B(α) = ∞.

We can therefore write α = FZM (B), where FZM : (1,∞) → (2,∞).
Propositions 1 and 2 make it quite clear when we expect Theorem 1 to fail. In the case when

the degree distribution satisfies a power law with a heavy-tailed degree distribution, α ≤ 2, the
information asymmetry between informed and uninformed investors is so large, that the informed
investors may basically infer the true value of the asset, and an asymptotic large-scale NREE may
not exist. If the connectedness of the most connected agents grows faster than implied by α > 2, a
model in which the most connected agents are strategic may instead be needed. Similar breakpoints
occur in economic models with power-laws at α = 2 in other contexts, see e.g., Ibragimov, Jaffee,
and Walden (2008).

Although, power laws with heavier tails do occur in social sciences (e.g., distributions that satisfy
Zipf’s law, which in our notation corresponds to α = 2, see Gabaix (1999)), it has been argued
that α is typically larger than 2 but smaller than 3 in power-law networks (see, e.g., Grossman,
Ion, and Castro (2007) and Barabasi and Albert (1999)).

10See, e.g., Wu, Huberman, Adamic, and Tyler (2004).
11For general s, the expression becomes B(α) = ζ(α − 1)/(s2ζ(α)).
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5 Financial relevance of networks

In this section, we examine asset pricing implications of information networks. Our analysis assumes
that the conditions in Theorem 1 hold, so that the equilibrium price converges to (12). In other
words, we confine our analysis to the large-economy equilibrium characterized by Theorem 1. As
we shall see, the closed-form expressions obtained in this large economy allows us to identify novel
relationships between asset prices and network connectedness.

5.1 Network effects on price volatility and market efficiency

From Theorem 1, we see that the price volatility is

var(p̃) = (π∗)2σ2 + (γ∗)2Δ2. (16)

Thanks to the linearity of the equilibrium, the price volatility can be decomposed into the informa-
tion driven volatility component, (π∗)2σ2, and the liquidity (supply) driven volatility component,
(γ∗)2Δ2.12

We would expect that when the network’s connectedness becomes large, price converges to
payoff since the aggregate information in the economy fully reveals payoff. Indeed, it is easy to
check from equations (13)-(15) that such a convergence occurs, i.e. π → 1, π0 → 0 and γ∗ → 0,
as B → ∞. As a direct corollary, volatility becomes solely driven by information rather than
liquidity in the limit. However, the convergence need not be monotone in the level of network
connectedness, B. The following proposition completely characterizes the behavior of volatility
with regard to connectedness:

Proposition 3 The following hold for the large-economy equilibrium characterized by Theorem 1:

(a) The information driven volatility component increases as network connectedness increases.
That is,

∂ (π∗)2σ2

∂B
> 0.

(b) The liquidity driven volatility component is a non-monotonic function of network connected-
ness. In particular,

∂ (γ∗)2Δ2

∂B
< 0, if B >

Δ
σ

− Δ2,

∂ (γ∗)2Δ2

∂B
≥ 0, otherwise.

12We use the terminology of Ozsoylev (2005) in the decomposition of price volatility.
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(c) The price volatility is a non-monotonic function of network connectedness. In particular,

∂ var(p̃)
∂B

> 0, if Δ2 <
1 − Bσ2

2σ2
+

1
2

√
1 − 2Bσ2 + 5B2σ4

σ4
,

∂ var(p̃)
∂B

≤ 0, otherwise.

As network connectedness increases, agents become, on average, better informed about the
payoff. Better informed agents’ demands become more aggressive, rendering the information driven
volatility component to increase. This is shown in part (a) of Proposition 3.

Part (b) shows that the liquidity driven volatility component behaves in a non-monotonic fash-
ion with regard to network connectedness. In particular, when connectedness is initially small, this
component decreases as connectedness increases. The intuition is as follows. Increasing connect-
edness allows agents to better disentangle noise, i.e. liquidity, from payoff while using price as a
public signal. Hence agents rely more on price as an information source while forming their de-
mands which, in turn, makes demands more dependent on liquidity. This renders a larger liquidity
driven volatility component. On the other hand, when connectedness is initially large, the liquidity
driven volatility component decreases as connectedness increases. When the premise is a highly
connected network, agents rely less on price while forming their demands with increasing levels of
connectedness, because information derived from a large number of agents in the network renders
price almost useless as a signal. As a result, agents’ demands become less dependent on liquidity
and the liquidity driven volatility component diminishes.

Due to the non-monotonicity of liquidity driven volatility component price volatility also behaves
in a non-monotonic fashion, as shown in part (c) of Proposition 3. The direction of its movement
with regard to connectedness depends on which of the two components, information driven or
liquidity driven, is the dominant one.

A well-established empirical regularity regarding volatility is the excess volatility phenomenon:
stock price fluctuations appear to exceed what would be explained by rational fundamental value
adjustment based on random news. LeRoy and Porter (1981) and Shiller (1981) were the first to
draw attention to excess volatility in the US markets. In our model, excess volatility corresponds
to price being more volatile than the payoff, i.e.

var(p̃) > var(X̃) = σ2.

The following proposition reveals the relationship between excess volatility and network connect-
edness.

Proposition 4 In the large-economy equilibrium characterized by Theorem 1, there is excess volatil-

ity if and only if B < Δ2 and σ >
√

Δ2

Δ4−B2 .

Propositions 3 and 4 complement the results of Ozsoylev (2005), who focuses on economies in
which the liquidity variance, Δ2, is high, and who thereby provides a partial characterization of price
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volatility. In particular, Proposition 4 shows that even for modest values of liquidity variance, Δ2,
there can be excess volatility when the network connectedness is low in a large economy.13 Actually
we can establish a sharp bound for the volatility ratio var(p̃)

var(X̃)
:

Proposition 5 Consider the large-economy equilibrium characterized by Theorem 1. When Δ2

σ2 is
held constant, a sharp upper bound for the volatility ratio var(p̃)

var(X̃)
is

sup
Δ2 > 0

var(p̃)
var(X̃)

= 1 +
Δ2

σ2

B2
.

Observe from (11) that when s2 equals 1 excess volatility can never be higher than Δ2

σ2 since B

is always greater than or equal to 1. If s2 is large, however, and the average number of connections
is low, the volatility ratio can be arbitrarily large. Thus, we may expect high excess volatility in
markets where private signals are noisy and there is limited information spread between agents
through network connections.

Even though the relationship between price volatility and network connectedness is non-monotonic,
an increase in connectedness unambiguously leads to higher market efficiency, i.e. more information
revelation via price. As is common in the literature, we measure market efficiency by the precision
of payoff conditional on price.

Proposition 6 In the large-economy equilibrium characterized by Theorem 1, market efficiency
increases as the network’s connectedness increases. That is,

∂ V ar
(
X̃
∣∣p̃)

∂B
< 0.

This result is expected since higher connectedness implies that agents’ demands are based on
better information, rendering price to be a more precise signal of payoff.

5.2 Network effects on trading profits

We now turn our attention to individual agents’ trading profits. Since we are actually studying a
large economy, we need to be careful when carrying out agent-level analysis: it is easy to create a

13Excess volatility can also be interpreted as return being more volatile than the payoff, i.e.

var(X̃ − p̃) > var(X̃).

In the large-economy equilibrium characterized by Theorem 1, var(X̃ − p̃) > var(X̃) if and only if

B < 1
3

0
BB@−Δ2+

Δ2(−3+Δ2σ2)„
18Δ4σ4−Δ6σ6+3

√
3

r
Δ6σ6(1+11Δ2σ2−Δ4σ4)

«1/3 +

„
18Δ4σ4−Δ6σ6+3

√
3

r
Δ6σ6(1+11Δ2σ2−Δ4σ4)

«1/3

σ2

1
CCA,

Δ <

r
1

2

“
11 + 5

√
5

” 1

σ
.

The inequalities above can be attained, therefore excess volatility on return is also feasible in our model.
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sequence of finite-agent economies that satisfies the conditions of Theorem 1, in which individual
agents’ connectedness do not converge. In other words, we may end up with a large economy where
the numbers of individual agents’ neighbors are not well-defined. A simple example is constructed
by alternating the indices of connected and unconnected agents as the number of agents, n, grows.
To avoid such situations, in line with our discussion in Section 3.3., we restrict our agent-level
analysis to those agents in large economies, whose connectedness are well-defined and bounded.
That is, when we analyze agent i’s trading profit, we will assume the following:

Assumption 3 Wi
def= limn→∞ Wn

i,i exists and is bounded with probability one.

Under this assumption, the following proposition derives individual agents’ ex-ante (expected)
trading profits in a large economy. Agent i’s ex-ante trading profit is given by

Πi = E
[(

X̃ − p̃
)

di(x̃i, p̃)
]
,

where agent i’s demand function, di(x̃i, p̃), is defined by

di(x̃i, p̃) =
X̄Δ2 + Z̄Bσ2

σ2Δ2 + σ2B
− Δ2

σ2(Δ2 + B)
p̃ +

Wi

s2
(x̃i − p̃).

Proposition 7 Consider the large-economy equilibrium characterized by Theorem 1. Assume As-
sumption 3 holds for agent i. Agent i’s ex-ante trading profit, Πi, is linear in the agent’s connect-
edness, Wi. In particular,

Πi =
Z̄Δ2

(
X̄Δ2 + BZ̄σ2

)
(B + Δ2) (Δ2 + B (B + Δ2)σ2)

− Δ2

σ2(Δ2 + B)
E
[
p(X̃ − p)

]
︸ ︷︷ ︸

ΠF

+
Wi

s2
E
[
(X̃ − p)2

]
︸ ︷︷ ︸

ΠI
i

. (17)

Here, ΠF is the information-free ex-ante trading profit, common for all agents, which is driven by
the compensation an agent needs to take on risk, and ΠI

i is the information-related ex-ante trading
profit, which varies by agent.

This result immediately implies that there is a tight connection between the network degree
distribution and the distribution of agents’ ex-ante trading profits:

Corollary 2 In a large economy characterized by Theorem 1, which satisfies assumption 1, the
distribution of agents’ ex-ante trading profits is an affine transformation of the network’s degree
distribution.

We will use Proposition 7 to examine the relationship between information networks and ex-ante
trading profits in a large economy. First we will focus on the impact of an individual agent’s network
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position on her ex-ante trading profit. Then we will analyze the impact of network connectedness
on the average ex-ante trading profit. The average ex-ante trading profit is given by

Π def= lim
n→∞

∑n
i=1 E

[(
X̃ − p̃n

)
dn

i (x̃n
i , p̃n)

]
n

,

where p̃n and {dn
i (x̃n

i , p̃n)}n
i=1 are equilibrium prices and demands, respectively, of n-agent economies

characterized in Theorem 1. Similar to what we did for individual agents in Proposition 7, we de-
compose the average trading profit as follows:

Π = ΠF + ΠI ,

where ΠI def= limn→∞
Pn

i=1 ΠI
i

n . Here, ΠF is the information-free average trading profit and ΠI
i is

the information-related average trading profit.
For simplicity, we make the following assumption:

Assumption 4 X̄ = Z̄ = 0.

