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Abstract

To measure the wealth-consumption ratio, we estimate an exponentially affine model of

the stochastic discount factor on bond yields and stock returns. We use that discount factor

to compute the no-arbitrage price of a claim to aggregate US consumption. Our estimates

indicate that total wealth is much safer than stock market wealth. The consumption risk

premium is only 2.2 percent, substantially below the equity risk premium of 6.9 percent. As

a result, our estimate of the wealth-consumption ratio is much higher than the price-dividend

ratio on stocks throughout the post-war period. The high wealth-consumption ratio implies

that the average US household has a lot of wealth, most of it human wealth. A variance

decomposition of the wealth-consumption ratio shows less return predictability overall, but

most of the return predictability is for future interest rates, not excess returns. We conclude

that the properties of the total wealth portfolio are more similar to those of a long-maturity

bond portfolio than those of a stock portfolio. The differences that we find between the

risk-return characteristics of equity and total wealth suggest that equity is a special asset

class.
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Stock returns have played a central role in the development of modern asset pricing theory.

Yet, in the US, stock market wealth is only a small fraction of total household wealth. Real

estate, non-corporate businesses, other financial assets, durable consumption goods, and human

wealth constitute the bulk of total household wealth. We measure total wealth and its price-

dividend ratio, the wealth-consumption ratio, by computing the no-arbitrage price of a claim to

the aggregate consumption stream. To value this claim, we estimate from stock returns and bond

yields the prices of the various types of aggregate risk that US households face.

We find that the average household’s wealth portfolio is more like a long-maturity real bond

than like equity, for two reasons. First, the total wealth portfolio earns a low risk premium of

around 2.2% per year, compared to a much higher equity risk premium of 6.9%. As a result, the

wealth-consumption ratio is much higher, 87 on average, than the price-dividend ratio on equity,

27 on average. Second, the wealth-consumption (wc) ratio is less volatile than the price-dividend

ratio: its standard deviation is 17% versus 27%. The return on total wealth has a volatility that

is 9.8% per year, compared to 16.7% for equity returns. Our estimation produces a variance

decomposition of the wc ratio in closed form, the no-arbitrage analog to the Campbell and Shiller

(1988) decomposition of the price-dividend ratio for stocks. The lower variability in the wc ratio

indicates less variation in expected future total wealth returns. Hence, there is less predictability

in total wealth returns than in equity returns. We find that most of the variation in future total

wealth returns is variation in future risk-free rates, and not variation in future excess returns. In

contrast, the price-dividend ratio on equity mostly predicts future excess equity returns.

This gap between the properties of total wealth and equity is crucial for the evaluation of

dynamic asset pricing theories. In the Capital Asset Pricing Model, the total wealth return is the

right pricing factor (Roll 1977). In the Inter-temporal CAPM, current and future total wealth

returns can substitute for consumption growth as pricing factors (Campbell 1993). However,

applied work commonly tests dynamic asset pricing models (DAPMs) by using the stock market

return as a proxy for the total wealth return. This is problematic because the stock market return

turns out to be a poor proxy for the total wealth return. We show that two of the leading DAPMs,

the long-run risk model of Bansal and Yaron (2004) and the external habit model of Campbell and

Cochrane (1999), have very different predictions for the properties of the wealth-consumption ratio,

even though they match the same moments of stock returns. In the absence of a clear candidate

benchmark DAPM, we set out to measure the wealth-consumption ratio without committing to a

fully-specified equilibrium model. We use a flexible factor model for the stochastic discount factor

(henceforth SDF), and a no-arbitrage vector auto-regression (VAR) to describe the dynamics of

stock returns, bond yields, and consumption growth.

While we observe the cash flow on human wealth (labor income), we do not observe its discount

rate (expected return). Therefore, its price is unknown. For housing wealth and other parts of
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broad financial wealth such as private business wealth, there is a lack of reliable market price data.

Our approach avoids making somewhat arbitrary assumptions about expected returns to value

these holdings. Instead, we infer the conditional market prices of different types of aggregate risk

from stock and bond prices. Armed with these estimates and with an empirical model for the

dynamics of aggregate consumption growth, we value a claim to aggregate consumption.

Our work embeds the VAR methodology of Campbell (1991, 1993, 1996) into the no-arbitrage

framework of Ang and Piazzesi (2003). Like Campbell (1993), we specify the state variables that

are in the investor’s information set and we assume that their dynamics are given by a VAR system.

Like Ang and Piazzesi (2003), we assume that the log SDF is affine in innovations to the state

vector, with market prices of risk that are also affine in the same state vector. In a first step we

estimate the VAR dynamics of the state. In a second step, we estimate the market prices of risk.

The market prices of risk are pinned down by three sets of moments. The first set matches the

time-series of nominal bond yields as well as the Cochrane and Piazzesi (2005) bond risk premium.

Yields are affine functions of the state, as shown in Duffie and Kan (1996) and Dai and Singleton

(2000). The second set matches the time series of the price-dividend ratio on the aggregate stock

market as well as the equity risk premium. We also impose the present value model: the stock

price is the expected present-discounted value of future dividends. The third set uses a cross-

section of equity returns to form factor-mimicking portfolios for consumption growth and for labor

income growth; these are the linear combinations of assets that have the highest correlations with

consumption and labor income growth, respectively. We match the time-series of expected excess

returns on these two factor-mimicking portfolios. In sum, our model provides a close fit for the

risk premia on bonds and stocks. With the prices of risk inferred from traded assets, we price a

claim to aggregate consumption and aggregate labor income.

The validity of our measurement does not rely on market completeness or on the tradeability

of human wealth. The approach remains valid in a world with uninsurable labor income risk, in

the presence of generic borrowing or wealth constraints, and even if most households only trade in

a risk-free asset. If a subset of households has access to the stock and bond markets, the SDF that

prices stocks and bonds also prices the consumption and labor income stream.

In the benchmark model, we do assume that stock and bond prices capture all sources of

aggregate risk. This spanning condition is naturally satisfied in standard dynamic asset pricing

models, where all aggregate shocks affect the stochastic discount factor and hence asset prices. To

guard against the possibility that this condition is not satisfied in the data, we compute an upper

bound on the non-traded consumption risk premium. We do so by ruling out good deals, following

Cochrane and Saa-Requejo (2000) and Alvarez and Jermann (2004), and we show that there is not

enough non-traded consumption risk to alter our conclusion that the consumption risk premium

is substantially below the equity risk premium.
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The low consumption risk premium and the associated high wealth-consumption ratio imply

that US households have more wealth than one might think. Our estimates imply that the average

household had $3 million of total wealth in 2006. The dynamics of the wealth-consumption ratio

are largely driven by the dynamics of real bond yields. As a result, we find that between 1979 and

1981 when real interest rates rose, $533,000 of per capita wealth (in 2006 dollars) was destroyed.

Afterwards, as real yields fell, real per capita wealth increased without interruption from $790,000

in 1981 to $3 million in 2006. We note that the timing of the 1979-81 wealth destruction did not

coincide with the stock market crash of 1973-74. Likewise, total wealth was hardly affected by the

spectacular decline in the stock market that started in 1999.

On average, the risk-return properties of human wealth closely resemble those of total wealth.

We estimate human wealth to be 90% of total wealth. This estimate is consistent with Jorgenson

and Fraumeni (1989), whose calculations also suggest a 90% human wealth share. We estimate

that the average household had about $2.6 million in human wealth in 2006. While this number

may seem large at first, it pertains to an infinitely-lived household. The value of the first 35 years

of labor income, the length of a typical career, is $840,000. The other two-thirds represent the

value of the labor income claim of future generations. The $840,000 amount corresponds to an

annuity income of $27,800, close to per capita labor income data in 2006. This career human

wealth number is twelve times higher than the per capita value of residential real estate wealth.

This multiple is up from a value of ten in 1981, implying that human wealth grew even faster than

housing wealth over the last twenty-five years.

Finally, we compare our results to the predictions of two leading DAPMs. Our goal is not to

try to statistically test these models on the basis of our wc estimates, but simply to highlight the

key role of the wc ratio in leading asset pricing models. Interestingly, the external habit model

of Campbell and Cochrane (1999) and the long-run risk model of Bansal and Yaron (2004) have

very different predictions for the wealth-consumption ratio despite their similar predictions for

equity returns.1,2 The long-run risk (LRR) model generates the observed difference between the

risk-return characteristics of equity and total wealth because equity (dividends) is more exposed

1Early contributions in the habit literature include Abel (1990), Constantinides (1990), Ferson and Constantinides
(1991), Abel (1999). See Menzly, Santos, and Veronesi (2004) and Wachter (2006) for more recent contributions.
Verdelhan (2007) explores the international finance implications. Chen and Ludvigson (2007) estimate the habit
process for a class of EH models.

2Hansen, Heaton, and Li (2008), Parker and Julliard (2005) and Malloy, Moskowitz, and Vissing-Jorgensen
(2009) measure long-run risk based on leads and long-run impulse responses of consumption growth. Bansal, Kiku,
and Yaron (2006) estimate the long-run risk model. Piazzesi and Schneider (2006) study its implications for the
yield curve, Bansal, Dittmar, and Lundblad (2005) study the implications for the cross-section of equity portfolios,
Benzoni, Goldstein, and Collin-Dufresne (2005) for credit spreads, and Colacito and Croce (2005) and Bansal and
Shaliastovich (2007) for international finance. Martin (2007) allows for higher order moments in consumption
growth. Chen, Favilukis, and Ludvigson (2008) estimate a model with recursive preferences, while Bansal, Gallant,
and Tauchen (2007) estimate both long-run risk and external habit models, and Yu (2007) compares correlations
between consumption growth and stock returns across the two models.
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to long-run cash flow risk than total wealth (consumption). It generates a much lower and less

volatile wealth-consumption ratio than the price-dividend ratio on equity. The average wealth-

consumption ratio in the benchmark LRR model is 87. This is the exact same value we estimate

in the data; it shows that our numbers are consistent with a standard general equilibrium asset

pricing model. On the predictability side, the LRR model delivers less predictability in total wealth

returns than in equity returns, and most of the return predictability comes through the risk-free

rate. These properties are also consistent with the data. However, the LRR model generates too

much consumption growth predictability. On the other hand, the external habit (EH) model has

an average wealth-consumption ratio of only 12. The low wealth-consumption ratio and associated

high consumption risk premium arise because the consumption claim and equity have very similar

risk characteristics in this model. On the predictability side, the variance decomposition of the wc

ratio replicates the low consumption growth predictability of the data. The EH model generates

substantial time variation in expected equity returns. Because of the similarity of the consumption

and dividend claims, this translates into substantial total wealth (excess) return predictability.

Our results suggest that DAPMs should aim to generate different properties for total wealth, the

price of a claim to consumption, and equity, the price of a claim to dividends.

Our approach is closely related to earlier work by Bekaert, Engstrom, and Grenadier (2005),

who combine features of the LRR and EH model into an affine pricing model that is calibrated to

match moments of stock and bond returns. In contemporaneous work, Lettau and Wachter (2007)

also match moments in stock and bond markets with an affine model, while Campbell, Sunderam,

and Viceira (2007) study time-varying correlations between bond and stock returns in a quadratic

framework. The focus of our work is on measuring the wealth-consumption (wc) ratio. Lettau and

Ludvigson (2001a, 2001b) measure the cointegration residual between log consumption, broadly-

defined financial wealth, and labor income, cay. The construction of cay assumes a constant price-

dividend ratio on human wealth. Therefore, human wealth does not contribute to the volatility

of the wc ratio. Also, it uses the aggregate household wealth data we try to avoid because of

the measurement issues mentioned above. Shiller (1995), Campbell (1996), and Jagannathan and

Wang (1996) make assumptions about the properties of expected human wealth returns which

are not born out by our estimation exercise. Lustig and Van Nieuwerburgh (2007b) back out the

properties of human wealth returns that are consistent with observed consumption growth in the

context of the LRR model. Finally, Alvarez and Jermann (2004) estimate the consumption risk

premium in order to back out the cost of business cycles from asset prices. Their log SDF is linear

in aggregate consumption growth and the market return, and their model is calibrated to match

only the unconditional equity premium. Their model does not allow for time-varying risk premia.

They estimate a much smaller consumption risk premium of 0.2%, and hence a much higher average

wealth-consumption ratio. We show that allowing for time-variation in risk premia and matching
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conditional moments of bond and stock returns raises the estimated consumption risk premium by

2% and lowers the wealth-consumption ratio substantially.

We start the paper by measuring the wealth-consumption ratio in the data. Section 1 describes

the state variables and their law of motion, while Section 2 shows how we pin down the risk price

parameters. Section 3 then describes the estimation results. Section 4 shows that the wealth-

consumption ratio estimates are robust to different specifications of the state variables. Section 5

studies the properties of the wealth-consumption ratio in the LRR and EH models.

1 Measuring the Wealth-Consumption Ratio in the Data

Our objective is to estimate the wealth-consumption ratio and the return on total wealth, defined

in Section 1.1. Section 1.2 argues that this can be done with a minimal set of assumptions. Section

1.3 describes the state variables and their VAR dynamics.

1.1 Definitions

We start from the aggregate budget constraint:

Wt+1 = Rc
t+1(Wt − Ct). (1)

The beginning-of-period (or cum-dividend) total wealth Wt that is not spent on aggregate con-

sumption Ct earns a gross return Rc
t+1 and leads to beginning-of-next-period total wealth Wt+1.

The return on a claim to aggregate consumption, the total wealth return, can be written as

Rc
t+1 =

Wt+1

Wt − Ct
=

Ct+1

Ct

WCt+1

WCt − 1
.

Aggregate consumption is the sum of non-durable and services consumption, which includes housing

services consumption, and durable consumption. In what follows, we use lower-case letters to

denote natural logarithms. We start by using the Campbell (1991) approximation of the log

total wealth return rc
t = log(Rc

t) around the long-run average log wealth-consumption ratio Ac
0 ≡

E[wt − ct].
3

rc
t+1 = κc

0 + ∆ct+1 + wct+1 − κc
1wct, (2)

where we define the log wealth-consumption ratio wc as

wct ≡ log

(

Wt

Ct

)

= wt − ct

3Throughout, variables with a subscript zero denote unconditional averages.
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The linearization constants κc
0 and κc

1 are non-linear functions of the unconditional mean wealth-

consumption ratio Ac
0:

κc
1 =

eAc
0

eAc
0 − 1

> 1 and κc
0 = − log

(

eAc
0 − 1

)

+
eAc

0

eAc
0 − 1

Ac
0. (3)

1.2 Valuing Human Wealth

The total wealth portfolio includes human wealth. An important question is under what assump-

tions one can measure the returns on human wealth, and by extension on total wealth, from the

returns on traded assets like bonds and stocks. The most direct way to derive the aggregate budget

constraint in (1) is by assuming that the representative agent can trade all wealth, including her

human wealth. Starting with Campbell (1993), the literature has made this assumption explicitly.

In reality, households cannot directly trade claims on their labor income and the securities they do

trade do not fully hedge idiosyncratic labor income risk. They also bear idiosyncratic risk in the

form of housing wealth or private business wealth. Finally, a substantial fraction of households do

not participate in the stock market but only own a bank account. We argue that the tradeability

assumption on human wealth is not necessary. Our measurement of total wealth is valid in a

setting with heterogeneous agents who face non-tradeable, non-insurable labor income risk, as well

as potentially binding borrowing constraints. Appendix A contains the heterogeneous agent model

while we report here the general argument.

Let aggregate consumption Ct(z
t) and aggregate labor income Lt(z

t) depend on the history of

the aggregate shocks z ∈ Z, zt = {z0, z1, · · · , zt}. Households not only face aggregate shocks z,

but also idiosyncratic shocks which affect their labor income share of the aggregate endowment.

For most of the paper, we assume that the traded asset payoffs span the aggregate shocks, but not

the idiosyncratic shocks. The traded asset space is:

X t = RZ×t

We take as our stochastic discount factor (SDF) the projection of any candidate SDF Mt on the

space of traded payoffs:
Π∗

t

Π∗
t−1

= proj (Mt|Xt) .

This SDF is unique in the pay-off space.4 We let Pt be the arbitrage-free price of an asset with

non-negative stochastic payoffs {Di
t} that are measurable w.r.t zt:

P i
t = Et

∞
∑

τ=t

Π∗
τ

Π∗
t

Di
τ . (4)

4This requires free portfolio formation and the law of one price (Cochrane 2001).
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Proposition 1. In a generic incomplete markets economy with market segmentation and spanning

of aggregate shocks, the projection of the SDF on the space of traded payoffs can be used to value

a claim to aggregate labor income and a claim to aggregate consumption:

P L
t = E0

[

∞
∑

t=0

Π∗
t

Π∗
0

Lt

]

, Wt = E0

[

∞
∑

t=0

Π∗
t

Π∗
0

Ct

]

.

The resulting prices are human wealth and total wealth, respectively.

This result follows because aggregate consumption and aggregate labor income only depend on

aggregate shocks and hence belong to the space of traded payoffs, given the spanning assumption.

We note that this pricing result does not apply to household consumption and household labor

income, which contain idiosyncratic shocks. The spanning assumption implies that the part of

measured aggregate consumption and labor income that is orthogonal to the traded payoffs is

measurement error and is not priced:

Et

[(

Ct+1 − proj
(

Ct+1|Xt+1

))

Π∗
t+1

]

= 0, Et

[(

Lt+1 − proj
(

Lt+1|X t+1

))

Π∗
t+1

]

= 0,

where X t+1 includes the risk-free asset and hence the measurement error is mean zero. A key

implication of Proposition 1 is that there cannot be a missing risk factor that only appears in the

valuation of non-traded assets, and not in the value of traded assets.

The appendix proves this proposition for an environment where heterogeneous agents face labor

income risk, which they cannot trade away because of market incompleteness. We can allow some

of these households to trade only a limited menu of assets. For example, they could just have access

to a one-period bond. As long as there exists a non-zero set of households who trade in securities

that are contingent on the aggregate state of the economy (stocks and long-term bonds) and in

the one-period bond, we can (i) recover the aggregate budget constraint in equation (1) from the

household budget constraints, and (ii) the claim to aggregate labor income and consumption is

priced off the same SDF that prices traded assets such as stocks and bonds. In other words, if there

exists a SDF that prices stocks and bonds, it also prices aggregate labor income and consumption.

The aggregate risk spanning assumption seems reasonable, especially because it is satisfied in

a large class of general equilibrium asset pricing models, including the ones in Section 5. We find

it hard to conceive of shocks to aggregate consumption that do not affect prices of any traded

assets. For example, recessions or financial crises certainly affect asset prices. Nevertheless, if we

relax the spanning-of-aggregate-uncertainty assumption, the part of aggregate consumption and

labor income that is orthogonal to traded payoffs, may have a non-zero price. Section 4.1 studies

good-deal bounds on the consumption risk premium. We find that there is not enough non-traded

consumption risk to alter our conclusions without violating reasonable good-deal bounds.
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1.3 Model

State Vector We assume that the following state vector describes the aggregate dynamics of

the economy:

zt = [CPt, y
$
t (1), πt, y

$
t (20) − y$

t (1), pdm
t , rm

t , rfmpc
t , rfmpy

t , ∆ct, ∆lt]
′.

The first four elements represent the bond market variables in the state, the next four represent

the stock market variables, the last two variables represent the cash flows. The state contains in

order of appearance: the Cochrane and Piazzesi (2005) factor, the nominal short rate (yield on

a 3-month Treasury bill), realized inflation, the spread between the yield on a 5-year Treasury

note and a 3-month Treasury bill, the log price-dividend ratio on the CRSP stock market, the real

return on the CRSP stock market, the real return on a factor mimicking portfolio for consumption

growth, the real return on a factor mimicking portfolio for labor income growth, real per capita

consumption growth, and real per capita labor income growth. This state variable is observed

at quarterly frequency from 1952.I until 2006.IV (220 observations).5 Appendix B describes data

sources and definitions in detail. All of the variables represent asset prices we want to match or

cash flows we need to price (consumption and labor income growth).

The bond risk factor and the factor mimicking portfolios deserve further explanation. Cochrane

and Piazzesi (2005) show that a linear combination of forward rates is a powerful predictor of one-

year excess bond returns. Following their procedure, we construct 1- through 5-year forward rates

from our quarterly nominal yield data, as well as one-year excess returns on 2- through 5-year

nominal bonds. We regress the average of the 2- through 5-year excess return on a constant,

the one-year yield, and the 2- through 5-year forward rates. The regression coefficients display a

tent-shaped function, very similar to the one reported in Cochrane and Piazzesi (2005). The state

variable CPt is the fitted value of this regression.

Since the aggregate stock market portfolio only has a modest 26% correlation with consumption

growth, we use additional information from the cross-section of stocks to learn about the consump-

tion and labor income claims. After all, our goal is to price a claim to aggregate consumption and

labor income using as much information as possible from traded assets. We use the 25 size- and

value-portfolio returns to form a consumption growth factor mimicking portfolio (fmp) and a labor

income growth fmp.6 The consumption (labor income) growth fmp has a 43% (50%) correlation

with consumption (labor income) growth. These two fmp returns have a mutual correlation of

70%. The fmp returns are lower on average than the stock return (2.32% and 4.70% versus 7.35%

5Many of these state variables have a long tradition in finance as predictors of stock and bond returns. For
example, Ferson and Harvey (1991) study the yield spread, the short rate and consumption growth.

6We regress real per capita consumption growth on a constant and the returns on the 25 size and value portfolios
(Fama and French 1992). We then form the fmp return series as the product of the 25 estimated loadings and the
25 portfolio return time series. We follow the same procedure for the labor income growth fmp.
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per annum) and are less volatile (6.66% and 13.55% versus 16.68% volatility per annum).7

State Evolution Equation We assume that this N × 1 vector of state variables follows a

Gaussian VAR with one lag:

zt = Ψzt−1 + Σ
1
2 εt,

with εt ∼ i.i.d.N (0, I) and Ψ is a N×N matrix. The vector z is demeaned. The covariance matrix

of the innovations is Σ. We use a Cholesky decomposition of the covariance matrix, Σ = Σ
1
2 Σ

1
2
′.

