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Abstract

We propose a new model of exchange rates, which yields a theory of the forward premium
puzzle. Our explanation combines two ingredients: the possibility of rare economic disasters,
and an asset view of the exchange rate. Our model is frictionless, has complete markets, and
works for an arbitrary number of countries. In the model, rare worldwide disasters can occur
and affect each country’s productivity. Each country’s exposure to disaster risk varies over
time according to a mean-reverting process. Risky countries command high risk premia: they
feature a depreciated exchange rate and a high interest rate. As their risk premium mean
reverts, their exchange rate appreciates. Therefore, currencies of high interest rate countries
appreciate on average.
To make the notion of disaster risk more implementable, we show how options prices might

in principle uncover latent disaster risk, and help forecast exchange rate movements. We then
extend the framework to incorporate two factors: a disaster risk factor, and a business cycle
factor. We calibrate the model and obtain quantitatively realistic values for the volatility of
the exchange rate, the forward premium puzzle regression coefficients, and near-random walk
exchange rate dynamics. Finally, we solve a model of stock markets across countries, which
yields a series of predictions about the joint behavior of exchange rates, bonds, options and
stocks across countries. The evidence from the options market appears to be supportive of the
model. (JEL: E43, E44, F31, G12, G15)
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1 Introduction

We propose a new model of exchange rates, which yields a theory of exchange rate “excess volatility”

and of the forward premium puzzle. We build on the idea proposed by Rietz (1988), Barro (2006)

and Weitzman (2007) that the possibility of rare but extreme events is a major determinant of

risk premia in asset markets, and develop a tractable framework to study its consequences for

international asset prices.

Our model allows us to propose a solution for a major puzzle in international macroeconomics,

the failure of uncovered interest rate parity (UIP). According to the UIP equation, the expected

depreciation of a currency should be equal to the interest rate differential between that country

and the reference region. A regression of exchange rate changes on interest rate differentials should

yield a coefficient of 1. However, empirical studies starting with Hansen and Hodrick (1980) and

Fama (1984), and recently surveyed by Froot and Thaler (1990), Lewis (1995) and Engel (1996),

consistently produce a regression coefficient that is less than 1, and often negative. This invalidation

of UIP has been termed the forward premium puzzle: currencies with high interest rates tend to

appreciate. In other words, currencies with high interest rates feature positive predictable excess re-

turns. There are four possible explanations: time-varying risk premia, Peso problems, expectations

errors, and illiquid markets1.

Our paper provides a theory of international time-varying risk premia in a complete markets,

frictionless and rational framework. In our model, the exchange rate is both a relative price of

non-traded and traded goods, and an asset price: it is the net present value of the export sector’s

productivity. For this, we develop a “stock view” of the exchange rate. We postulate (to the

best of our knowledge, in a novel way), a linear technology by which an initial investment of non-

tradable goods yields a stream of future export goods, with stochastic productivity. As a result, the

exchange rate is the present value of the country’s future export productivities, discounted using

the international pricing kernel. This “stock view” of the exchange rate could be used in other

contexts, e.g. with habit formation. In our model, risky countries are those whose productivity will

fall by a lot during disasters.

Risky countries command high risk premia: they feature a depreciated exchange rate and a high

interest rate. Their risk premium fluctuates but remains stationary. As their risk premium reverts to

the mean, their exchange rate appreciates. Therefore, the currencies of high interest rate countries

appreciate on average. This provides an explanation for the forward premium puzzle. The model is

consistent with a forward premium puzzle, both in samples with and without disasters. Therefore it

does not suffer from a Peso problem. The driving force of our result is that the risk premium covaries

positively with the interest rate. In other words, our theory does not rely on mismeasurement of

expectations. We calibrate a version of the model and obtain quantitatively realistic values for the

1Maynard and Phillips (2001) argue that the forward premium puzzle is the result of misspecification issues. The
Fama (1984) regression assumes short-memory stationarity of the data, but evidence contradicts this. Misspecification
arises from long memory in the forward premium (the independent variable), and this may induce a bias away from
1.
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volatility of the exchange rate, the forward premium puzzle regression coefficients, and near-random

walk exchange rate dynamics.

The model is very tractable, and expressions for the exchange rate, interest rate, risk premia,

and forward premium puzzle coefficients are obtained in closed forms2. To achieve this, we use the

modelling of an environment with stochastic intensity of disasters proposed for a closed economy

in Gabaix (2007b) (Rietz (1988) and Barro (2006) have constant intensity of disasters), and the

“linearity-generating” processes developed in Gabaix (2007a). Our framework is also very flexi-

ble. We show that it is remarkably easy to extend the basic model to incorporate several factors

corresponding to productivity, disaster risk and inflation.

Currency option prices potentially contain rich information both on the probability and severity

of disasters and on currency risk premia. The model generates a rich pattern of implicit volatility

curves for a given pair of currencies, with both a time varying “smile” — higher implicit volatilities

for out of the money options — and a time varying “skew” — higher implicit volatilities for out of

the money puts than out of the money calls. Indeed, the presence of extreme events generates

a smile, and the possibility for one country to be riskier than the other generates a skew. We

show that in the model, the price of out of the money risk-reversals — an indicator of the premium

of out of the money puts over out of the money calls — can be directly linked to currency risk

premia. According to our theory, when out of the money puts are relatively more expensive, the

corresponding currency should be depreciated and expected to appreciate. Campa, Chang and

Reider (1998) and Carr and Wu (2007) provide evidence that, as predicted by the model, when

out of the money put prices increase relative to out of the money call prices, the corresponding

currency simultaneously depreciates. Farhi, Gabaix, Ranciere and Verdelhan (2008) confirm this

result on a larger sample of currencies for a longer time period; in addition, this paper shows that

high risk-reversal prices predict currency appreciations and tests a number of other joint predictions

of the model for currency option prices and other international and domestic asset prices.

Finally, we provide a calibration of the model. We show that under some simple conditions,

we match the volatility of exchange rates, interest rates, risk premia, and their half-life. Those

conditions involve taking Barro’s (2006) empirical numbers, which imply that rare disasters matter

10 times as much as they would if agents were risk neutral.3 As tail events have their importance

multiplied by 10, changes in beliefs about disasters translate into meaningful volatility. This is why

the model yields a sizable volatility, which is hard to obtain with more traditional models (e.g.,

Obstfeld Rogoff 1995).

The model also offers a number of additional predictions. First, there should be a clear link

between equity and currency risk premia through interest rates. High domestic interest rates imply

high currency risk premia — an expected appreciation of the domestic currency — and low equity
2Pavlova and Rigobon (2007) also provide an elegant and tractable framework for analyzing the joint behavior

of bonds, stocks and exchange rates, which is successful at accounting for comovements among international assets.
However, the model is based on a tradition consumption CAPM and therefore generates small risk premia and small
departures from UIP.

3This holds because of the empirical distribution of disaster, and a mild assumption on agents’ coefficient of risk
aversion.
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risk premia. Fama and Schwert (1977) and Campbell and Yogo (2006) provide evidence of the link

between equity excess returns and nominal interest rates. Hau and Rey (2004) find that for Japan,

France, Germany and Switzerland, a negative shock to the foreign stock market — relative to the

US— lead to a foreign currency appreciation.

Second, the model has rich implications for the relation between the relative shape of the yield

curves between two countries and the expected change in the bilateral exchange rate. Boudoukh,

Richardson and Whitelaw (2006) regress the exchange rate movement on the T -period forward rate

from T periods ago, and find that the regression coefficient increases towards 1 with the horizon

T . Indeed, our theory is consistent with this empirical finding in a context where risk-premia are

rapidly mean-reverting, and productivity is slowly mean-reverting.

The pricing kernels we derive are flexible and attractive reduced-form candidates for models

with time varying risk premia associated with large currency movements. This is, we believe, a

prevalent feature of foreign exchange markets: the carry trade is often referred to “picking dimes in

front a of steam roller.” Although we take the extra-step of linking these risk-premia to aggregate

consumption risk, this step is not needed to derive the asset pricing implications of our framework:

our model does not live or die on this particular hypothesis.

Moreover, time varying disasters are inherently difficult to assess. As such, they might be

especially vulnerable to expectations errors. Although our model embodies rational expectations,

it can also be interpreted along behavioral lines as a consistent framework to analyze the impact of

investor sentiment on international asset prices4.

Relation to the literature. This paper adds to a large body of theoretical work on the UIP
condition. On the empirical side, Frankel and Engel (1984) show that a simple CAPM has difficulty

explaining deviations from UIP. Most papers test the UIP condition on nominal variables. Two

recent studies cast the puzzle in terms of real variables. Hollifield and Yaron (2003) decompose

the currency risk premium into conditional nominal risk, real risk, and the interaction between

nominal and real risk. They find evidence that real factors, not nominal ones, drive virtually all

of the predictable variation in currency risk premia. Lustig and Verdelhan (2007a) find that real

aggregate consumption growth risk is priced on currency markets. This provides support for a

model which — like ours — focuses on real risk, abstracting from money and inflation. However,

Burnside, Eichenbaum, Kleschelski and Rebelo (2006) document that forward premium strategies

yield very high Sharpe ratios, but argue that the payoffs of such strategies are not correlated with

traditional risk factors. This disagreement spurred a debate on whether or not consumption growth

risk explains excess returns on currency speculation (Burnside 2007, Lustig and Verdelhan 2007b).

Our paper also contributes to the large literature on Peso problems in international finance.

See Lewis (2008) for a recent survey. Of most interest to us is Kaminsky (1993) and Evans and

Lewis (1995). Kaminsky (1993), extending the work of Engel and Hamilton (1990), considers the

possibility for rare events to explain investors’ expectations about the exchange rate. Rare events

4See Frankel and Froot (1989) for an empirical investigation of the irrrationality of investors’ expectations, and
more recently Frankel (2007) for an insightful discussion.
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in her model are infrequent switches from contractionary to expansionary monetary policy. She

provides evidence that investors’ expectations are consistent with the model. However, she does

not examine the forward premium puzzle, and only considers one exchange rate (dollar-sterling)

and a short time period. Interestingly, Evans and Lewis (1995) show that a reasonably calibrated

regime switching model induces important biases in Fama regressions in small samples. These biases

disappear, however, in large samples.

To the best of our knowledge, we are the first to adapt the Rietz-Barro paradigm to exchange

rates. Guo (2007) also adopts this paradigm, in the context of a monetary model very different

from our model, which is real in essence.

On the theory side, numerous studies have attempted to explain the UIP puzzle in rational ex-

pectations settings. Few models, however, are able to reproduce the negative UIP slope coefficient.5

Here we concentrate on some of the most successful studies. We start by reviewing arguments

that rely on counter-cyclical risk premia. We then discuss the literature that departs from rational

expectations and introduces behavioral biases.

Frachot (1996) shows that a two-country Cox, Ingersoll, and Ross (1985) framework can account

for the UIP puzzle but does not provide an economic interpretation of the currency risk premium.

Backus, Foresi and Telmer (2001) pursue a similar line of research and show that affine models of

the term structure can only rationalize the forward premium puzzle if either the state variables have

asymmetric effects on state prices in different currencies or nominal interest rates take on negative

value with positive probability. Our model is outside of the scope of their criticism: it is entirely

real and does not belong to the affine class.

Alvarez, Atkeson, and Kehoe (2002) rely on a model with endogenously segmented markets

to generate qualitatively the forward premium anomaly. In their model, higher money growth

leads to higher inflation. This induces more agents to enter the asset market because the cost of

non-participation is higher. This, in turn, decreases risk premia. They later extend this type of

mechanism in Alvarez, Atkeson and Kehoe (2006).

Most recently, Verdelhan (2007) generates counter-cyclical risk premia via the varying habit

formation models pioneered by Abel (1990) and Campbell and Cochrane (1999). In his model,

the domestic investor expects to receive a positive foreign currency excess return in bad times

when he is more risk-averse than his foreign counterpart. Times of high risk-aversion correspond to

low interest rates at home. Thus domestic investors expect positive currency excess returns when

domestic interest rates are low and foreign interest rates are high.

Finally, Colacito (2006) and Colacito and Croce (2006) apply Bansal and Yaron (2004)’s model

with Epstein-Zin-Weil preferences to international economics. Bansal and Shaliastovich (2007),

using a two-country setting, rely on a perfect cross-country correlation among shocks to the long

run components of consumption growth rates to reproduce the UIP puzzle.

Turning to explanations based on behavioral biases, Bacchetta and van Wincoop (2006) develop

a model where information is costly to acquire and to process. Because of these costs, many

5For the difficulty of generating a negative coefficient, see Hollifield and Uppal (1997).
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investors optimally choose to assess available information and revise their portfolios infrequently.

This rational inattention mechanism produces a negative UIP coefficient along the lines suggested

by Froot and Thaler (1990) and Lyons (2001): if investors are slow to respond to news of higher

domestic interest rates, there will be a continued reallocation of portfolios towards domestic bonds

and a appreciation of the currency subsequent to the shock.

Finally, another strand of the literature departs from the assumption of frictionless markets.

Using microstructure frictions, Burnside, Eichenbaum and Rebelo (2007) rely on asymmetric infor-

mation and behavioral biases to explain the forward premium puzzle.