This normalization of the expectations of payoff and liquidity is fairly common (see, e.g., Brunner-
meier (2005) and Spiegel (1998)). We then have for individual agents

Proposition 8 Consider the large-economy equilibrium characterized by Theorem 1. Assume that
Assumption 4 holds, and that Assumption 3 holds for agent i.

(a) If the network connectedness, B, is held constant, then agent i’s ex-ante trading profit in-
creases as her own connectedness increases. That is,

∂Πi

∂Wi
> 0.

(b) If agent i’s connectedness, Wi, is held constant, then agent i’s ex-ante trading profit decreases
as the network’s connectedness increases. That is,

∂Πi

∂B
< 0.

The intuitions behind the proposition are straightforward. The higher the number of connec-
tions one has in an information network, her trading profit is bound to increase due to her increasing
informational advantage. On the other hand, when one’s number of connections is held constant
that agent’s trading profit decreases as the network connectedness increases since more information
is compounded into price, diminishing the agent’s informational rent.

The two effects put together make the relationship between network connectedness and average
trading profit non-trivial. On the one hand, higher network connectedness implies an increase in
the average profit since everyone is, on average, better informed. On the other hand, it can also
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imply a decrease in the average profit, because more information is compounded into price and
that diminishes everyone’s informational rent. This is shown in

Proposition 9 Consider the large-economy equilibrium characterized by Theorem 1. Assume that
Assumption 4 holds.

(a) The average ex-ante trading profit is a non-monotonic function of network connectedness. In
particular,

∂Π
∂B

> 0, if σ <
1
Δ

and B <
Δ
σ

− Δ2,

∂Π
∂B

≤ 0, otherwise.

(b) ΠF is positive, decreasing in B, and approaches 0 as B tends to ∞.

(c) ΠI is positive, non-monotonic in B, and approaches 0 as B tends to ∞.

(d) As B tends to ∞, Π approaches 0.

Part (a) of the proposition shows that there is an optimal level of network connectedness for
average trading profit. Provided that σ < 1

Δ , the optimal level is neither 0 nor ∞. If network con-
nectedness is very low, the average agent enjoys a higher trading profit as the number of connections
increases since she is getting better informed.

Part (b) tells us that the information-free component, ΠF , of average trading profit is decreasing
in B. As we have mentioned before, the information-free component is the compensation agents
need to take on risk. When B, i.e. the network connectedness, increases, the risk perceived by
agents decreases since they become better informed. As a result, the compensation required for
the perceived risk decreases.

The intuition behind part (c) of the proposition, i.e. ΠI being non-monotonic in B, has already
been discussed following Proposition 8. When the network connectedness is very high, agents do,
on average, receive a lot of information, but they then compete away the informational rents and
the trading profits vanish, as shown by part (d) of of the proposition.

If we dispense with Assumption 4, the results on trading profit will not be clear cut as in Propo-
sitions 8 and 9. However, the main result of this section, namely the non-monotonic relationship
between average trading profit and network connectedness, will remain unchanged.

5.3 Network effects on risk-return trade-off

Next we examine the effect of information networks on risk-return trade-off. As is common in the
literature, we make use of the Sharpe ratio as the metric for this trade-off. In the computation of
the Sharpe ratio, we use ex-ante expected (dollar) return and ex-ante standard deviation of return
so that the ratio is given by

S
def=

E
[
X̃ − p̃

]
√

V ar
(
X̃ − p̃

) .

17



We have

Proposition 10 The following hold for the large-economy equilibrium characterized by Theorem
1:

(a) Ex-ante expected return decreases as the network’s connectedness increases provided that Z̄ �=
0. That is,

∂ E
[
X̃ − p̃

]
∂B

< 0, if Z̄ �= 0.

(b) Ex-ante return volatility decreases as the network’s connectedness increases. That is,

∂ V ar
(
X̃ − p̃

)
∂B

< 0.

(c) The Sharpe ratio is a decreasing function of network connectedness, provided that Z̄ �= 0.
That is,

∂S

∂B
< 0, if Z̄ �= 0.

When network connectedness is high, agents trade aggressively based on better information,
rendering price approach payoff. Therefore, both expected return and return volatility are decreas-
ing functions of B. It turns out that, as connectedness increases, expected return diminishes faster
than volatility (measured in standard deviation). This in turn implies that the Sharpe ratio is a
decreasing function of B.

A well-known shortcoming of the CAPM is that the empirically estimated security market line
is flatter than that predicted by the CAPM, as, e.g., shown in Black, Jensen, and Scholes (1972).
Our one-asset model cannot offer a rigorous explanation of this shortcoming, however our results
in this section are encouraging in the sense that introducing information networks into multi-asset
models may diminish the discrepancy between theory and observation.

5.4 Network effects on portfolio holdings

Arguably, the most observable effect of information networks is on portfolio holdings. For instance,
Hong, Kubik, and Stein (2004) show that the trades of any given fund manager respond more
sensitively to the trades of other managers in the same city than to the trades of managers in other
cities. The authors interpret this empirical regularity as managers spreading information to one
another directly through word-of-mouth communication. Using account-level data from People’s
Republic of China, Feng and Seasholes (2004) find that trades are highly correlated when investors
are divided geographically. In a similar spirit to the interpretation made by Hong, Kubik, and Stein
(2004), the finding of Feng and Seasholes (2004) can be attributed to the positive relationship
between geographical proximity and likelihood of communication among investors. Our model
provides a theoretical justification of these empirical findings.
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Proposition 11 Consider the large-economy equilibrium characterized by Theorem 1. Assume
that, for agents i, j, Assumption 3 holds and also that Wij

def= limn→∞ Wn
i,j exists and is bounded,

with probability one. All else held constant, the demand correlation of agents i and j increases as
the number of their common neighbors increases. That is,

∂ corr (di(x̃i, p̃), dj(x̃j , p̃))
∂Wij

> 0.

Proposition 11 finds a positive relationship between informational proximity and correlated
trading. Geographical proximity is expected to encourage communication, therefore, arguably, the
empirical studies cited above lend support to this result.

The impact of information networks on demand is shown in the following proposition

Proposition 12 Consider the large-economy equilibrium characterized by Theorem 1, satisfying
Assumption 4. For an agent satisfying Assumption 3, the expected unsigned stock demand, dunsigned =
E [|di|], is an increasing, concave function of connectedness with asymptote,

dunsigned ∼ Wi

√
2Δ2σ2(B2σ2 + Δ4σ2 + Δ2 + 2Δ2Bσ2)

π(B2σ2 + Δ2 + Δ2Bσ2)2

for large Wi. Here, π is the constant “pi,” π = 3.1415....

Trading volume of individual agents is thus increasing in connectedness, especially for low
degrees of connectedness. Moreover, it directly follows from Proposition 7 that trading profits
and trading volume move together, i.e., higher trading volume leads to higher profits. This is
especially true for agents with high trading volume, since trading volume is a concave function of
connectedness, whereas expected profits is a linear function of connectedness.

6 Welfare and stability in networks

In this section, we analyze the welfare implications of information networks. We base the analysis
on the certainty equivalents obtained by the agents.14

The ex ante certainty equivalent of participating in the market for an agent is CE(W ), where
W is the connectedness of the agent under consideration. This is the certainty equivalent, before
the agent receives his signals, and it equals the price the agent is willing to pay to participate in
the stock market, before he receives his signals. We distinguish this from the ex interim certainty
equivalent, which is the certainty equivalent after an agent has received the signals and traded, but
before the value of the asset is realized.

14Since a natural interpretation of the stochastic supply is that it is due to noise trading, it can be argued that
the welfare of noise traders is not taken into account with this measure. The welfare of the agents who are not noise
traders is still important though, since it has implications for which types of networks these agents would prefer if
they could coordinate, i.e., if they could assign a central planner to decide the network structure.
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We derive the average certainty equivalent in an economy, which we can then use to analyze
which structures are optimal in that they maximize average certainty equivalence. This is the
solution which could occur in a centralized economy, in which a central planner chooses the network
structure.

We also discuss the costs involved in forming networks. Specifically, we discuss entry costs, and
the costs of forming links, which could in principle vary by agent. Most of the analysis, however is
performed in a simplified framework where there are no entry costs and all agents have the same
constant costs of forming links

We then move to considering a decentralized economy in which agents take actions unilaterally.
In a decentralized economy, we would expect connections to be formed between agents when in is
mutually beneficial for them to link. It is outside of the scope of this paper to answer the general
question of which specific network topology will form in a large economy. Instead, we ask ourselves
a “weaker” question: If agents in a network can delete or add new connections, which network
topologies are “stable” in the sense that no agent has an incentive to change her position in the
network, once it exists? Not surprisingly, the stable networks are not the same as the first-best
optimal ones. In fact, given any first-best optimal network, there is always a stable network, which,
through competition for information rents, will overinvest in connectedness.

Finally, we study some assumptions on network costs that are consistent with stable power-law
distributed networks. When all agents’ cost functions are the same, strong assumptions about
the cost function are needed for there to be any nondegerate stable networks, including power-law
distributed networks. On the contrary, when there is dispersion between agents’ cost functions,
perhaps due to differences in social skills, power-law degree distributed stable networks will arise
naturally, under assumptions on skills that are in the same spirit as previously introduced in the
literature.

6.1 Welfare

For a given large network, it is straightforward to show the following

Proposition 13 If the conditions of Theorem 1 and assumptions 1, 2 and 4 hold, then:

(a) For an agent i, satisfying assumption 3 is

CE(Wi) =
Δ2

σ2(Δ2 + B)
(
(γ∗)2Δ2 − π(1 − π)σ2

)
+ Wi

(
(1 − π)2σ2 + (γ∗)2Δ2

)
− 1

2
σ2Δ2

Wiσ2Δ2 + Δ2 + B2σ2
.

(b) The average ex ante certainty equivalent of trading across agents is

CE = Π − Θ, where Θ =
1
2

∞∑
i=1

d(i)
i + 1

σ2 + B
Δ2

. (18)
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Thus, the average price agents are willing to pay to participate in the market not only depends on
the average number of connections, B, but also on a second property of the network, Θ. It is natural
to think of Θ as a type spread measure, similar to variance. This interpretation is motivated by
that given two networks with degree distributions d1 and d2 and the same connectedness, B, if d1

second order stochastically dominates d2, a direct application of Jensen’s inequality implies that
Θ2 > Θ1.