Σ
1
2 has non-zero elements only on and below the diagonal. The Cholesky decomposition makes

the order of the variables in z important. For example, the innovation to consumption growth is a

linear combination of its own (orthogonal) innovation and the innovations to all state variables that

precede it. Consumption and labor income growth are placed after the bond and stock variables

because we use the prices of risk associated with the first eight innovations to value the consumption

and labor income claims.

To keep the model parsimonious, we impose additional structure on the companion matrix Ψ.

Only the bond market variables -first four- govern the dynamics of the nominal term structure. For

example, this structure allows for the CP factor to predict future bond yields, or for the short-term

yield and inflation to move together; Ψ11 below is a 4 × 4 matrix of non-zero elements. It also

captures that stock returns, the price-dividend ratio on stocks, or the factor-mimicking portfolio

returns do not predict future yields; Ψ12 is a 4×4 matrix of zeroes. The second block describes the

dynamics of the aggregate stock market price-dividend ratio and return, which we assume depends

not only on their own lags but also on the the bond market variables. This allows for aggregate

stock return predictability by the short rate, the yield spread, inflation, the CP factor, the price

dividend-ratio, and lagged aggregate returns, all of which have been shown in the empirical asset

pricing literature. The elements Ψ21 and Ψ22 are 2 × 4 and 2 × 2 matrices of non-zero elements.

The fmp returns have the same predictability structure as the aggregate stock return, so that Ψ31

and Ψ32 are 2× 4 and 2× 2 matrices of non-zero elements. In our benchmark model, consumption

and labor income growth do not predict future bond and stock market variables; Ψ14, Ψ24, and Ψ34

are all matrices of zeroes. Finally, the VAR structure allows for rich cash flow dynamics: expected

consumption growth depends on the first nine state variables and expected labor income growth

depends on all lagged state variables; Ψ41, Ψ42, and Ψ43 are 2 × 4, 2 × 2, and 2 × 2 matrices of

non-zero elements, and Ψ44 is a 2× 2 matrix with one zero in the upper-right corner.8 In sum, our

7Interestingly, the same correlation for dividend growth is only 38%. In the estimation, we ensure that our model
matches the equity premium. Hence, there is no sense in which the low correlation of consumption growth with
returns precludes a high consumption risk premium.

8Several of the state variables have been shown to predict consumption growth before. For example, Harvey
(1988) finds that expected real interest rates forecast future consumption growth.
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benchmark Ψ matrix has the following block-diagonal structure:

Ψ =













Ψ11 0 0 0

Ψ21 Ψ22 0 0

Ψ31 Ψ32 0 0

Ψ41 Ψ42 Ψ43 Ψ44













.

In section 4, we explore various alternative restrictions on Ψ. These do not materially alter the dy-

namics of the estimated wealth-consumption ratio. We estimate Ψ by OLS, equation-by-equation,

and we form each innovation as follows zt+1(·)−Ψ(·, :)zt. We compute their (full rank) covariance

matrix Σ.

To fix notation, we denote aggregate consumption growth by ∆ct = µc + e′czt, where µc denotes

the unconditional mean consumption growth rate and ec is N × 1 and denotes the column of an

N × N identity matrix that corresponds to the position of ∆c in the state vector. The nominal

1-quarter rate is y$
t (1) = y$

0(1)+ e′ynzt, where y$
0(1) is the unconditional average nominal short rate

and eyn selects the second column of the identity matrix. Likewise, πt = π0 + e′πzt is the (log)

inflation rate between t − 1 and t with unconditional mean π0, etc.

Stochastic Discount Factor We adopt a specification of the SDF that is common in the no-

arbitrage term structure literature, following Ang and Piazzesi (2003). The nominal pricing kernel

M$
t+1 = exp(m$

t+1) is conditionally log-normal, where lower case letters continue to denote logs:

m$
t+1 = −y$

t (1) −
1

2
Λ′

tΛt − Λ′
tεt+1. (5)

The real pricing kernel is Mt+1 = exp(mt+1) = exp(m$
t+1 + πt+1).

9 Each of the innovations in the

vector εt+1 has its own market price of risk. The N × 1 market price of risk vector Λt is assumed

to be an affine function of the state:

Λt = Λ0 + Λ1zt,

for an N × 1 vector Λ0 and a N × N matrix Λ1. The matrix Λ1,11 contains the bond risk prices,

Λ1,21 and Λ1,22 contain the aggregate stock risk prices, and Λ1,31 and Λ1,32 the fmp risk prices.

Importantly, every restriction on Ψ implies a restriction on the elements of the market price of

risk we estimate below. Because only bond variables drive the expected returns on bonds, only

shocks to the bond variables can affect bond risk premia. For example, the assumption that

short term interest rate dynamics do not depend on the price-dividend ratio in the stock market

9It also is conditionally Gaussian. Note that the consumption-CAPM is a special case of this where mt+1 =
log β − αµc − αηt+1 and ηt+1 denotes the innovation to real consumption growth and α the coefficient of relative
risk aversion.
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enables us to set the element on the second row and fifth column of Λ1 equal to zero. Likewise,

because the last four variables in the VAR cannot affect expected stock and fmp returns, their

(orthogonalized) shocks do not affect risk premia on stocks. Finally, under our assumption of

spanning of aggregate uncertainty, the part of the shocks to consumption growth and labor income

growth that is orthogonal to the bond and stock innovations is not priced. Thus, Λ1,41, Λ1,42, Λ1,43,

and Λ1,44 are zero matrices. This leads to the following structure for Λ1:

Λ1 =













Λ1,11 0 0 0

Λ1,21 Λ1,22 0 0

Λ1,31 Λ1,32 0 0

0 0 0 0













,

We impose corresponding zero restrictions on the mean risk premia in the vector Λ0: Λ0 =

[Λ0,1, Λ0,2, Λ0,3 0]′, where Λ0,1 is 4 × 1, and Λ0,2 and Λ0,3 are 2 × 1 vectors. We provide fur-

ther details on Λ0 and Λ1 below. In Section 4.1, we relax the spanning assumption. We derive an

upper bound on the consumption risk premium by increasing the risk price for the consumption

growth innovation in Λ0,4 > 0.

The Wealth-Consumption Ratio and Total Wealth Returns In this exponential-Gaussian

setting, the log wealth-consumption ratio is an affine function of the state variables:

Proposition 2. The log wealth-consumption ratio is a linear function of the (demeaned) state

vector zt

wct = Ac
0 + Ac′

1 zt,

where the mean log wealth-consumption ratio Ac
0 is a scalar and Ac

1 is the N×1 vector which jointly

solve:

0 = κc
0 + (1 − κc

1)A
c
0 + µc − y0(1) +

1

2
(ec + Ac

1)
′Σ(ec + Ac

1) − (ec + Ac
1)

′Σ
1
2

(

Λ0 − Σ
1
2
′eπ

)

(6)

0 = (ec + eπ + Ac
1)

′Ψ − κc
1A

c′
1 − e′yn − (ec + eπ + Ac

1)
′Σ

1
2 Λ1. (7)

In equation (6), y0(1) denotes the average real one-period bond yield. The proof uses the Euler

equation for the (linear approximation of the) total wealth return in equation (2) and is detailed in

Appendix C.1. Once we have estimated the market prices of risk Λ0 and Λ1 (Section 2), equations

(6) and (7) allow us to solve for the mean log wealth-consumption ratio (Ac
0) and its dependence on

the state (Ac
1). This is a system of N + 1 non-linear equations in N + 1 unknowns; it is non-linear

because of equation (3) and can easily be solved numerically.

This solution and the total wealth return definition in (2) imply that the log real total wealth

11



return equals:

rc
t+1 = rc

0 + [(ec + Ac
1)

′Ψ − κc
1A

c′
1 ] zt + (e′c + Ac′

1 )Σ
1
2 εt+1, (8)

rc
0 = κc

0 + (1 − κc
1)A

c
0 + µc. (9)

Equation (9) defines the average total wealth return rc
0. The conditional Euler equation for the

total wealth return, Et[Mt+1R
c
t+1] = 1, implies that the conditional consumption risk premium

satisfies:

Et

[

rc,e
t+1

]

≡ Et

[

rc
t+1 − yt(1)

]

+
1

2
Vt[r

c
t+1] = −Covt

[

rc
t+1, mt+1

]

(10)

= (ec + Ac
1)

′Σ
1
2

(

Λ0 − Σ
1
2
′eπ

)

+ (ec + Ac
1)

′Σ
1
2 Λ1zt

where Et

[

rc,e
t+1

]

denotes the expected log return on total wealth in excess of the real risk-free rate

yt(1), and corrected for a Jensen term. The first term on the last line is the average consumption

risk premium; it solves equation (6). This is a key object of interest which measures how risky

total wealth is. The second mean-zero term governs the time variation in the consumption risk

premium; it solves equation (7).

The structure we impose on Ψ and on the market prices of risk is not overly restrictive. A

Campbell-Shiller decomposition of the wealth-consumption ratio into an expected future con-

sumption growth component (∆cH
t ) and an expected future total wealth returns component (rH

t ),

detailed in Appendix C, delivers the following expressions:

∆cH
t = e′cΨ(κc

1I − Ψ)−1zt and rH
t = [(ec + Ac

1)
′Ψ − κc

1A
c′
1 ] (κc

1I − Ψ)−1zt.

Despite the restrictions we impose on Ψ and Λt, both the cash flow component and the discount

rate component depend on all the stock and the bond components of the state. In the case of cash

flows, this follows from the fact that expected consumption growth depends on all lagged stock and

bond variables in the state. In the case of discount rates, there is additional dependence through

Ac
1, which itself is a function of the first nine state variables. The cash flow component does not

directly depend on the risk prices (other than through κc
1) while the discount rate component

depends on all risk prices of stocks and bonds through Ac
1. This flexibility implies that our model

can accommodate a large consumption risk premium; when the covariances between consumption

growth and the other aggregate shocks are large and/or when the unconditional risk prices in Λ0

are sufficiently large. In fact, in our estimation, we choose Λ0 large enough to match the equity

premium. A low estimate of the consumption risk premium and hence a high wealth-consumption

ratio are not a foregone conclusion.
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2 Estimating the Market Prices of Risk

To compute the wealth-consumption ratio we need estimates of the market price of risk parameters.

We identify Λ0 and Λ1 from the moments of bond yields and stock returns. The estimation proceeds

in four stages.

1. In a first step, we estimate the risk prices in the bond market block Λ0,1 and Λ1,11 by matching

the two yields in the state vector. Because of the block diagonal structure, we can estimate

these separately.

2. In a second step, we estimate the risk prices in the stock market block Λ0,2, Λ1,21, and Λ1,22

jointly with the bond risk prices, taking the estimates from step 1 as starting values.

3. In a third step, we estimate the fmp risk prices in the factor mimicking portfolio block Λ0,3,

Λ1,31, and Λ1,32 taking as given the bond and stock risk prices.

4. Finally, we impose over-identifying restrictions on the estimation, such as matching addi-

tional nominal yields, imposing the present-value relationship for stocks, and imposing a

human wealth share between zero and one. We re-estimate all 5 parameters in Λ0 and all 26

parameters in Λ1, starting with the estimates from the third step.

The VAR parameter estimates as well as the estimates for the market prices of risk from the last-

stage estimation are listed at the end of Appendix C. We now provide more detail on each of these

steps.

2.1 Block 1: Bonds

The first four elements in the state, the Cochrane-Piazzesi factor, the nominal 3-month T-bill yield,

the inflation rate, and the yield spread (5-year T-bond minus the 3-month T-bill yield), govern

the term structure of interest rates. Together they deliver a four-factor term structure model. In

contrast to most of the term structure literature, all factors are observable. The price of a τ -year

nominal zero-coupon bond satisfies:

P $
t (τ) = Et

[

em$
t+1+log P $

t+1(τ−1)
]

.

This defines a recursion with P $
t (0) = 1. The corresponding bond yield is y$

t (τ) = − log(P $
t (τ))/τ .

From Ang and Piazzesi (2003), we know that bond yields in this class of models are an affine

function of the state: y$
t (τ) = −A$(τ)

τ
− B$(τ)′

τ
zt. Appendix C.3 formally states and proves this

result and provides the recursions for A$(τ) and B$(τ). Given the block-diagonal structure of Λ1

and Ψ, only the risk prices in Λ0,1 and Λ1,11 affect the yield loadings. That is why, in a first step,
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we can estimate the bond block separately from the stock block. We do so by matching the time

series for the slope of the yield curve and the CP risk factor.

First, we impose that the model prices the 1-quarter and the 20-quarter nominal bond correctly.

The condition A$(1) = −y$
0(1) guarantees that the one-quarter nominal yield is priced correctly

on average, and the condition B$(1) = −eyn guarantees that the nominal short rate dynamics are

identical to those in the data. The short rate and the yield spread are in the state, which implies

the following expression for the 20-quarter bond yields:

y$
t (20) = y$

0(20) + (e′yn + e′spr)zt.

Matching the 20-quarter yield implies two sets of parameter restrictions:

−1

20
A$(20) = y$

0(20), (11)

−1

20

(

B$(20)
)′

= (eyn + espr)
′. (12)

Equation (11) imposes that the model matches the unconditional expectation of the 5-year nominal

yield y$
0(20). This provides one restriction on Λ0; we choose to let it identify its second element.

To match the dynamics of the 5-year yield, we need to free up one row in the bond block of the risk

price matrix Λ1,11; we choose to identify the second row in Λ1,11. We impose the restrictions (11)

and (12) by minimizing the summed square distance between model-implied and actual yields.

Second, we match the time-series of the CP risk factor (CP0 + e′cpzt) in order to replicate the

dynamics of bond risk premia in the data. We follow the exact same procedure to construct the

CP factor in the model as in the data, using the model-implied yields to construct forward rates.

By matching the mean of the factor in model and data, we can identify one additional element of

Λ0; we choose the fourth element. By matching the dynamics, we can identify four more elements

in Λ1,11, one in each of the first four columns; we choose to identify the fourth row in Λ1,11.
10 We

impose the restriction that the CP factor is equal in model and data by minimizing their summed

squared distance. We now have identified two elements (rows) in Λ0,1 (in Λ1,11). The first and

third elements (rows) in Λ0,1 (in Λ1,11) are zero.

2.2 Block 2: Stocks

In the second step, we turn to the estimation of the risk price parameters in Λ1,21 and Λ1,22. We

do so by imposing that the model prices excess stock returns correctly; we minimize the summed

10While the choice of identifying the second and fourth rows is innocuous, it seems natural to associate the prices
or risk with the two traded bond yields (short yield and yield spread).
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squared distance between VAR- and SDF-implied excess returns:

EV AR
t [rm,e

t+1] = rm
0 − y0(1) +

1

2
e′rmΣerm +

(

(erm + eπ)′ Ψ − e′yn

)

zt,

ESDF
t [rm,e

t+1] = e′rmΣ
1
2

(

Λ0 − Σ
1
2
′eπ

)

+ (erm + eπ)′ Σ
1
2 Λ1zt,

where rm
0 is the unconditional mean stock return and erm selects the stock return in the VAR.

Matching the unconditional equity risk premium in model and data identifies one additional element

in Λ0; we choose the sixth element (the second element of Λ0,2). Matching the risk premium

dynamics allows us to identify the second row in Λ1,21 (4 elements) and the second row in Λ1,22 (2

more elements).11 These six elements in Λ1,22 must all be non-zero because expected returns in the

VAR depend on the first six state variables. The first element of Λ0,2 and the first rows of Λ1,21

and Λ1,22) are zero.

2.3 Block 3: Factor Mimicking Portfolios

In addition, we impose that the risk premia on the fmp coincide between the VAR and the SDF

model. As is the case for the aggregate stock return, this implies one additional restriction on Λ0

and N additional restrictions on Λ1:

EV AR
t [rfmp,e

t+1 ] = rfmp
0 − y0(1) +

1

2
e′fmpΣefmp +

(

(efmp + eπ)′Ψ − e′yn

)

zt,

ESDF
t [rfmp,e

t+1 ] = e′fmpΣ
1
2

(

Λ0 − Σ
1
2
′eπ

)

+ (efmp + eπ)′Σ
1
2 Λ1zt,

where rfmp
0 is the unconditional average fmp return. There are two sets of such restrictions, one

set for the consumption growth and one set for the labor income growth fmp. Matching average

expected fmp returns and their dynamics identifies both elements of Λ0,3. Matching the risk

premium dynamics allows us to identify both rows of in Λ1,31 (4 elements) and Λ1,32 (4 more

elements).

2.4 Over-identifying Restrictions

The stock and bond moments described thus far exactly identify the 5 elements of Λ0 and the 26

elements of Λ1. In other words, given the structure of Ψ, they are all strictly necessary to match

the levels and dynamics of bond yields and stock returns. For theoretical as well as for reasons of

fit, we impose several additional constraints. To avoid over-parametrization, we choose not to let

these constraints identify additional market price of risk parameters.

11Choosing to identify the sixth element (row) of Λ0 (Λ1) instead of the fifth row is an innocuous choice. But
it is more natural to associate the prices of risk with the traded stock return rather than with the non-traded
price-dividend ratio.
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Additional Nominal Yields We minimize the squared distance between the observed and

model-implied yields on nominal bonds of maturities 1, 3, 10, and 20 years. These additional

yields are useful to match the dynamics of long-term yields. This will be important given that the

dynamics of the wealth-consumption ratio turn out to be largely driven by long yields. We impose

several other restrictions that force the term structure to be well-behaved at long horizons.12

Price-Dividend Ratio While we imposed that expected excess equity returns coincide between

the VAR and the SDF model, we have not yet imposed that the return on stocks reflects cash flow

risk in the equity market. To do so, we require that the price-dividend ratio in the model, which

is the expected present discounted value of all future dividends, matches the price-dividend ratio

in the data, period by period.13 To calculate the price-dividend ratio on equity, we use the fact

that it must equal the sum of the price-dividend ratios on dividend strips of all horizons (Wachter

(2005)):

P m
t

Dm
t

= epdm
t =

∞
∑

τ=0

P d
t (τ), (13)

where P d
t (τ) denotes the price of a τ period dividend strip divided by the current dividend. A

dividend strip of maturity τ pays 1 unit of dividend at period τ , and nothing in the other periods.

The strip’s price-dividend ratio satisfies the following recursion:

P d
t (τ) = Et

[

emt+1+∆dm
t+1+log(P d

t+1(τ−1))
]

,

with P d
t (0) = 1. Aggregate dividend growth ∆dm is obtained from the dynamics of the pdm ratio

and the stock return rm through the definition of the stock return. Appendix C.4 formally states

and proves that the log price-dividend ratios on dividend strips are affine in the state vector:

log
(

P d
t (τ)

)

= Am(τ)+Bm′(τ)zt. It also provides the recursions for Am(τ) and Bm(τ). See Bekaert

12We impose that the average nominal and real yields at maturities 200, 500, 1000, and 2500 quarters are positive,
that the average nominal yield is above the average real yield at these same maturities, and that the nominal and
real yield curves flatten out. The last constraint is imposed by penalizing the algorithm for choosing a 500-200
quarter yield spread that is above 3% per year and a 2500-500 quarter yield spread that is above 2% per year.
Together, they guarantee that the infinite sums we have to compute are well-behaved. None of these additional
term structure constraints are binding at the optimum.

13This constraint is not automatically satisfied from the definition of the stock return: rm
t+1 = κm

0 + ∆dm
t+1 +

κm
1 pdm

t+1 − pdm
t

. The VAR implies a model for expected return and the expected log price-dividend ratio dynamics,
which implies expected dividend growth dynamics through the definition of a return. These dynamics are different
from the ones that would arise if the VAR contained dividend growth and the price-dividend ratio instead. The
reason is that the state vector in the first case contains rt and pdm

t
, while in the second case it contains ∆dm

t
and

pdm
t . For the two models to have identical implications for expected returns and expected dividend growth, one

would need to include pdm
t−1 as an additional state variable. We choose to include returns instead of dividend growth

rates because the resulting properties for expected returns and expected dividend growth rates are more desirable.
For example, the two series have a positive correlation of 20%, a number similar to what Lettau and Ludvigson
(2005) estimate. See Lettau and Van Nieuwerburgh (2007), Ang and Liu (2007), and Binsbergen and Koijen (2007)
for an extensive discussion of the present-value constraint.

16



and Grenadier (2001) for a similar result. Using (13) and the affine structure, we impose the

restriction that the price-dividend ratio in the model equals the one in the data by minimizing

their summed squared distance. Imposing this constraint not only affects the price of cash flow

risk (the sixth row of Λt) but also the real term structure of interest rates (the second and fourth

rows of Λt). Real yields turn out to play a key role in the valuation of real claims such as the claim

to real dividends (equity) or the claim to real consumption (total wealth).14 As such, the price-

dividend ratio restriction turns out to be useful in sorting out the decomposition of the nominal

term structure into an inflation component and the real term structure.

Human Wealth Share The same way we priced a claim to aggregate consumption, we price

a claim to aggregate labor income. We impose that the conditional Euler equation for human

wealth returns is satisfied and obtain a log price-dividend ratio which is also affine in the state:

pdl
t = Al

0 + Al
1zt. (See Corollary 5 in Appendix C.1.) By the same token, the conditional risk

premium on the labor income claim is given by:

Et

[

rl,e
t+1

]

= (e∆l + Al
1)

′Σ
1
2

(

Λ0 − Σ
1
2
′eπ

)

+ (e∆l + Al
1)

′Σ
1
2 Λ1zt.

We use µl to denote unconditional labor income growth and e∆l selects labor income growth

in the VAR. We also impose that aggregate labor income grows at the same rate as aggregate

consumption (µl = µc).
15 We define the labor income share, list, as the ratio of aggregate labor

income to aggregate consumption. It is 0.855 on average in our sample. The human wealth share

is the ratio of human wealth to total wealth; it is a function of the labor income share and the

price-dividend ratios on human and total wealth:

hwst = list
epdl

t − 1

ewct − 1
.