Outline. The rest of the paper is organized as follows. In Section 2, we set up the basic model
and derive its implications for the forward premium puzzle. In Section 3, we extend the model to

incorporate a business cycle factor in addition to the disaster risk factor. In Section 4, we present

a calibration of the model. In Section 5, we derive the implications of our model for the pricing of

currency options and explain how to extract from them information about currency risk premia.

The rest further extends the model. In Section 6, we look at the joint properties of currency risk

premia and bond risk premia by examining the information contained in the yield curve. We also

develop a nominal version of the model that allows for nominal risk premia. In Section 7, we analyze

the relationship between currency risk premia and equity premia. Section 8 concludes. Most proofs

are in Appendix B.

2 Model setup

2.1 Macroeconomic environment: The stock view of the exchange rate

We consider a stochastic infinite horizon open economy model. There are N countries indexed by i.

Each country i is endowed with two goods, a traded good, called T , and a non-traded good, called

NTi. The traded good is common to all countries, the non-traded good is country-specific.

Preferences. In country i, agents value consumption streams
¡
CT
it , C

NTi
it

¢
t≥0 according to

E0

" ∞X
t=0

exp(−δt)
¡
CT
it

¢1−γ
+
¡
CNTi
it

¢1−γ
1− γ

#
(1)

Note that the two goods enter separably in the utility function. Together with the assumption

of complete markets, this will allow us to derive a simple expression for the pricing kernel.

Numéraires. Our choice of numéraires follows the Harberger convention: we choose the traded
good T to be the international numéraire, and the non-traded good NTi to be the numéraire in

country i. We will sometimes call the traded good the “international good” or the “world currency”.

We call eit the exchange rate of country i in terms of the international good, with the convention

that a high eit means a “high value” domestic currency (when eit increases, the domestic currency

appreciates).6 Hence, if a good has a price pit in the currency of country i, it has price p∗t = eitpit

6This choice of numéraire, although it does not follow the tradition which is to define the numéraire as a basket
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in terms of the world currency. Stars (∗) denote values in terms of the international good.

As the non-traded good NTi is the numéraire in country i, its price in country i is pNTi
it = 1.

Hence, its price in terms of the traded good is pNTi∗
t = eitp

NTi
it , so that

eit = pNTi∗
t (2)

The exchange eit rate of country i, in terms of the international currency (i.e., in terms of the traded

good), is simply the price of the non-traded good of country i in terms of the traded good.

So, the exchange rate between country i and country j is the ratio of the e’s of the two countries,

eit/ejt.

Markets. Markets are complete: there is perfect risk sharing across countries in the consump-
tion of international goods. Let CT∗

t be the world consumption of the traded good. The pricing

kernel in terms of the traded good can therefore be expressed as

M∗
t = exp(−δt)

¡
CT∗
t

¢−γ
.

The pricing kernel means that an asset producing a stochastic stream (Dt+s)s≥0 of the traded good,

has a price equal to Et
£P∞

s=0M
∗
t+sDt+s

¤
/M∗

t .

Technology. There is a linear technology to convert the non-traded good of country i into the
traded good. By investing one unit of the non-traded good at time t, one obtains exp(−λs)ωi,t+s

units of the international good, at all periods s ≥ t. The interpretation is that ωit is the productivity

of the export technology, and the initial investment depreciates at a rate λ.

Hence, the non-traded good, when invested, is a capital good that produces dividends Dt+s =

exp(−λs)ωi,t+s. So, in terms of the traded good, the price of the non-traded good NTi of country

i is:

pNTi∗
t = Et

" ∞X
s=0

M∗
t+s exp(−λs)ωi,t+s

#
/M∗

t

Given that eit = pNTi∗
t (Eq. 2), the following obtains.

Proposition 1 (Stock view of the exchange rate) In terms of the “international currency,” the
exchange rate eit of country i is the present value of its future export productivity:

eit = Et

" ∞X
s=0

M∗
t+s exp(−λs)ωi,t+s

#
/M∗

t (3)

with the convention that an increase in eit means an appreciation of country i’s currency.

In Eq. 3, ωi,t+s is the productivity of country i’s export sector at time t + s. M∗
t+s is the

international pricing kernel, and is independent of country i.

of goods in the country, brings tractability to the analysis.

7



To our knowledge, the above formulation is a novel, complete-market microfoundation for the

“asset view” of the exchange rate (Engel and West 2005 survey earlier “asset view” model, that

feature incomplete markets). The exchange rate is the relative price of two goods, the traded and the

non-traded good.7 At the same time, Eq. 3 gives us a stock view of the exchange rate: the exchange

rate is a present value of future levels of productivity in the country. The above formulation could

be used for many other models of the exchange rate. For instance, the stochastic discount factor

M∗
t+s could come from a model with habit formation (Abel 1990, Bekaert 1996, Campbell Cochrane

1999), long run risk (Bansal and Yaron 2004), or first order risk aversion (Bekaert, Hodrick and

Marshall 1997). We choose to study disasters, in part because they have been less studied.

Potential variants. To keep the model simple, we made a series of modelling choices that
could be modified.

Let us first discuss our specification of technology. We have made the arguably strong assump-

tion that the investment technology transforms non traded goods into a flow of traded goods. This

assumption, however, is not crucial. We could assume, for example, that investment goods are a

composite of traded and non traded goods. Let f(et) be the relative price of investment goods — cor-

responding to the technology for producing investment goods — in terms of traded goods. We would

then have the following formula for the exchange rate: f(eit) = Et
£P∞

s=0M
∗
t+s exp(−λs)ωi,t+s

¤
/M∗

t .

Similarly, we could let the output of the investment technology be a basket of traded and non-traded

goods. The stochastic process for the exchange rate would have to be solved as the fixed point of a

functional equation. The economics of the model would not be changed materially, but the analysis

would become much more complex and closed form solutions would be lost.

Likewise, we could have used a different price index than the “Harberger” index, which puts a

weight of 1 on non-tradables. This more sophisticated index would put a small positive weight on

non-tradables. This would not importantly change our results, but would make the analysis more

complex.

Last but not least, the utility function (1) could be changed to:

E0

" ∞X
t=0

exp (−δt)
¡
CT
t

¢1−γ
1− γ

#
+ V ({CNTi

t }t≥0), (4)

where V is any utility function over non-traded goods consumption processes {CNTi
t }t≥0. With this

formulation, our formulas for the exchange rate (e.g., Eq. 10-11) would still hold. The only thing

that matters here is the marginal utility from one unit of tradable. Were we to follow this route,

7In our model, the real exchange rate is the relative price of non-tradables in terms of tradables. The merit of this
identity has been investigated in the literature. The debate has focused on whether the relative price of non-tradables
is as volatile as the real exchange rate. An important obstacle that any study in this area has to overcome is the
identification in the data of pure tradable goods and pure non-tradable goods. Engel (1999) used different measures
of tradable goods to conclude that variations in their relative price accounted for a small fraction of real exchange
rate movements. Burstein, Eichenbaum and Rebelo (2005, 2006) emphasize that that retail prices of tradable goods
contain a substantial fraction of non-tradable inputs. Using prices of traded goods at the dock, they find that the
price of nontradable goods relative to tradable goods accounts for a substantial fraction of the movements in the real
exchange rate.
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our model would generate an imperfect correlation between total consumption and real exchange

rates, which Backus and Smith (1993) have demonstrated holds in the data. For instance, V could

incorporate habit formation or adjustment costs.

2.2 Macroeconomic environment: Disaster risk

World consumption of the traded good. We will study equilibria where the world consumption
of the traded good CT∗ follows the following stochastic process. As Rietz (1988) and Barro (2006),

we assume that in each period t + 1, a disaster may happen with a probability pt. If a disaster

does not happen, CT∗
t+1/C

T∗
t = exp(g), where g is the normal-times growth rate of the economy.

If a disaster happens, then CT∗
t+1/C

T∗
t = exp(g)Bt+1, with Bt+1 > 0.8 For instance, if Bt+1 = 0.7,

consumption falls by 30%. To sum up:

CT∗
t+1

CT∗
t

=

(
exp(g) if there is no disaster at t+ 1

exp(g)Bt+1 if there is a disaster at t+ 1
(5)

Hence the pricing kernel is given by

M∗
t+1

M∗
t

=

(
exp(−R) if there is no disaster at t+ 1

exp(−R)B−γt+1 if there is a disaster at t+ 1
(6)

where

R = δ + γgc

is the risk-free rate in an economy that would have a zero probability of disasters. For future

reference, we refer to R as the Ramsey interest rate.

Process (5) can be rationalized as the general equilibrium outcome in a model with a finite

number of countries, provided the endowments of those countries satisfy some conditions spelled

out in Lemma 1 of Appendix B.

Productivity. We assume that productivity of country i follows:

ωi,t+1

ωi,t
=

(
exp(gωi) if there is no disaster at t+ 1

exp(gωi)Fi,t+1 if there is a disaster at t+ 1

i.e. during disaster, the relative productivity of the traded good is multiplied by Fi,t+1. For instance,

if productivity falls by 20%, then Fi,t+1 = 0.8. We define the “resilience” of country i as:

Hit = pt
¡
Et
£
B−γt+1Fit+1 | Disaster at t+ 1

¤
− 1
¢
= Hi∗ + bHit. (7)

whereHi∗ and bHit are respectively the constant and variable part of the resilience. This is a measure

of how well productivity is insulated from world disaster.9 In (7), the probability pt and the world
8Typically, extra i.i.d. noise is added, but given that it never materially affects the asset prices, it is omitted here.
9This model addresses the concern of Brandt, Cochrane and Santa-Clara (2006), who note that discount factors
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intensity of disasters Bt+1 are common to all countries, but the recovery rate Fi,t+1 is country-

specific. Of course, the recovery rates could be correlated across countries. In order to facilitate

taking the continuous time limit, it is useful to define hi∗ = ln (1 +Hi∗).

For tractability, we postulate a Linearity-Generating process (Appendix A) for M∗
t e
−λt (1, ωit).

The law of motion for bHit is:

bHit+1 =
1 +Hi∗

1 +Hit
exp(−φHi

) bHit + εHi,t+1, (8)

where Et
£
εHi,t+1

¤
= Et

£
εHi,t+1 | Disaster at t+ 1

¤
= 0.

Eq. 8 means that bHt mean-reverts to 0, but as a “twisted” autoregressive process. As Hit

hovers around Hi∗, 1+Hi∗
1+Hit

is close to 1, so that the process behaves much like a regular AR(1):bHit+1 ' exp(−φHi
) bHit + εHi,t+1, an equation that holds up to second order terms. The

1+H∗
1+Ht

term is

a “twist” term that makes the process very tractable. It is best thought as economically innocuous,

and simply an analytical convenience. Gabaix (2007a, Technical Appendix) shows that the process,

physically, behaves indeed like an AR(1).10

The continuous time analogue to (8) is:

bHit = −
³
φHi

+ bHit

´ bHitdt+ dNH
it , (9)

where NH
t is a martingale, Et

£
dNH

t

¤
= Et

£
dNH

t | Disaster at t+ 1
¤
= 0.

This assumption allows us to derive the equilibrium exchange rate in closed form.

Proposition 2 (Level of the exchange rate) In terms of the “international currency,” the exchange
rate of country i is:

eit =
ωit

1− exp (−rei)

µ
1 +

exp (−rei − hi∗)

1− exp (−rei − φH)
bHit

¶
(10)

where ωit is the current productivity of the country. In the limit of small time intervals, the exchange

rate is:

eit =
ωit

rei

Ã
1 +

bHit

rei + φHi

!
(11)

where rei the time-invariant discount rate:

rei ≡ R+ λ− gωi − hi∗. (12)

Formula (11) is a modified version of Gordon’s formula. It can be verified that eit is decreasing

in rei: the exchange rate is decreasing in the Ramsey interest rate R, decreasing in the depreciation

must be highly correlated across countries. They are in this model, because the crisis affect all countries.
10Here, changes in resiliences are changes in the technological exposure of the country. One might endogenize them

more, as optimal use of growth options by the countries, along the lines of Berk, Green and Naik (1999)’s model of
use of growth options by firms.
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rate of capital λ, and increasing in the growth of productivity gω. Formula (11) implicitly exhibits

a Balassa-Samuelson effect: more productive countries — countries with a higher ωit — have a higher

real exchange rate. Countries with a high expected productivity growth also have high exchange

rates.

Importantly, et is increasing in h∗ and bHt: Risky countries have a low exchange rate. Finally, at

this stage, the volatility of the exchange rate comes from the volatility of its resilience bHt. Later,

we generalize the setup and introduce other factors.

In Section (5), we explain how to infer a country’s resilience from currency options data and

provide evidence that riskier countries have depreciated real exchange rates.

2.3 The forward premium puzzle

Consider a one period domestic bond in country i that yields 1 unit of the currency of country i at

time t + 1. It will be worth ei,t+1 of the international currency. Hence the domestic price of that

bond is given by:11
1

1 + rit
= Et

∙
M∗

t+1ei,t+1
M∗

t ei,t

¸
(13)

where rit is the domestic interest rate — the nominal interest rate in domestic currency.