As long as connections are cost-free, any agent will always have an incentive to form new
connections. In practice, however, we would expect the formation of new links to be costly for both
the connector and the connectee. For example, expanding ones’ social network is time consuming,
and may also carry monetary costs, e.g., the costs of joining a posh golf club to connect with other
investors, or the costs of moving to and living in New York to interact with investment bankers.
Even with an interpretation of the links in the network as describing pure information links, a
cost may be motivated. For example, companies like Forrester Research, Inc. charge for their
research — an example of proprietary costly information that is shared between a subgroup of the
population (the subscribers).

In general, we would expect the cost of agent i of participating in a network, forming W

connections, to be of the form f((t(i),W ), where t(i) ∈ R+ represents the skill of agent i.15 We
assume that f(t, 1) = 0 for all t, i.e., there is no cost if no connections are formed. It is also natural
to assume that fW > 0 and that ft ≥ 0.

There are, however, arguments both for f to be concave and convex in W . On the one hand,
one can argue that the cost should be concave in W , since social networking have fix costs of
developing social skills, moving to an area where such networking is possible, etc. On the other
hand, one can argue that the marginal costs of maintaining a network should be increasing, at
least eventually, since agents have finite resources (e.g., limited time). A priori, we therefore do
not make any assumption about the sign of fWW . Similarly, we do make no assumptions about
the signs of ftt and ftW .

In general, we may also impose entry costs. We assume that a fraction of the population, 0 ≤
p0 ≤ 1, already participates in the market (the participants), whereas 1− p0 (the nonparticipants)
do not. Nonparticipants can become participants, by paying an irreversible fixed cost, Cp ≥ 0 and
participants can choose to opt out and thereby become nonparticipants. We may think of this as
the cost of learning about the stock market, finding a broker, etc. The certainty equivalent of a
nonparticipant is then 0. The fraction of participants after entry/exit decisions are made is then
0 ≤ p ≤ 1. Agents who are already participants (the p0 fraction) will always get some ex ante
surplus from trading in the stock (they can always choose to invest their wealth in the risk-free
asset once they receive their signals, so they can never be forced to be ex interim worse off than a
nonparticipant, since they do not pay entry cost). Therefore, p ≥ p0.

If connections are costly to form and wealth transfers between agents are possible, which type
of network topologies are the most efficient from a welfare perspective? We analyze this question
under the specific assumption of a constant cost per link, no entry costs, and no variation of agents’

15In light of our previous discussions, the skill could either be interpreted as a social skill, or more broadly as any
skill that allows the agent to gather information, e.g., proficiency in data analysis. Also, even though W belongs
to the set of natural numbers, for simplicity we require that f is a twice continuously differentiable function on the
whole of R

2
+.
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skills. We thus have Cp = 0, f(W ) = c×(W −1). The average net certainty equivalent of a network
is then CE−f(B). Given the connectedness, B, of the network, optimizing the network boils down
to deciding which structure has the highest possible average net certainty equivalent,

max Π − Θ − c(B − 1) (19)

This is the central planner’s problem. We have

Proposition 14 Given Δ > 0, σ > 0 and B ≥ 1, if assumptions 2 and 4 are satisfied, then among
all large networks satisfying the conditions in Theorem 1 and assumption 1:

(a) Given B ∈ N, the maximum CE is realized by a network if and only if the networks degree
distribution is supp[d] = {B}.

(b) Given B ∈ R+\N, B ≥ 1, the maximum CE is realized by a network if and only if supp[d] =
{�B�, 	B
}, d(	B
) = B − �B� and d(�B�) = 1 − B + �B�.

(c) There is a solution to the central planner’s problem. Moreover, any solution to the central
planner’s problem has connectedness B < ∞, and supp[d] ⊂ {�B�, 	B
}.

Remark 2 Condition (b) reduces to (a) when B ∈ N, but we write it out for clarity.

Thus, under the assumption of constant cost of connections, the optimal network topology is
a highly uniform one: every agent basically has the same number of connections. One could, of
course, argue that it would be event better for the agents in the network if the information could
be shared without the formation of costly connections. There may be reasons, however, why such
an outcome is infeasible, e.g., if signals can not be credibly shared unless agents have invested in
connections.

6.2 Stability

The previous discussion relied on the underlying assumption that, somehow, a global coordination
could occur to decide the network structure — a cooperative approach. We now focus on the
noncooperative setting, in which two agents form connections, only if it is mutually beneficial for
them to do so. An agent in a finite network is said to be content, if she has no incentive to change
her number of connections. A finite network is stable if all of its agents are content.16 A large
network that satisfies assumption 1 is stable if all agents with connections W ∈ supp[d] are content.

This is a simple definition, in the spirit of the large network approach we have taken, that allows
us to derive clear results, although it may be argued that it provides a somewhat weak requirement.
A stronger requirement would be to assume that for all Gn, n ≥ n0, for some n0 ≥ 1, all agents are
content. This alternative definition would, however, make the analysis quite intractable, since we
have no closed form solutions for agents’ utility in the finite setting. Moreover, the “for all agents”

16This type of stability concept was introduced in Jakcson and Wolinksy (1996) and Jakcson and Watts (2002), in
a more general game theoretic setting.
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part of the alternative definition leads to technical difficulties, since even if d(i) = 0, it might be
the case that dn(i) = o(n).

We now study individual agents’ optimization problems. For the the same setting as in the
previous section, Cp = 0 and f(W ) = c × (W − 1), an agent’s optimization problem is to find

W ∗ = arg max
W∈N

Πi(W ) − 1
2

σ2Δ2

W + σ2Δ2 + Δ2 + B2σ2
− c(W − 1). (20)

Here, Πi is linear in W , Πi(W ) = c0 + c1W , where the values of c0 and c1 are given in the appendix
by (57),

c0 =
Δ6σ2

(Δ2 + B (B + Δ2)σ2)2
, c1 =

Δ4σ2 + Δ2
(
B + Δ2

)2
σ4

(Δ2 + B (B + Δ2) σ2)2
. (21)

It is interesting to compare the solution to the central planner’s problem with the stable networks
that arise in the noncooperative setting. Obviously the welfare will be higher in the network that
solves the central planners problem, but it is a priori unclear whether agents will overinvest or
underinvest in network connections in the noncooperative economy. We have

Theorem 2 Given Δ > 0, σ > 0 and assumptions 1, 2 and 4, with no entry costs, Cp = 0, and
constant costs of connections, f(W ) = c × (W − 1).

(a) There exists a stable network in which the degree distribution has supp[d] ⊂ {�B�, 	B
}, for
some B > 1. Moreover, any stable network will have a degree distribution with supp[d] ⊂
{i, i + 1} for some i ∈ N.

(b) If the central planner’s problem has a solution with connectedness BS, then there is a stable
network with connectedness B, where B ≥ 	BS
 − 1.

From part (a) of theorem 2, for economies with cost functions of the form f(W ) = c(W − 1),
stable networks will have the same topology as networks that solve the central planner’s problem:
They will have support on one or two points. From part (b), it is clear that any such economy, with
first-best optimal to have some connectedness BS , there is a stable network that is overinvested
in connectedness. Technically, since agents are restricted to choose W to be natural numbers, the
bound is only approximate, B ≥ 	BS
 − 1. However, as shown in the proof of theorem 2 this is a
second order effect: In an unrestricted setting, in which both the central planner and agents can
choose W ≥ 1 from the set of real numbers when solving (19) and (20), the inequality is strict,
B > BS.

A mechanism that helps agents coordinate toward the first-best optimum in this case will
therefore need to restrict the number of connections agents can form. Such restrictions could, e.g.,
be implemented by the introduction of exclusive clubs with limited membership or requiring alumni
networks of Ivy league institutions.

The stable networks guaranteed by theorem 2 are quite different from the power-law distributed
networks discussed in section 4, but we have obviously only analyzed one specific form of cost
function — the linear one. We may ask ourselves, which cost-functions are consistent with with
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power-law degree distributions. If there is no dispersion among agents in their cost functions, i.e.,
f does not depend on type, then it turns out that only very restrictive cost functions are consistent
with power-law distributed networks, or any non-degenerate networks for that matter.

Theorem 3 Assume a large network, satisfying the assumptions made in Theorem 1, and assump-
tions 1, 2 and 4, with a degree distribution, d, with S = supp[d] ⊂ N, B =

∑
i i × d(i). If agents

face a cost function on the form f = f(W ), and there are entry costs Cp ≥ 0, then such a network
is stable if and only if for all W ∈ S, the cost function has the form:

f(W ) = Wq0 − 1
2(W + q1)

− c, (22)

where c ≥ q0 − 1
2(1+q1) , where q0 and q1 satisfy

q0 =
Δ4p2σ2 + Δ2(Bp2 + Δ2)2σ4

(Δ2p + B(Bp3 + Δ2p)σ2)2
, (23)

q1 =
1
σ2

+
B2p2

Δ2
, (24)

where for all W /∈ S, f(W ) ≥ Wq0 − 1
2(W+q1) − c, and, if p < 1, Cp ≥ c. Here, 0 < p ≤ 1 is the

fraction of agents participating in the market. For such a network, if 1 ∈ S, then c = q0 − 1
2(1+q1) .

From theorem 3, the following corollary immediately follows

Corollary 3 For an economy with an agent independent cost function, f = f(W ), there is a stable
large network with a Zipf-Mandelbrot degree distribution, d ∼ ZM(FZM (B)), B > 1, if and only if
f(W ) = Wq0 − 1

2(W+q1)
− q0 + 1

2(1+q1) for all W ∈ N, where q0 and q1, satisfy equations (23, 24)
for some p > 0, and either the entry cost satisfies Cp ≥ q0 − 1

2(1+q1) , or p = 1.

From Corollary 3, it follows that with agent independent cost functions, a stable network with a
Zipf-Mandelbrot degree distribution may only occur if the cost function is concave in W , i.e., if the
learning component of connecting outweighs the increasing marginal costs of maintaining a network
– In fact, this is true for any stable network with a degree distribution with support on the whole
of N.

We next study the case in which f is linear in the number of connections, but may vary with
type. Given types tni for agent i in economy n, the type distribution is characterized by the c.d.f., T ,
if T (x) = limn→∞ supx

∣∣T (x) − n−1|{i : tni ≤ x}|∣∣ = 0. In this case, we say that the large economy
has type distribution T . For example, if types are i.i.d. draws from a distribution with c.d.f. T ,
then, by the Cantelli-Glivenko theorem, the type distribution in the large network is almost surely
characterized by T . We now have

Theorem 4 Assume a large network, satisfying the assumptions made in Theorem 1, and as-
sumptions 1-4, with a power-law degree distribution with tail exponent α > 3, that the entry cost
is Cp = 0, and that the cost function is of the form f(t,W ) = t(W − 1). Then there is a type
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distribution T , that satisfies T ∼ ε
α−3

2 at q0, where q0 is defined in (23), with p = 1, for which
the network is stable. Moreover, any type distribution for which the network is stable must have
T ∼ ε

α−3
2 at q0.