We impose on the estimation that hwst lies between 0 and 1 at each time t. At the optimum, this

constraint is satisfied.

14Appendix C.3 shows that real bond yields yt(τ), denoted without the $ superscript, are also affine in the state,
and provides the recursions for the coefficients.

15We rescale the level of consumption to end up with the same average labor income share (after imposing µl = µc)
as in the data (before rescaling). This transformation does not affect growth rates. The assumption is meant to
capture that labor income and consumption cannot diverge in the long run. In Section 4, we estimate a model where
we impose cointegration between consumption and labor income by including the log consumption-labor income
ratio c − l ratio in place of ∆l in the state vector. As explained below, we impose that the human wealth share
stays between 0 and 1 in all our estimations.
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3 Results

Before studying the estimation results for the wealth-consumption ratio, we check that the model

does an adequate job describing the dynamics of the bond yields and of stock returns.

3.1 Model Fit for Bonds and Stocks

The model fits the nominal term structure of interest rates reasonably well. We match the 3-

month yield exactly . The first two panels of Figure 1 plot the observed and model-implied average

nominal yield curve, while Figure 2 plots the entire time-series for the 1-quarter, 1-, 3-, 5-, 10-,

and 20-year yields. For the 5-year yield, which is part of the state vector, the average pricing error

is -5 basis points (bp) per year. The annualized standard deviation of the pricing error is only 13

bp, and the root mean squared error (RMSE) is 26 bp. For the other four yields, the mean annual

pricing errors range from -18 bp to +61 bp, the volatility of the pricing errors range from 10-60

bp, and the RMSE from 24-134 bp.16 While these pricing errors are somewhat higher than the

ones produced by term-structure models, our model with only 8 parameters in the term structure

block of Λ1 and no latent variables does a good job capturing the level and dynamics of long yields.

Furthermore, most of the term structure literature prices yields of maturities of 5-years and less,

while we also price the 10-year and 20-year yields, because these matter for pricing long-duration

assets. On the dynamics, the annual volatility of the nominal yield on the 5-year bond is 1.36% in

the data and 1.29% in the model.

[Figure 1 about here.]

[Figure 2 about here.]

The model also does a good job capturing the bond risk premium dynamics. The right panel of

Figure 3 shows a close fit between the Cochrane-Piazzesi factor in model and data. It is a measure

of the 1-quarter nominal bond risk premium. The left panel shows the 5-year nominal bond risk

premium, defined as the difference between the 5-year yield and the average expected future short

term yield averaged over the next 5 years. This long-term measure of the bond risk premium is

also matched closely by the model, in large part due to the fact that the long-term and short-term

bond risk premia have a correlation of 90%.

[Figure 3 about here.]

16Note that the largest errors occur on the 20-year yield, which is unavailable between 1986.IV and 1993.II. The
standard deviation and RMSE on the 10-year yield are only half as big as on the 20-year yield.
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The model also manages to capture the dynamics of stock returns quite well. The bottom

panel of Figure 4 shows that the model matches the equity risk premium that arises from the VAR

structure. The average equity risk premium (including Jensen term) is 6.90% per annum in the

data, and 7.06% in the model. Its annual volatility is 9.54% in the data and 9.62% the model.

The top panel shows the dynamics of the price-dividend ratio on the stock market. The model,

where the price-dividend ratio reflects the present discounted value of future dividends, replicates

the price-dividend ratio in the data quarter by quarter.

[Figure 4 about here.]

As in Ang, Bekaert, and Wei (2007), the long-term nominal risk premium on a 5-year bond is

the sum of a real rate risk premium (defined the same way for real bonds as for nominal bonds)

and the inflation risk premium. The right panel of Figure 5 decomposes this long-term bond risk

premium (solid line) into a real rate risk premium (dashed line) and an inflation risk premium

(dotted line). The real rate risk premium becomes gradually more important at longer horizons.

The left panel of Figure 5 decomposes the 5-year yield into the real 5-year yield (which itself

consists of the expected real short rate plus the real rate risk premium), expected inflation over

the next 5-years, and the 5-year inflation risk premium. The inflationary period in the late 1970s-

early 1980s was accompanied by high inflation expectations and an increase in the inflation risk

premium, but also by a substantial increase in the 5-year real yield.17 Separately identifying real

rate risk and inflation risk based on term structure data alone is challenging.18 We do not have

long enough data for real bond yields, but stocks are real assets that contain information about

the term structure of real rates. They can help with the identification. For example, higher long

real yields in the late 1970s-early 1980s lower the price-dividend ratio on stocks, which indeed was

low in the late 1970s-early 1980s (top panel of Figure 4). In terms of average real yields, the third

panel of Figure 1 shows yields ranging from 1.74% per year for 1-quarter real bonds to 2.70% per

year for 20-year real bonds.

[Figure 5 about here.]

Finally, the model matches the expected returns on the consumption and labor income growth

factor mimicking portfolios (fmp) very well. The figure is omitted for brevity. The annual risk

17Inflation expectations in our VAR model have a correlation of 80% with inflation expectations from the Survey
of Professional Forecasters (SPF) over the common sample 1981-2006. The 1-quarter ahead inflation forecast error
series for the SPF and the VAR have a correlation of 68%. Realized inflation fell sharply in the first quarter of
1981. Neither the professional forecasters nor the VAR anticipated this decline, leading to a high realized real yield.
The VAR expectations caught up more quickly than the SPF expectations, but by the end of 1981, both inflation
expectations were identical.

18Many standard term structure models have a likelihood function with two local maxima with respect to the
persistence parameters of expected inflation and the real rate.
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premium on the consumption growth fmp is 0.79% with a volatility of 1.67 in data and model.

Likewise, the risk premium on the labor income growth fmp is 3.87% in data and model, with

volatilities of 1.92 and 1.98%.

3.2 The Wealth-Consumption Ratio

With the estimates for Λ0 and Λ1 in hand, it is straightforward to use Proposition 2 and solve for

Ac
0 and Ac

1 from equations (6)-(7). The last column of Table 1 summarizes the key moments of the

log wealth-consumption ratio. The numbers in parentheses are small sample bootstrap standard

errors, computed using the procedure described in Appendix C.7. We can directly compare the

moments of the wealth-consumption ratio with those of the price-dividend ratio on equity. The

wc ratio has a volatility of 17% in the data, considerably lower than the 27% volatility of the pdm

ratio. The wc ratio in the data is a persistent process; its 1-quarter (4-quarter) serial correlation

is .96 (.85). This is similar to the .95 (.78) serial correlation of pdm. The volatility of changes in

the wealth consumption ratio is 4.86%, and because of the low volatility of aggregate consumption

growth changes, this translates into a volatility of the total wealth return on the same order of

magnitude (4.93%). The corresponding annual volatility of 9.8% is much lower than the 16.7%

volatility of stock returns. The change in the wc ratio and the total wealth return have weak

autocorrelation (-.11 and -.01 at the 1 and 4 quarter horizons for both), suggesting that total

wealth returns are hard to forecast by their own lags. The correlation between the total wealth

return and consumption growth is only mildly positive (.19). How risky is total wealth in the data?

According to our estimation, the consumption risk premium (calculated from equation 10) is 54

basis points per quarter or 2.17% per year. This results in a mean wealth-consumption ratio (Ac
0) of

5.86 in logs, or 87 in annual levels (exp{Ac
0 − log(4)}). The consumption risk premium is only one-

third as big as the equity risk premium of 6.9%. Correspondingly, the wealth-consumption ratio

is much higher than the price-dividend ratio on equity: 87 versus 27. Finally, the volatility of the

consumption risk premium is 3.3% per year, one-third of the volatility of the equity risk premium.

The standard errors on the moments of the wealth-consumption ratio or total wealth return are

sufficiently small so that the corresponding moments of the price-dividend ratio or stock returns

are outside the 95% confidence interval of the former. The main conclusion of our measurement

exercise is that total wealth is (economically and statistically) significantly less risky than equity.

[Table 1 about here.]

Figure 6 plots the time-series for the annual wealth-consumption ratio, expressed in levels. Its

dynamics are to a large extent inversely related to the long real yield dynamics (dashed line in the

left panel of Figure 5). For example, the 5-year real yield increases from 2.7% per annum in 1979.I

to 7.3% in 1981.III while the wealth-consumption ratio falls from 77 to 46. This corresponds to
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a loss of $533,000 in real per capita wealth in 2006 dollars.19 Similarly, the low-frequency decline

of the real yield in the twenty-five years after 1981 corresponds to a gradual rise in the wealth-

consumption ratio. One striking way to see that total wealth behaves differently from equity is to

study it during periods of large stock market declines. During the periods 1973.III-1974.IV and

2000.I-2002.IV, for example, the change in US households’ real per capita stock market wealth

was -46% and -61%, respectively.20 In contrast, real per capita total wealth changed by -12% and

+27%, respectively.

[Figure 6 about here.]

To show more formally that the consumption claim behaves like a real bond, we compute

the discount rate that makes the current wealth-consumption ratio equal to the expected present

discounted value of future consumption growth. This is the solid line measured against the left axis

of Figure 7. Similarly, we calculate a time series for the discount rate on the dividend claim, the

dotted line measured against the right axis. For comparison, we plot the yield on a long-term real

bond (50-year) as the dashed line against the right axis. The correlation between the consumption

discount rate and the real yield is 99%, whereas the correlation of the dividend discount rate and

the real yield is only 44%. In addition, the consumption and dividend discount rates only have a

correlation of 47%, reinforcing our conclusion that the data suggest a big divergence between the

perceived riskiness of a claim to consumption and a claim to dividends in securities markets.

[Figure 7 about here.]

Consumption Strips A different way of showing that the consumption claim is bond-like is to

study yields on consumption strips. Just as the price-dividend ratio on stocks equals the sum of

the price-dividend ratios on dividend strips of all maturities, so is the wealth-consumption ratio

equal to the price-dividend ratio on all consumption strips. A consumption strip of maturity τ

pays 1 unit of consumption at period τ , and nothing in the other periods. It is useful to decompose

the yield on the period-τ strip in two pieces. The first component is the yield on a security that

pays a certain cash flow (1 + µc)
τ .21 The second component is the yield on a security that pays

off Cτ/C0 − (1 + µc)
τ . It captures pure consumption cash flow risk. Appendix C.5 shows that

the log price-dividend ratios on the consumption strips are affine in the state, and details how to

compute the yield on its two components. Figure 8 makes clear that the consumption strip yields

are mostly comprised of a compensation for time value of money, not consumption cash flow risk.

19Real per capita wealth is the product of the wealth-consumption ratio and observed real per capita consumption.
20This includes households’ mutual funds holdings.
21The underlying security is a real perpetuity with a certain cash flow which grows at a deterministic consumption

growth rate µc.
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[Figure 8 about here.]

The consumption strips with and without cash-flow risk are also useful to compute the welfare

cost of consumption fluctuations. Alvarez and Jermann (2004) show that the marginal cost of such

fluctuations equals the ratio of the price of a claim to consumption without cash-flow risk (growing

at a deterministic rate µc) to the price of a claim to consumption with cash-flow risk minus one.

Our estimates imply a marginal cost of consumption fluctuations of 37% on average, or about

twice as high as the benchmark estimate in Alvarez and Jermann (2004). Because consumption

risk premia fluctuate over time in our model, so does the cost of consumption fluctuations: between

28 and 46%.

3.3 Human Wealth Returns

Our estimates indicate that the bulk of total wealth is human wealth. The human wealth share fluc-

tuates between 85 and 96%, with an average of 90%. Interestingly, Jorgenson and Fraumeni (1989)

also calculate a 90% human wealth share. The average price-dividend ratios on human wealth is

slightly above the one on total wealth (94 versus 87 in annual levels). The risk premium on human

wealth is very similar to the one for total wealth (2.19 versus 2.17% per year). The price-dividend

ratios and risk premia on human wealth and total wealth have a 99% correlation. In line with

the findings of Lustig and Van Nieuwerburgh (2007b), we estimate only a weak contemporaneous

correlation between risk premia on human wealth and on equity (0.19).

Existing approaches to measuring total wealth make ad hoc assumptions about expected human

wealth returns. The model of Campbell (1996) assumes that expected human wealth returns are

equal to expected returns on financial assets. This is a natural benchmark when financial wealth

is a claim to a constant fraction of aggregate consumption. Shiller (1995) models a constant

discount rate on human wealth. Jagannathan and Wang (1996) assume that expected returns on

human wealth equal the expected labor income growth rate; the resulting price-dividend ratio on

human wealth is constant. The construction of cay in Lettau and Ludvigson (2001a) makes that

same assumption. These models can be thought of as special case of ours, imposing additional

restrictions on the market prices of risk Λ0 and Λ1. Our estimation results indicate that expected

excess human wealth returns have an annual volatility of 3.7%. This is substantially higher than

the volatility of expected labor income growth (0.7%), but much lower than that of the expected

excess returns on equity (9.6%). Lastly, average (real) human wealth returns (3.9%) are much

lower than (real) equity returns (7.4%), but higher than (real) labor income growth (2.3%) and the

(real) short rate (1.7%). In sum, our approach avoids having to make arbitrary assumptions on

unobserved human wealth returns. Our findings do not quite fit any of the assumptions on human

wealth returns made in previous work.
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How much wealth, and in particular human wealth, do our estimates imply? In real 2006

dollars, total per capita wealth increased from $1 million to $3 million between 1952 and 2006.

The thick solid line in the left panel of Figure 9 shows the time series. Of this, $2.6 million was

human wealth in 2006 (dashed line), while the remainder is non-human wealth (dotted line, plotted

in the right panel). To better judge whether this is a realistic number, we compute what fraction

of human wealth accrues in the first 35 years, the length of a typical career. This fraction is the

price of the first 140 quarterly labor income strips divided by the price of all labor income strips.

The labor income strip prices are computed just like the consumption strip prices. On average,

33% of human wealth pertains to the first 35 years. In 2006, this implies a “career” human wealth

value of $840,000 per capita (thin solid line in right panel). This amount is the price of a 35-year

annuity with a cash flow of $27,850 which grows at the average labor income growth rate of 2.34%

and is discounted at the average real rate of return on human wealth of 3.41%. This model-implied

annual income of $27,850 is close to the $25,360 US per capita labor income at the end of 2006

(National Income and Products Accounts, Table 2.1). To further put this number in perspective,

we compare the career human wealth number to the per capita value of residential real estate

wealth from the Flow of Funds. Career human wealth is 12.3 times higher than real estate wealth

in 2006. This multiple is up from a value of 9.7 in 1981.III, so that human wealth grew even faster

than housing wealth over the last twenty-five years. In sum, human wealth has been an important

driver behind the fast wealth accumulation.

[Figure 9 about here.]

Finally, we compare non-human wealth, the difference between our estimates for total and for

human wealth, with the Flow of Funds series for household net worth. The latter is the sum

of equity, bonds, housing wealth, durable wealth, private business wealth, and pension and life

insurance wealth minus mortgage and credit card debt. Our non-human wealth series is on average

1.7 times the Flow of Funds series. This ratio varies over time: it is 2.2 at the beginning and at the

end of the sample, and it reaches a low of 0.7 in 1973. We chose not to use the Flow of Funds net

worth data in our estimation because many of the wealth categories are hard to measure accurately

or are valued at book value (e.g., private business wealth). Arguably, only the equity component

for publicly traded companies is measured precisely, and this may explain why the dynamics of

the household net worth series are to a large extent driven by variation in stock prices (Lettau and

Ludvigson (2001a)).22 Finally, it is reassuring that our non-human wealth measure exceeds the

net worth series. After all, our series measures the present discounted value of all future non-labor

22Lettau and Ludvigson (2001a)’s measure −cay falls during the stock market crashes of 1974 and 2000-02. It
has a correlation of only 0.16 with our wealth-consumption measure while it has a correlation of 0.37 with the
price-dividend ratio on stocks.
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income. This includes the value of growth options that will accrue to firms that have not been

born yet, the same way human wealth includes labor income from future generations.

3.4 Predictability Properties

Our analysis so far has focused on unconditional moments of the total wealth return. The condi-

tional moments of total wealth returns are also very different from those of equity returns. The

familiar Campbell and Shiller (1988) decomposition for the wealth-consumption ratio shows that

the wealth-consumption ratio fluctuates either because it predicts future consumption growth rates

(∆cH
t ) or because it predicts future total wealth returns (rH

t ):

V [wct] = Cov
[

wct, ∆cH
t

]

+ Cov
[

wct,−rH
t

]

= V
[

∆cH
t

]

+ V
[

rH
t

]

− 2Cov
[

rH
t , ∆cH

t

]

.

The second equality suggests an alternative decomposition into the variance of expected future

consumption growth, expected future returns, and their covariance. Finally, it is straightforward

to break up Cov
[

wct, r
H
t

]

into a piece that measures the predictability of future excess returns,

and a piece that measures the covariance of wct with future risk-free rates. Our no-arbitrage

methodology delivers analytical expressions for all variance and covariance terms (See Appendix

C.2).

We draw three main empirical conclusions. First, the mild variability of the wc ratio implies

only mild (total wealth) return predictability. This is in contrast with the high variability of pdm.

Second, 98.4% of the variability in wc is due to covariation with future total wealth returns while

the remaining 1.6% is due to covariation with future consumption growth. Hence, the wealth-

consumption ratio predicts future returns (discount rates), not future consumption growth rates

(cash flows). Using the second variance decomposition, the variability of future returns is 97%,

the variability of future consumption growth is 0.3% and their covariance is 2.7% of the total

variance of wc. This variance decomposition is similar to the one for equity. Third, 69.6% of the

98.4% covariance with returns is due to covariance with future risk-free rates, and the remaining

28.7% is due to covariance with future excess returns. The wealth-consumption ratio therefore

mostly predicts future variation in interest rates, not in risk premia. The exact opposite holds for

equity: the bulk of the predictability of the pdm ratio for future stock returns is predictability of

excess returns (74.7% out of 97.0%). In sum, the conditional asset pricing moments also reveal

interesting differences between equity and total wealth. Again, they point to the link between the

consumption claim return and interest rates.
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4 Robustness Analysis

4.1 Non-Traded Consumption Risk

Sofar we have assumed that all aggregate shocks are spanned by stock and bond prices. This

assumption is satisfied in the DAPMs of Section 5. Even in incomplete markets models, asset prices

will reflect changes in the income or wealth distribution (e.g., Constantinides and Duffie (1996)).

Nevertheless, we want to place an upper bound on the non-traded consumption risk premium in

our model. In particular, we relax our assumption that that traded assets span all aggregate shocks

by freeing up the 9th element of Λ0, the risk price of the non-traded consumption growth shock

that is orthogonal to the eight traded asset shocks. Table 2 reports the consumption risk premium

(Column 2), the average wealth-consumption ratio (Column 3), the maximum conditional Sharpe

ratio (Column 4) and the Sharpe ratio on a one-period ahead consumption strip (Column 5) for

different values of the price of non-traded consumption risk, governed by the 9th-element of Λ0

(Column 1). This parameter does not affect the prices of any traded assets, so this exercise does

not change any of the model’s implications for observables.23

The first line reports our benchmark case in which the non-traded consumption risk is not

priced. The consumption risk premium is 2.2% per annum, the maximum Sharpe ratio is 0.7 and

the conditional Sharpe ratio on the one-period ahead consumption strip is .09. Increasing Λ0(9)

increases the consumption risk premium, lowers the wealth-consumption ratio, and increases the

Sharpe ratio on the consumption claim. How far should we increase Λ0(9)? A first answer is to

bound the maximal Sharpe ratio (stdt[mt+1]). Cochrane and Saa-Requejo (2000) and Alvarez and

Jermann (2004) choose a “good deal” bound of one, which they argue is high because it is twice the

0.5 Sharpe ratio on equities in the data. Since we work with quarterly log returns, the Sharpe ratio

on equities is only 0.22, and that same good deal bound of one is more than twice as conservative.

This bound is reached for Λ0(9) around 0.8, and implies a consumption risk premium of 3.58% per

annum and an average wealth-consumption ratio of 38. Even then, the consumption risk premium

is still 4.3% short of the equity premium, so that our conclusion that total wealth has different

risk-return characteristics than equity remains valid. In order to match the equity premium by

increasing the price of non-traded consumption risk, we would need an increase in the maximum

Sharpe ratio to three times the good-deal bound or 14 times the Sharpe ratio on equity.

A second answer would be to evaluate the Sharpe ratios on the consumption strip return in

Column 5. When we set Λ0(9) to 0.1, this Sharpe ratio doubles compared to Λ0(9) = 0. I.e.,

23Freeing up Λ0(9) also affects the risk premium and price-dividend ratio on human wealth, in quantitatively
similar ways. We also experimented with freeing up the price of risk on the shock to labor income growth that is
orthogonal to all previous shocks, including the aggregate consumption growth shock. Increasing this Λ0(10) has
no effect on the consumption risk premium and the wealth-consumption ratio. It only affect the risk premium on
human wealth. Quantitatively, those effects are similar to those presented in Table 2. The same is true when we
simultaneously increase Λ0(9) and Λ0(10).
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the implied price of non-traded consumption cash flow risk is much higher than that of traded

consumption cash flow risk on a per unit of risk basis. Allowing the consumption strip to have the

same magnitude Sharpe ratio as equity (0.22), would imply a value for Λ0(9) around 0.10. At this

value the consumption risk premium is only about 0.2% per year higher than in our benchmark

case. At Λ0(9) = 0.8, the conditional Sharpe ratio on the consumption strip is 0.81, four times

higher than the Sharpe ratio on equity and eight times higher than the Sharpe ratio on the traded

consumption strip.

A third answer comes from utility-based pricing. We imagine that all traded risks are priced

with the SDF we have estimated from stocks and bonds, but the non-traded consumption risk

is evaluated with a constant relative risk aversion utility function. Then the price of non-traded

consumption risk equals Λ0(9) = ασU , where α is the risk aversion parameter and σU is the standard

deviation of the unspanned consumption growth innovation.24 Using Λ0(9) from the first column

and the σU from the data, the last column of Table 2 reports the implied risk aversion parameter α.

