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Abstract 
The purpose of this work is to investigate the role of the collaboration and the innovation 

networks in the efficiency of knowledge diffusion among Canadian nanotechnology inventors. 

We introduce two sets of indicators which allow tracking the changes in the Canadian 

nanotechnology collaboration network in the period of 1989-2004. We observe that the Canadian 

nanotechnology inventors have an increasing tendency to build cooperative ties with higher 

number of partners, to collaborate with them more intensively and to form larger collaboration 

teams. They also tend to return for subsequent collaborations to the same partners with whom 

they have collaborated within the past five years. We identify the prominent researchers in 

Canadian nanotechnology and propose to take into consideration the patent quality when 

identifying star scientists. We note that many of the superior scientists in nanotechnology have 

not produced any USPTO nanotechnology patent. We also propose indicators which characterize 

the structural properties of the nanotechnology collaboration network. We observe a 

fragmentation of the network over time, caused by an increasing specialization of the 

nanotechnology field.  
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1. Introduction 

As an alternative to the three classical locations where innovation takes place (which are 

non-profit institutions, profit-seeking firms and the minds of individual inventors), Allen (1983) 

has introduced the concept of collective invention. The key to understanding a phenomenon of 

collective invention is in the exchange and free circulation of knowledge and information within 

groups of socially connected (but often competing) agents rather than in the inventive efforts of 

particular firms or individuals. The open sharing of information thus results in a fast knowledge 

accumulation and high invention rates. A large number of historical examples were documented 

in the literature: For instance, the wide informal knowledge trading between engineers in 

competing minimill firms in the US steel industry was described by von Hippel (1987) and by 

Schrader (1991), and the knowledge sharing in a cluster of wireless communication firms in 

Denmark by Dahl and Pedersen (2004), but the most commonly cited example is an open 

knowledge sharing culture in Silicon Valley studied by Saxenian (1994).1 

The concept of collective invention is convenient for describing the dynamics of knowledge 

diffusion through various innovation networks. The network of innovators is an inter-personal 

network of individual innovators, who collaborate and exchange information in order to produce 

innovations and scientific knowledge. These are the inventors and scientists working at the 

universities, in research centers or industrial R&D departments. The methods of social network 

analysis2 have been used to analyze the way these innovators are interconnected. There is usually 

no formal agreement among the researchers; however, they frequently take part in the 

development of a patent or the creation of scientific article. Within the research community 

which investigates the innovation networks it is widely presumed that two innovators, who have 

worked together on at least one patent or one scientific article, will keep in touch afterwards in 

order to exchange information or to share some knowledge assets. The patent documents and 

                                                 
1 For other examples of collective invention see Lamoreaux and Sokoloff (1997). 

2 Social network analysis is the mapping and measuring of relationships and flows between people, groups, 
organizations, computers or other information/knowledge processing entities. The nodes in the network are the 
people or groups, whereas the links show relationships or flows between the nodes. Social network analysis provides 
both a visual and a mathematical analysis of complex human systems (Krebs, 2006). 
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bibliometric data could thus be exploited to map the complex web of social ties among 

innovators and to construct the innovation networks. 

The network of scientists, whose links are established by their co-authorship of scientific 

articles, may be the largest social network ever studied (Newman, 2001a). Newman (2001a) was 

the first (to our knowledge) to use four databases of scientific papers in physics, biomedical 

research and computer science constructed networks of collaboration between scientists in each 

of these disciplines and studied a variety of statistical properties of these networks to describe the 

network structure. In his subsequent papers (Newman, 2001b; Newman, 2001d), he continued his 

research on scientific networks, exploring a variety of nonlocal network properties and measures. 

Newman (2001c) then examined empirically the time evolution of scientific collaboration 

networks in physics and biology. Breschi and Lissoni (2003 and 2004) and later Balconi et al. 

(2004) constructed the network of collaborative relationships linking Italian inventors using data 

on co-inventorship of patents from EPO (European Patent Office). They built bipartite graph of 

applicants, patents and inventors. Using this graph, they could derive various measures of social 

proximity between cited and citing patents. Beaucage and Beaudry (2006) constructed the 

network of Canadian biotechnology inventors based on the similar methodology as Balconi et al. 

(2004). Cantner and Graf (2006) proposed to build the networks of innovators based on 

technological overlap, which is a measure of closeness of the technological field of two scientists. 

They also described the evolution of the innovator network of Jena, Germany using the 

information on scientific mobility. Singh (2005) inferred collaborative links among individuals 

using a social proximity graph, which he also constructed from patent collaboration data. Many 

other researchers3 adopted the co-inventorship of patents as an appropriate device to derive maps 

of social relationships between inventors and to build their networks. Based on interviews with 

inventors, Fleming et al. (2006), however, warned that patent co-inventorship links differ 

significantly in their strength and information transfer capacity. Also, since their decay rates vary 

greatly, a substantial number of old ties remain viable even if the relation does not exist anymore. 