Proposition 3 (Level of the domestic short term interest rate, when there is no inflation on the

home good). The value of the domestic short term rate in country i is

rit = exp (rei − λ)

"
1− (1− exp (−rei)) exp (−hi∗) bHit

1− exp (−rei − φH) + exp (−hi∗) bHit

#
− 1 (14)

In the limit of small time intervals, the interest rate is:

rit = rei − λ− rei bHit

rei + φH + bHit

(15)

When a country is very “risky” ( bHit low), its interest rate is high according to (15), because its

currency has a high risk of depreciating in bad states of the world. Note that this risk is a real risk

of depreciation, not a default risk. 12

Hence, countries with high interest rates will see their exchange rate appreciate (via mean-

reversion of bHit), which is that’s the “forward exchange rate premium puzzle” or “uncovered interest

rate parity puzzle” highlighted by Hansen and Hodrick (1980) and Fama (1984), and replicated for

various countries and time periods many times since (Engel 1996, Lewis 1995 provide surveys).

11The derivation is standard. In the international currency, the payoff of the bond is et+1, so its price is

Et
h
M∗t+1et+1

M∗t

i
, and its domestic price is (13).

12Safe countries can borrow at a lower interest rate, which may explain why historically the dollar or Swiss Franc
interest rates were low (Gourinchas and Rey 2007).
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We analyze the predictions of our model for Fama regressions in two different types of samples:

with disaster and with no disaster. We consider countries with identical constant parameters, but

possibly different bHit and ωit.

We start with the regression in a sample without disasters. In the continuous time limit, the

expected growth rate of the exchange rate, conditional on no disasters is, dropping the index i for

country i,

Et
∙
1

et

det
dt

¸
= gω +

Et
h
dHt

dt

i
re + φ+ bHt

= gω −

³
φ+ bHt

´ bHt

re + φ+ bHt

.

In a first order approximation in bHt:

Et
∙
1

et

det
dt

¸
= gω −

φ

re + φ
bHt

When the country is very risky, bHt is very negative, and its exchange rate is low (11); as the

currency’s resilience will mean-revert, its exchange rate will appreciate, so that Et
£
det
dt

¤
/et > 0.

Similarly, in a first order approximation in bHt:

rt = re − λ− re bHt

re + φ

Hence

Et
∙
1

et

det
dt

¸
=

φ

re
rt + gω −

φ (re − λ)

re

Consider the Fama (1984) regression of the changes in the exchange rate between countries A

and B regressed on the difference in interest rates, in a sample with no disasters:

Fama regression: Et
∙
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¸
= α− β(rAt − rBt ) (16)

The expectation hypothesis predicts β = 1. The present model however predicts a negative co-

efficient. For simplicity, we consider the case where the two countries, A and B, have the same

re.

Proposition 4 (Coefficient in the Fama regression, conditionally on no disasters). In the Fama
regression (16), in a sample with no disasters, the coefficient is:

β = − φ

re
. (17)

In the Fama regression (16), in an unconditional sample, in the case where Bt ≡ B, the coefficient

is:

βFull = 1− φ

re
(1−Bγ) (18)
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With the calibrated numbers φ = 20%/year and re = 10%/year, the coefficient in a yearly

regression should be β = −2. This is on the order of magnitude of the estimates in the literature.
We conclude that even quantitatively, the UIP puzzle seems to be accounted for by the framework.

The Fama coefficient in a sample without disasters does not depend on B. Even when disasters

are not associated with risk premia (in other words, when B = 1), the Fama regression in a small

sample with no disaster would indicate a violation of UIP. Time varying risk premia are crucial to

explain the forward premium puzzle in a sample with disasters. In particular, for B = 1, there is

no disaster risk (consumption doesn’t fall during disasters), so that βFull = 1. Hence, the Fama

regression yields a negative coefficient only if disaster risk is high enough. We note that the negative

βFull does not come from a Peso problem explanation in the sense that, in the model, even in a

sample that includes disasters, there can be a negative coefficient in the Fama regression.

Other Interpretations The model can be interpreted alternatively in two different ways.

First, while we have derived our different pricing kernels from a CCAPM framework adapted for

disasters, there are other possibilities. The pricing kernels we derive are flexible and attractive

reduced-form candidates for models with time varying risk premia associated with large currency

movements. This is, we believe, a prevalent feature of foreign exchange markets: the carry trade

is often referred to “picking dimes in front a of steam roller.” Although we take the extra-step of

linking these risk-premia to aggregate consumption risk, this step is not needed to derive the asset

pricing implications of our framework: our model does not live or die on this particular hypothesis.

In fact, this particular dimension of the model is hard to test since the problem of estimating time

varying correlations with consumption is compounded in our case by the fact that rare disasters

that might not occur in short samples are crucial to computing the relevant correlations. Using

option prices in Farhi, Gabaix, Ranciere and Verdelhan (2008), we test a higher level implication of

the model — that there are time-varying risk premia associated with large movements in exchange

rates.

Second, while the model is presented as rational, it can also be viewed as a tractable way to

capture time-varying perception of risk, or investor sentiment. Disasters are rare by nature and

their probability of occurrence as well as their severity make them prone to expectations errors,

herds and other behavioral biases. In the model, the time-varying beliefs about the probability and

intensity of crashes could be rational, or behavioral. Under this interpretation, this paper offers a

way to model time-varying “perception of risk”, “risk appetite” or “sentiment” — people’s estimate

of how their asset would perform in a crisis. Under that interpretation, one does not need to use

the “macroeconomic consumption drop” interpretation. In fact, one can interpret disasters more

loosely as low probability tail events such as “financial crashes.” Our international pricing kernel

(6) does not refer to consumption. The agents basically follow an expected value maximization,

except that the B−γ term increases the effective weight put on low probability events, consistent

with Prospect theory. The model then offers a coherent way to think about the joint behavior of

sentiment and prices.
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3 A setup with a risk factor and a business cycle factor

The above setup gave the essence of the disaster mechanism, but it has only one factor, so that,

controlling for current productivity, exchange rates and risk premia are perfectly correlated, which

in a variety of contexts is not a desirable feature. Accordingly, we extend the framework to a

two-factor model, with a risk factor and a business cycle factor.

3.1 Setup with a risk factor and a business cycle factor

In the baseline model, the real rate varies only because of the risk premium. We can easily extend

the model to business cycle movements in interest rates. For ease of notation, we typically drop

the index i for country i. We say that the country’s productivity is ωt = ωt (1 + yt), where ωt is

the “permanent” component of productivity, and yt is a “business cycle” fluctuation or “deviation

of productivity from trend”. We model:

ωt+1

ωt
=

(
exp (gω) in normal times

exp (gω)Ft+1 if disaster

and assume a LG-twisted process for yt:

Et [yt+1] =
1 +H∗
1 +Ht

exp
¡
−φy

¢
yt

with innovation uncorrelated with those of ωt and Mt. As before, that means that, to a first order,

yt follows an AR(1), Et [yt+1] = exp
¡
−φy

¢
yt + O (y2t ). The “twist” term,

1+H∗
1+Ht

, is close to 1 in

practice, and makes the process tractable without affecting importantly the dynamics of yt. This

allows to calculate the exchange rate.

Proposition 5 (Exchange rate with a business cycle factor) The exchange rate is

et =
ωt

1− exp (−re)

Ã
1 +

exp (−re − h∗)

1− exp (−re − φH)
bHt +

1− exp (−re)
1− exp

¡
−re − φy

¢yt! (19)

and in the continuous time limit, it is:

et =
ωt

re

Ã
1 +

bHt

re + φH
+

reyt
re + φy

!
(20)

while the interest rate is:

rt = re − λ+
− re

re+φH
bHt +

reφy
re+φy

yt

1 + Ht

re+φH
+ reyt

re+φy

(21)

In this setup, the resilience bHt has the same effect as before. But there is an additional factor,

the deviation of productivity from trend yt, which is not associated with any risk premium. As
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would be expected, when productivity is high, the exchange rate is high. Also, productivity is

expected to decline, so that the interest rate rate is high.

3.2 Fama regression with two factors

Let us revisit the Fama regression (16):

Et
∙
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¸
= α0 − β0(rAt − rBt ).

The next Proposition relates the coefficient β0 in a sample with no disaster, and the coefficient β0Full

in full sample, to their corresponding values β and βFull previously derived for the one-factor model.

Proposition 6 (Value of the β coefficient in the Fama regression, with two factors). Up to second
order terms, in the Fama regression, the coefficients are:

β0 = νβ + 1− ν (22)

β0Full = νβFull + 1− ν (23)

where β and βFull are given in Eqs. 17 and 18, and ν is the share of variance in the interest rate

due to bHt,

ν =

³
re

re+φH

´2
Var

³ bHt

´
³

re
re+φH

´2
Var

³ bHt

´
+
³

reφy
re+φy

´2
Var (yt)

. (24)

In Eq. 22, β0 is the weighted average of two Fama coefficients. One, β, comes from the variations

in the risk premium. The second, 1, comes from the cyclical variations in productivity, and is the

value predicted by the expectation hypothesis. The weight ν is the relative share of the risk premium

factor in the variance of the interest rate.

4 Calibration

4.1 Choice of Parameter Values

We use yearly units.

Disaster and risk aversion. To keep the calibration parsimonious, the probability and intensity

of disasters are constant. The probability of disaster is p = 1.7%, as estimated by Barro (2006).

An important parameter in the calibration is the risk-adjusted probability of disasters pE [B−γ]:
disasters are overweighted compared to their physical probability by a factor E [B−γ]. This factor is
very sensitive to the severity of disasters and to the coefficient of relative risk aversion. Increasing γ

from 2 to 4 for example increases the risk-adjusted probability of disasters by a factor of 2.8. Going

from γ = 4 to γ = 6 increases it by another factor of 5.
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We present three main scenarios which differ by the implied risk-adjustment factor E [B−γ].
These scenarios can be thought alternatively as varying the coefficient of relative risk aversion or

the actual severity of disasters:13 these two parameters enter our results only through the summary

statistic E [B−γ] . Under our preferred calibration (Calibration 1), the implied risk-adjustment factor
is E [B−γ] = 10.9. This number is in line the numbers reported by Barro (2006) and Barro and

Ursua (2008) for a coefficient of relative risk aversion γ = 4. We also present a Calibration 2 with

more benign disasters (higher B or lower γ) where E [B−γ] = 2.44. Finally, we present a Calibration
3 with more extreme disasters (lower B or higher γ) where E [B−γ] = 24.4.
Growth rates. We choose the growth rates so that in normal times, consumption of nontradables

grows at rate gc = 3%. We set gω = gc, but results are not sensitive to that parameter. We make

sure that the riskless domestic short term rate is on average around 1%, which pins down the rate

of time preference, δ.14

Exchange rate. An initial investment depreciates at a usual rate λ = 8%. We specify the

recovery rate Ft to have a baseline value F∗ = 0.8, and a range of Ft ∈ [Fmin, Fmax] = [0.2, 1.2]. That
means that the technology of transforming domestic goods into international goods could improve.

This is because ωt is really the ratio between two productivities — those of producing domestic

or international goods, so that their relative ratio could increase or decrease. The possibility of a

worst-case fall of productivity to 0.2 of its initial level may seem high. Perhaps this proxies for

disruptions not directly linked to productivity, e.g. the introduction of taxes, regulation, or a loss

of property rights (as in Barro 2006), though we do not model those interpretations here.

The speed of mean-reversion is φH = 0.2, which gives a half-life of ln 2/φH = 3.5 years, and is

in line with typical estimates from the exchange rate predictability literature (Rogoff 1996).

This translates into a range for bHt = p (B−γFt − 1),
h bHmin, bHmax

i
. We parametrize the volatility

according to Appendix C, with

σ2
³ bH´ = 2vφH ¯̄̄ bHmin

¯̄̄ bHmax

³
1− bH/ bHmin

´2 ³
1− bH/ bHmax

´2
,

which guaranties that bH remains within
h bHmin, bHmax

i
, as the volatility dies down fast enough at

the boundaries. The parameter v controls the volatility bH and F . For instance, a country with

volatile riskiness will have a high v.

To calibrate the exchange rate fluctuations, we start from (11), and take the benchmark of a

constant productivity ωt during the “normal times” period under study. Then, the only changes

13Here we take the Barro and Ursua numbers at face value: each observation is a realization of B. Another possi-
bility would have been to estimate a distribution of B for world consumption. This should decrease the importance
of disasters, via diversification. However, many disasters are correlated (as they often occur during wars or global
economic or financial crises). There are several difficulties in implementing this approach, from pure data issues to
conceptual issues — for instance, distinguishing between tradable and non-tradable consumption. The data is not
available yet, but Barro and Ursua are in the process of computing these numbers.
14Note that for Calibration 2, this forces us to adopt a negative value for δ . Alternatively, for the purpose of this

particular calibration, we could have adjusted the consumption growth rate gc; we could also have introduced Epstein
Zin Weill preferences with a higher intertemporal elasticity of substitution while maintaining a coefficient of relative
risk aversion of 4. We chose to vary as few parameters as possible.
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in the real exchange rates are due to changing expectations about the “resilience” of a country

if a disaster happens. Differentiation of (11) gives a bilateral exchange rate volatility between

two uncorrelated exchange rates15 equal to σeij '
√
2σH/ (re + φ). If two countries are perfectly

correlated, then σei = 0, while if they have a correlation of −1, then σeij ' 2σH/ (re + φ). We

report the values for the uncorrelated case.