This risk aversion parameter increases steeply in Λ0(9). At Λ0(9) = .1 it is 28 and at Λ0(9) = .8 it

is 220. For a risk aversion coefficient of 10, considered by many economists to be an upper bound,

the consumption risk premium is 2.23%, a mere 4 basis points above our benchmark estimate.25

[Table 2 about here.]

4.2 State Dynamics

The results of our estimation exercise are robust to different specifications of the law of motion for

the state z. We consider three alternative models. Table 3 summarizes the key statistics for each of

the specifications; the first row is the benchmark from the preceding analysis. In a first robustness

exercise, labeled “simple return,” we simplify the stock market dynamics. In particular, we assume

that the log price-dividend ratio on equity pdm follows an AR(1), that the expected aggregate

stock return is only predicted by pdm
t , that the fmp return for consumption is only predicted by

pdm
t and its own lag, and that the fmp return for labor income is only predicted by pdm

t , the lagged

fmp return for consumption, and its own lag. This zeroes out Ψ21 and Ψ31 and it simplifies the

blocks Ψ22 and Ψ32 in the companion matrix. Because of the non-zero correlation between the

shocks to the term structure and to the stock market variables, the prices of stock market risk

inherit an exposure to the term structure variables, so that the elements of Λ1,21 remain non-zero.

24Formally, let the SDF be the product of two components Mt+1 = MT
t+1M

NT
t+1 . The first component is the SDF

that prices the traded asset from before: log MT
t+1 = y0(1)− .5Λt(1 : 8)′Λt(1 : 8)− Λt(1 : 8)′εt+1(1 : 8). The second

component is the SDF of a representative agent with CRRA utility which is orthogonalized on the traded SDF
MT

t+1 and rescaled so that Et[M
NT
t+1 ] = 1. The rescaling ensures that the risk-free rate continues to equal y0(1). Let

the mean-zero innovation to consumption growth that is orthogonal to the first eight VAR shocks be σUεU
t+1, with

V ar[εU
t+1] = 1. Then log MNT

t+1 = −.5α2σ2
U
− ασU εU

t+1. Equivalently, this imposes that the CRRA SDF prices that
return on total wealth which is orthogonal to all traded asset returns.

25A similar exercise with external habit instead of CRRA preferences leads to similar conclusions.
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The “simple return” specification shows very similar unconditional and conditional moments for

the wc ratio. The last column shows a similar fit with the benchmark model; the sum of squared

deviations between the moments in the model and in the data is 684 versus 676 in the benchmark.

In a second robustness exercise, labeled “c-l predicts stocks”, we replace log labor income growth

∆l by the log consumption to labor income ratio c − l. This enables us to impose cointegration

between the consumption and labor income streams. Just like Et[∆lt+1] before, we assume that

Et[ct+1 − lt+1] depends on all VAR elements. In addition, lagged c − l is also allowed to predict

future consumption growth so that Ψ43 has non-zero elements everywhere. We keep the simplified

structure for Ψ21, Ψ22, Ψ31, and Ψ32 from the previous exercise, but we allow ∆c and c − l to

predict future stock and fmp returns. That is, we free up Ψ34 and the last two elements in Ψ24.

Consumption growth and to a lesser extent the consumption-labor income ratio have significant

predictive power for stock returns and the R2 of the aggregate return equation increases from 7.6%

(benchmark) to 10.6%. This predictability has also been found by Santos and Veronesi (2006) and

Lettau and Ludvigson (2001a). Because of the change in Ψ24 and Ψ34, this specification requires

two (four) additional non-zero elements in Λ1,24 (Λ1,34). The third row of Table 3 shows that

the wealth-consumption ratio properties are again similar. The mean wealth-consumption ratio is

slightly higher and the total wealth return slightly more volatile. The extra flexibility improves

the fit. The last exercise, labeled “c-l predicts yield” keeps the structure of the previous robustness

exercise, but allows lagged aggregate consumption growth and the lagged consumption-labor ratio

to predict the four term structure variables. This frees up Ψ14 and identifies four elements in Λ1,14

(Λ1[2, 9 : 10] and Λ1[4, 9 : 10]). The motivation is that a measure of real economic activity, such as

consumption growth, is often included as a term structure determinant in the no-arbitrage term

structure literature. The wealth-consumption ratio increases a bit further, but not the consumption

risk premium. The reason is that the real yield curve is slightly less steep. In conclusion, the

various specifications for Ψ and Λ1 we explored lead to quantitatively similar results. The average

consumption risk premium is in a narrow band between 2.16 and 2.24 percent per year; the same

is true for the mean wealth-consumption ratio. All calibrations suggest mild predictability of total

wealth returns. Whatever predictability there is comes from return predictability, not cash flow

predictability. Finally, the future return predictability comes mostly from future risk-free rate

predictability, except for the last calibration where risk-free rate predictability is somewhat less

pronounced.

[Table 3 about here.]

4.3 Annual Estimation

Annual VAR dynamics may capture lower-frequency correlations between consumption growth and

traded asset prices. To investigate this possibility, we have re-estimated the wealth-consumption
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ratio on annual data over the period 1952-2007.26 We find that annual consumption growth has

a significantly positively covariance with stock returns (t-stat is 3), which contributes to a better

spanning of annual consumption growth risk by the traded assets than in the quarterly model.

Nevertheless, the results from the annual estimation are similar to those of the quarterly model.

The consumption risk premium is 1.7% (versus 2.2%) with a volatility of 22% (versus 17%). The

dynamics of the wealth-consumption ratio still mirror those of long-term real bond yields. The

variance decomposition still attributes all the variance of the wealth-consumption ratio to covari-

ation with future total wealth returns rather than with future consumption growth. There is still

some evidence that the wealth-consumption ratio predicts future risk-free rates, albeit weaker than

in the quarterly model.

5 The Wealth-Consumption Ratio in Leading DAPMs

In the last part of the paper, we repeat the measurement exercise inside the two leading DAPMs:

the long-run risk (LRR) and the external habit (EH) model. Just like in the model we esti-

mate, the log wealth-consumption ratio is linear in the state variables in each of the models.

We do not attempt to formally test the two models, only to point out their implications for the

wealth-consumption ratio.27 Interestingly, they have quite different implications for the wealth-

consumption ratio. This difference is what motivated us to the measurement exercise above.

5.1 The Long-Run Risk Model

The long-run risk literature works off the class of preferences due to Kreps and Porteus (1978),

Epstein and Zin (1989), and Duffie and Epstein (1992); see Appendix D.1. These preferences

impute a concern for the timing of the resolution of uncertainty. A first parameter α governs

risk aversion and a second parameter ρ governs the willingness to substitute consumption inter-

temporally. In particular, ρ is the inverse of the inter-temporal elasticity of substitution (EIS). We

26The only two differences with the quarterly model is that the short-term rate is now the 1-year Treasury bond
yield and that we use the price-dividend ratio on the stock market without repurchase adjustment. The log pdm

ratio has a volatility of 40%. The CP factor is estimated on forward rates constructed form annual yields, and the
factor mimicking portfolio returns are also constructed based on annual portfolio returns.

27The LRR and EH models are not nested by our model. Their state displays heteroscedasticity, which translates
into market prices of risk Λt are affine in the square root of the state. Our model has conditionally homoscedastic
state dynamics and linear market prices of risk, but more shocks and therefore richer market price of risk dynamics.
A previous version of this paper contained simulated method of moments estimation of both models.
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adopt the consumption growth specification of Bansal and Yaron (2004):

∆ct+1 = µc + xt + σtηt+1, (14)

xt+1 = ρxxt + ϕeσtet+1, (15)

σ2
t+1 = σ2 + ν1(σ

2
t − σ2) + σwwt+1, (16)

where (ηt, et, wt) are i.i.d. standard normal innovations. Consumption growth contains a low-

frequency component xt and is heteroscedastic, with conditional variance σ2
t . The two state vari-

ables xt and σ2
t capture time-varying growth rates and time-varying economic uncertainty.

Proposition 3. The log wealth-consumption ratio is linear in the two state variables zLRR
t =

[xt, σ
2
t − σ̄2]:

wct = Ac,LRR
0 + Ac,LRR′

1 zLRR
t . (17)

Appendix D.2 proves the proposition, following Bansal and Yaron (2004), and spells out the de-

pendence of Ac,LRR
0 and Ac,LRR

1 on the structural parameters. This proposition implies that the

log SDF in the LRR model can be written as a linear function of the growth rate of consumption

and the growth rate of the log wealth-consumption ratio.28 This two-factor representation high-

lights the importance of understanding the wc ratio dynamics for the LRR model’s asset pricing

implications.

We calibrate and simulate the long-run risk model choosing the benchmark parameter values

of Bansal and Yaron (2004).29 Column 1 of Table 1 reports the moments for the LRR model. All

reported moments are averages across 5,000 simulations. The standard deviation of these statistics

across simulations are bootstrap standard errors, and are reported in parentheses. The LRR model

produces a wc ratio that is very smooth. Its volatility is 2.35%, quite a bit lower than in the data

(last column). Almost all the volatility in the wealth-consumption ratio comes from volatility in

the persistent component of consumption (the volatility of x is about 0.5% and the loading of wc

on x is about 5). The persistence of both state variables induces substantial persistence in the wc

ratio: its auto-correlation coefficient is 0.91 (0.70) at the 1-quarter (4-quarter) horizon. The change

in the wc ratio, which is the second asset pricing factor in the log SDF, has a volatility of 0.90%.

Aggregate consumption growth, the first asset pricing factor, has a higher volatility of 1.45%. The

correlation between the two asset pricing factors is statistically indistinguishable from zero. The

resulting log total wealth return has a volatility of 1.64% per quarter in the LRR model, again

28This result is formally stated and proven in Appendix D.2. Furthermore, appendix D.1 proves that the ability
to write the SDF in the LRR model as a (non-linear) function of consumption growth and the wc ratio is general.
It does not depend on the linearization of returns, nor on the consumption growth process in (14)-(16).

29Since their model is calibrated at monthly frequency but the data are quarterly, we work with a quarterly cali-
bration instead. Appendix D.3 describes the mapping from monthly to quarterly parameters, the actual parameter
values, and details on the simulation.
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lower than in the data. Low autocorrelation in ∆wc and ∆c generates low autocorrelation in total

wealth returns. The total wealth return has a counter-factually high correlation with consumption

growth (+.84) because most of the action in the total wealth return comes from consumption

growth. The lower panel reports the consumption risk premium, the expected return on total

wealth in excess of the risk-free rate (including a Jensen term). Total wealth is not very risky

in the LRR model; the quarterly risk premium is 40 basis points, which translates into 1.6% per

year. Each asset pricing factor contributes about half of the risk premium. The low consumption

risk premium corresponds to a high average wealth-consumption ratio; it is 87 expressed in annual

levels (eAc,LRR
0 −log(4)). Remarkably, this is the exact same value we estimated in the data. Just as

in the data, total wealth is not very risky in the LRR model.

Turning to the conditional moments, the amount of total wealth return predictability is low

because the wealth-consumption ratio is smooth. The (demeaned) wc ratio can be decomposed

into a discount rate and a cash flow component:

wct = ∆cH
t + rH

t =

[

1

κc
1 − ρx

xt

]

−

[

ρ

κc
1 − ρx

xt − ALRR
2

(

σ2
t − σ2

)

]

.

Appendix D.4 derives this decomposition as well as the decomposition of the variance of wc. The

discount rate component itself contains a risk-free rate component and a risk premium component.

The persistent component of consumption growth xt drives only the risk-free rate effect (first term

in rH
t ). It is governed by ρ, the inverse EIS. In the log case (ρ = 1), the cash flow loading on x and

the risk-free rate loading on x exactly offset each other. The risk premium component is driven

by the heteroscedastic component of consumption growth.30 The expressions for the theoretical

covariances of wct with ∆cH
t and −rH

t show that both cannot simultaneously be positive. When

ρ < 1, the sign on the regression coefficient of future consumption growth on the log wealth-

consumption ratio is positive, but the sign on the return predictability equation is negative (unless

the heteroscedasticity mechanism is very strong). The opposite is true for ρ > 1 (low EIS). The

benchmark calibration of the LRR model has a high EIS. Most of the volatility in the wealth-

consumption ratio arises from covariation with future consumption growth (297.5%). The other

-197.5% is accounted for by the covariance with future returns. A calibration with an EIS below 1

would generate the same sign on the covariance with returns as in the data. Alternatively, a positive

correlation between innovations to x and σ2
t − σ̄2 may help to generate a variance decomposition

closer to the data. Finally, virtually all predictability in future total wealth returns arises from

predictability in future risk-free rates. This is similar to what we find in the data.

Despite the low consumption risk premium and high wc ratio, the LRR model is able to match

the high equity risk premium and low pdm ratio. The reason is that the dividend claim carries

30The heteroscedasticity also affects the risk-free rate component, but without heteroscedasticity there would be
no time-variation in risk premia.

30



more long run risk: dividend growth has a loading of 3 on xt whereas consumption growth only

has a loading of 1.31 Therefore, the LRR model generates the wedge between total wealth and

equity we also find in the data.

5.2 The External Habit Model

We use the specification of preferences proposed by Campbell and Cochrane (1999), henceforth

CC. The log SDF is

mt+1 = log β − α∆ct+1 − α(st+1 − st),

where the log surplus-consumption ratio st = log(St) = log
(

Ct−Xt

Ct

)

measures the deviation of

consumption Ct from the habit Xt, and has the following law of motion:

st+1 − s̄ = ρs(st − s̄) + λt(∆ct+1 − µc).

The steady-state log surplus-consumption ratio is s̄ = log
(

S̄
)

. The parameter α continues to

capture risk aversion. The “sensitivity” function λt governs the conditional covariance between

consumption innovations and the surplus-consumption ratio and is defined below in (20). As in

CC, we assume an i.i.d. consumption growth process:

∆ct+1 = µc + σ̄ηt+1, (18)

where η is an i.i.d. standard normal innovation and the only shock in the model.

Just as in the LRR model and in the data, the log wealth-consumption ratio is affine in the

state variable of the EH model.

Proposition 4. The log wealth-consumption ratio is linear in the sole state variable zEH
t = st − s̄,

wct = Ac,EH
0 + Ac,EH

1 zEH
t , (19)

and the sensitivity function takes the following form

λt =
S̄−1

√

1 − 2(st − s̄) + 1 − α

α − A1
(20)

Appendix E.1 proves this proposition. Just like CC’s sensitivity function delivers a risk-free rate

that is linear in the state st − s̄, our sensitivity function delivers a log wealth-consumption ratio

31See Appendix D.5 for the dividend growth specification, and the expressions for the log price-dividend ratio on
equity, and the equity risk premium. The Bansal and Yaron (2004) calibration of dividend growth does not impose
cointegration between consumption and dividends. Bansal, Dittmar, and Lundblad (2005), Bekaert, Engstrom, and
Grenadier (2005) and Bekaert, Engstrom, and Xing (2008) consider versions of the LRR model with cointegration.
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that is linear in st − s̄. To minimize the deviations with the CC model, we pin down the steady-

state surplus-consumption level S̄ by matching the steady-state risk-free rate to the one in the CC

model. Taken together with the expressions for Ac,EH
0 and Ac,EH

1 , this restriction amounts to a

system of three equations in three unknowns
(

Ac,EH
0 , Ac,EH

1 , S̄
)

.32 This proposition implies that

the log SDF in the EH model is a linear function of the same two asset pricing factors as in the

LRR model: the growth rate of consumption and the growth rate of the consumption-wealth ratio.

Appendix E.1 shows this result more formally. This formulation of the SDF suggests that, for the

EH model to matter for asset prices, it needs to alter the properties of the wc ratio in the right

way.

We calibrate the EH model choosing the benchmark parameter values of CC.33 The simulation

method is parallel to the one described for the LRR model. We note that the risk-free rate is

nearly constant in the benchmark calibration; its volatility is .03% per quarter. This shows that

the slight modification in the sensitivity function from the CC one did not materially alter the

properties of the risk-free rate. The second column of Table 1 reports the moments of the wealth-

consumption ratio under the benchmark calibration of the EH model. First and foremost, the wc

ratio is volatile in the EH model: it has a standard deviation of 29.3%, which is 12.5 times larger

than in the LRR model and 12% higher than in the data. This volatility comes from the high

volatility of the surplus consumption ratio (38%). The persistence in the surplus-consumption

ratio drives the persistence in the wealth-consumption ratio: its auto-correlation coefficient is 0.93

(0.74) at the 1-quarter (4-quarter) horizon. The change in the wc ratio has a volatility of 9.46%.

This is more than 10 times higher than the volatility of the first asset pricing factor, consumption

growth, which has a standard deviation of 0.75%. The high volatility of the change in the wc ratio

translates into a highly volatile total wealth return. The log total wealth return has a volatility of

10.26% per quarter in the EH model. As in the LRR model, the total wealth return is strongly

positively correlated with consumption growth (.91). In the EH model this happens because most

of the action in the total wealth return comes from changes in the wc ratio. The latter are highly

positively correlated with consumption growth (.90, in contrast with the LRR model). Finally,

the consumption risk premium is high because total wealth is risky; the quarterly risk premium

is 267 basis points, which translates into 10.7% per year. Most of the risk compensation in the

EH model is for bearing ∆wc risk. The high consumption risk premium implies a low mean log

wealth-consumption ratio of 3.86. Expressed in annual levels, the mean wealth-consumption ratio

is 12.

In contrast to the LRR model, the EH model asserts that all variability in returns arises from

variability in risk premia (see Appendix E.5). Since there is no consumption growth predictability,

100% of the variability of wc is variability of the discount rate component. The covariance between

32Details are in Appendix E.2. Appendix E.3 discusses an alternative way to pin down S̄.
33Appendix E.4 describes the mapping from monthly to quarterly parameters and reports the parameter values.
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the wealth-consumption ratio and returns has the right sign: it is positive by construction. This

variance decomposition is close to the data. A key strength of the EH model is its ability to

generate a lot of variability in expected equity returns. The flip side is that the same mechanism

also generates a lot of variability in expected total wealth returns. Finally, the EH model implies

that almost all the covariance with future returns comes from covariance with future excess returns,

not future risk-free rates. In the data, there was evidence for risk-free rate predictability.

The properties of total wealth returns are similar to those of equity returns.34 The equity risk

premium is only 1.2 times higher than the consumption risk premium and the volatility of the

pdm ratio is only 1.2 times higher than the volatility of the wc ratio. For comparison, in the LRR

model, these ratios are 3.5 and 6 and in the data they are 3.3 and 1.6, respectively. The EH model

drives not enough of a wedge between the riskiness of total wealth and equity.

In sum, the two leading asset pricing models have very different implications for the wealth

consumption ratio, despite the fact that they both match unconditional equity return moments. In

the LRR model, the consumption claim looks more like a bond whereas in the EH model it looks

more like a stock.

6 Conclusion

We develop a new methodology for estimating the wealth-consumption ratio in the data, based

on no-arbitrage conditions familiar from the term structure literature. It combines restrictions on

stocks and bonds in a novel way. We find that a claim to aggregate consumption is much less risky

than a claim to aggregate dividends: the consumption risk premium is only one-third of the equity

risk premium. This suggests that the stand-in households’ portfolio is much less risky than what

one would conclude from studying the equity component of that portfolio. The consumption claim

looks much more like a real bond than like a stock.

Our findings have clear implications for future work on dynamic asset pricing models. In any

model, the same stochastic discount factor needs to price both a claim to aggregate consumption,

which is not that risky and carries a low return, and a claim to equity dividends, which is much

more risky and carries a high return. Generating substantial time-variation in expected equity

returns though variation in conditional market prices of risk may have the effect of generating

too much time-variation in expected total wealth returns. Our exercise suggests that stocks are

special, so that predictability in equity returns may need to be generated through an interesting

correlation structure between the cash flow process and the stochastic discount factor.

34Appendix E.6 contains the details of the dividend growth specification, the calibration, and the computation of
the price-dividend ratio and equity returns. The dividend growth specifications in Campbell and Cochrane (1999)
and Wachter (2006) do not impose cointegration with consumption growth, while Wachter (2005) does.
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Table 1: Moments of the Wealth-Consumption Ratio

This table displays unconditional moments of the log wealth-consumption ratio wc, its first difference ∆wc, and the log total wealth
return rc. The last but one row reports the time-series average of the conditional consumption risk premium, E[Et[r

c,e
t ]], where rc,e

denotes the expected log return on total wealth in excess of the risk-free rate and corrected for a Jensen term. The first column reports
moments from the long-run risk model (LRR model), simulated at quarterly frequency. All reported moments are averages and standard
deviations (in parentheses) across the 5,000 simulations of 220 quarters of data. The second column reports the same moments for the
external habit model (EH model). The last column is for the data. The standard errors are obtained by bootstrap, as described at the
end of Appendix C.7.

Moments LRR Model EH model data

Std[wc] 2.35% 29.33% 17.24%

(s.e.) (.43) (12.75) (4.30)

AC(1)[wc] .91 .93 .96

(s.e.) (.03) (.03) (.03)

AC(4)[wc] .70 .74 .85

(s.e.) (.10) (.11) (.08)

Std[∆wc] 0.90% 9.46% 4.86%

(s.e.) (.05) (2.17) (1.16)

Std[∆c] 1.43% .75% .44%

(s.e.) (.08) (.04) (.03)

Corr[∆c,∆wc] -.06 .90 .11

(s.e.) (.06) (.03) (.06)

Std[rc] 1.64% 10.26% 4.94%

(s.e.) (.09) (2.21) (1.16)

Corr[rc, ∆c] .84 .91 .19

(s.e.) (.02) (.03) (.07)

E[Et[r
c,e
t ]] 0.40% 2.67% 0.54%

(s.e.) (.01) (1.16) (.16)

E[wc] 5.85 3.86 5.86

(s.e.) (.01) (.17) (.49)
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Table 2: Non-traded Consumption Risk

The first column reports the market price of risk Λ0(9) that is associated with the innovation to consumption growth that is orthogonal
to all innovations to the preceding stock and bond innovations. The second column reports the consumption risk premium. The third
column reports the average wealth/consumption ratio. The fourth column is the maximum Sharpe ratio computed as

√

Λ′

0Λ0. The last

but one column shows the conditional Sharpe ratio on a one-period ahead consumption strip:
(

e′cΣ
1/2Λ0

)

/
√

e′cΣ
1/2Σ1/2′ec. The last

column reports the coefficient of relative risk aversion α for a CRRA investor so that the Euler equation for the consumption claim is
satisfied.