In the case of agent independent cost functions, quite strong conditions need to be imposed
to get power-law distributed stable networks: The cost function needs to take on a specific form
and the entry costs need to be high. On the contrary, when the cost function is agent dependent,
power-law distributed networks quite easily occur, as long as there is a lower bound on the cost
function. A specific case is when the type distribution is uniform, in which case T ∼ ε and therefore
the tail exponent must equal 5.

The functional form of the type/talent distribution is in line with Gabaix and Landier (2008),
who use an assignment model to study executive payment, and who find that empirically, a talent
distribution with an upper bound (in our case a lower bound on the cost function, q0), where
the type distribution in a neighborhood of this bound satisfies a power-law relation (in our case
characterized by the exponent (α − 3)/2) fits the data well.17 The analogy can, of course, not
be taken too far, since the talent in Gabaix and Landier (2008) is interpreted as a CEO’s skill to
increase the revenue of a firm, whereas our measure is the cost of connecting in a network.

Although theorem 4 is only proved for the case of costs functions that are linear in the number
of connections, as discussed in the proof of the theorem, it is quite straightforward to generalize
the result to more general settings, in which the cost function is on the form f(t,W ) = tg(W ), and
g(W ) ∼ W β, β > 0. The tail exponent will in this case also depend on β.

17A similar assignment model has been studied in Tervio (2008), with similar implications.
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7 Concluding remarks

The properties of information networks have profound impact on the prices of assets. We have
introduced a simple, parsimonious model of an economy with large information networks, in which
the relationship between network properties and asset pricing can be conveniently analyzed. We use
this to derive novel predictions about excess volatility, expected profits, trading volume and Sharpe
ratios. For example, price volatility can be a non-monotone function of network connectedness, as
can trading profits. For networks with power-law distributed degree distributions — a common
property of networks in practice — trading profits are also be power-law distributed.

To understand which types of network topologies may occur, we introduced the concept of
network stability, with the interpretation that in stable networks, agents have no incentive to
change their positions. When costs are agent independent and linear in number of connections,
all agents will, roughly speaking, choose the same connectedness and the network will typically
overinvest in connectedness compared with what is socially optimal. With agent independent cost
functions, stable networks with large dispersion in agent connectedness can only occur for very
specific forms of the cost function. If, on the other hand, the cost function depends on agent’s
types, which may interpreted as agents having different social skills, then power-law distributed
stable networks occur quite naturally.

The model could potentially be extended to multiple assets, which would allow for cross-asset
comparisons of information networks. For example, one may consider economies in which the
information diffusion is different for different assets, for example using E — which only takes direct
connections to neighbors into account — for some assets, and Ê — which also includes neighbors
of neighbors — for others. It is an open question how connectedness in one asset will influence the
pricing of other assets in such a setting.
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Appendix

Proof of Theorem 1: We prove the result for the case when (10-11) hold surely. The proof is identical for
the case stated in the theorem, when the conditions only hold in probability.

For the economy with n agents, we decompose the covariance matrix, S, into column vectors, S =
[s1, . . . , sn], and also define the scalars s2

i = [S]ii = s2/[W]ii. We are interested in the existence of a linear
NREE for a fixed n. Following the analysis Hellwig (1980), it is clear that, given a pricing relationship (8)
and demand functions of the form (9), and multivariate conditional expectations on the form

E[X̃ |Ii] = α0i + α1ixi + α2ip, (25)

var(X̃ |Ii) = βi, (26)

agent i’s demand function (under rational expectations) is on the form

di(xi, p) =
1
βi

(α0i + α1ixi + (α2i − 1)p) . (27)

The market clearing condition now gives.

π0 = γ
n∑

i=1

α0i

βi
, (28)

πi = γ
α1i

βi
, (29)

where

γ =

(
n∑

i=1

1 − α2i

βi

)−1

. (30)

When we wish to stress the dependence on n, we write πn
0 , πn

i and γn, respectively. We define the vector
π = (π1, . . . , πn)T . The projection theorem for multivariate normal distributions, given a linear pricing
function, now guarantees multivariate conditional distributions, and the following relations

α0i =
X̄

bi

(
s2

i (π
T Sπ + γ2n2Δ2) − (πT si)2

)− α2i(π0 − γnZ̄), (31)

α1i =
σ2

bi

(
πT Sπ + γ2n2Δ2 − (1T π)(πT si)

)
, (32)

α2i =
σ2

bi

(
(1T π)s2

i − (πT si)
)
, (33)

βi =
σ2

bi

(
s2

i (π
T Sπ + γ2n2Δ2) − (πT si)2

)
, (34)

and where we have defined

bi = (σ2 + s2
i )
(
πT Sπ + n2Δ2γ2 + (1T π)2σ2

)− ((1T π)σ2 + (πT si)
)2

. (35)

Thus, given a π and a scalar, γ �= 0, which — when {α1i}, {α2i}, {βi} and {bi} are defined via equations
(31-35) — satisfy equations (29) and (30), this generates a NREE, where π0 can be defined via (28).

Elimination of {α1i}, {α2i}, {βi} and {bi} now gives

πi = γ
πT Sπ + γ2n2Δ2 − (1T π)(πT si)
s2

i (πT Sπ + γ2n2Δ2) − (πT si)2
, (36)

and by defining q = π/γ (also denoted by, qn, when we wish to stress the size of the vector) we get a system

27



of equations that does not depend on γ:

(q)i =
1
s2

i

× qT Sq + n2Δ2 − (1T q)(qT si)
qT Sq + n2Δ2 − (qT si)2/s2

i

. (37)

Given q, we get

1
γ

=
n∑

i=1

σ2 + s2
i

σ2s2
i

+
n∑

i=1

(1T q − sT
i q)2 − 1

γ (1T q − sT
i q

s2
i

)

qT Sq + n2Δ2 − (sT
i q)2

s2
i

, (38)

which leads to

γ =

1 +
∑n

i=1

(1T q− sT
i q

s2
i

)

qT Sq+n2Δ2− (sT
i

q)2

s2
i∑n

i=1
σ2+s2

i

σ2s2
i

+
∑n

i=1
(1T q−sT

i q)2

qT Sq+n2Δ2− (sT
i

q)2

s2
i

, (39)

which is bounded, since S is strictly positive definite. From (28) and the definition of q, we also have

π0

γ
=

X̄n

σ2
−
(

π0

γ
− nZ̄

)
γ ×

∑
i

(1T π)s2
i − (πT si)

s2
i (πT Sπ + γ2n2Δ2) − (πT si)2

(40)

leading to

π0 = γn

(
X̄
σ2 + Z̄A

1 + A

)
, (41)

where

A = γ
∑

i

(1T π)s2
i − (πT si)

s2
i (πT Sπ + γ2n2Δ2) − (πT si)2

=
n∑

i=1

(1T q)s2
i − (qT si)

s2
i (qT Sq + n2Δ2) − (qT si)2

. (42)

Thus, if the system of equations defined in (37) has a solution, it will generate a NREE. To show that a
solution indeed exists for large enough n, we define

y def= s2D−1q, (43)

and the vector d, with (d)i = Dii (We also use the notation yn when we wish to stress the size of the vector).
Clearly, the condition that q satisfies (37) is equivalent to y satisfying

(y)i =
yT Wny + n2Δ2s2 − (dT y)(d)−1

i (Wny)i

yT Wny + n2Δ2s2 − (Wny)2i
. (44)

We define the mapping Fn : R
n → R

n by the r.h.s. of (44), so a NREE can be derived from a solution to
y = Fn(y). Now, Fn can be rewritten as:

(F (y))i = 1 +
(Wny)2i /n2 − (dT y)(d)−1

i (Wny)i/n2

(yT Wny)/n2 + Δ2s2 − (Wny)2i /n2
. (45)

Clearly, Fn is a continuous mapping, as long as the denominator in (45) is not zero. We are interested
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in the properties of Fn for y that are uniformly bounded in infinity-norm, i.e., ‖y‖∞ ≤ C for some C > 0,
regardless of n.

For y uniformly bounded in infinity norm, we have from (10) and Hölder’s inequality (see Golub and
van Loan (1989)), aT b ≤ ‖a‖1‖b‖∞, that yT Wny/n2 ≤ ‖y‖1‖Wn‖∞‖y‖∞/n2 ≤ n‖Wn‖∞‖y‖2

∞/n2 =
no(n)/n2 = o(1).

A similar argument, based on (10), implies that (Wny)i = o(n)/n = o(1), and therefore that (Wny)2i /n2 =
o(1).

Finally, |(d)−1
i | ≤ 1 and dT y ≤ ‖d‖1 × ‖y‖∞ =

∑
i W

n
ii × ‖y‖∞, and since (11) implies that

∑
i W

n
ii =

O(n), we altogether get that (dT y)(d)−1
i (Wny)i/n2 = o(1).

These asymptotic results, together, imply that we know the behavior of Fn for large n, through (45).
For any ε > 0, for n large enough,

y ∈ R
n, ‖y‖∞ ≤ 2 ⇒ |(Fn(y))i − 1| ≤ εΔs2 + εΔs2

−εΔs2 + Δs2 − εΔs2
, (46)

implying that Fn : [0, 2]n → [1 − 4ε, 1 + 4ε]n. Because the denominator of (44) is not zero in this case, we
therefore have a continuous mapping Fn : [1 − 4ε, 1 + 4ε]n → [1 − 4ε, 1 + 4ε]n which, by Brouwer’s theorem
implies that there there is a y ∈ [1 − 4ε, 1 + 4ε]n that solves (44) and thereby provides a NREE.

We have thus shown that for all n ≥ n0 for some large n0, there is a NREE, defined by yn, such that

lim
n→∞ ‖yn − 1n‖∞ = 0. (47)

We now use this result to derive expressions for π0, π and γ, using equations (43), (39) and (40).
We have from (43), (47) and (11)

lim
n→∞

1T
nqn

n
= lim

n→∞
(Wn)ii(yn)i

s2n
= B. (48)

Moreover, using (43) (47) and (10), a similar argument shows that

lim
n→∞

sT
in

qn

n
= 0, (49)

for any sequence of in, where 0 ≤ in ≤ n, and similarly, via (10),

lim
n→∞

qT
nSqn

n2
= 0. (50)

We therefore have from (39)

γ∗ = lim
n→∞ n ×

1 +
∑n

i=1

(1T q− sT
i q

s2
i

)

qT Sq+n2Δ2− (sT
i

q)2

s2
i∑n

i=1

(
1
s2

i
+ 1

σ2

)
+
∑n

i=1
(1T q−sT

i q)2

qT Sq+n2Δ2− (sT
i

q)2

s2
i

= lim
n→∞ n × 1 +

∑n
i=1

Bn−0
0+n2Δ2−0

nB + n
σ2 +

∑n
i=1

(Bn−0)2

0+n2Δ2−0

= lim
n→∞ n × 1 + Bn2

n2Δ2

n(B + 1
σ2 + (Bn)2

n2Δ2 )

=
1 + B

Δ2

B + 1
σ2 + B2

Δ2

=
σ2Δ2 + Bσ2

Bσ2Δ2 + Δ2 + B2σ2
.
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Similarly, by defining π∗ def= limn→∞
∑n

i=1 πn
i , we get

π∗ = lim
n→∞ γ∗

n∑
i=1

(Wn)ii(yn)i

s2n
= γ∗B.