Default risk. To keep the model parsimonious, we assume no default risk on debt. This is the

cleanest assumption for developed countries. Of course, in many cases (e.g. to price sovereign debt),

default risk can be added without changing anything about the exchange rate.

4.2 Implications for levels, volatilities and correlations

Table 1 presents the main results. In Calibration 1, with v = 0.2 (respectively with ν = 0.1)

the volatility of the bilateral exchange rate is 11% (respectively 8%). In our low risk calibration

(Calibration 2), the corresponding volatilities of the exchange rate are almost trivial: 1.8% and

2.5%. In our high risk calibration (Calibration 3) these volatilities are magnified and become 25.7%

and 18.7%, respectively. Hence, the model can generate a high volatility of the exchange rate. The

reason is that disasters have a high importance: their importance is magnified by E [B−γ], which is
10.9 (Calibration 1), and 24.4 (Calibration 3). By contrast, in Calibration 2, disasters are milder,

risk premia are lower and less volatile, and as a consequence, exchange rates themselves are much

smoother.

In all three calibrations, the volatility of Ft (defined as Var1/2 (Ft+1 − Ft)) is 9% per year when

ν = 0.1, and 12.7% when ν = 0.2: expectations about the recovery rate change fairly fast from

year to year. As bHt is quite volatile, the exchange rate is hard to forecast (the same way stocks are

hard to forecast). At short horizons, the exchange rates behaves like a random walk (qualitatively

consistent with Meese and Rogoff 1983).

In the remainder of this section, we focus on our preferred calibration (Calibration 1) and dig

deeper into its implications. We turn to the model’s implications for the correlation between changes

in the exchange rate and changes in the interest rate. More precisely we are interested in comparing

Corr

µ
∆(eAt /eBt )
eAt /e

B
t

,∆
¡
rAt − rBt

¢¶
in the data and in the model. In the data, this correlation is close to

0. In the simple version of Calibration 1 we have only one real factor. Hence the correlation is −1
almost by definition. However, a two-factor version of our model similar to that developed in Section

3 performs much better. The reason for this is that although the disaster factor pushes towards

a negative correlation, the business cycle factor by contrast, pushes towards a positive correlation.

For the purpose of the calibration, it is more intuitive to model business cycle shocks as shocks to

15This is because det
et
= Ht

r+φ+Ht
' Ht

r+φ , and the bilateral exchange rate eij = ei/ej has twice the variance of any

of the exchange rates, if the bHt shocks are uncorrelated.

17



Table 1: Calibrations of the Model with Medium, Low and High Disaster Risk

Calibration 1 Calibration2 Calibration 3
Medium risk Low risk High risk

Postulated importance of disasters E [B−γ ] 10.9 2.44 24.4

Implied values
Range of domestic real short rate (in %) −0.9; 1.5; 5.1 1.0; 1.5; 2.3 −3.8; 1.5; 9.58
Volatility of domestic riskless short rate (in %) 0.7 0.17 1.7
Range for FX et/ (ωt/re) 0.62; 1; 1.25 0.91; 1; 1.06 0.16; 1; 1.56
Baseline Fama regression coefficient, −φ/re -2.1 −2.1 -2.1
Bilateral FX volatility σe (in %) when v = 0.1;0.2 9.0; 12.7 1.8; 2.5 17.9; 25.3

Explanation: Each calibration starts with a postulated importance of disasters, E [B−γ ]. For instance if
E [B−γ ] = 10.9, rare disasters matter 10.9 times as much as they would if agents were risk neutral. We
then fit the rate of time preference δ, to get a typical value of the interest rate close to 1.5%. We report
the minimum, typical (corresponding to bHt = 0) and maximum range for the domestic short term interest
rate; the minimum, typical and maximum value for the exchange rate over “steady state fundamentals”
(ωt/re). Finally, we report for volatility of the bilateral exchange rate for currencies with two uncorrelated
fundamentals. Perfectly correlated currencies have 0 bilateral FX volatility, while perfectly negatively
correlated currencies have a volatility equal to the one reported in the table times

√
2. The time unit is

the year.

productivity trend growth rather than shocks to the level of productivity.16

We choose the average standard deviation of the innovation in bgω,t to be σgω,t = 1.4%, and the
mean-reversion coefficient φg = 10%. With these numbers, we have

Corr

Ã
∆
¡
eAt /e

B
t

¢
eAt /e

B
t

,∆
¡
rAt − rBt

¢!
= −0.027.

The volatility of the bilateral exchange is 11.1%, the volatility of the domestic interest rate is 1.0%.

The Fama coefficient is still negative but smaller in absolute value: β0 = −0.04. This of course, is
to be anticipated because we have introduced a business-cycle factor with significant variance. To

some extent, there is tension in the assumed volatility of the business-cycle factor σĝω,t, between

matching the small correlation Corr
µ

∆(eAt /eBt )
eAt /e

B
t

,∆
¡
rAt − rBt

¢¶
and generating a large negative Fama

regression coefficient.

16More precisely, we assume that productivity growth has deviations from trend, bgω,t
ωt+1
ωt

= (1 + bgω,t) exp (gω)×½ 1 in normal times
Ft+1 if disaster

which follows a twisted AR(1) process, Et [bgω,t+1] = 1+H∗
1+Ht

exp(−φg)gω,t
1+gω,t

. Then, Eq. 20 and 21 hold to a first order,
replacing reyt by bgω,t.
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5 Option prices and exchange rate risk premia

5.1 Theory

Option prices incorporate direct information about the probability and severity of disasters. In

particular, consider the implied volatility smile of a pair of currencies: a risky currency and a safe

currency. The smile will be much steeper on the risky currency side. A high “smile-skew” should

predict currency appreciation, a high interest rate differential and high bond returns.

Consider two countries A and B. The currency B price at date 0 of a call that gives the option

to buy at date 1 one unit of currency B for K eB0
eA0
units of currency A is 1

eB0
E0
∙
M∗
T

M∗
0

³
eB1 −K

eB0
eA0
eA1

´+¸
,

i.e.

V Call (K) = E0

"
M∗
1

M∗
0

µ
eB1
eB0
−K

eA1
eA0

¶+#
. (25)

Likewise, the currency B price at date 0 of a put that gives the option to sell at date 1 one unit

of currency B for K eB0
eA0
units of currency A is V Put (K) = E0

∙
M∗
1

M∗
0

³
K

eA1
eA0
− eB1

eB0

´+¸
.

In order to gain in tractability, we make two simplifying assumptions, as in Gabaix (2007b).

First we assume that if a disaster occurs in period t + 1, εHt+1 is equal to zero. Second, we assume

that the distribution of et+1 conditional on date t information and no disaster occurring in period

t+ 1 is lognormal with drift μi,t and volatility σi,t where i ∈ {A,B} indexes countries: ei,ND
1 /ei0 =

exp (μi + εi − σ2i /2) with εi ∼ N(0, σ2i ).
17

Proposition 7 The price of a call with strike K is:

V Call (K) = exp (−R+ μB) (1− p0)C
BS
¡
K exp (μA − μB) , σA|B

¢
+ (26)

+exp (−R+ μB) p0ED0
£
B−γ1 (F1,B −K exp (μA − μB)F1,A)

+¤
where CBS (K, σ) is the Black-Scholes call value when the strike is K, the volatility σ, the interest

rate 0, the maturity 1, the spot price 1 and

σA|B ≡
¡
σ2A + σ2B − 2ρA,BσAσB

¢1/2
=

µ
V arND ln

µ
eB1
eB0

/
eA1
eA0

¶¶1/2
is the standard deviation of the bilateral log exchange rate if there is no disaster. The price of a put

is given by the Put-Call parity equation:

V Put (K) = V Call (K) +
K

1 + rA
− 1

1 + rB
(27)

The option price (26) is the sum of two terms. The first one is a familiar Black-Scholes term.

17This can be insured as in Gabaix (2007b). We assume that, if there is no disaster, then ωt+1/ωt = eg
¡
1 + εωt+1

¢
,

with Et

£
εωt+1

¤
= Et

£
εωt+1ε

H
t+1

¤
= 0. This does not change any of the formulas for the exchange rate and the interest

rate. The disturbance term εωt+1 can be designed to insure that e
i,ND
1 /ei0 has the lognormal noise announced above.
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The second is a pure disaster term. For strikes close to the spot price, the Black-Scholes term

dominates. But far out of the money, if the disaster term is not 0, it will typically dominate.

5.2 Risk Reversals

Option prices reveal the risk-neutral distribution — that is, the physical probabilities adjusted for

risk— of future exchange rates. Disasters are associated with large movements in exchange rates.

Information about disaster risk-premia can logically be extracted from out of the money option

prices. Indeed, consider the price of a “risk reversal”, the price of a (in practice out of the money)

put on currency B, minus the price of a symmetrical (in practice also out of the money) call on

currency B (as a fraction of the current value of currency B):

RR (k) ≡ 1

T

∙
V Put

µ
1 + rA
1 + rB

k

¶
− V Call

µ
1 + rA
1 + rB

k−1
¶¸

(28)

with k > 0, and T is the duration of a “period” in years. This is the price of a put at a fraction

k ≤ 1 of the forward rate, minus the price of a call at a fraction 1/k ≥ 1 of the forward rate (indeed,
1+rA
1+rB

is the forward rate of the currency, as a multiple of the current spot price). If there is a high

crash risk for currency B (i.e., currency B will do worse than currency A during disasters), then

RR should be positive. If there is higher crash risk for currency A, RR should be negative. If there

is no disaster risk, then RR is very close to 0. Risk-reversals are used routinely by traders engaged

in currency speculation and in the carry trade in particular to bound the gains and losses on their

positions.

Calculations show that the risk reversal is approximately, for short time periods T , and for

|k − 1| large compared to σAB
√
T (so that the disaster terms mostly influence the value of RR):

RR ' Ψ
³ bHA − bHB, (1− k)H∗/T

´
(29)

where Ψ (x, y) = (x− y)+ − (−x− y)+, a relation that has a shape illustrated in the left panel of

Figure 2. The risk reversal position is such that the Black-Scholes component of the put and call

have the same price in the limit of short maturities. This allows us to extract the disaster intensities

from option prices. When
¯̄̄ bHA − bHB

¯̄̄
is large compared to |1− k|H∗/T ,

RR ' bHA − bHB. (30)

Hence, the risk reversal is approximately the difference in resilience between the two countries.

Conditionally on no disasters, the excess return on a position long on currency B, and short in

currency A, is:

END
t

∙
eBt+T − eBt

eBt
− eAt+T − eAt

eAt

¸
/T + rAt − rBt = HA

t −HB
t (31)

which is close to RR. That is, a currency with a high put price should have a low price, and should

20



0.8 0.9 1.0 1.1 1.2
Strike

0.05
0.10
0.15
0.20
0.25
0.30

Implied Volatility

0.9 1.0 1.1 1.2
Strike

0.15
0.20
0.25
0.30
0.35

Implied Volatility

Figure 1: Implied volatility vs Strike. Units are annualized. Country B is riskier than country
A. So, the implied volatility of out of the money puts is high. The dotted line is the mirror image
of the solid curve, replacing the strike k by its symmetrical value around the forward exchange rate,
1/k. It illustrates that for deep puts, the implied volatility of an out of the money put on currency
B is higher than the implied volatility of an out of the money symmetrical call. The values chosen
are: bHA = 0, bHB = −5% in annualized values. Finally, the left panel corresponds to no noise, and
the right panel corresponds to a noise ν = 0.5.

subsequently appreciate. This is because it has a high risk premium, that affects both the put value,

and a low value of the exchange rate. Equation 31 expresses quantitatively the magnitude of the

effect.

5.3 Risk Reversals and Currency Returns

We illustrate the potential power of risk reversals to forecast currency returns. We consider two

countries, A and B, with same permanent resilience (HA∗ = HB∗ = H∗), but perhaps different

transient resiliences, bHAt, bHBt. We take currency A’s resilience at its steady state, bHAt = 0. We

assume a period length of T equal to 3 months.

At this stage, we need to specify a detail that did not matter before, the volatility of the

realization of FA in (26): for an option, the uncertainty about the realization of the risk matters.

We choose to say that if FA is the expected recovery of country A, its actual realization is FA =

FA (1± ν), where the noise ν will either be equal to 0 (no uncertainty) or 0.5 (high uncertainty),

with no correlation across countries. Given we have no strong prior on the value of that uncertainty,

we show the plots for two values. In Figures 1-3, the left panel corresponds to no noise (ν = 0),

and the right panel corresponds to a noise ν = 0.5.