Λ0(9) cons. risk premium E[WC] stdt(mt+1) SR on strips α

0 2.19% 87 0.69 0.09 0

0.05 2.26% 81 0.70 0.14 14

0.1 2.37% 75 0.70 0.18 28

0.5 3.05% 48 0.85 0.54 138

0.8 3.58% 38 1.06 0.81 220

1.0 3.94% 33 1.21 0.99 275

1.5 4.86% 25 1.65 1.44 413

2.0 5.79% 20 2.11 1.89 551

3.0 7.68% 15 3.08 2.79 826

Table 3: Robustness Analysis

The table reports the unconditional standard deviation of the log wealth-consumption ratio wc, the unconditional standard deviation of
the log total wealth return rc, the average consumption risk premium E[Et[r

c,e
t ]] in percent per year, the mean log wealth-consumption

ratio, the percentage of the variance of wc that is attributable to covariation of wc with future consumption growth (predCF =
Cov[wct, ∆cH

t ]/V ar[wct]), and the percentage of the variance of wc that is attributable to covariation of wc with future risk-free rates
predrf . The last column denotes the objection function value at the point estimate (obj).

Specifications Std[wc] Std[rc] E[Et[r
c,e
t ]] E[wc] predCF predrf obj

benchmark 17.24% 4.94% 0.54% 5.86 0.3% 69.6% 675.7

simple return 17.43% 4.89% 0.56% 5.81 0.4% 69.1% 684.3

c-l predicts stocks 18.00% 5.55% 0.55% 5.93 9.6% 61.7% 650.7

c-l predicts yield 19.10% 5.80% 0.56% 5.99 1.3% 22.6% 671.8
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Figure 1: Average Term Structure of Interest Rates

The figure plots the observed and model-implied nominal bond yields for bonds of maturities 1-120 quarters. The data are obtained by
using a spline-fitting function through the observed maturities. The third panel plots the model-implied real yields.
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Figure 2: Dynamics of the Nominal Term Structure of Interest Rates

The figure plots the observed and model-implied 1-, 4-, 12-, 20-, 40-, and 80-quarter nominal bond yields. Note that the 20-year yield
is unavailable between 1986.IV and 1993.II.
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Figure 3: Nominal Bond Risk Premia

The left panel plots the 5-year nominal bond risk premium on a 5-year nominal bond in model and data. It is defined as the difference
between the nominal 5-year yield and the expected future 1-quarter yield averaged over the next 5 years. It represents the return on
a strategy that buys and holds a 5-year bond until maturity and finances this purchase by rolling over a 1-quarter bond for 5 years.
The right panel plots the Cochrane-Piazzesi factor in model and data. It is a linear combination of the one-year nominal yield and 2-
through 5-year forward rates. This linear combination is a good predictor of the one-quarter bond risk premium.
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Figure 4: The Stock Market

The figure plots the observed and model-implied price-dividend ratio and expected excess return on the overall stock market.
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Figure 5: Decomposing the 5-Year Nominal Yield

The left panel decomposes the 5-year yield into the real 5-year yield, expected inflation over the next 5-years, and the inflation risk
premium. The right panel decomposes the average nominal bond risk premium into the average real rate risk premium and inflation
risk premium for maturities ranging from 1 to 120 quarters. The nominal (real) bond risk premium at maturity τ is defined as the
nominal (real) τ -quarter yield minus the average expected future nominal (real) 1-quarter yield over the next τ quarters. The τ -quarter
inflation risk premium, labeled as IRP, is the difference between the τ -quarter nominal and real risk premia.
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Figure 6: The Log Wealth-Consumption Ratio in the Data

The figure plots exp{wct − log(4)}, where wct is the quarterly log total wealth to total consumption ratio. The log wealth consumption
ratio is given by wct = Ac

0 + (Ac
1)

′zt. The coefficients Ac
0 and Ac

1 satisfy equations (6)-(7).
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Figure 7: Discount Rates on Consumption and Dividend Claim

The figure plots the discount rate on a claim to consumption (solid line, measured against the left axis, in percent per year), the discount
rate on a claim to dividend growth (dashed line, measured against the right axis, in percent per year), and the yield on a real 50-year
bond (dotted line, measured against the right axis, in percent per year). The discount rates are the rates that make the price-dividend
ratio equal to the expected present-discounted value of future cash flows, for either the consumption claim or the dividend claim.
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Figure 8: Decomposing the Yield on A Consumption Strip

The figure decomposes the yield on a consumption strip of maturity τ , which goes from 1 to 120 quarters, into a real bond yield minus
deterministic consumption growth on the one hand and the yield on a security that only carries the consumption cash flow risk on the
other hand. See C.5 for a detailed discussion of this decomposition.
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Figure 9: Real Per Capita Wealth Estimates

The left panel of the figure plots total wealth and human wealth as estimated from the data. The right panel plots their difference, which
we label non-human wealth. It also plots “career human wealth”, the present discounted value of the first 35 years of labor income.
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Technical Appendix for “The Wealth-Consumption Ratio”

A Pricing Aggregate Consumption and Labor Income

Environment Let zt ∈ Z be the aggregate state vector. We use zt to denote the history of aggregate state

realizations. Section 1.3 describes the dynamics of the aggregate state zt of this economy, including the dynamics

of aggregate consumption Ct(z
t) and aggregate labor income Lt(z

t).

We consider an economy that is populated by a continuum of heterogeneous agents, whose labor income is subject

to idiosyncratic shocks. The idiosyncratic shocks are denoted by ℓt ∈ L, and we use ℓt to denote the history of these

shocks. The household labor income process is given by:

ηt(ℓ
t, zt) = η̂t(ℓ

t, zt)Lt(z
t).

Let Φt(z
t) denote the distribution of household histories ℓt conditional on being in aggregate node zt. The labor

income shares η̂ aggregate to one:
∫

η̂t(ℓ
t, zt)dΦt(z

t) = 1.

Trading in securities markets A non-zero measure of these households can trade bonds and stocks in

securities markets that open every period. These households are in partition 1. We assume that the returns of

these securities span Z. In other words, the payoff space is RZ×t in each period t. Households in partition 2 can

only trade one-period riskless discount bonds (a cash account). We use Aj to denote the menu of traded assets

for households in segment j ∈ {1, 2}. However, none of these households can insure directly against idiosyncratic

shocks ℓt to their labor income by selling a claim to their labor income or by trading contingent claims on these

idiosyncratic shocks.

Law of One Price We assume free portfolio formation, at least for some households, and the law of one price.

There exists a unique pricing kernel Πt in the payoff space. Since there is a non-zero measure of households that

trade assets that span zt, it only depends on the aggregate shocks zt. Formally, this pricing kernel is the projection

of any candidate pricing kernel on the space of traded payoffs X
t
= RZ×t:

Πt

Πt−1

= proj(Mt|R
Z×t).

We let Pt be the arbitrage-free price of an asset with payoffs {Di
t
}:

P i

t = Et

∞
∑

τ=t

Πτ

Πt

Di

τ . (21)

for any non-negative stochastic dividend process Di
t

that is measurable w.r.t zt.

Household Problem We adopted the approach of Cuoco and He (2001): We let agents trade a full set

of Arrow securities (contingent on both aggregate and idiosyncratic shock histories), but impose measurability

restrictions on the positions in these securities.
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After collecting their labor income and their payoffs from the Arrow securities, households buy consumption in spot

markets and take Arrow positions at+1(ℓ
t+1, zt+1) in the securities markets subject to a standard budget constraint:

ct + Et

[

Πt+1

Πt

at(ℓ
t+1, zt+1)

]

+
∑

j∈Aj

P
j

t s
j

t+1 ≤ θt,

where s denotes the shares in a security j that is in the trading set of that agent. In the second term on the left-hand

side, the expectations operator arises because we sum across all states of nature tomorrow and weight the price of

each of the corresponding Arrow securities by the probability of that state arising. Wealth evolves according to:

θt+1 = at(ℓ
t+1, zt+1) + ηt+1 +

∑

j∈Aj

[

P
j

t+1 + D
j

t+1

]

s
j

t ,

subject to a measurability constraint:

at(ℓ
t+1, zt+1) is measurable w.r.t. A

j

t (ℓ
t+1, zt+1), j ∈ {1, 2},

and subject to a generic borrowing or solvency constraint:

at(ℓ
t+1, zt+1) ≥ Bt(ℓ

t, zt).

These measurability constraints limit the dependence of total household financial wealth on (zt+1, ℓt+1). For exam-

ple, for those households in partition 2 that only trade a risk-free bond, A2
t (ℓ

t+1, zt+1) = (ℓt, zt), because their net

wealth can only depend on the history of aggregate and idiosyncratic states up until t. The households in partition

1, who do trade in stock and bond markets, can have net wealth that additionally depends on the aggregate state

at time t + 1: A1
t (ℓ

t+1, zt+1) = (ℓt, zt+1).

Pricing of Household Human wealth In the absence of arbitrage opportunities, we can eliminate trade

in actual securities, and the budget constraint reduces to:

ct + Et

[

Πt+1

Πt

at(ℓ
t+1, zt+1)

]

≤ at−1(ℓ
t, zt) + ηt.

By forward substitution of at(ℓ
t+1, zt+1) in the budget constraint, and by imposing the transversality condition on

household net wealth:

lim
t→∞

Πtat(ℓ
t, zt) = 0,

it becomes apparent that the expression for financial wealth is :

at−1(ℓ
t, zt) = Et

[

∞
∑

τ=t

Πτ

Πt

(cτ (ℓτ , zτ ) − ητ (ℓτ , zτ))

]

= Et

[

∞
∑

τ=t

Πτ

Πt

cτ (ℓτ , zτ )

]

− Et

[

∞
∑

τ=t

Πτ

Πt

ητ (ℓτ , zτ )

]

The equation states that non-human wealth (on the left) equals the present discounted value of consumption (total

wealth) minus the present discounted value of labor income (human wealth). The value of a claim to c−y is uniquely

pinned down, because the object on the left hand side is traded financial wealth.
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Pricing of Aggregate Human Wealth Let Φ0 denote the measure at time 0 over the history of idiosyn-

cratic shocks. The (shadow) price of a claim to aggregate labor income at time 0 is given by the aggregation of the

valuation of the household labor income streams:

∫

E0

[

∞
∑

t=0

Πt

Π0

(

ĉt(ℓ
t, zt)Ct(z

t) − η̂t(ℓ
t, zt)Lt(z

t)
)

]

dΦ0

= E0

[

∞
∑

t=0

Πt

Π0

∫

(

ĉt(ℓ
t, zt)dΦt(z

t)Ct(z
t) − η̂t(ℓ

t, zt)dΦt(z
t)Lt(z

t)
)

]

,

= E0

[

∞
∑

t=0

Πt

Π0

[Ct(z
t) − Lt(z

t)]

]

,

where we have used the fact that the pricing kernel Πt does not depend on the idiosyncratic shocks, the labor income

shares integrate to one
∫

η̂t(ℓ
t, zt)dΦt(z

t) = 1, and the consumption shares integrate to one
∫

ĉt(ℓ
t, zt)dΦt(z

t) = 1,

in which Φt(z
t) is the distribution of household histories ℓt conditional on being in aggregate node zt.

Under the maintained assumption that the traded assets span aggregate uncertainty, this implies that aggregate

human wealth is the present discounted value of aggregate labor income and that total wealth is the present

discounted value of aggregate consumption, and that the discounting is done with the projection of the SDF on the

space of traded payoff space. Put differently, the discount factor is the same one that prices tradeable securities,

such as stocks and bonds. This result follows directly from aggregating households’ budget constraints. The result

obtains despite the fact that human wealth is non-tradeable in this model, and therefore, markets are incomplete.

Since the above argument only relied on iterating forward on the budget constraint, we did not need to know the

exact form of the equilibrium SDF. Chien, Cole, and Lustig (2007) show that the SDF in this environment depends

on the evolution of the wealth distribution over time. More precisely, for each agent, one needs to keep track of a

cumulative Lagrange multiplier which changes whenever the measurability constraints or the borrowing constraints

bind. One cross-sectional moment of these cumulative multipliers suffices to keep track of ho the wealth distribution

affects asset prices. Because of the law of large numbers, that moments only depends on the aggregate history zt.

Similar aggregation results are derived in Constantinides and Duffie (1996) and in the limited commitment models

of Lustig (2007) and Lustig and Van Nieuwerburgh (2007a). To sum up, in the presence of heterogeneous agents

who cannot trade idiosyncratic labor income risk, there is an additional source of aggregate risk which captures

the evolution of the wealth distribution. But asset prices will fully reflect that source of aggregate risk so that our

procedure remains valid in such a world.

No Spanning If the traded payoffs do not span the aggregate shocks then the preceding argument still goes

through for the projection of the candidate SDF on the space of traded payoffs:

Π∗

t

Π∗

t−1

= proj (Mt|Xt
) .

We can still price the aggregate consumption and labor income claims using Π∗. In this case, the part of non-traded

payoffs that is orthogonal to the traded payoffs, may be priced:

Et

[(

Ct+1 − proj
(

Ct+1|Xt+1

))

Π∗

t+1

]

6= 0,

Et

[(

Yt+1 − proj
(

Yt+1|Xt+1

))

Π∗

t+1

]

6= 0,
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where we assume that X includes a constant so that the residuals are mean zero. In the main text, we compute

good-deal bounds.

B Data Appendix

B.1 Macroeconomic Series

Labor income Our data are quarterly and span the period 1952.I-2006.IV. They are compiled from the most

recent data available. Labor income is computed from NIPA Table 2.1 as wage and salary disbursements (line

3) + employer contributions for employee pension and insurance funds (line 7) + government social benefits to

persons (line 17) - contributions for government social insurance (line 24) + employer contributions for government

social insurance (line 8) - labor taxes. As in Lettau and Ludvigson (2001a), labor taxes are defined by imputing

a share of personal current taxes (line 25) to labor income, with the share calculated as the ratio of wage and

salary disbursements to the sum of wage and salary disbursements, proprietors’ income (line 9), and rental income

of persons with capital consumption adjustment (line 12), personal interest income (line 14) and personal dividend

income (line 15). The series is seasonally-adjusted at annual rates (SAAR), and we divide it by 4. Because net

worth of non-corporate business and owners’ equity in farm business is part of financial wealth, it cannot also be

part of human wealth. Consequently, labor income excludes proprietors’ income.

Consumption Non-housing consumption consists of non-housing, non-durable consumption and non-housing

durable consumption. Consumption data are taken from Table 2.3.5. from the Bureau of Economic Analysis’

National Income and Product Accounts (BEA, NIPA). Non-housing, non-durable consumption is measured as the

sum of non-durable goods (line 6) + services (line 13) - housing services (line14).

Non-housing durable consumption is unobserved and must be constructed. From the BEA, we observe durable

expenditures. The value of the durables (Flow of Funds, see below) at the end of two consecutive quarters and

the durable expenditures allows us to measure the implicit depreciation rate that entered in the Flow of Fund’s

calculation. We average that depreciation rate over the sample; it is δ=5.293% per quarter. We apply that

depreciation rate to the value of the durable stock at the beginning of the current period (= measured as the end

of the previous quarter) to get a time-series of this period’s durable consumption.

We use housing services consumption (BEA, NIPA, Table 2.3.5, line 14) as the dividend stream from housing

wealth. The BEA measures rent for renters and imputes a rent for owners. These series are SAAR, so we divide

them by 4 to get quarterly values.

Total consumption is the sum of non-housing non-durable, non-housing durable, and housing consumption.

Population and deflation Throughout, we use the disposable personal income deflator from the BEA

(Table 2.1, implied by lines 36 and 37) as well as the BEA’s population series (line 38).

B.2 Financial Series

Stock market return We use value-weighted quarterly returns (NYSE, AMEX, and NASDAQ) from CRSP

as our measure of the stock market return. In constructing the dividend-price ratio, we use the repurchase-yield

adjustment advocated by Boudoukh, Michaely, Richardson, and Roberts (2004). We also add the dividends over the

current and past three quarters, so as to obtain a price-dividend ratio that is comparable with an annual number.
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Additional cross-sectional stock returns We use the 25 size and value equity portfolio returns from

Kenneth French. We form log real quarterly returns.

Bond yields We use the nominal yield on a 3-month Treasury bill from Fama (CRSP file) as our measure of

the risk-free rate. We also use the yield spread between a 5-year Treasury note and a 3-month Treasury bill as a

return predictor. The 5-year yield is obtained from the Fama-Bliss data (CRSP file). The same Fama-Bliss yields

of maturities 1-, 2-, 3-, 4-, and 5-years are used to form annual forward rates and to form 1-year excess returns in

the Cochrane-Piazzesi excess bond return regression.

As additional yields to fit, we use the Fama-Bliss yields at the 1-year, and 3-year maturities. We also use yields

on nominal bonds at maturities 10 and 20 years. We use yield data from the Federal Reserve Bank of Saint Louis

(FRED II) for the latter, and construct the spread with the 5-year yield from FRED. The 10- and 20-year yields

we use are the sum of the 5-year Fama-Bliss yield and the 10-5 and 20-5 yield spread from FRED. This is to adjust

for any level differences in the 5-year yield between the two data sources. The 20-year yield data are missing from

1987.I until 1993.III. The estimation can handle these missing observations because it minimizes the sum of squared

differences between model-implied and observed yields, where the sum is only taken over available dates.

In order to plot the average yield curve in Figure 1, and only for this purpose, we also use the 7-5 year and the

30-5 year spread from FRED II. We add them to the 5-year yield from Fama-Bliss to form the 7-year and 30-year

yield series. Since the 7-year yield data are missing from 1953.4-1969.6, we use spline interpolation (using the 1-, 2-,

5-, 10-, and 20-year yields) to fill in the missing data. The 30-year bond yield data are missing from 1953.4-1977.1

and from 2002.3-2006.1. We use the 20-year yield in those periods as a proxy. In the period where the 20-year yield

is absent, we use the 30-year yield data in that period as a proxy. The resulting average 5-year yield is 6.11% per

annum (straight from Fama-Bliss), the average 7-year yield is 6.25%, 10-year yield is 6.32%, 20-year is 6.51%, and

the average 30-year yield is 6.45%.

C No-Arbitrage Model Details

C.1 Proof of Proposition 2

Proof. To find Ac
0 and Ac

1, we need to solve the Euler equation for a claim to aggregate consumption. This Euler

equation can either be thought of as the Euler equation that uses the nominal log SDF m$
t+1 to price the nominal

total wealth return πt+1 + rc
t+1 or the real log SDF m$

t+1 + πt+1 to price the real return rc
t+1:

1 = Et[exp{m$
t+1 + πt+1 + rc

t+1}]

= Et[exp{−y$
t (1) −

1

2
Λ′

tΛt − Λ′

tεt+1 + π0 + e′πzt+1 + µc + e′∆czt+1 + Ac

0 + Ac′

1 zt+1 + κc

0 − κc

1 (Ac

0 + Ac′

1 zt)}]

= exp{−y$
0(1) + π0 − e′ynzt −

1

2
Λ′

tΛt + e′πΨzt + κc

0 + (1 − κc

1)A
c

0 + µc − κc

1A
c′

1 zt + (e′∆c + Ac′

1 )Ψzt} ×

Et

[

exp{−Λ′

t
εt+1 + (e∆c + eπ + Ac

1)
′Σ

1
2 εt+1}

]

First, note that because of log-normality of εt+1, the last line equals:

exp

{

1

2

(

Λ′

tΛt + (e∆c + eπ + Ac

1)
′Σ(e∆c + eπ + Ac

1)
′ − 2(e∆c + eπ + Ac

1)
′Σ

1
2 Λt

)

}

5



Substituting in for the expectation, as well as for the affine expression for Λt, we get

1 = exp{−y$
0(1) + π0 − e′

yn
zt + κc

0 + (1 − κc

1)A
c

0 + µc − κc

1A
c′

1 zt + (e∆c + eπ + Ac

1)
′Ψzt} ×

exp{
1

2
(e∆c + eπ + Ac

1)
′Σ(e∆c + eπ + Ac

1) − (e∆c + eπ + Ac

1)
′Σ

1
2 (Λ0 + Λ1zt)}

Taking logs on both sides, an collecting the constant terms and the terms in z, we obtain the following:

0 = {−y$
0(1) + π0 + κc

0 + (1 − κc

1)A
c

0 + µc +
1

2
(e∆c + eπ + Ac

1)
′Σ(e∆c + eπ + Ac

1) − (e∆c + eπ + Ac

1)
′Σ

1
2 Λ0} +

{−e′yn − κc

1A
c′

1 + (e∆c + eπ + Ac

1)
′Ψ − (e∆c + eπ + Ac

1)
′Σ

1
2 Λ1}zt

This equality needs to hold for all zt. This is a system of N + 1 equations in N + 1 unknowns:

0 = −y$
0(1) + π0 + κc

0 + (1 − κc

1)A
c

0 + µc +
1

2
(e∆c + eπ + Ac

1)
′Σ(e∆c + eπ + Ac

1) − (e∆c + eπ + Ac

1)
′Σ

1
2 Λ0,(22)

0 = (e∆c + eπ + Ac

1)
′Ψ − κc

1A
c′

1 − e′
yn

− (e∆c + eπ + Ac

1)
′Σ

1
2 Λ1. (23)

The real short yield yt(1), or risk-free rate, satisfies Et[exp{mt+1 + yt(1)}] = 1. Solving out this Euler equation,

we get:

yt(1) = y$
t (1) − Et[πt+1] −

1

2
e′πΣeπ + e′πΣ

1
2 Λt

= y0(1) +
[

e′
yn

− e′
π
Ψ + e′

π
Σ

1
2 Λ1

]

zt (24)

y0(1) ≡ y$
0(1) − π0 −

1

2
e′

π
Σeπ + e′

π
Σ

1
2 Λ0 (25)

The real short yield is the nominal short yield minus expected inflation minus a Jensen adjustment minus the

inflation risk premium. Using the expression (25) for y0(1) in equation (22) delivers equation (6) in the main text.