We need to show that
∑n

i=1 πn
i ηi →p 0. Clearly, via Hölder’s inequality and (10), we have

V ar

(
n∑

i=1

πn
i ηi

)
= (γn × n)2

1T
nWn1n

n2

≤ (γn × n)2
‖1n‖1‖Wn‖∞‖1n‖∞

n2

= ((γ∗)2 + o(1)) × no(n)
n2

→ 0,

so by Chebyshev’s inequality, it is clear that
∑n

i=1 πn
i ηi →p 0.

Finally, from (42), it is clear that A approaches

n × n(B − 0)
n2(0 + Δ2 − 0)

=
B

Δ2
,

so through (41), it is clear that π0 converges to

γ∗
(

X̄
σ2 + Z̄ B

Δ2

1 + B
Δ2

)
,

which after multiplying the denominator and numerator with σ2Δ2 leads to the form in (15). We are done.
We stress, again, that the derivation goes through step-by-step if conditions (10-11) are expressed in

probability instead.

Proof of Proposition 1:
We construct a growing sequence of “caveman” networks that converge to a given degree distribution.

A caveman network is one which partitions the set of agents in the sense that if agent i is connected with j
and j is connected with k, then i is connected with k (see Watts (1999)).

We proceed as follows: First we observe that for d(1) = 1, the result is trivial, so we assume that
d(1) �= 1. For a given d ∈ S∞, define k = mini{i �= 1 : i ∈ supp[d]}. For m > k, we define d̂m ∈ Sm

by d̂m(i) = d(i)/
∑m

j=1 d(j). Clearly, limm→∞
∑m

i=1 |d̂m(i) − d(i)| = 0. For an arbitrary n ≥ k3, choose
m = �n1/3�. For 1 <  ≤ m,  �= k, choose zn

� = �d̂m() × n/�, and zn
k = �(n −∑� �=k zm

� )/k�.
Now, define Gn as a network in which there are zn

� clusters of tightly connected sets of agents, with
 members, 1 <  ≤ m and n −∑m

�=2 zn
� singletons. With this construction, |zn

� /n − d̂m(i)| ≤ /n for
 > 2 and  �= k. Moreover, |zn

1 /n − d̂m(1)| ≤ (k + 1)/n, and |zn
k k/n − d̂m(k)| ≤ (k + 1)/n + m2/n, so∑m

�=1 |zn
�  − d̂m()| ≤ 2(k + 1)/n + 2m2/n = O(n−1/3).

Thus,
∑�n1/3�

i=1 |dn(i) − d̂�n
1/3�(i)| → 0, when n → ∞ and since

∑�n1/3�
i=1 |d̂�n1/3�(i) − d(i)| → 0, when

n → ∞, this sequence of caveman networks indeed provides a constructive example for which the degree
distribution converges to d.

Moreover, it is straightforward to check that if d(i) = O(i−α), α > 1, then (10) is satisfied in the
previously constructed sequence of caveman networks, and that if α > 2, then (11) is satisfied.

Proof of Proposition 2:
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We first show the form for B. We have:

lim
n→∞

∑n
k=1(W

n)ii

s2n
= lim

n→∞

∑
k

k × cn
αk−α

= ζ(α)−1
∞∑

k=1

k−(α−1) = ζ(α)−1ζ(α − 1).

For (10), we notice that for a network with n = mα nodes, the maximum degree, (Wn)ii will not
be larger than m. However, since each of the neighbors to that node has no more than m neighbors,
‖Wn‖∞ =

∑
j(W

n)ij ≤ m2 = n2/α = o(n) when α > 2.

Proof of Proposition 3:
It follows from Theorem 1 that

(π∗)2σ2 =
B2
(
B + Δ2

)2
σ6

(Δ2 + B (B + Δ2)σ2)2
, (51)

(γ∗)2Δ2 =
Δ2
(
B + Δ2

)2
σ4

(Δ2 + B (B + Δ2)σ2)2
, (52)

var(p̃) =

(
B + Δ2

)2
σ4
(
Δ2 + B2σ2

)
(Δ2 + B (B + Δ2)σ2)2

. (53)

(51) implies that

∂ (π∗)2σ2

∂B
=

2BΔ2
(
B + Δ2

) (
2B + Δ2

)
σ6

(Δ2 + B (B + Δ2)σ2)3
> 0,

and this proves part (a).
(52) implies that

∂ (γ∗)2Δ2

∂B
=

2Δ4
(
B + Δ2

)
σ4 − 2Δ2

(
B + Δ2

)3
σ6

(Δ2 + B (B + Δ2)σ2)3
.

The expression above is strictly negative if and only if B > Δ
σ − Δ2. This proves part (b).

Finally, (53) implies that

∂ var(p̃)
∂B

=
2Δ4

(
B + Δ2

)
σ4 − 2Δ2

(−B3 + 2BΔ4 + Δ6
)
σ6

(Δ2 + B (B + Δ2)σ2)3
.

The expression above is strictly positive if and only if Δ2 < 1−Bσ2

2σ2 + 1
2

√
1−2Bσ2+5B2σ4

σ4 . This proves part
(c).

Proof of Proposition 4: By definition, there is excess volatility if var(p̃) > σ2. From (53), this reduces to

(
B + Δ2

)2
σ2
(
Δ2 + B2σ2

)
(Δ2 + B (B + Δ2)σ2)2

> 1.

The latter holds if and only if B < Δ2 and σ >
√

Δ2

Δ4−B2 .

31



Proof of Proposition 5:
Let c ≡ Δ2

σ2 . From (13), (14) and (16), it immediately follows that the volatility ratio is

var(p)
σ2

=
(

Δ2 + B

BΔ2 + c + B2

)2 (
B2 + c

)
.

Since this is a continuous function of Δ2, the supremum will either be realized when Δ → ∞, Δ → 0,
or at an interior point, at which the slope w.r.t. Δ2 is zero. The first order condition is ∂

∂Δ2

[
var(p)

σ2

]
=(

1 − B(Δ2+B)
BΔ2+c+B2

)
v(Δ2, c, B2) = 0, where v(Δ2, c, B2) is strictly positive. The first order condition therefore

implies that (
1 − BΔ2 + B2

BΔ2 + c + B2

)
= 0,

which will not be satisfied for a strictly positive c. Therefore, there is no interior maximum.
Moreover,

lim
Δ2→0

var(p)
σ2

=
(

B

c + B2

)2 (
B2 + c

)
< 1,

whereas

lim
Δ2→∞

var(p)
σ2

=
(

1
B

)2 (
B2 + c

)
= 1 +

c

B2
> 1,

so the supremum is realized at the limit Δ2 → ∞ and is therefore 1 + c
B2 .

Proof of Proposition 6:
It is straightforward from Theorem 1 and the projection theorem that

var
(
X̃
∣∣p̃) = σ2 −

(
B σ2Δ2+σ2B

Bσ2Δ2+Δ2+B2σ2 σ2
)2

(
B σ2Δ2+σ2B

Bσ2Δ2+Δ2+B2σ2

)2

σ2 +
(

σ2Δ2+σ2B
Bσ2Δ2+Δ2+B2σ2

)2

Δ2

=
Δ2σ2

Δ2 + B2σ2
.

Hence the result follows.

Proof of Proposition 7: From (27), we know that agent i’s demand will take the form

di(xi, p) =
α0i

βi
+

α1i

βi
xi +

(
α2i

βi
− 1

βi

)
p.

Similar arguments as in the proof of Theorem 1 shows that

α0i

βi
=

X̄

σ2
−
(

π0

γn
− Z̄

)
Ai,

where Ai = γn
(1T π)s2

i −(πT si)

s2
i (πT Sπ+γ2n2Δ2)−(πT si)2

converges to B
Δ2 for large n. Therefore

α0i

βi

n→∞−−−−→ X̄Δ2 + Z̄Bσ2

σ2Δ2 + σ2B
.
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Similarly, we have

α1i

βi
=

πT Sπ + γ2n2Δ2 − (1T π)(πT si)
s2

i (πT Sπ + γ2n2Δ2) − (πT si)2

n→∞−−−−→ 1
s2

i

=
Wi

s2
,

α2i

βi
=

(1T π)s2
i − (πT si)

s2
i (πT Sπ + γ2n2Δ2) − (πT si)2

n→∞−−−−→ B

Δ2γ∗ ,

1
βi

=
(σ2 + s2

i )
(
πT Sπ + n2Δ2γ2 + (1T π)2σ2

)− ((1T π)σ2 + (πT si)
)2

σ2 (s2
i (πT Sπ + γ2n2Δ2) − (πT si)2)

=
(σ2 + s2

i )
(
qT Sq/n2 + Δ2 + (1T q)2σ2/n2

)− ((1T q)σ2 + (qT si)
)2

/n2

σ2 (s2
i (qT Sq/n2 + Δ2) − (qT si)2/n2)

n→∞−−−−→ (σ2 + s2
i )
(
Δ2 + B2σ2

)− (Bσ2)2

σ2s2
i Δ2

=
1
s2

i

+
1
σ2

+
B2

Δ2
. (54)

Thus,

di(xi, p) =
X̄Δ2 + Z̄Bσ2

σ2Δ2 + σ2B
+

Wi

s2
(xi − p) +

(
B

Δ2γ∗ − 1
σ2

− B2

Δ2

)
p.

Since

B

Δ2γ∗ − 1
σ2

− B2

Δ2
=

B(Bσ2Δ2 + Δ2 + B2σ2)
Δ2(σ2Δ2 + σ2B)

− Δ4 + BΔ2

Δ2(σ2Δ2 + σ2B)
− B2σ2(Δ2 + B)

Δ2(σ2Δ2 + σ2B)

= − Δ2

σ2(Δ2 + B)
,

the expression for the demand function reduces to

di(xi, p) =
X̄Δ2 + Z̄Bσ2

σ2Δ2 + σ2B
− Δ2

σ2(Δ2 + B)
p +

Wi

s2
(xi − p), (55)

Expected profits are of the form E[di(x̃i, p)(X̃ − p)], and therefore (17) immediately follows.