Implied volatility and risk reversals. Figure 1 shows the implied volatility of a put as a function

of the strike. We take the case where country B is riskier than country A. We take bHB = −5%
in annualized values. So, the implied volatility of out of the money puts is high. The dotted

line is the mirror image of the solid curve, replacing the strike k by 1/k. It illustrates that for

deep puts, implied volatilities of the crash of currency B are higher than the implied volatility of

a boom. We see that more noise increases implied volatility, as it should, and also decreases the
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Figure 2: Risk-Reversal vs Resilience. Units are annualized. The figure plots the Risk-Reversal
(28) vs the resilience bHB, assuming the country A is at the steady state, bHA = 0. The Figure
illustrates that when country B is riskier, its risk-reversal is higher. The left panel corresponds to
no noise, and the right panel corresponds to a noise ν = 0.5.
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Figure 3: Risk-Reversal vs Expected Returns. Units are annualized. The figure plots the
expected returns on a position of 1 unit long of a currency B bill, and 1 unit short of currency A
short term bill, vs the the risk reversal. We assume that country A is at the steady state, bHA = 0.
The Figure illustrates that when country B is riskier, its risk-reversal is higher and its expected
returns are higher. The left panel corresponds to no noise, and the right panel corresponds to a
noise ν = 0.5.
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difference between the put implied volatility (evaluated at k < 1) and the symmetrical call volatility

(evaluated at 1/k > 1).

Resilience and risk reversals. Figure 2 analyzes the impact of country B’s resilience ( bHB) on

the value of the risk-reversal, assuming a relative strike k = 0.8. The Figure illustrates that when

country B is riskier, its risk-reversal is more expensive. When there is enough noise, the relation is

approximately linear.18

Currency returns and risk reversals. Figure 3 plots the expected returns on a position of one

unit long of a currency B bill, and one unit short of currency A short term bill, versus the risk

reversal. We again assume a relative strike k = 0.8. When country B is riskier, its risk-reversal

is higher and its expected returns are higher. We see that when the noise is higher, the relation

becomes approximately linear as in (30)-(31). Hence, one can hope to use risk-reversals to forecast

currency returns. We explore these issues in Farhi, Gabaix, Ranciere and Verdelhan (2008).

5.4 Some Evidence: Contemporaneous Correlations between Currency

Movements and Risk Reversals

Carr and Wu (2007) compute the risk-reversals for two pairs of countries: UK and Japan versus

the US. They find a high correlation between changes in the price of risk-reversal options and

changes in nominal exchange rates: currencies that become riskier — for which puts become relatively

more expensive than calls — experience a simultaneous depreciation. Farhi, Gabaix, Ranciere and

Verdelhan (2008) extends their analysis to a sample of 25 countries. Their analysis confirms the

finding of Carr and Wu (2007) and shows that it also holds for real exchange rates, providing direct

evidence in favor of our model.19

We next turn to two extensions of our model, to nominal rates, and to stocks.

6 Yield curve, forward rates, and exchange rates, real and

nominal

6.1 Exchange rates and long term real rates

To study the forward premium puzzle for long term rates, we first derive the price of long term

bonds. The price of a bond yielding one unit of the currency at time t+T is: Zt (T ) = Et
h
M∗
t+T et+T
M∗
t et

i
.

18Even when the countries have resilience ( bHA = bHB = 0) the risk reversal is slightly negative. This is
due to the rare-disaster term in the values of puts and calls. The risk reversal is proportional to v (k) =

E
h
(kFA − FB)

+ −
¡
FB − k−1FA

¢+i
, which satisfies v (1) = 0, and v0 (1) = E [FA (1 {FA > FB}− 1 {FB > FA})] >

0, so that v (k) < 0 for k slightly less than 1. The intuition is that the put price decreases faster with k than the
call price increases with 1/k, because, in the put price k multiplies FA when FA is large, and in the call price, it
multiplies FA when FA is small.
19In a contemporaneous paper, Brunnermeier, Nagel and Pedersen (2008) provide an interesting analysis of the

link between expected returns, crash risk (measured by realized skewness) and risk reversals.
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The yield at maturity T , Yt (T ), and the forward rates ft (T ) are defined by

Zt (T ) = exp (−Yt (T )T ) = exp
Ã
−

TX
T 0=1

ft (T
0)

!
.

Proposition 8 (Price of a domestic bond, when there is no inflation on the home goods) The
domestic forward rate is, in the continuous time limit, up to second order terms in bHt and yt,

ft (T ) = re − λ− re
re + φH

exp (−φHT ) bHt +
reφy

re + φy
exp

¡
−φyT

¢
yt (32)

The proof to this Proposition also calculates the expressions for bonds, yields, forward rates, in

discrete and continuous time.

The proof is in Appendix B.

To illustrate the economics, suppose that the country has a very high bHt, i.e. is very safe. FuturebHt will, on average, mean-revert to 0. Hence, by (11), the exchange rate (which is high now) will

depreciate. The short terms rates are low (Eq. 15), which is the forward premium puzzle. Eq.

32 says that long term rates are low (the bond price is high because bHt.is high). Hence, perhaps

paradoxically at first, investors expect the exchange rate to depreciate in the long term, and also,

long term rates are low. In the model, this is because investors perceive the country as very “safe”,

and require a small risk premium on it.

6.1.1 Fama regression with forward rates

Boudoukh, Richardson and Whitelaw (BRW, 2006) propose to regress the exchange rate movement

on the T−period forward rate from T periods ago:

BRW regression: Et
∙
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¸
= αFwd (T )− βFwd (T ) (fAt−T (T + 1)− fBt−T (T + 1))

(33)

Our model’s prediction is in the next Proposition.

Proposition 9 (Value of the β coefficient in the Fama regression, with two factors, with forward
rates). Up to second order terms, in the BRW (33) regression with forward rates, the coefficients

are:

βFwd (T ) = ν (T )β + 1− ν (T ) (34)

and

βFwd,Full (T ) = ν (T )βFull + 1− ν (T ) (35)
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where β and βFull are given in Eqs. 17 and 18, and

ν (T ) =

³
re

re+φH

´2
Var

³ bHt

´
exp (−2φHT )³

re
re+φH

´2
Var

³ bHt

´
exp (−2φHT ) +

³
reφy
re+φy

´2
Var (yt) exp

¡
−2φyT

¢ (36)

is the share of variance in the forward rate due to bHt. In particular, when φH > φy, the long horizon

regression has a coefficient going to 1: limT→∞ βFwd (T ) = limT→∞ βFwd,Full (T ) = 1.

BRW (2006) find that βfwd (T ) increases toward 1 with the horizon. Our theory is consistent

with this empirical finding. Indeed, to interpret Proposition 9, consider the case where risk-premia

are fast mean-reverting, and productivity is slowly mean reverting, φH > φy. Then, large T , ν (T )

tends to 0, which means that, at long horizons, the forward rate is mostly determined by the level

of yt, not of the risk premium. Hence, at long horizon the model behaves like a model without risk

premia, hence generates a coefficient β close to 1.

6.2 A simple model of exchange rates and nominal yield curves

Until recently, forward real interest rates were not available. Only their nominal counterparts were

actively traded. Even today, most bonds are nominal bonds.

To model nominal bonds, we build on the real two factor model developed above. Let Qt =

Q0

tY
s=1

(1− is) be the value of money (the inverse of the price level). The nominal interest rate ert
satisfies 1

1+rt
= Et

h
M∗
t+1et+1
M∗
t et

(1− it)
i
, so that, in the continuous time limit,

ert = rt + it, (37)

the nominal interest rate is the real interest rate, plus inflation. The Fisher neutrality applies: there

is no burst of inflation during disasters. With a burst of inflation, even short term bonds would

command a risk premium.

Inflation hovers around i∗, according to the LG process:

it+1 = i∗ +
1− i∗
1− it

exp (−φi) (it − i∗) + εit+1 (38)

where εit+1 has mean 0, and is uncorrelated with innovations in Mt+1, in particular with disasters.

One could correlate allow for nonzero corrrelatiin, but the analysis would be a bit more complicated

(the analysis is available upon request). The expected value of 1 unit of currency T period later is:

Et
∙
Qt+T

Qt

¸
= (1− i∗)

T

µ
1− 1− exp (−φiT )

1− exp (−φi)
it − i∗
1− i∗

¶
(39)

or Et
h
Qt+T

Qt

i
= exp (−i∗T )

³
1− 1−exp(−φiT )

φi
(it − i∗)

´
in the continuous time limit.
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To fix notation, we denote nominal variables with a tilde. The price of long term nominal bonds

yielding one unit of currency at time t+ T is eZt (T ) = Et
h
M∗
t+T et+TQt+T

M∗
t etQt

i
. Because we assume that

shocks to inflation are uncorrelated with disasters, the present value of one nominal unit of the

currency is eZt (T ) = Et
∙
M∗

t+Tet+TQt+T

M∗
t etQt

¸
= Et

∙
M∗

t+Tet+T
M∗

t et

¸
Et
∙
Qt+T

Qt

¸
Hence, the value of the zero coupon bond is:

Proposition 10 (Price of a nominal domestic bond, with no inflation risk premia) The domestic
nominal forward rate is, in the continuous time limit, up to second order terms in bHt and yt, it−i∗ :

ft (T ) = re − λ− re
re + φH

exp (−φHT ) bHt +
reφy

re + φy
exp

¡
−φyT

¢
yt + i∗ + exp (−φiT ) (it − i∗) (40)

The proof to this Proposition also calculates the expressions for bonds, yields, forward rates, in

discrete and continuous time.

The nominal forward rate in (40) depends on real and nominal factors. The real factors are the

resilience of the economy (the bHt) term, the expected growth rate of productivity (−φyyt). The
nominal factor is inflation it.

Each of the three terms is multiplied by a term of the type exp (−φHT ). For small speeds of
mean reversion φ’s, the forward curve is fairly flat.

With Qt the value of money, the nominal exchange rate is: eet = etQt. The expected depreciation

of the nominal exchange rate is, up to second order terms, and conditionally on no disasters:

Et
∙
deeteet
¸
/dt = gω −

φH bHt

re + φH
−

reφyyt

re + φy
− it (41)

We can derive the implications of our model for a Fama regression in nominal terms:

Et
∙
ẽAt+1 − ẽAt

ẽAt
− ẽBt+1 − ẽBt

ẽBt

¸
= α̃nom − β̃

nom
(r̃At − r̃Bt ) (42)

where r̃At and r̃
B
t are now, with some slight abuse of notation, the nominal interest rates in countries

A and B. Our model’s prediction is in the next Proposition.

Proposition 11 (Value of the β coefficient in the Fama regression in nominal terms). Up to second
order terms, in the nominal Fama regression (42) regression with forward rates, the coefficients are:

β̃
nom

= νnomβ + 1− νnom and β̃
nom,Full

= νnomβFull + 1− νnom (43)
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where β and βFull are the coefficients in the Fama regression defined in Proposition 4, and

νnom =

³
re

re+φH

´2
Var

³ bHt

´
³

re
re+φH

´2
Var

³ bHt

´
+
³

reφy
re+φy

´2
Var (yt) + Var(it)

(44)

is the share of variance in the forward rate due to bHt.

In this simple model with no inflation risk premia, the higher the variance of inflation , the closer

to 1 is βnom. Hence, countries with very variable inflation (typically, countries with high average

inflation) satisfy approximately the uncovered interest rate parity condition. When disaster risks

are very variable –and the real exchange rate is very variable — then βnom is more negative.

6.3 A richer model with nominal risk premia

We now develop a richer model with an inflation-specific risk premium. We extend the framework

developed in the previous section by incorporating inflation risk along the lines of Gabaix (2007a).

The variable part of inflation now follows the process:

bit+1 = 1− i∗
1− it

·
³
exp (−φi)bit + 1{Disaster at t+1} ³j∗ +bjt´´+ εit+1 (45)

In case of a disaster, inflation jumps by an amount jt = j∗ + bjt. This jump in inflation makes
long term bonds particularly risky. j∗ is the baseline jump in inflation, bjt is the mean-reverting
deviation from baseline. It follows a twisted auto-regressive process, and, for simplicity, does not

jump during crises: bjt+1 = 1− i∗
1− it

· exp (φπ)bjt + εjt+1 (46)

We define πit ≡ pB−γF
1+H

bjt, which is the mean-reverting part of the “risk adjusted” expected
increase in inflation if there is a disaster. We parametrize the typical jump in inflation j∗ in terms

of a number κ ≤ (1− ρi) /2:

pB−γFj∗
1 +H

= (1− i∗)
2 κ (1− ρi − κ) .

κ represents a risk premium for the risk that inflation increases during disasters. Also, we define

i∗∗ ≡ i∗ + κ and ψπ ≡ φπ − κ. They represent the “risk adjusted” trend and mean-reversion

parameter in the inflation process.

We denote nominal variables with a tilde. The price of a long term nominal bond yielding one

unit of the currency at time t+ T is eZt (T ) = Et
h
M∗
t+T et+TQt+T

M∗
t etQt

i
.
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The yield at maturity T , eYt (T ), and the forward rates eft (T ) are defined by
eZt (T ) = exp

³
−eYt (T )T´ = expÃ− TX

T 0=1

eft (T 0)! .

The forward rates can be derived in closed form.

Proposition 12 (Price of a domestic nominal bond, with inflation risk premia) In the continuous
time limit, in up to second order terms in

³ bHt, yt, it, π
i
t

´
:

eft (T ) = re − λ− re
re + φH

exp (−φHT ) bHt +
reφy

re + φy
exp

¡
−φyT

¢
yt + (47)

+i∗∗ (1− exp (−φiT )) + exp (−φiT ) it +
exp (−φiT )− exp (−ψπT )

ψπ − φi
πit

The nominal forward rate in (47) depends on real and nominal factors. The real factors are the

resilience of the economy (the bHt) term, the expected growth rate of productivity (−φyyt). The
nominal factors are inflation it, and the variable component of the the risk premium for inflation

jump risk, πit.