The findings from the aforementioned research studies have revealed some interesting 

properties of the innovation networks. Most importantly, apparent differences in collaboration 
                                                 
3 For instance Mariani (2000), Ejermo and Karlsson (2006); Gauvin (1995) and Fleming et al. (2006). 
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patterns according to the nature of subjects under study were observed. The characteristics of the 

network structures differ depending on whether they contain purely industrial or also academic 

researchers. Balconi et al. (2004) observed that networks of inventors within industrial research 

are usually highly fragmented. On the other hand, the networks constructed by Newman (2001a) 

were much clustered, but since he based them on scientific co-authorship we assume that these 

were mainly academic networks. Newman (2001b) also observed that for most scientific authors 

the majority of the paths between them and other scientists in the network go through just one or 

two of their collaborators. This is in agreement with Balconi et al. (2004) who found that 

academic inventors that enter the industrial research network are, on average, more central than 

non-academic inventors - they exchange information with more people, across more 

organizations, and therefore play a key role in connecting individuals and network components. 

Academics also have a tendency to work within larger teams and for a larger number of 

applicants than non-academic inventors (Balconi et al., 2004).  

Newman (2001c) showed that the probability of a pair of scientists collaborating increases 

with the number of other collaborators they have in common, and that the probability of a 

particular scientist acquiring new collaborators increases with the number of his or her past 

collaborators. Nevertheless, Cantner and Graf (2006) did not find a relation between previous and 

present cooperations with the same partners, suggesting that collaborations in the studied region 

are not persistent. Former collaborations are also found to be determinant of the future success. 

Cowan et al. (2005) claimed that previous collaborations increase the probability of a successful 

collaboration and Fleming et al. (2006) argued that an inventor’s past collaboration network will 

strongly influence subsequent productivity.  

Some of the researchers who adopted the network approach have also included geographical 

aspects into their models. Gittelman (2006) argued that the geography of the research 

collaborations has distinct impacts on the firms’ scientific contribution and their inventive 

productivity. The work of the collocated research teams results in scientifically more valuable 

knowledge, whereas the more dispersed research groups are more likely to produce commercially 

valuable technologies. Beaucage and Beaudry (2006) characterized three major Canadian 

biotechnology clusters in terms of their innovation network structures and proposed the likely 
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influence of the distinct geographical collaborative patterns on the knowledge generation and 

innovation production. 

Another line of research related to the innovation networks involves theoretical simulation 

studies, in which researchers build innovation network models to simulate knowledge diffusion 

through the network. Cowan and Jonard (2003) have developed a model of knowledge diffusion 

and studied the relationship between the structure of the network across which knowledge 

diffuses and the distribution power of the innovation system. Cowan et al. (2004) have continued 

with the simulation study of knowledge flows and compared the mean knowledge growth under 

different network architectures (ranging from the highly clustered to the one that has no spatial 

structure). In order to capture the observed practice of informal knowledge trading proposed by 

von Hippel (1987) and Schrader (1991) mentioned above, Cowan and Jonard (2004) modeled 

knowledge diffusion as a barter process in which agents exchange different types of knowledge 

only if it is mutually profitable. They examined the relationship between network architecture 

(characterized by different levels of path length and cliquishness) and diffusion performance. 

Morone and Taylor (2004) identified the limitations of Cowan and Jonard’s model (2004) and 

improved it by introducing a network structure that changes as a consequence of interactions. 

They investigated the dynamics of knowledge diffusion and network formation. Finally, Cowan 

et al. (2007) modeled the formation of innovation networks as they emerge from bilateral 

decisions. They developed a model of alliance formation and examined the nature of the 

networks that emerge under different knowledge and information structures. One of the most 

important conclusions of these studies is that the existence of a network structure can 

significantly increase the long-run knowledge growth rates. The finding that the architecture of 

the network over which innovators interact influences the extent of diffusion and thus the 

innovative potential of the whole network is also the main theme of our research. 

This paper is a part of our project aimed at understanding the role of collaboration networks 

in the knowledge generation, in the innovation creation and in the growth of high technology 

clusters in Canada. This work introduces various indicators which characterize the collaboration 

behaviour of Canadian nanotechnology inventors and the diffusion of knowledge through the 

nanotechnology innovation network built from patent co-inventorship data. The constructed 

network allowed us to examine the geographical aspects of the collaborative behaviour of the 
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inventors in Canadian nanotechnology clusters as well. The article is organised as follows: 

section 2 introduces the data and the methodology used in this study, section 3 presents the set of 

collaboration indicators and the collaborative patterns, section 4 introduces the set of network 

indicators and section 5 concludes.  