Proof of Proposition 8:
We define the average expected profit in economy n,

Πn =

∑n
i=1 E

[(
X̃ − p̃n

)
dn

i (x̃n
i , p̃n)

]
n

.
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From Theorem 1, we know that the market clearing condition
∑n

i=1 di(x̃i, p)/n ≡ Z̃n. We therefore have

Πn = E
[(

X̃ − p̃n
)

Z̃n

]
= E

[(
X̃ − πn

0 −
n∑

i=1

πn
i (X̃ + ηn

i ) + γnZ̃n

)
Z̃n

]

=

(
1 −

n∑
i=1

πn
i

)
E
[
X̃Z̃n

]
− πn

0 E
[
Z̃n

]
+ γnE

[
Z̃nZ̃n

]

=

(
1 −

n∑
i=1

πn
i

)
X̄Z̄ − πn

0 Z̄ + γn(Δ2 + Z̄2)

n→∞−−−−→ (1 − π∗)X̄Z̄ − π∗
0Z̄ + γ∗(Δ2 + Z̄2).

Now, since X̄ = Z̄ = 0 it follows that

Π = γ∗Δ2 =
Δ2
(
B + Δ2

)
σ2

Δ2 + B (B + Δ2) σ2
. (56)

We also have

Πi =
Δ2

σ2(Δ2 + B)
(
(γ∗)2Δ2 − π∗(1 − π∗)σ2

)
+

Wi

s2

(
(1 − π∗)2σ2 + (γ∗)2Δ2

)
=

Δ4
(
Wi + s2Δ2

)
σ2 + WiΔ2

(
B + Δ2

)2
σ4

s2 (Δ2 + B (B + Δ2)σ2)2
, (57)

It then follows from (57) that

∂Πi

∂Wi
=

Δ4σ2 + Δ2
(
B + Δ2

)2
σ4

s2 (Δ2 + B (B + Δ2)σ2)2
> 0,

∂Πi

∂B
= −2Δ4

(
s2Δ4 + B

(
W + 2s2Δ2

))
σ4 + 2WiΔ2

(
B + Δ2

)3
σ6

s2 (Δ2 + B (B + Δ2)σ2)3
< 0.

Hence the proposition follows.

Proof of Proposition 9:
(a): It follows from (56) that

∂Π
∂B

=
Δ4σ2 − Δ2

(
B + Δ2

)2
σ4

(Δ2 + B (B + Δ2)σ2)2
.

Observe that the expression above is strictly negative if and only if σ < 1
Δ and B < Δ

σ −Δ2. This proves
part (a).

(b): The decomposition into ΠF and ΠI follows immediately from (56,57). We have

ΠI =
Δ6σ2

B2σ2 + Δ2(1 + Bσ2))2
,

which is positive, decreasing in B and approaches 0 as B tends to ∞.
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(c): That ΠF is positive and approaches zero as B → ∞ is also immediate, since

πF =
BΔ2σ2(B2σ2 + Δ4σ2 + Δ2(1 + 2Bσ2))

(B2σ2 + Δ2(1 + Bσ2))2
. (58)

Non-monotonicity of ΠF in B can be easily observed from (58).
(d): follows immediately from (b) and (c) .

Proof of Proposition 10:
From Theorem 1, we have

E
[
X̃ − p̃

]
= (1 − π∗)X̄ (59)

=
Δ2σ2

Δ2 + B (B + Δ2)σ2
Z̄, (60)

var
(
X̃ − p̃

)
= (1 − π∗)2σ2 + (γ∗)2Δ2 (61)

=
Δ4σ2 + Δ2

(
B + Δ2

)2
σ4

(Δ2 + B (B + Δ2) σ2)2
, (62)

thus

∂ E
[
X̃ − p̃

]
∂B

= − Δ2
(
2B + Δ2

)
σ4

(Δ2 + B (B + Δ2)σ2)2
Z̄ < 0,

∂ var
(
X̃ − p̃

)
∂B

= −2BΔ4σ4 + 2Δ2
(
B + Δ2

)3
σ6

(Δ2 + B (B + Δ2)σ2)3
< 0.

Hence we have proved parts (a) and (b).
On the other hand, (60) and (62) imply that

S =
Δ2σ2

Δ2+B(B+Δ2)σ2 Z̄√
Δ4σ2+Δ2(B+Δ2)2σ4

(Δ2+B(B+Δ2)σ2)2

, (63)

which further implies

∂S

∂B
= − Z̄Δ2

(
B + Δ2

)
σ4

(Δ2 + B (B + Δ2)σ2)
(
Δ2 + (B + Δ2)2 σ2

)√
Δ4σ2+Δ2(B+Δ2)2σ4

(Δ2+B(B+Δ2)σ2)2

< 0.

This proves part (c).

Proof of Proposition 11:
Following Theorem 1 and (55), we can rewrite agent i’s demand function as follows:

di(xi, p) = ci +
Δ2(−Bs2+Wi)

s2(Δ2+B(B+Δ2)σ2)X̃ +
s2Δ2+(B+Δ2)σ2Wi

s2(Δ2+B(B+Δ2)σ2) Z̃ +
P

k∈W (i) εi

s2 , (64)
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where ci is a constant scalar. Thus,

cov (di(x̃i, p̃), dj(x̃j , p̃)) =
(

Δ2(−Bs2+Wi)
s2(Δ2+B(B+Δ2)σ2)

)(
Δ2(−Bs2+Wj)

s2(Δ2+B(B+Δ2)σ2)

)
σ2

+
(

s2Δ2+(B+Δ2)σ2Wi

s2(Δ2+B(B+Δ2)σ2)

)(
s2Δ2+(B+Δ2)σ2Wj

s2(Δ2+B(B+Δ2)σ2)

)
Δ2 + Wij . (65)

On the other hand, observe from (64) that variance of agent i’s demand, var (di(x̃i, p̃)), does not depend on
Wij . Therefore, following (65) we have

∂ corr (di(x̃i, p̃), dj(x̃j , p̃))
∂Wij

=
1√

var (di(x̃i, p̃)) var (dj(x̃j , p̃))
> 0.

Hence we have the desired result.

Proof of Proposition 12: From (55) it follows that di ∼ N(0, a1 + a2Wi + a3W
2
i ), where a1 = Δ6+B2Δ4σ2

a2
4

,

a2 = 1
s2

(
1 + 2Δ6σ2

a2
4

)
, a3 = Δ2σ2(B2σ2+Δ4σ2+Δ2+2Δ2Bσ2)

s4a2
4

, and a4 = B2σ2+Δ2+Δ2Bσ2. Since, E[|z̃|] =
√

2A
π

for a general normally distributed random variable, z ∼ N(0, A), it follows that

dunsigned =

√
2(a1 + a2Wi + a3W 2

i )
π

, (66)

It immediately follows that this function is increasing and concave, with the given asymptotics.

Proof of Proposition 13:
The following lemma ensures that the limit of average certainty equivalents is equal to the average

certainty equivalent in the large economy.

Lemma 1 If Assumption 1 is satisfied and the function f : N → R is bounded from above and below, then
limn→∞

∑n
i=1 dn(i)f(i) =

∑∞
i=1 d(i)f(i).

Proof: Since f is bounded, there is a C < ∞ such that |f(i)| ≤ C for all i. Also, since d is a distribution, it
is clear that limn→∞

∑∞
i=n+1 d(i) = 0. We have

∣∣∣∣∣
n∑

i=1

dn(i)f(i) −
∞∑

i=1

d(i)f(i)

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

dn(i)f(i) −
n∑

i=1

d(i)f(i)

∣∣∣∣∣+
∣∣∣∣∣

∞∑
i=n+1

d(i)f(i)

∣∣∣∣∣
≤ C

(∣∣∣∣∣
n∑

i=1

dn(i) −
n∑

i=1

d(i)

∣∣∣∣∣+
∣∣∣∣∣

∞∑
i=n+1

d(i)

∣∣∣∣∣
)

,

n→∞−−−−→ 0,

where the final limit follows from Assumption 1.

Now, since Πi → Π as shown in the proof of Proposition 8, and the function f(i) = 1/(i + c), c > 0, is
bounded from above and below, it is indeed clear that the limit of the average certainty equivalents is the
same as the average certainty equivalent in the large economy.

The specific form of CEi and CE then follows from (4,26,54,57).

Proof of Proposition 14:
(a) follows immediately from Jensen’s inequality, since 1

W+c is a strictly convex function of W ≥ 1, given
any c ≥ 0.
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(b) We first note that the “two-point distribution,” for which a fraction B−�B� of the agents has �B�+1
connection and the rest, 1−B + �B�, has �B� connections has connectedness (B −�B�)(�B�+ 1)+ (1−B +
�B�)�B� = B, so the two-point distribution is indeed a candidate for an optimal distribution. Clearly, this is
the only two-point distribution with support on {n, n + 1} that has connectedness B, and for B /∈ N, there
is no one-point distribution with connectedness B. We define n = �B�, qn = 1 − B + �B�, qn+1 = B − �B�.

We introduce some new notation. We wish to study a larger space of distributions than the ones with
support on the natural numbers. Therefore, we introduce the space of discrete distributions with finite first
moment, D = {∑∞

i=0 riδxi}, where ri ≥ 0, and 0 ≤ xi for all i, 0 <
∑

i ri < ∞ and
∑

i rixi < ∞.18 The
subset, D1 ⊂ D, in addition satisfies

∑
i ri = 1.

The c.d.f. of a distribution in D is a monotone function, Fd : R+ → R+, defined as Fd(x) =
∑

i≥0 riθ(x−
xi), where R+ = {x ∈ R : x ≥ 0}. Here, θ is the Heaviside step function. Clearly, Fd is bounded:
supx≥0 Fd(x) =

∑
i ri < ∞. We use the Lévy metric to separate distributions in D, D(d1, d2) = inf{ε > 0 :

Fd1(x − ε) − ε ≤ Fd2(x) ≤ Fd1(x + ε) for all x ∈ R+}. We thus identify d1 = d2 iff D(d1, d2) = 0.
For d ∈ D, we define the operation of addition and multiplication: d1 =

∑
i r1

i δx1
i
, d2 =

∑
i r2

i δx2
i

leads
to d1 + d2 =

∑
i r1

i δx1
i
+
∑

i r2
i δx2

i
and αd1 =

∑
i αr1

i δx1
i
, for α > 0. The two-point distribution can then be

expressed as d̂ = qnδn + qn+1δn+1.
The support of a distribution d =

∑
rxδxi in D is now supp[d] = {xi : ri > 0}. A subset of D is the set

of distributions with support on the integers, DN = {d ∈ D : supp[d] ⊂ N}. For this space, we can without
loss of generality assume that the x’s are ordered, xi = i. The expectation of a distribution is E[d] =

∑
i rixi

and the total mass is S(d) =
∑

i ri. Both the total mass and expectations operators are linear. Another
subset of D, given B > 0, is DB = {d ∈ D : E[d] = B}.