Likewise, using (24) in equation (23) delivers equation (7).

Corollary 5. The log price-dividend ratio on human wealth is a linear function of the (demeaned) state vector zt

pdl

t = Al

0 + Al

1zt

where the following recursions pin down Al
0 and Al

1:

0 = κl

0 + (1 − κl

1)A
l

0 + µl − y0(1) +
1

2
(e′∆l

+ Al′

1 )Σ(e∆l + Al

1) − (e′∆l
+ Al′

1 )Σ
1
2

(

Λ0 − Σ
1
2
′eπ

)

,

0 =
(

e∆l + eπ + Al

1

)′

Ψ − κl

1A
l′

1 − e′yn − (e∆l + eπ + Al

1)
′Σ

1
2 Λ1.

The proof is identical to the proof of Proposition 2, and obtains by replacing µc by µl and the selector vector

ec by e∆l. The linearization constants κl
0 and κl

1 relate to Al
0 through the analog of equation (3).
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C.2 Campbell-Shiller Variance Decomposition

By iterating forward on the total wealth return equation (2), we can link the log wealth-consumption ratio at time

t to expected future total wealth returns and consumption growth rates:

wct =
κc

0

κc
1 − 1

+

H
∑

j=1

(κc

1)
−j

∆ct+j −
H
∑

j=1

(κc

1)
−j

rc

t+j
+ (κc

1)
−H

wct+H . (26)

Because this expression holds both ex-ante and ex-post, one is allowed to add the expectation sign on the right-hand

side. Imposing the transversality condition as H → ∞ kills the last term, and delivers the familiar Campbell and

Shiller (1988) decomposition for the price-dividend ratio of the consumption claim:

wct =
κc

0

κc
1 − 1

+ Et





∞
∑

j=1

(κc

1)
−j ∆ct+j



− Et





∞
∑

j=1

(κc

1)
−j

rt+j



 =
κc

0

κc
1 − 1

+ ∆cH

t
− rH

t
. (27)

where the second equality follows from the definitions

∆cH

t ≡ Et





∞
∑

j=1

(κc

1)
−j

∆ct+j



 = e′cΨ(κc

1I − Ψ)−1zt, (28)

rH

t ≡ Et





∞
∑

j=1

(κc

1)
−j

rt+j



 = [(ec + Ac

1)
′Ψ − κc

1A
c′

1 ] (κc

1I − Ψ)−1zt, (29)

where I is the N × N identity matrix. The first equation for the cash-flow component ∆cH
t follows from the

VAR dynamics, while the second equation for the discount rate component rH
t

follows from Proposition 2 and the

definition of the total wealth return equation (2).

Using expressions (29) and (28) and the log-linearity of the wealth-consumption ratio, we obtain analytical expres-

sions for the following variance and covariance terms:

V [wct] = Ac′

1 ΩAc

1 (30)

Cov
[

wct, ∆cH

t

]

= Ac′

1 Ω(κc

1I − Ψ′)−1Ψ′ec (31)

Cov
[

wct,−rH

t

]

= Ac′

1 Ω
[

Ac

1 − (κc

1I − Ψ)−1Ψ′e′c
]

(32)

V
[

∆cH

t

]

= e′
c
Ψ(κc

1I − Ψ)−1Ω(κc

1I − Ψ′)−1Ψ′ec (33)

V
[

rH

t

]

= [(e′c + Ac′

1 )Ψ − κc

1A
c′

1 ] (κc

1I − Ψ)−1Ω(κc

1I − Ψ′)−1 [Ψ′(ec + Ac

1) − κc

1A
c

1] (34)

Cov
[

rH

t
, ∆cH

t

]

= [(e′
c
+ Ac′

1 )Ψ − κc

1A
c′

1 ] (κc

1I − Ψ)−1Ω(κc

1I − Ψ′)−1Ψ′ec (35)

where Ω = E[z′tzt] is the second moment matrix of the state zt.

C.3 Nominal Term Structure

Proposition 6. Nominal bond yields are affine in the state vector:

y$
t (τ) = −

A$(τ)

τ
−

B$(τ)′

τ
zt,
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where the coefficients A$(τ) and B$(τ) satisfy the following recursions

A$(τ + 1) = −y$
0(1) + A$(τ) +

1

2

(

B$(τ)
)

′

Σ
(

B$(τ)
)

−
(

B$(τ)
)

′

Σ
1
2 Λ0, (36)

(

B$(τ + 1)
)

′

=
(

B$(τ)
)

′

Ψ − e′yn −
(

B$(τ)
)

′

Σ
1
2 Λ1, (37)

initialized at A$(0) = 0 and B$(0) = 0.

Proof. We conjecture that the t + 1-price of a τ -period bond is exponentially affine in the state

log(P $
t+1(τ)) = A$(τ) +

(

B$(τ)
)

′

zt+1

and solve for the coefficients A$(τ + 1) and B$(τ + 1) in the process of verifying this conjecture using the Euler

equation:

P $
t
(τ + 1) = Et[exp{m$

t+1 + log
(

P $
t+1(τ)

)

}]

= Et[exp{−y$
t (1) −

1

2
Λ′

tΛt − Λ′

tεt+1 + A$(τ) +
(

B$(τ)
)

′

zt+1}]

= exp{−y$
0(1) − e′ynzt −

1

2
Λ′

tΛt + A$(τ) +
(

B$(τ)
)

′

Ψzt} ×

Et

[

exp{−Λ′

t
εt+1 +

(

B$(τ)
)

′

Σ
1
2 εt+1}

]

We use the log-normality of εt+1 and substitute for the affine expression for Λt to get:

P $
t (τ + 1) = exp{−y$

0(1) − e′ynzt + A$(τ) +
(

B$(τ)
)

′

Ψzt +
1

2

(

B$(τ)
)

′

Σ
(

B$(τ)
)

−
(

B$(τ)
)

′

Σ
1
2 (Λ0 + Λ1zt)}

Taking logs and collecting terms, we obtain a linear equation for log(pt(τ + 1)):

log
(

P $
t (τ + 1)

)

= A$(τ + 1) +
(

B$(τ + 1)
)

′

zt,

where A$(τ + 1) satisfies (36) and B$(τ + 1) satisfies (37).

Real bond yields, yt(τ), denoted without the $ superscript, are affine as well with coefficients that follow similar

recursions:

A(τ + 1) = −y0(1) + A(τ) +
1

2
(B(τ))

′

Σ (B(τ)) − (B(τ))
′

Σ
1
2

(

Λ0 − Σ
1
2
′eπ

)

,

(B(τ + 1))
′

= (eπ + B(τ))
′

Ψ − e′yn − (eπ + B(τ))
′

Σ
1
2 Λ1.

For τ = 1, we recover the expression for the risk-free rate in (24)-(25).

C.4 Dividend Strips

We define the return on equity conform the literature as Rm
t+1 =

P
m
t+1+D

m
t+1

P m
t

, where Pm
t is the end-of-period price on

the equity market. A log-linearization delivers:

rm

t+1 = κm

0 + ∆dm

t+1 + κm

1 pdm

t+1 − pdm

t
. (38)
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The unconditional mean stock return is rm
0 = κm

0 + (κm
1 − 1)Am

0 + µm, where Am
0 = E[pdm

t ] is the unconditional

average log price-dividend ratio on equity and µm = E[∆dm
t

] is the unconditional mean dividend growth rate. The

linearization constants κm
0 and κm

1 are different from the other wealth concepts because the timing of the return is

different:

κm

1 =
eA

m
0

eAm
0 + 1

< 1 and κm

0 = log
(

eA
m
0 + 1

)

−
eA

m
0

eAm
0 + 1

Am

0 . (39)

Even though these constants arise from a linearization, we define log dividend growth so that the return equation

holds exactly, given the CRSP series for {rm
t

, pdm
t
}. Our state vector z contains the (demeaned) return on the stock

market, rm
t+1 − rm

0 , and the (demeaned) log price-dividend ratio pdm − Am
0 . The definition of log equity returns

allows us to back out dividend growth:

∆dm

t+1 = µm +
[

(erm − κm

1 epd)
′Ψ + e′

pd

]

zt + (erm − κm

1 epd)
′

Σ
1
2 εt+1

Proposition 7. Log price-dividend ratios on dividend strips are affine in the state vector:

pd

t
(τ) = Am(τ) + Bm′(τ)zt,

where the coefficients Am(τ) and Bm(τ) follow recursions

Am(τ + 1) = Am(τ) + µm − y0(1) +
1

2
(erm − κm

1 epdm + Bc(τ))
′

Σ (erm − κm

1 epdm + Bm(τ))

− (erm − κm

1 epdm + Bm(τ))′ Σ
1
2

(

Λ0 − Σ
1
2 eπ

)

,

Bm(τ + 1)′ = (erm − κm

1 epdm + eπ + Bm(τ))
′

Ψ + e′
pdm

− e′
yn

− (erm − κm

1 epdm + eπ + Bm(τ))
′

Σ
1
2 Λ1,

initialized at Am(0) = 0 and Bm(0) = 0.

Proof. We conjecture that the log t + 1-price of a τ -period strip, scaled by the dividend in period t + 1, is affine in

the state

pd

t+1(τ) = log
(

P d

t+1(τ)
)

= Am(τ) + Bm(τ)′zt+1

and solve for the coefficients Am(τ + 1) and Bm(τ + 1) in the process of verifying this conjecture using the Euler

equation:

P d

t
(τ + 1) = Et[exp{m$

t+1 + πt+1 + ∆dm

t+1 + log
(

pm

t+1(τ)
)

}]

= Et[exp{−y$
t
(1) −

1

2
Λ′

t
Λt − Λ′

t
εt+1 + π0 + e′

π
zt+1 + ∆dm

t+1 + Am(τ) + Bm(τ)′zt+1}]

= exp{−y$
0(1) − e′

yn
zt −

1

2
Λ′

t
Λt + π0 + e′

π
Ψzt + µm +

[

(erm − κm

1 epd)
′Ψ + e′

pd

]

zt + Am(τ) + Bm(τ)′Ψzt} ×

Et

[

exp{−Λ′

tεt+1 + (erm − κm

1 epd + eπ + Bm(τ))
′

Σ
1
2 εt+1

]

We use the log-normality of εt+1 and substitute for the affine expression for Λt to get:

P d

t (τ + 1) = exp{−y$
0(1) − e′ynzt + π0 + µm + Am(τ) +

[

(erm − κm

1 epd + eπ + Bm(τ))
′

Ψ + e′pd

]

zt +

1

2
(erm − κm

1 epd + eπ + Bm(τ))
′

Σ (erm − κm

1 epd + eπ + Bm(τ)) − (erm − κm

1 epd + eπ + Bm(τ))
′

Σ
1
2 (Λ0 + Λ1zt)}

Taking logs and collecting terms, we obtain a log-linear expression for pm
t

(τ + 1):

pd

t
(τ + 1) = Am(τ + 1) + Bm(τ + 1)′zt,
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where

Am(τ + 1) = Am(τ) + µm − y$
0(1) + π0 +

1

2
(erm − κm

1 epd + eπ + Bc(τ))′ Σ (erm − κm

1 epd + eπ + Bm(τ))

− (erm − κm

1 epd + eπ + Bm(τ))
′

Σ
1
2 Λ0,

Bm(τ + 1)′ = (erm − κm

1 epd + eπ + Bm(τ))′ Ψ + e′
pd

− e′
yn

− (erm − κm

1 epd + eπ + Bm(τ))′ Σ
1
2 Λ1

We recover the recursions of Proposition 7 after substituting out the expressions for the nominal yields using

equations (24) and (25).

C.5 Consumption Strips

Proposition 8. Log price-dividend ratios on consumption strips are affine in the state vector:

pc

t(τ) = Ac(τ) + Bc′(τ)zt,

where the coefficients Ac(τ) and Bc(τ) follow recursions:

Ac(τ + 1) = Ac(τ) + µc − y0(1) +
1

2
(ec + Bc(τ))

′

Σ (ec + Bc(τ)) − (ec + Bc(τ))
′

Σ
1
2

(

Λ0 − Σ
1
2 eπ

)

,

Bc(τ + 1)′ = (ec + eπ + Bc(τ))
′

Ψ − e′yn − (ec + eπ + Bc(τ))
′

Σ
1
2 Λ1.

initialized at Ac(0) = 0 and Bc(0) = 0.

The proof is identical to that of Proposition 7.

We decompose the yield on a τ -period consumption strip from Proposition 8, yc
t (τ) = −pc

t(τ)/τ , into the yield on

a τ -period real bond adjusted for consumption growth plus the yield on the consumption cash-flow risk security

yccr
t (τ):

yc

t
(τ) = (yt(τ) − µc) + yccr

t
(τ).

The former can be thought of as the period-τ coupon yield on a real perpetuity with cash-flows that grow at a

deterministic rate µc, while the latter captures the cash-flow risk in the consumption claim. We have that yccr
t (τ) =

−pccr
t

(τ)/τ . Since the log price-dividend ratio of the consumption strips and the log real bond prices are both affine,

so is the log price-dividend ratio of the consumption cash-flow risk security: log pccr
t (τ) = Accr(τ) + Bccr(τ)zt. It is

easy to show that its coefficients follow the recursions:

Accr(τ + 1) = Accr(τ) +
1

2
(ec + Bccr(τ))

′

Σ (ec + Bccr(τ)) + (ec + Bccr(τ))
′

ΣB(τ)

− (ec + Bccr(τ))
′

Σ
1
2

(

Λ0 − Σ
1
2 eπ

)

,

Bccr(τ + 1)′ = (ec + Bccr(τ))
′

Ψ − (ec + Bccr(τ))
′

Σ
1
2 Λ1.

C.6 Point Estimates

Below, we report the point estimates for the VAR companion matrix Ψ, the Cholesky decomposition of the co-

variance matrix Σ.5 (multiplied by 100), and the market price of risk parameters Λ0 and Λ1 for our benchmark

specification. We recall that the market price of risk parameter matrix Λ1 pre-multiplies the state zt, which has a

(non-standardized) covariance matrix Ω.
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Ψ =









































0.3053 1.2456 -0.4565 3.3037 0 0 0 0 0 0

−0.0035 0.8965 0.1022 0.1590 0 0 0 0 0 0

-0.0371 0.1690 0.7312 0.0930 0 0 0 0 0 0

0.0086 0.0289 −0.0424 0.6973 0 0 0 0 0 0

0.3201 −2.3434 −0.9365 −2.8085 0.9131 −0.0230 0 0 0 0

0.2257 −1.8392 −1.5961 −0.9984 -0.0890 0.0429 0 0 0 0

0.0139 0.0466 −0.5851 0.6283 −0.0105 0.0708 0 0 0 0

0.1506 −0.2318 −0.6371 −0.0617 −0.0130 0.0769 0 0 0 0

0.0251 −0.0202 −0.0557 0.0350 0.0006 −0.0020 −0.0002 0.0068 0.3014 0

0.1032 −0.2691 0.0091 −0.6800 0.0016 −0.0064 0.0495 −0.0207 0.5887 −0.1390









































Σ.5 × 100 =









































1.4427 0 0 0 0 0 0 0 0 0

−0.0714 0.2331 0 0 0 0 0 0 0 0

−0.0519 0.0352 0.2998 0 0 0 0 0 0 0

0.0838 −0.1071 0.0136 0.1012 0 0 0 0 0 0

0.7999 −0.6542 −1.6896 −0.3572 7.8117 0 0 0 0 0

0.6247 −0.6375 −1.8040 −0.4144 7.3491 2.5131 0 0 0 0

0.4139 −0.1845 −0.4411 −0.1536 1.7789 0.5328 2.5774 0 0 0

1.0101 −0.4506 −0.6907 −0.1438 2.2836 0.8748 3.8193 4.7776 0 0

0.0292 −0.0569 0.0166 0.0106 0.0801 0.0593 0.1280 −0.0122 0.3631 0

0.1751 −0.0484 −0.0046 −0.0113 0.1342 −0.0335 0.2257 0.2664 0.3247 0.6503









































Λ′

0 =
[

0 -0.1781 0 0.0309 0 0.6601 −0.0712 0.1225 0 0
]

Λ1 =









































0 0 0 0 0 0 0 0 0 0

4.1229 -70.9093 55.3549 -96.4021 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

-49.3448 131.6779 -48.3828 249.5507 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0.3578 −101.5409 −29.1252 −17.9823 -3.5997 1.7053 0 0 0 0

−3.7005 −5.7382 12.0120 41.0278 0.4508 2.3711 0 0 0 0

4.2683 −1.2674 1.0349 −29.7221 0.1894 −0.5990 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0









































We compute OLS standard errors for the elements of Ψ and report the coefficients with a t-stat greater than

1.98 in bold. Bootstrap standard errors on the market price of risk parameters are available upon request. They

are derived as part of the method explained in Appendix C.7. Market price of risk estimates with bootstrap t-stats

above 1.98 are indicated in bold.
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C.7 Bootstrap Standard Errors

We obtain standard errors on the moments of the estimated wealth-consumption ratio by bootstrap. More precisely,

we conduct two bootstrap exercises leading to two sets of standard errors. In each exercise, we draw with replacement

from the VAR innovations εt. We draw row-by-row in order to preserve the cross-correlation structure between the

state innovations (Step 1). Given the point estimates for Ψ and Σ as well as the mean vector µ, we recursively

reconstruct the state vector (Step 2). We then re-estimate the mean vector, companion matrix, and innovation

covariance matrix (Step 3). With the new state vector and the new VAR parameters in hand, we re-estimate the

market price of risk parameters in Λ0 and Λ1 (Step 4). Just as in the main estimation, we use 2500 quarters to

approximate the infinite-horizon sums in the strip price-dividend ratio calculations. We limit the estimation in Step

4 to 500 function evaluations for computational reasons. In some of the bootstrap iterations, the optimization in

Step 4 does not find a feasible solution. This happens, for example when no parameter choices keep the human

wealth share less than hundred percent or the consumption or labor income claim finite. We discard these bootstrap

iterations. These new market price of risk parameters deliver a new wealth-consumption ratio time series (Step

5). With the bootstrap time series for consumption growth and the wealth-consumption ratio, we can form all the

moments in Table 1. We repeat this procedure 1,000 times and report the standard deviation across the bootstrap

iterations. We conduct two variations on the above algorithm. The first set of standard errors are reported in

parentheses, the second set are in brackets in Table 1. Each bootstrap exercise takes about 12 hours to compute on

an 8-processor computer.

In the first exercise, we only consider sampling uncertainty in the last four elements of the state: the two

factor mimicking portfolios, consumption growth, and labor income growth. We assume that all the other variables

are observed without error. The idea is that national account aggregates are measured much less precisely than

traded stocks and bonds. This procedure takes into account sampling uncertainty in consumption growth and its

correlations with yields and with the aggregate stock market. Given our goal of obtaining standard errors around

the moments of the wealth-consumption ratio, this seems like a natural first exercise. The second column of Table 4

reports the standard errors from this bootstrap exercise in parentheses. For completeness, it also reports the mean

across bootstrap iterations.

In a second estimation exercise, we also consider sampling uncertainty in the first six state variables (yields and

stock prices). Redrawing the yields that enter in the state space (the 1-quarter yield and the 20-1 quarter yield

spread) requires also redrawing the additional yields that are used in estimation (the 4-, 12-, 40-, and 80-quarter

yields) and in the formation of the Cochrane-Piazzesi factor (the 4-, 8-, 12-, and 16- quarter yields). Otherwise,

the bootstrapped time-series for the yields in the state space would be disconnected from the other yields. For this

second exercise, we augment the VAR with the following yield spreads: 4-20, 8-20, 12-20, 16-20, 40-20, and 80-20

quarter yield spreads. We let these spreads depend on their own lag and on the lagged 1-quarter yield. Additional

dependence on the lagged 20-1 quarter yield makes little difference. In Step 1, we draw from the yield spreads-

augmented VAR innovations. This allows us to take into account the cross-dependencies between all the yields in

the yield curve. In addition to recursively rebuilding the state variables in Step 2, we also rebuild the six yield

spreads. With the bootstrapped yields, we reconstruct the forward rates, one-year excess bond returns, re-estimate

the excess bond return regression, and re-construct the Cochrane-Piazzesi factor. Steps 3 through 5 are the same as

in the first exercise. One additional complication arises because the bootstrapped yields often turn negative for one

or more periods. Since negative nominal yields never happen in the data and make no economic sense, we discard

these bootstrap iterations. We redraw from the VAR innovations until we have 1,000 bootstrap samples with strictly

positive yields at all maturities. This is akin to a rejection-sampling procedure. One drawback is that there is an

upward bias in the yield curve. The average one-quarter yield is 5.13% per annum in our data sample, while it is

5.93% in our bootstrap sample. This translates in a small downward bias in the average wealth consumption ratio:
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the average wealth-consumption ratio is 5.86 in the data and 5.69 in the bootstrap. The third column of Table 4

reports the standard errors from this bootstrap exercise in parentheses. As expected, the standard errors from the

second bootstrap exercise are somewhat bigger. However, their difference is small. We report the more conservative

standard errors in the main text.