When a disaster occurs, inflation increases (on average). As very short term bills are essentially

immune to inflation risk, while long term bonds lose value when inflation is higher, long term bonds

are riskier, hence they get a higher risk premium. Hence, the yield curve slope up on average — as

implied by the term i∗∗ (1− exp (−φiT )) ∼ i∗∗φiT .

Each of the three terms is multiplied by a term of the type exp (−φHT ). For small speeds of
mean reversion φ’s, it means that the forward curve is fairly flat. The last term, however, is close

to T for small maturities (exp(−φiT )−exp(−ψπT )
ψπ−φi

∼ T ). It creates a variable slope in the forward curve.

Hence, we obtain a rich, potentially realistic, forward curve.

Nominal yield curves contain a lot of potentially information useful to predict exchange rates.

We now explain how to best extract the relevant information to compute exchange rate risk premia.

As above, the expected depreciation of the nominal exchange rate is, up to second order terms, and

conditionally on no disasters:

Et
∙
deeteet
¸
/dt = gω −

φH bHt

re + φH
−

reφyyt

re + φy
− it (48)

It involves three factors that are also reflected in the nominal forward curve. Note however, that it

does not involve the inflation risk premium πit. So, an optimal combination of forward rates should

predict expected currency returns with more accuracy than the simple Fama regression. It can be

shown that when φy 6= φH , the currency risk premium is a linear combination of the traditional

yield curve factors: level rt, slope ∂T eft (0), and curvature ∂2T eft (0).
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7 Equity premia and exchange-rate risk premia

Our model allows us to think in a tractable way about the joint determination of exchange rate and

equity values.

7.1 Local market price of risk and local maximal Sharpe ratios

A clean way of getting at this question is to characterize the maximal Sharpe ratio and the market

price of risk in local currency. The stochastic discount factor in local currency is mt+1 =
Mt+1et+1
Mtet

.

The maximal Sharpe ratio is given by: St ≡ Var
1/2
t (mt+1)

Et(mt+1)
. It is given by the formula20

St =
s
σ2e,t + (1 + σ2e,t)

1− pt
pt

H2
t

(1 +Ht)
2

where σe,t = Var
1/2
t (et+1 |No disaster)/Et(et+1 |No disaster) is the standard deviation of the log

exchange rate in normal times. In the continuous time, limit, we can derive a very simple expression

St =

s
σ2e,t +

H2
t

pt
with σ2e,t = Vart

µ
det
et
| No disaster

¶
The only source of time variation in σ2e,t comes from time variations in the variance and covariance

of the structural shocks to Ht and yt: εHt and εyt .

The maximum Sharpe ratio St is high when resiliency Ht is high. Therefore, countries that

demand low currency risk premia will feature high local Sharpe ratio and high local equity premia.

7.2 Explicit stock values

Another way to proceed is to take a stand on what fraction of present and future endowments is

capitalized in each stock market. A commonly taken route in Lucas-tree economies is to equate

the market to a claim on the entirety of the present and future national endowments of goods.

However, listed stocks only account for a very small and potentially non-representative fraction

of future GDP. Hence, we model stocks without taking a specific stand on the link between the

aggregate dividend of listed stocks and GDP.

7.2.1 Firm producing the international good

Consider first the case of a of domestic firm, that produces the international good. More precisely,

the dividend Dt follows the following process

20mt+1 = Et
h
et+1
et

| No disaster
i
e−R (1 + εt+1)

¡
1 +B−γt FtJt+1

¢
, where var (εt+1) = σ2e, and Jt+1 = 0 with prob-

ability 1− pt, and 1 with probability pt.
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Dt+1

Dt
=

(
egD(1 + εD,t+1) in normal times

egD(1 + εD,t+1)FD,t if crisis

where an idiosyncratic shock uncorrelated with the stochastic discount factors.

Define the resilience HD,t of the stock as

HD,t = pt
¡
Et
£
B−γt+1FD,t+1

¤
− 1
¢
= HD∗ + bHD,t.

It is convenient to define HD∗ = ehD∗ − 1. The law of motion for bHD,t is:

bHD,t+1 =
1 +HD∗

1 +HD,t
exp

¡
−φHD

¢ bHDt + εHD
t+1,

where φHD
is the speed of mean reversion of the resilience of the stock.

Proposition 13 (Domestic stocks producing international goods). The domestic price of the stock
PD,t is

PD,t =
Dt

et

1 + exp(−rD−hD∗)
1−exp(−rD−φHD)

bHD,t

1− exp (−rD)
In the continuous time limit

PD,t =
Dt

et

1 +
HD,t

rD+φHD

rD
(49)

A more resilient stock (high bHD,t) has a higher price-dividend and lower future returns. Con-

trolling for this resilience, if the currency is strong (because the country as a whole is safe), then the

stock price in domestic currency is low.21 As et is expected to depreciate, the expected return of the

stock in local currency is high. In this sense, currency risk premia and local currency equity premia

are negatively correlated. Hence, the theory provides an explanation for Hau and Rey (2006)’s

evidence that the home-currency stock price is decreasing in the exchange rate.

7.2.2 Firm producing the domestic good

We now turn to a domestic producer producing Ds quantities of the domestic good. Its stock price,

in the international currency, is P ∗t = Et

£P
s≥tMsesDs

¤
, so that its domestic price is Pt = P ∗t /et,

hence:

Pt/Dt =
Et
£P

s≥tMsesDs

¤
etDt

(50)

21Of course, if the resilience of the stocks has a strong covariance with the currency’s resilience, the relationship is
inverted: good news about resilience increases both et and bHD,t, and increases (49).
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We postulate the following process for Dt

Dt+1

Dt
=

(
exp (g) if there is no disaster at t+ 1

exp (g)F i
t if there is a disaster at t+ 1

F i
t is the recovery rate in the dividend of that firm. We postulate the F

i
t also follows a LG process,

hovering around F i
∗, and mean-reverts at a rate φF , with a twist spelled out in Eq. (70).

Proposition 14 (Price of a domestic stock producing non-traded goods). To a first order approxi-
mation, the price of stock producing domestic goods is, in terms of the international currency:

P ∗t = Ptet = ωtDt

"
1

rD
+
(H∗ + p∗) bFit

rD (rD + φF )
+

µ
F i
∗

rD
+

1

re + φH

¶ bHt

rD + φH

#
(51)

and in the domestic currency,

Pt =
re
rD

Dt

"
1 +

(H∗ + p∗) bFit

rD + φF
+

µ
F i
∗ −

φH
re + φH

¶ bHt

rD + φH

#
(52)

where rD = R− gD − gω − (H∗ + p∗)F
i
∗.

To analyze the above expression, we take the polar case where bFit (the resiliency of the firm’s

technology) is uncorrelated with bHt (the country’s resilience). The international price of the stock

(51) increases with bHt, hence with the exchange rate.

The domestic price (52) of the stock can decrease or decrease with the exchange rate, depending

on the sign of F i
∗ −

φH
re+φH

. The price of resilient stock increases with the exchange rate, while the

price of non-resilient stocks decreases with the exchange rate. The reason for this ambiguous result

can be see in Eq. 50, where an increase in et increases both the numerator and the denominator.

Take a resilient stock, with F i
∗ close to 1. A increase in the country’s resilience, bHt, increases the

present value of future dividends (the numerator of Eq. 50), because future resiliences are high, and

the discount rate is lower. Hence, the numerator in (50) increases a lot. The denominator increases

also, but not as much. The net effect is that the domestic stock price increases: The cash flows that

the firm produces are more valuable, and less risky. However, take a stock with F i
∗ = 0, i.e. a stock

that will be bankrupt after a disaster. Then, there is no “discount rate effect” in the numerator of

(50), as cash-flows always have maximal riskiness (they disappear in a disaster). So, the effect due

to the rise in the denominator is stronger. Hence, the stock falls, when the exchange rate increases.

All in all, we see that the price of domestic stocks producing nontradables increases with the

exchange rate, when it is expressed in international currency, but, expressed in domestic currency,

it increases only for the most resilient stocks. Again, one might hope to test that prediction.
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8 Conclusion

This paper proposes a simple, tractable model of exchange rates and interest rates, and offers a

theory of the forward premium puzzle. Its main modelling contributions are, first, to develop an

“exchange rate as a stock” view of the exchange rate, in a complete market setting (Proposition

1). Second, to work out the exchange rate in a stochastic disaster framework, and to obtain closed

forms for the value of the exchange rate, and the forward premium puzzle coefficients.

The paper suggests several questions for future research. First, it would be good to examine

new predictions that the model might generate, including the relationships between bonds, options

and exchange rate premia and predictability. Second, it would be interesting to extend the model

to stocks, so as to study the link between exchange rates and stock markets. Third, given that the

model is very simple to state, and to solve (thanks to the modeling “tricks” allowed by linearity-

generating processes), it can serve as a simple framework for various questions. This gives hope that

a solution to more puzzles in international economics (Obstfeld and Rogoff 2001) may be within

reach.
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Appendix A. Results for Linearity-Generating processes

The paper repeatedly uses the Linearity-Generating (LG) processes identified and analyzed in

Gabaix (2007a). This Appendix gathers the main results. LG processes are given by MtDt, a

pricing kernel Mt times a dividend Dt, and Xt, a n-dimensional vector of factors (that can be

thought as stationary). For instance, for bonds, the dividend is Dt = 1.

Discrete time By definition, a process MtDt (1,Xt) is a LG process with generator Ω =Ã
α δ0

γ Γ

!
if and only if it follows, for all t’s:

Et
∙
Mt+1Dt+1

MtDt

¸
= α+ δ0Xt (53)

Et
∙
Mt+1Dt+1

MtDt
Xt+1

¸
= γ + ΓXt (54)

Higher moments need not be specified.

For instance, the functional form of the noise does not matter, which makes LG processes

parsimonious. Stocks and bonds have simple closed-form expressions.

The price of a stock, Pt = Et
£P

s≥tMsDs

¤
/Mt, is:

Pt = Dt
1 + δ0 (In − Γ)−1Xt

1− α− δ0 (In − Γ)−1 γ
(55)

The price-dividend ratio of a “bond”, Zt (T ) = Et [Mt+TDt+T ] / (MtDt), is:22

Zt (T ) =
³
1 0n

´
ΩT

Ã
1

Xt

!

= αT + δ0
αT In − ΓT

αIn − Γ
Xt when γ = 0

Continuous time In continuous time, MtDt (1,Xt) is a LG process with generator ω =Ã
a β

b Φ

!
if and if only it follows:

Et
∙
d (MtDt)

MtDt

¸
= − (a+ β0Xt) dt (56)

Et
∙
d (MtDtXt)

MtDt

¸
= − (b+ ΦXt) dt (57)

22Here 0n denotes a n−dimensional row of zeros.
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The price of a stock, Pt/Dt = Et
£R∞

t
MsDsds

¤
/ (MtDt) , is:

Pt/Dt =
1− β0Φ−1Xt

a− β0Φ−1b

and the price-dividend ratio of a “bond” is: Zt (T ) = Et [Mt+TDt+T ] / (MtDt)

Zt (T ) =
³
1 0n

´
· exp

"
−
Ã

a β0

b Φ

!
T

#
·
Ã

1

Xt

!
(58)

= exp (−aT ) + β0
exp (−ΦT )− exp (−aT ) In

Φ− aIn
Xt when b = 0

To ensure that the process is well-behaved (hence prevent prices from being negative), the

volatility of the process has to go to zero near some boundary. Gabaix (2007a) details these

conditions.

Appendix B. Proofs

For simplicity, we drop the country index i in most proofs.

Proof of Proposition 2 By Proposition 1, we have

et
exp (−λt)ωt

= Et

" ∞X
s=0

M∗
t+s

exp (−λ(t+ s))ωt+s

exp (−λt)ωt

#
/M∗

t (59)

Let Dt = exp (−λt)ωt and Xt = bHt. With this notation,

Et
∙
M∗

t+1Dt+1

M∗
t Dt

¸
= exp (−R− λ+ gω)

©
(1− pt) + ptEt

£
B−γt+tFt+1

¤ª
= exp (−R− λ+ gω) (1 +Ht) = exp (−R− λ+ gω) (1 +H∗) + exp (−R− λ+ gω) bHt

= exp (−R− λ+ gω) (1 +H∗) + exp (−R− λ+ gω)Xt = exp (−re) + exp(−re − h∗)Xt,

using re = R+ λ− gω − h∗. Also:

Et
∙
M∗

t+1Dt+1

M∗
t Dt

Xt+1

¸
= Et

∙
M∗

t+1Dt+1

M∗
t Dt

¸
Et [Xt+1]

= e−R−λ+gω (1 +Ht)
1 +H∗
1 +Ht

e−φH bHt

= e−R−λ+gω−φH (1 +H∗) bHt = e−re−φHXt

There are two ways to conclude. The first way uses the notations of Appendix A: The above
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two moment calculations show that Yt =M∗
t Dt (1,Xt) is a LG process, with generator Ω:

Ω =

Ã
exp (−re) exp (−re − h∗)

0 exp (−re − φH)

!