Given a strictly convex, bounded function f : R+ → R, we define the operator Vf : D → D, such that
Vf (d) =

∑
i riδf(xi). The functions fc(x) = 1

x+c , for c > 0 are, of course, strictly convex and bounded on
R+. Clearly, Vf is a linear operator, Vf (d1 + d2) = Vf (d1) + Vf (d2).

The second part of the theorem, which we wish to prove, now states that for all d ∈ D1 ∩DN ∩DB , with
B /∈ N, if d �= d̂, it is the case that E[Vfc(d)] > E[Vfc(d̂)]. It turns out that the inequality holds for any
strictly concave bounded function on f : R+ → R. To prove this, we use Jensen’s inequality, which in our
notation reads:

Lemma 2 (Jensen): For any d ∈ D, with support on more than one point, and for a strictly con-
vex, bounded function, f : R+ → R, the following inequality holds: E[Vf (d)] > S(d)E[Vf (δE[d]/S(d))] =
E[Vf (S(d)δE[d]/S(d))].

Now, let’s take a candidate function for an optimal solution, d �= d̂, such that d ∈ D1 ∩ DN ∩ DB.
Clearly, since d̂ is the only two-point distribution in D1 ∩ DN ∩ DB, and there is no one-point distribution
in D1 ∩ DN ∩ DB, the support of d is at least on three points.

Also, since qn + qn+1 = 1, and d ∈ D1, it must either be the case that rn < qn, or rn+1 < qn+1, or both.
We will now decompose d into three parts, depending on which situation holds: First, let’s assume that
rn+1 ≥ qn+1. If, in addition, rn+1 > qn+1, then it must be that rn < qn, and ri > 0 for at least one i < n.
Otherwise, it could not be that E[d] = B. In this case, we define d1 =

∑
i<n riδi, d2 = rnδn + qn+1δn+1 and

d3 = (rn+1 − qn+1)δn+1 +
∑

i>n+1 riδi. If, on the other hand, rn+1 = qn+1, then, there must be an i < n
such that ri > 0 and also a j > n + 1 such that rj > 0, since otherwise, it would not be possible to have
E[d] = B. In this case, we define, d1 =

∑
i<n riδi, d2 = rnδn + qn+1δn+1 and d3 =

∑
i>n+1 riδi. Exactly the

same technique can be applied in the case of rn ≥ qn and rn+1 < qn+1.
Finally, in the case of rn < qn and rn+1 < qn+1, there must, again, be an i < n such that ri > 0 and

a j > n + 1, such that rj > 0, otherwise E[d] = B would not be possible. In this case, we decompose
d1 =

∑
i<n riδi, d2 = rnδn + qn+1δn+1 and d3 = (rn+1 − qn+1)δn+1 +

∑
i>n+1 riδi.

These decompositions imply that

E[Vf (d)] = E[Vf (d1)] + E[Vf (d2)] + E[Vf (d3)]
≥ S(d1)E[Vf (δE[d1]/S(d1))] + E[Vf (d2)] + S(d3)E[Vf (δE[d3]/S(d3))]

= E
[
Vf

(
S(d1)δE[d1]/S(d1) + d2 + S(d3)δE[d3]/S(d3)

)]
= E[Vf (dm)],

18Distribution here is in the sense of a functional on the space of C∞
0 functions (see Hörmander (1983)) and δx is

the Dirac distribution, defined by δx(f) = f(x) for f ∈ C∞
0 .
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where dm = dL + d2 + dR, dL = S(d1)δE[d1]/S(d1) and dR = S(d3)δE[d3]/S(d3). Clearly, dm ∈ D1 ∩ DB.
Now, if rn+1 ≥ qn+1, since d ∈ D1, it must be that S(d1)+S(d3) = qn − rn, and since E[dL +d2 +dR] =

B = E[qnδn + qn+1δn+1] it must be that E[dL +dR] = (qn − rn)E[δn] = E[(S(d1)+S(d2))δn] = E[da], where
da = (S(d1) + S(d2))δn. Moreover, since da + d2 has support on {n, n + 1} and E[da + d2] = B, it is clear
that da + d2 = d̂.

From Jensen’s inequality, it is furthermore clear that E[Vf (dL + dR)] > E[Vf (da)], and therefore
E[Vf (dm)] = E[Vf (dL + dR + d2)] > E[Vf (da + d2)] = E[Vf (d̂)]. Thus, all in all, E[Vf (d)] ≥ E[Vf (dm)] >

E[Vf (d̂)]. A similar argument can be applied if rn ≥ qn.
Finally, in the case in which rn < qn and rn+1 < qn+1, we define α = E[d1]/S(d1) and β = E[d3]/S(d3).

Obviously, α < n < n + 1 < β. Now, we can define g1 = β−n
β−α(qn − rn)δα + n−α

β−α (qn − rn)δβ and g2 =
β−n−1

β−α (qn+1 − rn+1)δα + n+1−α
β−α (qn − rn)δβ . Clearly, g1 ∈ D and g2 ∈ D and, moreover, g1 + g2 + d2 =

d1 + d2 + d3 = d. Also, Jensen’s inequality implies that E[Vf (g1)] > E[Vf ((qn − rn)δn)] and E[Vf (g2)] >
E[Vf ((qn+1−rn+1)δn+1)], so E[Vf (d)] = E[Vf (g1 +g2+d2)] > E[Vf ((qn−rn)δn +(qn+1−rn+1)δn+1 +d2)] =
E[Vf (d̂)]. We are done.

(c) From (56), (18) and f(W ) = c(W − 1), the central planner’s problem is to maximize Q(B) def=

(c1(B)− c)B −Θ(B)+ c, where c1 =
Δ2(B+Δ2)σ2

Δ2+B(B+Δ2)σ2 , where Θ(B) > 0, we know from (a) and (b) that, given
B, Θ will be derived from a distribution with support on {�B�, 	B
}, so it is degenerate, and

Θ(B) = 1
2

(
(1 − B + �B�) 1

q1(B)+�B� + (B − �B�) 1
q1(B)+�B�+1

)
, is a continuous function of B ≥ 1. Here,

q1(B) = 1
σ2 + B

Δ2 . Since limn→∞ c1(B) = 0, for large B, (c1(B) − c)B − Θ(B) + c < 0, so there can be no
solutions with arbitrary large B. In fact any solution must have B ≤ q, for some q < ∞. Since c1(B) and
Θ(B) are continuous, it must therefore be the case that maxB∈[1,q] Q(B) has a solution. The set of such
solutions are the solutions to the central planner’s problem. We are done.

Proof of Theorem 2:
First, we note that since CE(W ) > 0 for all W ≥ 1 and B ≥ 1, and f(1) = 0, it is clear that

CE(1) − f(1) > 0 regardless of B, so if Cp = 0, it will always be optimal for an agent to participate in the
market.

(a) We begin by studying the solution to the unrestricted problem, i.e., the problems in which agents
can choose W ∈ R, such that W ≥ 1. We show the strict inequality B > BS for this case, and then use the
result to analyze the case when

From the discussion, an agent’s optimization problem is to maximize g(W |B), where

g(W |B) def=
Δ6σ2

(Δ2 + B (B + Δ2)σ2)2
+

Δ4σ2 + Δ2
(
B + Δ2

)2
σ4

(Δ2 + B (B + Δ2) σ2)2
W − 1

2
σ2Δ2

Wσ2Δ2 + Δ2 + B2σ2
− c(W − 1) (67)

= (c0 + c) + (c1 − c)W − 1
2

σ2Δ2

Wσ2Δ2 + Δ2 + B2σ2
. (68)

For any B, g(W |B) is obviously strictly concave in W , so any optimum, given B is unique, and the only
way that there is no optimum is if g is always increasing, i.e., formally, the optimum is W ∗ = ∞. This will
occur if and only if c1 ≥ c. If c1 < c, on the other hand, W ∗ < ∞, and also W ∗ is continuous in B, since
the roots of a polynomial depend continuously on it’s parameters.

It is also clear that for large B, c1 < c. Moreover, it is easy to check that for large B, W ∗(B) = 1, which
is intuitive, since in this case, the value of information, as well as of risk-reduction, is very low.

Let W ∗(B) : [1,∞) → [1,∞] denote the optimal W , given B. A stable solution is then a B, 1 ≤ B < ∞,
such that W ∗(B) = B, and we wish to prove that such a B exists.

We separate two different cases. First, we study the case when c1 < c for all B ≥ 1. In this case, since
W ∗ < ∞ for all B, W ∗ = 1 for large B, 1 ≤ W ∗ ≤ C for all B, for some C ≥ 1. Furthermore, since W ∗
depends continuously on B, the function W ∗(B)−B is continuous, has W ∗(1)− 1 ≥ 1 and W ∗(B)−B < 0
for large B. The intermediate value theorem therefore implies that W ∗(B) = B for some B, and thus there
is a stable solution.

Next, we study the case in which c1 ≥ c for some B’s. Let q = supr{r : c1(B) < c, ∀B > r}. Clearly,
c1(q) = c, which implies that W ∗(q) = ∞. Moreover, W ∗(q + ε) becomes arbitrarily large when ε ↘ 0,
W ∗(B) = 1 for large enough B, and W ∗ is continuous on (q,∞). Thus, W ∗(B) − B must change sign
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somewhere on (q,∞), and that point, again, constitutes a stable solution. In either case, there is thus a
stable solution, so we are done.

We now apply these results to the restricted problem, i.e., the problem in which W ∈ N. Let B ≥ 1 be
a solution to the unrestricted problem, which we have shown exists. If B ∈ N, the result follows from (a).
If B /∈ N and g(�B�|B) = g(	B
|B), where g is defined in (67), then from the strict concavity of g(W |B) in
W , it is clear that a stable solution to the restricted problem is one in which the fraction B − �B� chooses
�B� + 1 connections and the rest of the agents choose �B� connections.

For the case B /∈ N, g(�B�|B) �= g(	B
|B), we assume w.l.o.g. that g(�B�|B) > g(	B
|B). From (67) it
follows that the optimal connectedness, given B is W ∗(B) = 1√

2
√

c−c1
− c2, where c2 = 1

σ2 + B
Δ2 . It is clear

that dW∗
dB = 1

2
√

2

∂c1/∂B
(c−c1)3/2 − 1

Δ2 , and since ∂c1
∂B = −2BΔ4σ4+B3Δ2σ6+3B2Δ4σ6+3BΔ6σ6+Δ8σ6

(B2σ2+Δ2(1+Bσ2))3 < 0, dW∗
dB < 0.