Table 4: Bootstrap Standard Errors

This table displays bootstrap standard errors on the unconditional moments of the log wealth-consumption ratio wc, its first difference
∆wc, and the log total wealth return rc. The last but one row reports the time-series average of the conditional consumption risk
premium, E[Et[r

c,e
t ]], where rc,e denotes the expected log return on total wealth in excess of the risk-free rate and corrected for a Jensen

term. The first column repeats the point estimates from the main text (last column of Table 1). The second and third columns report
the results from two bootstrap exercises, described above. The table reports the mean and standard deviation (in parentheses) across
1,000 bootstrap iterations.

Moments Point Estimate Bootstrap 1 Bootstrap 2

Std[wc] 17.24% 16.26% 15.24%

(s.e.) (3.39) (4.30)

AC(1)[wc] .96 .95 .93

(s.e.) (.00) (.03)

AC(4)[wc] .85 .83 .74

(s.e.) (.01) (.08)

Std[∆wc] 4.86% 4.86% 5.07%

(s.e.) (0.98) (1.16)

Std[∆c] .44% .44% .44%

(s.e.) (.03) (.03)

Corr[∆c,∆wc] .11 .02 .12

(s.e.) (.06) (.06)

Std[rc] 4.94% 4.90% 5.16%

(s.e.) (2.21) (1.16)

Corr[rc, ∆c] .19 .12 .21

(s.e.) (.07) (.07)

E[Et[r
c,e
t ]] .54% .46% 0.53%

(s.e.) (.11) (.16)

E[wc] 5.86 6.29 5.69

(s.e.) (.48) (.49)

D The Long-Run Risk Model

D.1 Preferences

Let Vt(Ct) denote the utility derived from consuming Ct, then the value function of the representative agent takes

the following recursive form:

Vt(Ct) =
[

(1 − β)C1−ρ

t + β(RtVt+1)
1−ρ

]
1

1−ρ

, (40)

where the risk-adjusted expectation operator is defined as:

RtVt+1 =
(

EtV
1−α

t+1

)
1

1−α .
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For these preferences, α governs risk aversion and ρ governs the willingness to substitute consumption inter-

temporally. It is the inverse of the inter-temporal elasticity of substitution. In the special case where ρ = α,

they collapse to the standard power utility preferences, used in Breeden (1979) and Lucas (1978). Epstein and Zin

(1989) show that the stochastic discount factor can be written as:

Mt+1 = β

(

Ct+1

Ct

)

−ρ(

Vt+1

RtVt+1

)ρ−α

(41)

The next proposition shows that the ability to write the SDF in the long-run risk model as a function of consumption

growth and the wealth-consumption ratio is general. It does not depend on the linearization of returns, nor on the

assumptions on the stochastic process for consumption growth (see Hansen, Heaton, Lee, and Roussanov (2008)).

Proposition 9. The log SDF in the non-linear version of the long-run risk model can be stated as

mt+1 =
1 − α

1 − ρ
log β − α∆ct+1 +

ρ − α

1 − ρ
log

(

ewct+1

ewct − 1

)

(42)

Proof. We start from the value function definition in equation (40) and raise both sides to the power 1 − ρ, and

subsequently divide through by (1 − β)C−ρ

t
to obtain:

V
1−ρ

t

(1 − β)C−ρ

t

= Ct + β

(

EtV
1−α

t+1

)

1−ρ
1−α

(1 − β)C−ρ

t

(43)

Some algebra and the definition of the risk-adjusted expectation operator imply that

Et(V
1−α

t+1 )
1−ρ
1−α = Et(V

1−α

t+1 )1−
ρ−α
1−α =

Et(V
1−α

t+1 )

Et(V
1−α

t+1 )
ρ−α
1−α

=
Et(V

1−α

t+1 )

(RtVt+1)ρ−α
= Et

[

V
ρ−α

t+1 V
1−ρ

t+1

(RtVt+1)ρ−α

]

The left-hand side shows up in equation (43), and we substitute it for the right-hand side of the equation above.

Multiplying and dividing inside the expectation operator by C
−ρ

t+1, we get:

V
1−ρ

t

(1 − β)C−ρ

t

= Ct + Et

[

β

(

Ct+1

Ct

)

−ρ (

Vt+1

RtVt+1

)ρ−α
V

1−ρ

t+1

(1 − β)C−ρ

t+1

]

Note that the first three terms inside the expectation are equal to the stochastic discount factor in equation (41).

This is a no-arbitrage asset pricing equation of an asset with dividend equal to aggregate consumption. The price

of this asset is Wt. Hence,

Wt = Ct + Et [Mt+1Wt+1] and Wt =
V

1−ρ

t

(1 − β)C−ρ

t

. (44)

This equation, together with E[Mt+1R
c
t+1] = 1 delivers the return on the total wealth portfolio:

Rc

t+1 =
Wt+1

(Wt − Ct)
=

V
1−ρ

t+1

(1−β)C
−ρ
t+1

V
1−ρ

t

(1−β)C
−ρ
t

− Ct

=

V
1−ρ

t+1

(1−β)C
−ρ
t+1

β

(1−β)C
−ρ
t

(RtVt+1)1−ρ
= β−1

(

Ct+1

Ct

)ρ(

Vt+1

RtVt+1

)1−ρ

, (45)

where the first equality is the return definition, the second one follows from the definition of Wt, and the third

equality from the Bellman equation (40).
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One then rearranges this equation (after raising both sides to the power ρ−α

1−ρ
) to get a relationship between the

change in continuation values and the total wealth return:

(

Vt+1

RtVt+1

)ρ−α

= β
ρ−α
1−ρ

(

Ct+1

Ct

)

−ρ
ρ−α
1−ρ

(

Rc

t+1

)
ρ−α
1−ρ .

Finally, we substitute it into the stochastic discount factor expression (41) to obtain an expression that depends

only on consumption growth and the return to the wealth portfolio:

Mt+1 = β
1−α
1−ρ

(

Ct+1

Ct

)

−ρ
1−α
1−ρ

(

Rc

t+1

)
ρ−α
1−ρ (46)

Instead, we rewrite the return on the wealth portfolio in terms of the wealth-consumption ratio WC

Rc

t+1 =
WCt+1

WCt − 1

Ct+1

Ct

=
ewct+1

ewct − 1

Ct+1

Ct

,

Substituting this into equation (46) delivers an expression that depends only on consumption growth and the

wealth-consumption ratio:

Mt+1 = β
1−α
1−ρ

(

Ct+1

Ct

)

−α(

WCt+1

WCt − 1

)
ρ−α
1−ρ

= β
1−α
1−ρ

(

Ct+1

Ct

)

−α(

ewct+1

ewct − 1

)
ρ−α
1−ρ

(47)

The log SDF expression in the Bansal and Yaron (2004) model is a special case of this general, non-linear formulation.

Indeed, one recovers the log SDF equation (48) below by using a first-order Taylor approximation of wct in equation

(42) around Ac
0.

mt+1 =
1 − α

1 − ρ
[log β + κc

0] − κc

0 − α∆ct+1 −
α − ρ

1 − ρ
(wct+1 − κc

1wct) (48)

This expression follows immediately from the results in Appendix D.2 below. Since κc
1 turns out to be essentially

1 under the Bansal and Yaron (2004) calibration, the second asset pricing factor in the SDF is essentially the log

change in the wealth-consumption ratio. A second special case obtains by approximating the last term in (42) using

a first-order Taylor expansion of wct+1 around wct instead. In that case, we obtain a three-factor model:

mt+1 ≈
1 − α

1 − ρ
log β − α∆ct+1 +

ρ − α

1 − ρ
log

(

ewct

ewct − 1

)

+
ρ − α

1 − ρ
∆wct+1. (49)

Expressions (49) and (48) are functionally similar because κc
1 is close to 1 and κc

0 equals e
wct

ewct−1
when wct is evaluated

at its long-run mean A0.

D.2 Proof of Proposition 3

Setting Up Notation The starting point of the analysis is the Euler equation Et[Mt+1R
i
t+1] = 1, where

Ri
t+1 denotes a gross return between dates t and t + 1 on some asset i and Mt+1 is the SDF. In logs:

Et [mt+1] + Et

[

ri

t+1

]

+
1

2
V art [mt+1] +

1

2
V art

[

ri

t+1

]

+ Covt

[

mt+1, r
i

t+1

]

= 0. (50)
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The same equation holds for the real risk-free rate yt(1), so that

yt(1) = −Et [mt+1] −
1

2
V art [mt+1] . (51)

The expected excess return becomes:

Et

[

r
e,i

t+1

]

= Et

[

ri

t+1 − yt(1)
]

+
1

2
V art

[

ri

t+1

]

= −Covt

[

mt+1, r
i

t+1

]

= −Covt

[

mt+1, r
e,i

t+1

]

, (52)

where r
e,i

t+1 denotes the excess return on asset i corrected for the Jensen term.

We adopt the consumption growth specification of Bansal and Yaron (2004), repeated from the main text:

∆ct+1 = µc + xt + σtηt+1, (53)

xt+1 = ρxxt + ϕeσtet+1, (54)

σ2
t+1 = σ̄2 + ν1(σ

2
t
− σ2) + σwwt+1, (55)

where (ηt, et, wt) are i.i.d. mean-zero, variance-one, normally distributed innovations.

Proof of Linearity The proof closely follows the proof in Bansal and Yaron (2004), henceforth BY, but

adjusts all expressions for our timing of returns.

Proof. In what follows we focus on the return on a claim to aggregate consumption, denoted rc, where

rc

t+1 = κc

0 + ∆ct+1 + wct+1 − κc

1wct,

and derive the five terms in equation (50) for this asset.

Taking logs on both sides of the non-linear SDF expression in equation (46) of Appendix D.1 delivers an expression

of the log SDF as a function of log consumption changes and the log total wealth return

mt+1 =
1 − α

1 − ρ
log β −

1 − α

1 − ρ
ρ∆ct+1 +

(

1 − α

1 − ρ
− 1

)

rc

t+1. (56)

We conjecture that the log wealth-consumption ratio is linear in the two states xt and σ2
t − σ̄2,

wct = Ac

0 + Ac

1xt + Ac

2

(

σ2
t
− σ̄2

)

.

As BY, we assume joint conditional normality of consumption growth, x, and the variance of consumption growth.

We verify this conjecture from the Euler equation (50).

Using the conjecture for the wealth-consumption ratio, we compute innovations in the total wealth return, and its

conditional mean and variance:

rc

t+1 − Et

[

rc

t+1

]

= σtηt+1 + Ac

1ϕeσtet+1 + Ac

2σwwt+1

Et

[

rc

t+1

]

= r0 + (1 − (κc

1 − ρx)Ac

1)xt − Ac

2(κ
c

1 − ν1)
(

σ2
t
− σ̄2

)

Vt

[

rc

t+1

]

= (1 + (Ac

1ϕe)
2)σ2

t + (Ac

2)
2σ2

w

r0 = κc

0 + Ac

0(1 − κc

1) + µc

These equations correspond to (A.8) and (A.9) in the Appendix of BY.
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Substituting in the expression for the log total wealth return rc into the log SDF, we compute innovations, and the

conditional mean and variance of the log SDF:

mt+1 − Et [mt+1] = −ασtηt+1 −
α − ρ

1 − ρ
Ac

1ϕeσtet+1 −
α − ρ

1 − ρ
Ac

2σwwt+1,

Et [mt+1] = m0 − ρxt +
α − ρ

1 − ρ
(κc

1 − ν1)A
c

2

(

σ2
t − σ̄2

)

Vt [mt+1] =

(

α2 +

(

α − ρ

1 − ρ

)2

(Ac

1ϕe)
2

)

σ2
t

+

(

α − ρ

1 − ρ

)2

(Ac

2)
2σ2

w

m0 =
1 − α

1 − ρ
log β −

α − ρ

1 − ρ
[κc

0 + Ac

0(1 − κc

1)] − αµc (57)

These expressions correspond to equations (A.10) and (A.27), and are only slightly different due to the different

timing in returns.

The conditional covariance between the log consumption return and the log SDF is given by the conditional expec-

tation of the product of their innovations

Covt

[

rc

t+1, mt+1

]

= Et

[

rc

t+1 − Et

[

rc

t+1

]

, mt+1 − Et [mt+1]
]

=

(

−α −
α − ρ

1 − ρ
(Ac

1ϕe)
2

)

σ2
t −

α − ρ

1 − ρ
(Ac

2)
2σ2

w

Using the method of undetermined coefficients and the five components of equation (50), we can solve for the

constants Ac
0, Ac

1, and Ac
2:

Ac

1 =
1 − ρ

κc
1 − ρx

, (58)

Ac

2 =
(1 − ρ)(1 − α)

2(κc
1 − ν1)

[

1 +
ϕ2

e

(κc
1 − ρx)2

]

, (59)

0 =
1 − α

1 − ρ
[log β + κc

0 + (1 − κc

1)A
c

0] + (1 − α)µc +
1

2
(1 − α)2

[

1 +
ϕ2

e

(κc
1 − ρx)2

]

σ̄2 +
1

2

(

1 − α

1 − ρ

)2

(Ac

2)
2σ2

w(60)

The first two correspond to equations (A.5) and (A.7) in BY. The last equation implicitly solves Ac
0 as a function of

all parameters of the model. Because κc
0 and κc

1 are non-linear functions of Ac
0, this system of three equations needs

to be solved simultaneously and numerically. Our computations indicate that the system has a unique solution.

This verifies the conjecture that the log wealth-consumption ratio is linear in the two state variables.

According to (52), the risk premium on the consumption claim is given by

Et

[

re

t+1

]

= Et

[

rc

t+1 − yt(1)
]

+ .5Vt[r
c

t+1] = −λm,ησ2
t + λm,eBσ2

t + λm,wAc

2σ
2
w, (61)

This corresponds to equation (A.11) in BY, with λm,η = −α, λm,e = α−ρ

1−ρ
Ac

1ϕe, and λm,w = α−ρ

1−ρ
Ac

2.

According to equation (51), the expression for the risk-free rate is given by

yt(1) = h0 + ρxt + h1(σ
2
t − σ̄2) (62)

h0 = −m0 − .5λ2
m,w

σ2
w
− .5

(

λ2
m,η

+ λ2
m,e

)

σ̄2

h1 = −
α − ρ

1 − ρ
(κc

1 − ν1)A
c

2 − .5
(

λ2
m,η + λ2

m,e

)

= .5(ρ − α)

(

1 +
ϕ2

e

(κc
1 − ρx)2

)

− .5

(

α2 + (α − ρ)2
ϕ2

e

(κc
1 − ρx)2

)
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This corresponds to equation (A.25-A.27) in BY. Its unconditional mean is simply h0 (see A.28).

D.3 Quarterly Calibration LRR Model

The Bansal-Yaron model is calibrated and parameterized to monthly data. Since we want to use data on quarterly

consumption and dividend growth, and a quarterly series for the wealth-consumption ratio, we recast the model

at quarterly frequencies. We assume that the quarterly process for consumption growth, dividend growth, the low

frequency component and the variance has the exact same structure than at the monthly frequency, with mean

zero, standard deviation 1 innovations, but with different parameters. This appendix explains how the monthly

parameters map into quarterly parameters. We denote all variables, shocks, and all parameters of the quarterly

system with a tilde superscript. Our parameter values are listed at the end of this section, together with details on

the simulation approach.

Preference Parameters Obviously, the preference parameters do not depend on the horizon (α̃ = α and

ρ̃ = ρ), except for the time discount factor β̃ = β3. Also, the long-run average log wealth-consumption ratio at

the quarterly frequency is lower than at the monthly frequency by approximately log(3), because log of quarterly

consumption is the log of three times monthly consumption.

Cash-flow Parameters We accomplish this by matching the conditional and unconditional mean and vari-

ance of log consumption and dividend growth. Log quarterly consumption growth is the sum of log consumption

growth of three consecutive months. We obtain ∆c̃t+1 ≡ ∆ct+3 + ∆ct+2 + ∆ct+1

∆c̃t+1 = 3µc + (1 + ρx + ρ2
x
)xt + σtηt+1 + σt+1ηt+2 + σt+2ηt+3 + (1 + ρx)ϕeσtet+1 + ϕeσt+1et+2 (63)

Log quarterly dividend growth looks similar:

∆d̃t+1 = 3µd + φ(1 + ρx + ρ2
x
)xt + ϕdσtut+1 + ϕdσt+1ut+2 + ϕdσt+2ut+3 + φ(1 + ρx)ϕeσtet+1 + φϕeσt+1et+2 (64)

First, we rescale the long-run component in the quarterly system, so that the coefficient on it in the consumption

growth equation is still 1:

x̃t = (1 + ρx + ρ2
x
)xt.

Second, we equate the unconditional mean of consumption and dividend growth :

µ̃ = 3µ, µ̃d = 3µd.

These imply that we also match the the conditional mean of consumption growth:

Et[∆ct+3 + ∆ct+2 + ∆ct+1] = 3µ + (1 + ρx + ρ2
x)xt = µ̃ + x̃t = Et[∆c̃t+1]

Third, we also match the conditional mean of dividend growth by setting the quarterly leverage parameter φ̃ = φ.
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Fourth, we match the unconditional variance of quarterly consumption growth:

V [∆c̃t+1] = (1 + ρx + ρ2
x
)2V [xt] + σ2

[

3 + (1 + ρx)2ϕ2
e

+ ϕ2
e

]

= (1 + ρx + ρ2
x
)2

ϕ2
e
σ2

1 − ρ2
x

+ σ2
[

3 + (1 + ρx)2ϕ2
e

+ ϕ2
e

]

=
ϕ̃2

eσ̃
2

1 − ρ̃2
x

+ σ̃2

The first and second equalities use the law of iterated expectations to show that

V [σt+jηt+j+1] ≡ E
[

Et+j

{

σ2
t+jη

2
t+j+1

}]

− (E [Et+j {σt+jηt+j+1}])
2

= E
[

σ2
t+j

]

− 0 = σ2

and the same argument applies to terms of type V [σt+jet+j+1]. Coefficient matching on the variance of consumption

expression delivers expressions for σ̃2 and ϕ̃e:

σ̃2 = σ2
[

3 + (1 + ρx)2ϕ2
e + ϕ2

e

]

ϕ̃2
e

= ϕ2
e

(1 − ρ̃2
x)(1 + ρx + ρ2

x)2

1 − ρ2
x

σ2

σ̃2

=
(1 − ρ6

x
)(1 + ρx + ρ2

x
)2

1 − ρ2
x

ϕ2
e

3 + (1 + ρx)2ϕ2
e

+ ϕ2
e

,

where the third equality uses the first equality. Note that we imposed ρ̃x = ρ3
x
, which follows from a desire to match

the persistence of the long-run cash-flow component. Recursively substituting, we find that the three-month ahead

x process has the following relationship to the current value:

xt+3 = ρ3
xxt + ϕeσt+2et+3 + ρxϕeσt+1et+2 + ρ2

xϕeσtet+1

which compares to the quarterly equation

x̃t+1 = ρ̃xx̃t + ϕ̃eσ̃tẽt+1

The two processes now have the same auto-correlation and unconditional variance.

Fifth, we match the unconditional variance of dividend growth. Given the assumptions we have made sofar, this

pins down ϕd:

ϕ̃2
d

=
3ϕ2

d
+ φ2(1 + ρx)2ϕ2

e
+ φ2ϕ2

e

3 + (1 + ρx)2ϕ2
e

+ ϕ2
e

Sixth, we match the autocorrelation and the unconditional variance of economic uncertainty σ2
t . Iterating forward,

we obtain an expression that relates variance in month t to the one in month t + 3:

σ2
t+3 − σ2 = ν3

1(σ2
t
− σ2) + σwν2

1wt+1 + σwν1wt+2 + σwwt+3

By setting ν̃1 = ν3
1 and σ̃2

w = σ2
w(1 + ν2

1 + ν4
1 ), we match the autocorrelation and variance of the quarterly equation

σ̃2
t+1 − σ̃2 = ν̃1(σ̃

2
t − σ̃2) + σ̃ww̃t+1
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Parameter Values We use ρ = 2/3, α = 10, and β = .997 for preferences; and µc = .45e−2, σ̄ = 1.35e−2,

ρx = .938, ϕe = .126, ν1 = .962, and σw = .39 ∗ 10−5 for the cash-flow processes in (14)-(16). The vector

ΘLRR = (α, ρ, β, µc, σ̄, ϕe, ρx, ν1, σw) stores these parameters. The corresponding monthly values are ΘLRR =
(

10, .6666, .998985, .0015, .0078, .044, .979, .987, .23 ∗ 10−5
)

. A simulation of the quarterly model recovered the an-

nualized cash-flow and asset return moments of the monthly simulation.

The quarterly calibration implies the following solution to the system of equations in (58)-(60): A
c,LRR

0 = 5.85,

A
c,LRR

1 = [5.16,−175.10]. The corresponding linearization constants are κc
0 = .0198 and κc

1 = 1.0029.

The quarterly parameters of the dividend claim are: φ = 3 and ϕd = 4.4960.

Simulation Most population moments of interest are known in closed-form in the LRR model, so that we do

not have to simulate. However, the simulation approach has the advantages of generating small-sample biases that

may also exist in the data and delivering (bootstrap) standard errors.

We run 5,000 simulations of the model for 236 quarters each, corresponding to the period 1948-2006. In each

simulation we draw a 236× 3 matrix of mutually uncorrelated standard normal random variables for the cash-flow

innovations (η, e, w) in (14)-(16). We start off each run at the steady-state (x0 = 0 and σ2
t

= σ̄2). For each run, we

form log consumption growth ∆ct, the two state variables [xt, σ
2
t
− σ̄2], the log wealth-consumption ratio wct and

its first difference, and the log total wealth return rc
t . We compute their first and second moments. These moments

are based on the last 220 quarters only, for consistency with the length for our data for consumption growth and the

growth rate of the wealth-consumption ratio (1952.I-2006.IV). This has the added benefit that the first 16 quarters

are “burn-in,” so that the first observation we use for the state vector is different in each run.