Using equation 55, we find

et =
ωt

1− exp (−re)

µ
1 +

exp (−re − h∗)

1− exp (−re − φH)
bHt

¶
(60)

which proves the proposition.

The second way (which is less rigorous, but does not require to know the results on LG processes),

is to look for a solution of the type et = ωt

³
a+ b bHt

´
, for some constants a and b, which satisfies:

et = ωt + Et
£
M∗

t+1 exp (−λ)ωt+1/M
∗
t

¤
. Dividing by ωt, this is:

a+ b bHt = 1 + Et
∙
M∗

t+1Dt+1

M∗
t Dt

³
a+ b bHt+1

´¸
= 1 + aEt

∙
M∗

t+1Dt+1

M∗
t Dt

¸
+ bEt

∙
M∗

t+1Dt+1

M∗
t Dt

bHt

¸
= 1 + a

h
e−re + e−re−h∗ bHt

i
+ be−re−φH bHt,

which should hold for all bHt. Solving for a and b, we get a = 1 + e−ria, b = e−re−h∗a + be−ri−φH ,

and (60).

The lower bound for bHt is: exp(−re) bHt > exp(−φH) − 1, i.e., in the continuous time limit,bHt > −φH .

A Lemma on the existence of the equilibrium

Lemma 1 (Existence of the Equilibrium) There are (infinitely many) endowment processes that
generate the equilibrium described in the paper.

Proof. Call ηai,t and ηbi,t country i’s endowment of the international good, and domestic good,

respectively. We work out under which conditions they generate the announced equilibrium.

Say that the equilibrium is described by a social planner’s maximization of
P

i λ
γ
i Ui, where

Ui = E0

"P∞
t=0 exp (−δt)

(CT
t )

1−γ
+ C

NTi
t

1−γ

1−γ

#
is country i’s utility, and λγi the Negishi weight on

country i. We normalize
P

λi = 1. Calling qt the Arrow-Debreu price of 1 unit of the international

good at date t, and Yta the world production of the international good. Among other things, the

planner optimizes the consumptions of the domestic good, so solves:

max
Ca
it

X
i

λγi

∞X
t=0

exp (−δt)
¡
CT
it

¢1−γ
+
¡
CNTi
it

¢1−γ
1− γ

+
X
t

qt

Ã
Y T
t −

X
i

CT
it

!

where so that exp (−δt)λγi
¡
CT
it

¢−γ − qt = 0, and CT
it = λiq

−1/γ
t exp (δt/γ). Using Y T

t =
P

iC
T
it , we

get: CT
it = λiY

T
t .
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Let us now study country i’s consumption and investment decisions. Country i at time t, solves

max
CT
it , C

NTi
it

(CT
it)

1−γ
+ C

NTi
it

1−γ

1−γ s.t. CT
it +eitC

NTi
it =expenditure at time t, so

¡
CNTi
it

¢−γ
= eit

¡
CT
it

¢−γ
,

hence CNTi
it = e

−1/γ
it λiY

T
t . The investment in the capital good is η

NTi
it − CNTi

it = ηNTi
it − e

−1/γ
it λiY

T
t ,

so that the accumulated quantity of the capital good is Kit =
P∞

s=0 e
−λs
³
ηNTi
i,t−s − e

−1/γ
i,t−sλiY

T
t−s

´
. As

country i produces Kitωit of the world good, and also has an endowment ηTit of it, the total available

consumption of the world good at time t is:

Y T
t =

X
i

ηTit +
X
i

ωit

∞X
s=0

e−λs
³
ηNTi
i,t−s − e

−1/γ
i,t−sλiY

T
t−s

´
. (61)

The first term is the endowment of the world good, and second is the production of it.

The equilibrium is described as in the paper, if the endowment processes ηTi,t and ηNTi
i,t satisfy

(61), with Y T
t = CT∗

t . By inspection there is an infinity of such endowment processes.

Proof of Proposition 3 In this proof, it is useful to define xt = e−h∗ bHt. Then, Et
h
M∗
t+1ωt+1
M∗
t ωt

i
=

exp (−R+ gω) (1 +Ht) = exp (−re + λ) (1 + xt).

Also, Et [xt+1] = exp (−φ) xt
1+xt

, and et = ωtA (1 +Bxt), with A = 1/ (1− exp (−re)), B =
exp(−re)

1−exp(−re−φH)
,

1 + rt =
M∗

t et

Et
£
M∗

t+1et+1
¤ = A (1 +Bxt)

Et
h
M∗
t+1ωt+1

M∗
t ωt

A (1 +Bxt+1)
i = 1 +Bxt

Et
h
M∗
t+1ωt+1

M∗
t ωt

i
Et [1 +Bxt+1]

=
1 +Bxt

exp (−re + λ) (1 + xt)
³
1 +B exp(−φH)xt

1+xt

´ = exp (re − λ)
1 +Bxt

1 + xt (1 +B exp (−φH))

= exp (re − λ)
1 + exp(−re)

1−exp(−re−φH)
xt

1 + 1
1−exp(−re−φH)

xt

= exp (re − λ)

"
1− (1− exp (−re)) exp (−h∗) bHt

1− exp (−re − φH) + exp (−h∗) bHt

#
.

Proof of Proposition 4 Eq. (17) was derived in the text leading to the Proposition For the

unconditional regression, the reasoning is thus.

Unconditional Fama regressions. We next turn to the unconditional Fama regression. Using
Eq. 13, we have

1 + rBt
1 + rAt

=
Et
h
M∗
t+1e

A
t+1

M∗
t e

A
t

i
Et
h
M∗
t+1e

B
t+1

M∗
t e

B
t

i
which in the continuous time limit can be expressed as

rBt − rAt = Et
∙
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¸
+Covt

µ
M∗

t+1

M∗
t

,
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¶
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i.e.

Et
∙
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¸
= rBt − rAt − Covt

µ
M∗

t+1

M∗
t

,
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¶
This expression highlights the role of the risk premium πA,Bt :

πA,Bt = −Covt
µ
M∗

t+1

M∗
t

,
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¶
Consider now the Fama (1984) regression of the changes in the exchange rate between countries

A and B regressed on the difference in interest rates in a full sample:

Fama regression: Et
∙
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¸
= αFull − βFull(rAt − rBt ) (62)

The coefficient βFull is now given by

βFull = 1− Cov(π
A,B
t , rAt − rBt )

Var (rAt − rBt )

Therefore, we can have βFull < 0 if and only if the risk premium covaries positively enough with

the interest rate differential. It is easy to compute

πA,Bt = (1− β)(rAt − rBt ) + ptEt
£
FA
t+1 − FB

t+1

¤
which leads to

βFull = β −
Cov

¡
ptEt

£
FA
t+1 − FB

t+1

¤
, rAt − rBt

¢
Var (rAt − rBt )

βFull = β + (1− β)
Cov

³
ptEt

£
FA
t+1 − FB

t+1

¤
, bHA

t − bHB
t

´
Var

³ bHA
t − bHB

t

´ (63)

In the case where Bt+1 is constant and equal to B, and ptEt
£
FA
t+1 − FB

t+1

¤
=
³ bHA

t − bHB
t

´
Bγ,

so:

βFull = β + (1− β)Bγ = − φ

re
+

µ
1 +

φ

re

¶
Bγ

Proof of Proposition 5 Derivation of the exchange rate. Call mt = M∗
t exp (−λt)ωt. We

show that mt

³
1, bHt, yt

´
is a LG process. As in the Proof of Proposition 2:

Et
∙
mt+1

mt

¸
= exp (−re)

³
1 + exp (−h∗) bHt

´
= exp (−re − h∗) (1 +Ht)

Et
∙
mt+1

mt

bHt

¸
= exp (−re − φH) bHt
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The new moment is:

Et
∙
mt+1

mt
yt+1

¸
= Et

∙
mt+1

mt

¸
Et [yt+1]

= exp (−re − h∗) (1 +Ht)
1 +H∗
1 +Ht

exp
¡
−φy

¢
yt = exp

¡
−re − φy

¢
yt

So mt

³
1, bHt, yt

´
is a LG process, with generator:

Ω = exp (−re)

⎛⎜⎝1 exp (−h∗) 0

0 exp (−φH) 0

0 0 exp
¡
−φy

¢
⎞⎟⎠ . (64)

The exchange rate follows:

et
ωt

= Et

" ∞X
s=0

M∗
t+s

M∗
t

exp (−λs)ωt+s (1 + gt)

#
=

⎛⎜⎝10
1

⎞⎟⎠
0

· (I3 − Ω)−1 ·

⎛⎜⎝ 1bHt

yt

⎞⎟⎠
=

1

1− exp (−re)

µ
1 +

exp (−re − h∗)

1− exp (−re − φH)
bHt

¶
+

1

1− exp
¡
−re − φy

¢yt
The last equation comes from the fact that I3 − Ω is bloc-diagonal. This yields the announced

expression.

Derivation of the interest rate. In the continuous time limit,

Et
h
d bHt

i
= −

³
φH + bHt

´ bHtdt (65)

Et [dyt] = −
³
φy + bHt

´
ytdt (66)

so the interest rate satisfies:
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−rt = Et
∙
d (M∗

t et)

M∗
t et

¸
/dt = Et

∙
dM∗

t

M∗
t

| no disaster
¸
+ Et

∙
det
et
| no disaster

¸
+pt

µ
Et
∙
Mt+et+

Mtet
− 1 | disaster

¸¶

= −R+ gω +

Et[dHt]/dt
re+φH

+ reEt[dyt]/dt
re+φy

1 + Ht

re+φH
+ reyt

re+φy

+ pt
¡
B−γt Ft − 1

¢

= −R+ gω +

−(φH+Ht)Ht

re+φH
+
−re(φy+Ht)yt

re+φy

1 + Ht

re+φH
+ reyt

re+φy

+H∗ + bHt

= −re + λ+

re
re+φH

bHt −
reφy
re+φy

yt

1 + Ht

re+φH
+ reyt

re+φy

.

Proof of Proposition 6 We start by the case of the regression in a sample that does not

contain disasters. As in the proof of Proposition 5,

Et
∙
det
et

¸
/dt = gω +

−(φH+Ht)Ht

re+φH
+
−re(φy+Ht)yt

re+φy

1 + Ht

re+φH
+ reyt

re+φy

So, up to second order terms in bHt and yt,

Et
∙
det
et

¸
/dt = gω +

−φH bHt

re + φH
+
−reφyyt
re + φy

≡ a bHt + byt + c

rt = re − λ− re
re + φH

bHt +
reφy

re + φy
yt ≡ A bHt +Byt + C

so

β0 = −
Cov

³
Et
h
det
et

i
/dt, rt

´
Var (rt)

= −
aAVar

³ bHt

´
+ bBVar (yt)

A2Var
³ bHt

´
+B2Var (yt)

= −ν a
A
− (1− ν)

b

B
= νβ + 1− ν

where ν =
A2Var(Ht)

A2Var(Ht)+B2 Var(yt)
.

The case of the full sample regression is proved similarly.
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Proof of Proposition 7 We start with the call price.

V Call (K) = E0

"
M∗
1

M∗
0

µ
eB1
eB0
−K

eA1
eA0

¶+#

= (1− p0)END
0

"
M∗
1

M∗
0

µ
eB1
eB0
−K

eA1
eA0

¶+#
+ p0ED0

"
M∗
1

M∗
0

µ
eB1
eB0
−K

eA1
eA0

¶+#

= (1− p0) e
−REND

0

"µ
eB1
eB0
−K

eA1
eA0

¶+#
+ p0e

−RED0

"
B−γ1

µ
eB1
eB0
−K

eA1
eA0

¶+#

where ND and D superscript denote expectation conditional, respectively, on no disaster and

disaster. The next calculation uses the following Lemma, which is standard.23

Lemma 2 (Discrete time Girsanov) Suppose that (x, y) are jointly Gaussian distributed under P .
Consider the measure dQ/dP = exp (x− E [x]−Var (x) /2). Then, under Q, y is Gaussian, with
distribution

y ∼Q N (E [y] + Cov (x, y) ,Var (y)) (67)

where E [y] ,Cov (x, y) ,Var (y) are calculated under P .