Now, let r(B′) def= g(�B�|B′) − g(�B� + 1|B′) for �B� ≤ B′ ≤ B. There are two cases: The first case is
r(B′) < 0 for all �B� ≤ B′ ≤ B. In this case, g(�B�|�B�) > g(�B� + 1|�B�), and since W ∗(�B�) > W ∗(B)
(because dW∗

dB < 0) it must be that W ∗(�B�) < �B� + 1, since otherwise W ∗(B′) = �B� + 1 for some
�B� ≤ B′ ≤ B, in which case g(�B� + 1|B′) > g(�B�|B′), contrary to the assumption. In this case, a stable
network is given by all agents having �B� connections, due to the concavity of agents’ optimization problem.

The second case occurs if r(B′) = 0 for some �B� ≤ B′ ≤ B. However, in this the network in which a
fraction B′ − �B′� chooses �B + 1� connections and the rest chooses �B� connections is obviously stable. A
similar argument can be made if B /∈ N, g(�B�|B) < g(	B
|B). Thus, there exists a stable solution with a
degree distribution with support on {�B�, 	B
}.

Now, assume that there is a stable network with degree distribution d, i ∈ supp[d], j ∈ supp[d] and
j ≥ i + 2. Then there is a k ∈ N such that i < k < j, and, due to the strictly concave optimization
problem that agents face, it must be that g(k|B) > k−i

j−i g(i|B) + j−k
j−i g(j|B) = g(i|B), which contradicts that

i ∈ supp[d], so no such solution can exist. We are done.

(b) We first note that the result follows trivially for BS = 1, and therefore focus on the case for which
BS > 1. An optimal solution, B∗ > 1 to the central planner’s unrestricted problem is characterized by

∂Π
∂B

∣∣∣∣
B=B∗

− ∂Θ
∂B

∣∣∣∣
B=B∗

= c,

i.e.,

h(B∗) def=
1 + 1

Δ2

2(B∗ + B∗
Δ2 + 1

σ2 )2
+

Δ2σ2

Δ2 + B∗(B∗ + Δ2)σ2
− Δ2(B∗ + Δ2)(2B∗ + Δ2)σ4

((B∗)2σ2 + Δ2(1 + B∗σ2))2
= c.

The first order equation in the unrestricted noncooperative setting is

f(B∗∗) def=
1

2(B∗∗ + B∗∗
Δ2 + 1

σ2 )2
+

Δ4σ2 + Δ2(B∗∗ + Δ2)2σ4

((B∗∗)2σ2 + Δ2(1 + B∗∗σ2))2
= c.

Now,

f(B) − h(B) = − Δ2σ4

2(BΔ2σ2 + Bσ2 + Δ2)2
+

2B2Δ2σ4 + 4BΔ4σ4 + 2Δ6σ4

(B2σ2 + Δ2(1 + Bσ2))2

=
−zΔ2σ4/2 + 2B2Δ2σ4 + 4BΔ4σ4 + 2Δ6σ4

(B2σ2 + Δ2(1 + Bσ2))2
,

where z =
(

B2σ2+Δ2+BΔ2σ2

BΔ2σ2+Bσ2+Δ2

)2

< B2, so

f(B) − h(B) >
−B2Δ2σ4/2 + 2B2Δ2σ4 + 4BΔ4σ4 + 2Δ6σ4

(B2σ2 + Δ2(1 + Bσ2))2
> 0.

Thus, if h(B∗) = c, then f(B∗) > c, and therefore W ∗(B∗) > B∗. Now, if c1 > c for all B > B∗, then a
similar argument as in (a) shows that there is a stable solution in B∗∗ ∈ (B∗,∞). Otherwise, we choose
q = supr{r : c1(B) < c, ∀B > r}, just like in the proof of (a). A similar argument as in (a) shows that there
is a stable solution, B∗∗ ∈ (q,∞), and as q > B∗, we have B∗∗ > B∗. Thus, there is a stable solution to
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agents’ unrestricted optimization problems with higher connectedness than the connectedness in networks
solving the social planner’s unrestricted optimization problem.

For the central planner’s restricted problem, it is clear that for any solution with a degree distribution
with support on {	BS
 − 1, 	BS
} for some, BS > 1 it must be that h(B∗) − c = 0 for some B∗ ∈
[	BS
−1, 	BS
]. Otherwise, either choosing a network with a degree distribution with support on {	BS
−1}
or on {	BS
} would strictly improve the average certainty equivalent, contrary to the assumption. Similarly,
for any solution with a degree distribution with support on {	BS
}, BS > 1, there must exist a B∗ ∈
[	BS
 − 1, 	BS
 + 1] such that h(B∗) = 0.

In line with the discussion in the proof of part (a), at any such point, g(B∗|B∗) > 0, and thereby
there is a stable solution to the unrestricted noncooperative problem, with connectedness B∗∗, B∗∗ > B∗.
However, this implies that there is a solution to the restricted noncooperative problem, with support on
{�B∗∗�, 	B∗∗
}, and since B∗∗ > B∗ ≥ 	BS
 − 1, the result follows. We are done.

Proof of Theorem 3:
Clearly, there can be no equilibrium in which p = 0, since markets can not clear in this case. Moreover,

in any stable equilibrium, in which the degree distribution has support on S, agents must be indifferent
between between any number of connections i, for i ∈ S. Now, an economy in which a fraction 0 < p < 1
participates will be identical to the one in which p = 1, except for that the stochastic supply per participant
will be higher. Technically this leads to the transformation Δ �→ Δ/p.

For the moment neglecting the cost function, f , from (20), (21) and the fact that Δ �→ Δ/p in the
economy in which only the fraction p of agents participates, the certainty equivalent for an agent with j
connections is q2 + q0j − 1

2(j+q1) , where q1 and q2 are defined in (23,24), and

q2 =
Δ6σ2

(Δ2p + B (Bp3 + Δ2p)σ2)2
.

Now, let i ∈ S, and define c
def= −f(i)+ iq0− 1

2(i+q1) , and Uj
def= q2 + q0j − 1

2(j+q1) − f(j) to be the utility
a participating agent gets by choosing to have j links. Then, since agents are indifferent between choosing
j ∈ S connections, for j ∈ S, Uj = Ui which immediately implies that it is necessary for f(j) to have the
prescribed form, and moreover, Ui = c. Moreover, for j /∈ S, it must be that Uj < Ui, which immediately
implies that f(j) > iq0 − 1

2(i+q1) − c.
Since, by assumption f(1) = 0, it must also be that 0 ≥ q0 − 1

2(i+q1) − c ⇔ c ≥ q0 − 1
2(i+q1) if j /∈ S and

c = q0 − 1
2(i+q1) if j ∈ S.

As discussed in the proof of Theorem 2, it is always the case that q0 − 1
2(1+q1) > 0, so c > 0.

Finally, it is clear that if p < 1, it must be the case that Cp ≥ c, otherwise nonparticipants would
be made strictly better off by becoming participants. This, however, also provides a sufficient condition,
since if it is satisfied, given p, nonparticipants are (weakly) better off staying outside of the market, and no
participant has an incentive, either to become a nonparticipant, nor to change his number of links. We are
done.

Proof of Theorem 4:
An agent of type t will solve the optimization problem maxW Ut(W ), where Ut(W ) = c + q0W −
1

2(q1+W ) − t(W − 1). The unrestricted (in that W is not required to be a natural number) problem is a
concave optimization problem and, for t close to q0, the W that satisfies the first order condition gives the
optimal solution (for large t, W = 1 is the optimal solution), i.e., t − q0 = 1

2(q1+W∗)2 .
Clearly, the optimal W increases as t decreases, and since the optimization problem is strictly convex,

any agent of type t ∈ (tW+1, tW ), where UtW (W − 1) = UtW (W ) and UtW+1(W ) = UtW+1(W + 1) will
therefore choose W . The solution to the equation UtW (W − 1) = UtW (W ) is

tW − q0 =
1

2(W − 1 + q1)
− 1

2(W + q1)

=
1

2(W + q1)2
× 1

1 − 1
W+q1

,
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and since
1

2(W + 1 + q1)2
× 1

1 − 1
W+1+q1

=
1

2(W + q1)2
× 1

1 + 1
W+q1

,

agents with type t ∈
[
q0 + 1

2(W+q1)2 × 1
1− 1

W+q1

, q0 + 1
2(W+q1)2 × 1

1+ 1
W+q1

]
will choose to have W connections

for W > 1, and for t > q0 + 1
2(1+q1)2 × 1

1+ 1
1+q1

, they will choose to have 1 connection.

The network will be stable, if the type distribution satisfies

1 − F (t1) = d(1), and F (ti) − F (ti+1) = d(i), 1 ≤ i, (69)

where d is the degree distribution of the network, and F a continuous c.d.f., as long as every agent with W
connections is “matched” with a type t ∈ (tW+1, tW ). There are obviously many c.d.f.’s that satisfy these
constraints, e.g., a piecewise linear function, which corresponds to a piecewise uniform type distribution.
Moreover, any choice of type distribution that does not satisfy (69) will not match the degree distribution,
so it will not lead to a stable network.

Obviously, F (q0) = 0. It remains to show that F ∼ ε(α−3)/2 at q0. First, it is clear that tW = q0+W−2(1+
o(1)), and that tW −tW+1 = 1

2(W+q1)2

(
1 + 1

W+q1
−
(
1 − 1

W+q1

)
+ o(W−1)

)
= 1

(W+q1)3 (1+o(1)). From (69),

it must therefore be that F (q0+W−2(1+o(1))) 1
(W+q1)3 (1+o(1)) ∼ W−α, implying that F (q0+ε)ε3/2 ∼ εα/2,

where ε = W−2, and W is a natural number. Therefore, for ε = W−2, it must be that F (q0 + ε) ∼ ε
α−3

2 .

However, since F is a c.d.f., it is a monotone function. Therefore, since F (q0 + ε)/ε
α−3

2 = C + o(1), for
ε = 1/W 2, where W ∈ N, it is the case that supε∈[ 1

W2 , 1
(W+1)2

] |F (q0 + ε)/ε
α−3

2 − C| ≤ |F (q0 + ε)/(ε(1 +

o(1)))
α−3

2 − C| = |C(1 + o(1)) − C| = o(1), and the result therefore holds for all ε > 0. Thus, the condition
of F ∼ ε

α−3
2 at q0 is both necessary and sufficient. We are done.

We note that the proof could be extended to cost functions on the form F = t × g(w), where g(w) is a
nonlinear function, such that g(w) ∼ wβ , for some β > 0. In this case the type distribution that corresponds
to a specific degree distribution will also be a function of β. This may also allow for lower tail exponents
than α = 3 for the degree distribution.
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