D.4 Campbell-Shiller Decomposition

Expected discounted future returns and consumption growth rates are given by:

rH

t
≡ Et





∞
∑

j=1

(κc

1)
−j

rt+j



 =
rc
0

κc
1 − 1

+
ρ

κc
1 − ρx

xt − Ac

2(σ
2
t
− σ̄2)

∆cH

t
≡ Et





∞
∑

j=1

(κc

1)
−j ∆ct+j



 =
µc

κc
1 − 1

+
1

κc
1 − ρx

xt

These expressions use the definitions of the total wealth return and consumption, as well as their dynamics. Starting

from the affine expression for wc, we can write the wc ratio as a constant plus expected future consumption growth

minus expected future total wealth returns:

wct = Ac

0 + Ac

1xt + Ac

2(σ
2
t
− σ̄2) = Ac

0 +
1

κc
1 − ρx

xt −

(

ρ

κc
1 − ρx

xt − Ac

2(σ
2
t
− σ̄2)

)

= Ac

0 +

(

∆cH

t −
µc

κc
1 − 1

)

−

(

rH

t −
rc
0

κc
1 − 1

)

=
κc

0

κc
1 − 1

+ ∆cH

t − rH

t

The second equality uses the definition of Ac
1. The third equality uses the definition of rH

t
and ∆cH

t
. The fourth

equality uses the definition of rc
0.

The variance of the log wealth-consumption ratio can be written in two equivalent ways:

V
[

∆cH

t

]

+ V
[

rH

t

]

− 2Cov
[

rH

t
, ∆cH

t

]

= V [wct] = Cov
[

wct, ∆cH

t

]

+ Cov
[

wct,−rH

t

]
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In the LRR model, the terms in this expression are given by

V
[

∆cH

t

]

=
1

(κc
1 − ρx)2

ϕ2
e

1 − ρ2
x

σ̄2 > 0

V
[

rH

t

]

=
ρ2

(κc
1 − ρx)2

ϕ2
e

1 − ρ2
x

σ̄2 + (Ac

2)
2 σ2

w

1 − ν2
1

> 0

Cov
[

rH

t , ∆cH

t

]

=
ρ

(κc
1 − ρx)2

ϕ2
e

1 − ρ2
x

σ̄2 > 0

Cov
[

wct, ∆cH

t

]

=
1 − ρ

(κc
1 − ρx)2

ϕ2
e

1 − ρ2
x

σ̄2 > 0 ⇔ ρ < 1

Cov
[

wct,−rH

t

]

=
ρ2 − ρ

(κc
1 − ρx)2

ϕ2
e

1 − ρ2
x

σ̄2 + (Ac

2)
2 σ2

w

1 − ν2
1

> 0 ⇐ ρ > 1

We can break up expected future returns into a risk-free rate component and a risk premium component. The

former is equal to

Et





∞
∑

j=1

(κc

1)
−j

r
f

t+j−1



 =
h0

κc
1 − 1

+
ρ

κc
1 − ρx

xt +
h1

κc
1 − ν1

(σ2
t − σ̄2), (65)

where the second equation uses the expression for the risk-free rate in equation (62) to compute future risk-free

rates and takes their time-t expectations. The risk premium component is simply the difference between rH
t and

the second expression.

D.5 Pricing Stocks in the LRR Model

Dividend Growth Process We start by pricing a claim to aggregate dividends, where the dividend process

follows the specification in Bansal and Yaron (2004):

∆dt+1 = µd + φxt + ϕdσtut+1 (66)

The shock ut is orthogonal to (η, e, w).

Defining returns ex-dividend and using the Campbell (1991) linearization, the log return on a claim to the aggregate

dividend can be written as:

rm

t+1 = ∆dt+1 + pdm

t+1 + κm

0 − κm

1 pdm

t ,

with coefficients

κm

1 =
eA

m
0

eAm
0 − 1

> 1, and κm

0 = − log
(

eA
m
0 − 1

)

+
eA

m
0

eAm
0 − 1

Am

0

which depend on the long-run log price-dividend ratio Am
0 .

Proof of Linearity We conjecture, as we did for the wealth-consumption ratio, that the log price dividend

ratio is linear in the two state variables:

pdm

t = Am

0 + Am

1 xt + Am

2 (σ2
t − σ̄2).

As we did for the return on the consumption claim, we compute innovations in the dividend claim return, and its
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conditional mean and variance:

rm

t+1 − Et

[

rm

t+1

]

= ϕdσtut+1 + βm,eσtet+1 + βm,wσwwt+1

Et

[

rm

t+1

]

= rm

0 + [φ + Am

1 (ρx − κm

1 )]xt − Am

2 (κm

1 − ν1)
(

σ2
t − σ̄2

)

Vt

[

rm

t+1

]

= (ϕ2
d

+ β2
m,e

)σ2
t

+ β2
m,w

σ2
w
,

rm

0 = κm

0 + Am

0 (1 − κm

1 ) + µd

where βm,e = Am
1 ϕe and βm,w = Am

2 . These equations correspond to (A.12) and (A.13) in the Appendix of Bansal

and Yaron (2004). Finally, the conditional covariance between the log SDF and the log dividend claim return is

Covt

[

mt+1, r
m

t+1

]

= −λm,eβm,eσ
2
t − λm,wβm,wσ2

w

From the Euler equation for this return Et [mt+1] + Et

[

rm
t+1

]

+ 1

2
Vt [mt+1] +

1

2
Vt

[

rm
t+1

]

+ Covt[mt+1, r
m
t+1] = 0 and

the method of undetermined coefficients, we can use the same procedure as described in D.2, and solve for the

constants Am
0 , Am

1 , and Am
2 :

Am

1 =
φ − ρ

κm
1 − ρx

,

Am

2 =

[

α−ρ

1−ρ
Ac

2(κ1 − ν1) + .5Hm

]

κm
1 − ν1

,

0 = m0 + κm

0 + (1 − κm

1 )Am

0 + µd +
1

2
Hmσ̄2 +

1

2

(

Am

2 − Ac

2

α − ρ

1 − ρ

)2

σ2
w

where

Hm = α2 +

(

Am

1 ϕe + (
ρ − α

1 − ρ
)Ac

1ϕe

)2

+ ϕ2
d

Again, this is a non-linear system in three equations and three unknowns, which we solve numerically. The first two

equations correspond to (A.16) and (A.20) in BY.

Equity Risk premium and CS Decomposition The equity risk premium on the dividend claim

(adjusted for a Jensen term) becomes:

Et

[

r
e,m

t+1

]

≡ Et

[

rm

t+1 − yt(1)
]

+ .5Vt[r
m

t+1] = λm,eβm,eσ
2
t

+ λm,wβm,wσ2
w

(67)

This corresponds to equation (A.14) in BY.

Expected discounted future equity returns and dividend growth rates are given by:

r
m,H

t ≡ Et





∞
∑

j=1

(κm

1 )
−j

rm

t+j



 =
rm
0

κm
1 − 1

+
ρ

κm
1 − ρx

xt − Am

2 (σ2
t − σ̄2) (68)

∆dH

t ≡ Et





∞
∑

j=1

(κm

1 )
−j

∆dt+j



 =
µd

κm
1 − 1

+
φ

κm
1 − ρx

xt (69)

From these expressions, it is easy to see that pdm
t

=
κ

m
0

κm
1
−1

+ ∆dH
t

− r
m,H

t , and to compute the elements of the
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variance-decomposition:

V [pdm

t
] = Cov[pdm

t
, ∆dH

t
] + Cov[pdm

t
,−r

m,H

t
] = V [∆dH

t
] + V [rm,H

t
] − 2Cov[∆dH

t
, r

m,H

t
].

E The External Habit Model

The organization of this EH model appendix exactly parallels the treatment of the LRR model in Appendix (D.2).

E.1 Proof of Proposition 4

Proof. We conjecture that the log wealth-consumption ratio is linear in the sole state variable (st − s̄),

wct = Ac

0 + Ac

1 (st − s̄) .

As Campbell and Cochrane (1999), henceforth CC, we assume joint conditional normality of consumption growth

and the surplus consumption ratio. We verify this conjecture from the Euler equation for total wealth.

We start from the canonical log SDF in the external habit model:

mt+1 = log β − α∆ct+1 − α∆st+1.

Substituting in the expression for returns into the log SDF, we compute innovations, and the conditional mean and

variance of the log SDF:

mt+1 − Et [mt+1] = −α(1 + λt)σ̄ηt+1

Et [mt+1] = m0 + α(1 − ρs) (st − s̄)

Vt [mt+1] = α2 (1 + λt)
2
σ̄2

m0 = log β − αµc (70)

Likewise, we compute innovations in the consumption claim return, and its conditional mean and variance:

rc

t+1 − Et

[

rc

t+1

]

= (1 + Ac

1λt)σ̄ηt+1

Et

[

rc

t+1

]

= r0 − Ac

1(κ
c

1 − ρs) (st − s̄) (71)

Vt

[

rc

t+1

]

= (1 + Ac

1λt)
2σ̄2

r0 = κc

0 + Ac

0(1 − κc

1) + µc

The conditional covariance between the log consumption return and the log SDF is given by the conditional expec-

tation of the product of their innovations

Covt

[

mt+1, r
c

t+1

]

= −α (1 + λt) (1 + Ac

1λt) σ̄2

We assume that the sensitivity function takes the following form

λt =
S̄−1

√

1 − 2(st − s̄) + 1 − α

α − Ac
1
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Using the method of undetermined coefficients and the five components of equation (50), we can solve for the

constants Ac
0 and Ac

1:

Ac

1 =
(1 − ρs)α − σ̄2S̄−2

κc
1 − ρs

, (72)

0 = log β + κc

0 + (1 − κc

1)A
c

0 + (1 − α)µc + .5σ̄2S̄−2 (73)

This verifies that our conjecture was correct.

It follows immediately that the log SDF can be written as a function of consumption growth and the change in the

log wealth-consumption ratio

mt+1 = log β − α∆ct+1 −
α

Ac
1

(wct+1 − wct) .

The risk premium on the consumption claim is given by Covt[r
c
t+1,−mt+1]:

Et

[

re

t+1

]

≡ Et

[

rc

t+1 − yt(1)
]

+ .5Vt[r
c

t+1] = α (1 + λt) (1 + Ac

1λt) σ̄2, (74)

where the second term on the left is a Jensen adjustment. The expression for the risk-free rate appears in the next

section E.2.

E.2 The Steady-State Habit Level

Campbell and Cochrane (1999) engineer their sensitivity function λt to deliver a risk-free rate that is linear in the

state st − s̄. (They mostly study a special case with a constant risk-free rate.) The linearity of the risk-free rate is

accomplished by choosing

λCC

t
= S̄−1

√

1 − 2 (st − s̄) − 1 (75)

Note that if the risk aversion parameter α = 2 and Ac
1 = 1, our sensitivity function exactly coincides with CC’s.

Instead, we engineer our sensitivity function to deliver a log wealth-consumption ratio that is linear in st − s̄.

As a result of our choice, the risk-free rate, yt(1) = −Et [mt+1] − .5Vt [mt+1], is no longer linear in the state, but

contains an additional square-root term:

yt(1) = h0 +

[

σ̄2α2S̄−2

(α − Ac
1)

2
− α(1 − ρs)

]

(st − s̄) − σ̄2α2 (1 − Ac
1)S̄

−1

(α − Ac
1)

2

(

√

1 − 2 (st − s̄) − 1
)

(76)

h0 = − log β + αµc − .5σ̄2α2(1 + λ(s̄))2, where λ(s̄) =

(

S̄−1 + 1 − α

α − Ac
1

)

(77)

where λ(s̄) is obtained from evaluating our sensitivity function at st = s̄.

CC obtain a similar expression, but without the last term. If α = 2 and Ac
1 = 1, the expression collapses to the one

in CC. A constant risk-free rate obtains in the CC model when S̄−1 = σ̄−1

√

1−ρs

α
because this choice makes the

linear term vanish. While there is no S̄ that guarantees a constant risk-less interest rate under our assumptions, we

choose S̄ to match the steady-state risk-free rate in CC, r̄ = − log β + αµ − .5α(1 − ρs). That is, we set st = s̄ in

the above equation, which then collapses to h0. Setting r̄ = h0 allows us to solve for S̄−1 as a function of Ac
1 and

the structural parameters α, ρs, and σ̄:

S̄−1 = (α − Ac

1)

(

σ̄−1

√

1 − ρs

α

)

− 1 + Ac

1. (78)
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Substituting this expression back into the sensitivity function (20), we find that the steady-state sensitivity level

λ(s̄) = σ̄−1

√

1−ρs

α
− 1. This implies that we generate the same steady-state conditional covariance between the

surplus consumption ratio and consumption growth as in CC.

As in CC, we define a maximum value for the log surplus consumption ratio smax, as the value at which λt runs

into zero:

smax = s̄ +
1

2

(

1 − (α − 1)2S̄2
)

Note that if α = 2, this coincides with equation (11) in CC. It is understood that λt = 0 for st ≥ smax.

E.3 Alternative Way of Pinning Down S̄

To conclude the discussion of the EH model, we investigate an alternative way to pin down S̄. In our benchmark

method, outlined in Appendix E.2, we chose it to match the steady state risk-free rate in Campbell and Cochrane

(1999). Here, the alternative is to pin down S̄ to match the average wealth-consumption ratio of 26.75 in Campbell

and Cochrane (1999). As before, we solve a system of three equations in (Ac
0, A

c
1, S̄), only the third of which is

different and simply imposes that eA
c
0−log(4) = 26.75. We obtain the following solution: Ac

0 = 4.673, Ac
1 = 0.447,

and S̄ = 0.0339. The wealth-consumption ratio is higher and less sensitive to the surplus-consumption ratio than

in the benchmark case. The volatility of the surplus-consumption ratio is 41.6%, similar to the benchmark model.

Because Ac
1 is lower, so is the volatility of the wc ratio. It is 18.6% in the model, still higher than in the data. The

volatilities of the change in the wc ratio and of the total wealth return are also lowered, but remain too high. The

consumption risk premium is down from 2.67% per quarter to 1.97% per quarter, much above those in the data.

This alternative calibration has two drawbacks. First, the risk-free rate turns negative to -1.2% per year. This can

happen because we are no longer pinning S̄ down to match the steady-state risk-free rate. The risk-free rate is also

more volatile: .59% versus .03 in the main text, but actually closer to the .55% in the data. The second drawback

of this calibration is that the price-dividend ratio on equity is too smooth. The volatility of pdm is now only 12.5%

per quarter compared to 27% in the data. (The equity premium goes down from 3.30% per quarter to 2.23%.)

E.4 Quarterly Calibration EH Model

Preference Parameters Again, the preference parameter does not depend on the horizon (α̃ = α, except

for the time discount factor β̃ = β3). The surplus consumption ratio has the same law of motion as in the monthly

model, but we set its persistence equal to ρ̃s = ρ3
s
.

Cash-flow Parameters Following a similar logic, we can match mean and variance of quarterly consumption

and dividend growth in the CC model. From matching the means we get:

µ̃ = 3µ, µ̃d = 3µd.

From matching the variances we get

σ̃2 = 3σ2, ϕ̃d = ϕd, χ̃ = χ.

Calibration We work with a quarterly calibration and set α = 2, ρs = .9658, and β = .971 for preferences, and

µc = .47e−2 and σ̄ = .75e−2 for the cash-flow process (18). We summarize the parameters in the vector ΘEH =

(α, ρs, β, µc, σ̄). The corresponding monthly values are ΘEH = (α, ρs, β, µc, σ̄) =
(

2, .9885, .990336, .1575e−2, .433e−2
)

.
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We solve for the loadings of the state variables in the log wealth-consumption ratio form equations (72), (73), and

(78), and find: AEH
0 = 3.86, AEH

1 = 0.778, and S̄ = .0474. The corresponding Campbell-Shiller linearization

constants are κc
0 = .1046 and κc

1 = 1.021583.

For the dividend process described below, we set µd = µ, ϕd = 7.32, and χ = 0.20.

A simulation of the quarterly model recovered the annualized cash-flow and asset return moments of the monthly

simulation.

E.5 Campbell-Shiller Decomposition

Using (71) and the law of motion for st and consumption growth, expected discounted future returns and consump-

tion growth rates are given by:

rH

t ≡ Et





∞
∑

j=1

(κc

1)
−j

rt+j



 =
rc
0

κc
1 − 1

− Ac

1(st − s̄)

∆cH

t
≡ Et





∞
∑

j=1

(κc

1)
−j

∆ct+j



 =
µc

κc
1 − 1

These expressions enable us to go back and forth between the affine log wealth-consumption ratio expression and

the Campbell-Shiller decomposition:

wct = Ac

0 + Ac

1(st − s̄) = Ac

0 +

(

∆cH

t
−

µc

κc
1 − 1

)

−

(

rH

t
−

rc
0

κc
1 − 1

)

=
κc

0

κc
1 − 1

+ ∆cH

t − rH

t ,

The variance of the log wealth-consumption ratio can be written in two equivalent ways:

V
[

∆cH

t

]

+ V
[

rH

t

]

− 2Cov
[

rH

t , ∆cH

t

]

= V [wct] = Cov
[

wct, ∆cH

t

]

+ Cov
[

wct,−rH

t

]

In the EH model, the terms in this expression are given by

V
[

∆cH

t

]

= 0, Cov
[

rH

t
, ∆cH

t

]

= 0, Cov
[

wct, ∆cH

t

]

= 0

V
[

rH

t

]

= (Ac

1)
2

(

S̄−1 + 1 − α

α − Ac
1

)2
1

1 − ρ2
s

σ̄2 > 0

Cov
[

wct,−rH

t

]

= (Ac

1)
2

(

S̄−1 + 1 − α

α − Ac
1

)2
1

1 − ρ2
s

σ̄2 > 0

Likewise, there is no predictability in dividend growth (see equation 79). Therefore, V [pdt] = V
[

r
H,m

t

]

, where the

latter is the unconditional variance of the expected return on the dividend claim.

E.6 Pricing Stocks in EH Model

The main difference with the analysis in the long-run risk model, and the analysis for the total wealth return in

the EH model is that the return to the aggregate dividend claim cannot be written as a linear function of the

state variables. Our choice of the sensitivity function makes the log wealth-consumption ratio linear in the surplus
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consumption ratio. But, for that same sensitivity function, the log price-dividend ratio is not linear in the surplus-

consumption ratio. As a result, we need to resort to a non-linear computation of the price-dividend ratio on the

aggregate dividend claim.

Dividend Growth Process In Campbell and Cochrane (1999), dividend growth is i.i.d., with the same

mean µ as consumption growth, and innovations that are correlated with the innovations in consumption growth. To

make the dividend growth process more directly comparable across models, we write it as a function of innovations

to consumption growth η and innovations u that are orthogonal to η:

∆dt+1 = µd + ϕdσ̄ut+1 + ϕdσ̄χηt+1. (79)

It follows immediately that its (un)conditional variance equals ϕ2
d
σ̄2(1 + χ2) and its (un)conditional covariance

with consumption growth is ϕdσ̄
2χ. If correlation between consumption and dividend growth is corr, then χ =

√

corr2/(1 − corr2). We set ϕd and χ to replicate the unconditional variance of dividend growth and the correlation

of dividend growth and consumption growth corr in Campbell and Cochrane (1999).

Computation of Price-Dividend Ratio Wachter (2005) shows that the price-dividend ratio on a claim

to aggregate dividends can be written as the sum of the price-dividend ratios on strips to the period-n dividend,

for n = 1, · · · ,∞:

Pt

Dt

=

∞
∑

n=1

P d
nt

Dt

(80)

We adopt her methodology and show it continues to hold for our slightly different dividend growth process in equation

(79). A similar approach works when there is cointegration between consumption and dividends (Appendix A in

Wachter (2005)).

The Euler equation for the period-n strip delivers the following expression for the price-dividend ratio

P d
nt

Dt

= Et

[

Mt+1

P d
n−1,t+1

Dt+1

Dt+1

Dt

]

We conjecture that the price-dividend ratio on the period-n strip equals a function Fn(st), which follows the recursion

Fn(st) = βeµd−αµc+α(1−ρs)(st−s̄)+ 1
2

ϕ
2
dσ̄

2

Et

[

e[ϕdχ−α(1+λt)]σ̄ηt+1Fn−1(st+1)
]

,

starting at F0(st) = 1. We now verify this conjecture.

Proof. Substituting in the conjecture
P

d
nt

Dt
= Fn(st) into the Euler equation for the period-n strip, we get

Fn(st) = Et

[

Mt+1Fn−1(st+1)
Dt+1

Dt

]

.

Substituting in for the stochastic discount factor M and the dividend growth process (79), this becomes

Fn(st) = βeµd−αµc+α(1−ρs)(st−s̄)Et

[

e−α(1+λt)σ̄ηt+1Fn−1(st+1)e
ϕdσ̄ut+1+ϕdχσ̄ηt+1

]

.

Because u and η are independent, we can write the expectation as a product of expectations. Because u is standard
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normal, the expectation in the previous expression can be written as

e
1
2
ϕ

2
dσ̄

2

Et

[

e[ϕdχ−α(1+λt)]σ̄ηt+1Fn−1(st+1)
]

.

This then verifies the conjecture for Fn(st).

Finally, let g(η) be the standard normal pdf, then we can compute this function through numerical integration

Fn(st) = βeµd−αµc+α(1−ρs)(st−s̄)+ 1
2

ϕ
2
dσ̄

2

∫ +∞

−∞

e[ϕdχ−α(1+λ(st))]σ̄ηt+1Fn−1(st+1)g(ηt+1)dηt+1,

starting at F0(st) = 1. The grid for st includes 14 very low values for st (-300, -250, -200, -150, -100, -50, -40,

-30, -20, -15, -10, -9, -8, -7), 100 linearly spaced points between -6.5 and s̄ ∗ 1.001 = −2.85, and the log of 100

linearly spaced points between S̄ and exp(1.0000001smax). The function evaluation Fn−1(st+1) is done using linear

interpolation (and extrapolation) on the grid for the log surplus-consumption ratio s. The integral is computed in

matlab using quad.m. The price dividend ratio is computed as the sum of the price-dividend ratios for the first 500

strips.
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