To do the calculation, write eB,ND
1

eB0
= exp (μB + εB − σ2B/2), and the analogue for A. We call

η = εB − εA, and calculate:

V1 = END
0

"Ã
eB,ND
1

eB0
−K

eA,ND
1

eA0

!+#
= END

0

h¡
exp

¡
μB + εB − σ2B/2−K exp

¡
μA + εA − σ2A/2

¢¢¢+i
= exp (μA)END

0

h
exp

¡
εA − σ2A/2

¢ ¡
exp

¡
μB − μA − σ2B/2 + σ2A/2 + η

¢
−K

¢+i
We define dQ/dP = exp (εA − σ2A/2), and use Lemma 2. UnderQ, y = μB−μA−σ2B/2+σ2A/2+η

is a Gaussian variable with variance σ2η and mean:

EQ [y] = μB − μA − σ2B/2 + σ2A/2 + Cov (εB − εA, εA)

= μB − μA − σ2B/2− σ2A/2 + σA,B = μB − μA −Var (η) /2

Hence,

V1 = exp (μA)EQ
£
(ey −K)+

¤
= exp (μA)EQ

£
(exp (μB − μA −Var (η) /2 + η)−K)+

¤
= exp (μB)C

BS
¡
K,μB − μA, σA/B

¢
23To verify it, we calculate that the characteristic function of y is the characteristic function of distribution (67):

EQ
£
eky
¤
= E

h
ex−E[x]−σ

2
x/2eky

i
= exp

Ã
kE [y] +

k2σ2y
2

+ kcov (x, y)

!
= exp

"
k (E [y] + cov (x, y)) +

k2σ2y
2

#
.
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where σA|B = (Var (εB − εA))
1/2, and CBS (K exp (−r) , σ) = E

h
(exp (σu− σ2/2)− exp (−r)K)+

i
(with u a standard Gaussian) is the Black-Scholes calls value when the interest rate is 0, the maturity

1, the strike K, the spot price 1, and the volatility σ.

Next, we observe that:

ED0

"
B−γ1

µ
eB1
eB0
−K

eA1
eA0

¶+#
= ED0

£
B−γ1 (exp (μB)FB −K exp (μA)FA)

+¤
We conclude that the value of the call is (26).

Put price. We use put-call parity. Using the identity x+ = x + (−x)+, and the fact that
E0
h
M∗
1

M∗
0

eA1
eA0

i
= exp (−rA),

V Put (K) = E0

"
M∗
1

M∗
0

µ
K
eA1
eA0
− eB1

eB0

¶+#
= E0

∙
M∗
1

M∗
0

µ
K
eA1
eA0
− eB1

eB0

¶¸
+ E0

"
M∗
1

M∗
0

µ
eB1
eB0
−K

eA1
eA0

¶+#
=

K

1 + rA
− 1

1 + rB
+ V Call (K) .

The following analogue of (26) also holds:

V Put (K) = exp (−R+ μB) (1− p0)C
BS
Put

¡
K exp (μA − μB) , σA|B

¢
+

+exp (−R+ μB) p0ED0
£
B−γ1 (−F1,B +K exp (μA − μB)F1,A)

+¤
Proof of Proposition 8 The proof of Proposition 5 showed that M∗

t exp (−λt)ωt

³
1, bHt, yt

´
is a LG process, with generator given by (64). Writing et = ωt

³
a+ b bHt + cyt

´
, we have

Zt = Et
∙
M∗

t+Tet+T
M∗

t et

¸
=

exp (λT )

a+ b bHt + cyt
Et

⎡⎣M∗
t+T exp (−λ (t+ T ))ωt+T

³
a+ b bHt + cyt

´
M∗

t exp (−λt)ωt

⎤⎦
=

exp (λT )

a+ b bHt + cyt

⎛⎜⎝a

b

c

⎞⎟⎠
0

ΩT

⎛⎜⎝ 1bHt

yt

⎞⎟⎠ by the rules on LG processes

=
exp (λT )

a+ b bHt + cyt

⎛⎜⎝a

b

c

⎞⎟⎠
0

exp (−reT )

⎛⎜⎝1 exp (−h∗) 1−exp(−φHT )
1−exp(−φH)

0

0 exp (−φHT ) 0

0 0 exp
¡
−φyT

¢
⎞⎟⎠
⎛⎜⎝ 1bHt

yt

⎞⎟⎠
= exp (− (re − λ)T )

a+
³
a exp (−h∗) 1−exp(−φHT )

1−exp(−φH)
+ b
´ bHt + c exp

¡
−φyT

¢
yt

a+ b bHt + cyt

= exp (− (re − λ)T )
1 +

³
a exp (−h∗) 1−exp(−φHT )

1−exp(−φH)
+ b
´ bHt + c exp

¡
−φyT

¢
yt

1 + exp(−re−h∗)
1−exp(−re−φH)

bHt +
1−exp(−re)

1−exp(−re−φy)
yt

,
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So the zero-coupon price is:

Zt (T ) = e−(re−λ)T
1 + 1−exp(−re−φH)−(1−exp(−re)) exp(−φHT )

(1−e−φH )(1−e−re−φH )
exp (−h∗) bHt + exp

¡
−φyT

¢
1−exp(−re)

1−exp(−re−φy)
yt

1 + exp(−re−h∗)
1−exp(−re−φH)

bHt +
1−exp(−re)

1−exp(−re−φy)
yt

Taking Taylor expansions,

Zt (T ) = e−(re−λ)T

"
1 +

(1− e−re)
¡
1− e−φHT

¢
(1− e−φH ) (1− e−re−φH )

e−h∗ bHt −
(1− e−re)

¡
1− e−φyT

¢
1− e−re−φy

yt

#
+ o

³ bHt, yt
´

Yt (T ) = re − λ−
(1− e−re)

¡
1− e−φHT

¢
T (1− e−φH ) (1− e−re−φH )

e−h∗ bHt +
(1− e−re)

¡
1− e−φyT

¢¡
1− e−re−φy

¢
T

yt + o
³ bHt, yt

´
(68)

ft (T ) = re − λ− (1− e−re) e−φH(T−1)

1− e−re−φH
e−h∗ bHt +

(1− e−re)
¡
1− e−φy

¢
e−φy(T−1)¡

1− e−re−φy
¢ yt + o

³ bHt, yt

´
(69)

and in the continuous time limit,

ft (T ) = re − λ− re
re + φH

e−φHT bHt +
reφy

re + φy
e−φyTyt + o

³ bHt, yt
´

Proof of Proposition 12 The real part of the forward rate was calculated in Eq. 32. The

nominal part is calculated in Gabaix (2007b). The two expressions add up, because we do a Taylor

expansion.

Proof of Proposition 14 Pt = Et

hP
s≥tMsωsDs

³
1 + Hs

Re+φ

´i
/ (etDt). We calculate the

corresponding LG moments. We start with:

Mt+1ωt+1Dt+1

MtωtDt
= exp (−R+ gω + gD)×

(
1 if there is no disaster at t+ 1

FtF
i
t if there is a disaster at t+ 1

where as before Ft is the reduction in the country productivity in producing the international good.

We postulate that the process for F i
t allows the decomposition:

ptB
−γ
t FtF

i
t − pt = (H∗ + p∗)F

i
∗ − p∗ + F i

∗
bHt + (H∗ + p∗) bF i

t

This decomposition is the natural one, as the central value of ptB
−γ
t Ft is H∗ + p∗, and the central

value of F i
t is called F i

∗. The process for Fit is a LG-twisted autoregressive process:

Et

h
d bFit

i
/dt = −

³
φFi + F i

∗
bHt + (H∗ + p∗) bF i

t

´ bFit (70)
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We define rD = R − gD − gω − (H∗ + p∗)F
i
∗ + p∗ The LG moments are (normalizing gD = gω = 0

in the derivations):

Et

∙
d (MωD)t
(MωD)t

¸
/dt = −R+ pt

¡
B−γt FtF

i
t − 1

¢
= −rD + F i

∗
bHt + (H∗ + p∗) bF i

t

Et

⎡⎣d
³
MωD · bFit

´
t

(MωD)t

⎤⎦ /dt = −R bFit −
³
φFi + F i

∗
bHt +H∗ bF i

t

´ bFit + p
³
B−γFtF

i
t · F i

t − bFit

´
= − (rD + φF ) bFit

Et

⎡⎣d
³
MωD bHt

´
t

(MωD)t

⎤⎦ /dt = ³−rD + F i
∗
bHt + (H∗ + p∗) bF i

t

´ bHt−
³
φ+ bHt

´ bHt = − (rD + φ) bHt+h.o.t.

Hence the last expression involves a linearization. So, to a first order, MtωtDt

³
1, bHt, bFit

´
is a

LG process, with generator ω =

⎛⎜⎝rD −F i
∗ − (H∗ + p∗)

0 rD + φH 0

0 0 rD + φF

⎞⎟⎠. So (50) gives, in virtue of the rule
on LG processes (Gabaix 2007a, Theorem 4 and Proposition 4):

Ptet =

⎛⎜⎝ 1

1/ (re + φH)

0

⎞⎟⎠
0

ω−1

⎛⎜⎝ 1bHtbFit

⎞⎟⎠Dt,

which yields (51). Eq. 52 comes from a Taylor expansion.

Appendix C. Variance processes

Suppose an LG process centered at 0, dXt = − (φ+Xt)Xtdt+ σ (Xt) dWt, where Wt is a standard

Brownian motion. Because of economic considerations, the support of the Xt needs to be some

(Xmin, Xmax), with −φ < Xmin < 0 < Xmax. The following variance process makes that possible:

σ2 (X) = 2K (1−X/Xmin)
2 (1−X/Xmax)

2 (71)

with K > 0. K is in units of [Time]−3. The average variance of X is σ2X = E [σ2 (Xt)] =R Xmax

Xmin
σ (X)2 p (X) dX, where p (X) is the steady state distribution of Xt. It can be calculated

via the Forward Kolmogorov equation, which yields

d ln p (X) /dX = 2X (φ+X) /σ2 (X)− d lnσ2 (X) /dX.
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Numerical simulations shows that the process volatility is fairly well-approximated by: σX '
K1/2ξ, with ξ = 1.3. Also, the standard deviation of X’s steady state distribution is well-

approximated by (K/φ)1/2.

Asset prices often require to analyze the standard deviation of expressions like ln (1 + aXt).

Numerical analysis shows that the Taylor expansion approximation is a good one: Average volatility

of: ln (1 + aXt) ' aK1/2ξ, which numerical simulations prove to be a good approximation too.

For the steady-state distribution to have a “nice” shape (e.g., be unimodal), the following

restrictions appear to be useful: K ≤ 0.2 · φ |Xmin|Xmax.

When the process is not centered at 0, one simply centers the values. For instance, in our cali-

bration, the recovery rate of the country productivity, Ft, has support [Fmin, Fmax], centered around

F∗. The probability and intensity of disasters (p and B) are constant. Define Ht = p (B−γFt − 1),
and the associated Hmin, Hmax, H∗. The associated centered process is Xt = bHt = Ht−H∗. We take
the volatility parameter to be: K = v · φH |Xmin|Xmax, with the volatility parameter v ∈ [0, 0.2].
This yields a volatility of bHt equal to σHt

= ξ
³
v · φH

¯̄̄ bHmin

¯̄̄ bHmax

´0.5
, a volatility of Ft equal

to σF = σHt
/ (pB−γ), and a volatility of the bilateral exchange rate (between two uncorrelated

countries) equal to
√
2σHt

/ (re + φH).

Appendix D: With an General Pricing Kernel

We show another pricing kernel that would generate the exact same predictions as our setup with

disasters. The world pricing kernel (in terms of the international good) is:

M∗
t+1

M∗
t

= e−R (1 + εM,t+1)

where εM,t+1 has mean 0. Country i’s productivity is:

ωi,t+1

ωit
= egω (1 + εωi,t+1)

where εωi,t+1, εM,t+1 have mean 0. The covariance −cov (εω,t+1, εM,t+1) is the risk premium on a

1-period claim yielding the value of productivity. We call its opposite Ht

Ht = cov (εω,t+1, εM,t+1) = H∗ + bHt

and decompose it into a fixed and variable part, H∗ and bHt. We postulate that this risk-premium

is time-varying, according to a LG process:

bHt+1 =
1 +H∗
1 +Ht

exp (−φH) bHt + εh,t+1

with values of 0 for Et [εω,t+1], Et [εh,t+1], cov
³
εh,t+1,

Mt+1

Mt

ωt+1
ωt

´
, cov (εh,t+1, εω,t+1).
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We then calculate the LG moments:

Et
∙
Mt+1

Mt

ωt+1

ωt

¸
= e−R+gω

¡
1 + cov

¡
ηt+1, εω,t+1

¢¢
= e−R+gω

³
1 +H∗ + bHt

´

Et
∙
Mt+1

Mt

ωt+1

ωt

bHt+1

¸
= e−R+gω

Those are exactly the LG moments of the process with disasters.

Hence, the value of the exchange rate and the interest rate are exactly the same. Also, it is

easy to verify that the expected exchange rate growth Et [eit+1/eit] is the same as in the model with

disasters. The reason is that now Et
h
ωt+1
ωt

i
= exp (gω) unconditionally, while in the model with

disasters that equation only holds in a sample without disasters.

Hence expected appreciation, and Fama regressions, are the same as in the model with disasters.

The only thing that will change is the implication for options prices, for which the disaster framework

is crucial. We summarize those findings:

Proposition 15 In the framework above, with an abstract pricing kernel, all Propositions (except
Proposition 7 on options) of this paper hold, except that in the Propositions on Fama regression

coefficients (Propositions 4, 6, 9 and 11) the announced value of β is the correct value of β in an

unconditional sample, and the value of βFull is irrelevant.

For instance, in the general setup above, the Fama coefficient is given by (17) holds uncondi-

tionally.

We conclude that this alternative formulation, with a “black box” pricing kernel, yields the same

results the value of the exchange rate, interest rate, and Fama coefficients, as in our formulation

with disasters. The main difference is that the disaster formulation calibrates reasonably easily, and

yields different prediction for options.
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