2. Data and methodology 

In order to build the network of Canadian nanotechnology inventors we used the patent co-

inventorship data contained in the Nanobank database. Nanobank is a public digital library 

comprising data on nanotechnology articles, patents and federal grants, as well as firms engaged 

in using nanotechnology commercially. The Nanobank patent database is based on the data from 

the United States Patents and Trademarks Office (USPTO) database. This is the only patent 

database which provides the geographical location of the residence for each inventor (unlike the 

Canadian Intellectual Property Office database (CIPO) or the European Patent Office (EPO)). 

The use of the USPTO database instead of the CIPO for the analysis of the Canadian 

nanotechnology may have caused a certain bias in the data, but we consider it minimal, since 

Canadian inventors usually patent both in Canada and in the US. The much larger and easily 

accessible nanotechnology American market offers them a greater potential than the 

nanotechnology market in Canada. 

From the Nanobank database we have selected the patents in which at least one inventor 

resides in Canada (5067 patents). We have employed additional filters, which enabled us to select 

only the patents which are strictly related to nanotechnology4 and created a Canadian 

nanotechnology patent database which comprises 1443 patents. The concept of social network 

analysis defined above was used to create connections between all the nanotechnology inventors 

of these patents and to construct the networks. The use of the social network analysis program 

PAJEK was instrumental in building the innovation networks and in analyzing the network 

architectures. An analysis of these collaborative networks enabled us to understand the 

collaborative behaviour of the inventors in Canadian nanotechnology clusters.  

                                                 
4 For the exact description of our selection methodology see Schiffauerova and Beaudry (2008). 
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In the paper we have created two different kinds of networks: First, the complete network, 

which includes all 1968 nanotechnology inventors in our database which are listed as inventors or 

co-inventors on any patent issued in the period of 1979 and 2005. Here we have assumed that 

once inventors unite and collaborate on the research leading to one patent they continue to be in 

contact afterwards and are able to exchange information acquired long after the patent had been 

granted with all the collaborators they ever had. This allows us to disregard the time of 

collaboration and consider all links among inventors in the network to be active simultaneously. 

Second, in order to track the evolution of the collaboration and network properties over time 

we have created 11 subnetworks corresponding to five-year moving windows starting from 1989 

and finishing in 2004 (as shown in Figure 1). As Canadian nanotechnology patenting in the 

period preceding the year of 1989 is rather sporadic we decided to start with the first year where 

at least 20 Canadian nanotechnology patents were issued. In addition we did not include the year 

2005 as it is only partially covered by Nanobank. Constructing the network for each year 

separately would alter the connectivity of the networks. Using only the patents granted in a given 

year would not capture the relationships created before and maintained through this particular 

year. We selected to work with the subnetworks created during the interval of five years since we 

assume that this is an average period length during which the relationship between any co-

inventors who appeared together on one USPTO patent lasts and during which information and 

scientific knowledge could be actively exchanged. Five-year moving windows thus more 

accurately reflect the structure of a collaboration network. 

We analyze the cooperation relationships existing in each of these five-year intervals. Figure 

1 shows the size of each of the eleven subnetworks corresponding to the five-year intervals. The 

size is determined by the number of inventors (vertices) which are present in the subnetwork. 

Some of the inventors are included in all of the subnetworks (if they worked on several patents 

spread throughout the years), some of them just in the few initial ones after which their 

nanotechnology scientific interest faded away and some have started contributing into 

nanotechnology research only recently. The figure includes also the number of patents which 

were used for building the particular subnetwork in each interval.  
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Figure 1: Number of inventors and patents used in each subnetwork 

In the following two sections we introduce two sets of indicators which characterize the 

collaborative relationships in nanotechnology: collaboration indicators and network indicators. In 

order to create the collaboration indicators we needed to disassemble the entire network into 

collaborating pairs and to describe the nature and frequency of collaborative activities between 

these innovating couples. Special focus is put here on the geographical aspects of these 

collaborations. Contrary to the collaboration indicators in which only the cooperation ties 

between each two inventors are considered, the network indicators go beyond the collaborating 

couple and take into consideration also the collaborator`s collaborators, their collaborators, and 

so on. Here we adopt a network approach in which a structure of the entire net of complex 

relationships is analyzed and characterized. 

3. Collaboration indicators 

The study of the knowledge flows and the information exchange among the collaborating 

inventors consists in the characterization of the collaboration links between them. The network of 

Canadian nanotechnology inventors (the full network) includes 4920 collaborative links 

(represented by edges in the network graphs). It is important to distinguish between the terms of 

the collaborative link and the collaboration. Collaborative link (or a tie, or a relation) represents a 

connection between a pair of inventors, which involves one or more instances of co-invention of 

a nanotechnology patent. Collaboration, on the other hand, represents here a connection between 
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a pair of inventors for the purpose of co-invention of one single nanotechnology patent. Each 

collaborative relation may thus involve one or more collaborations, as there can be one or more 

patents granted to any collaborating couple. Collaboration partner or collaborator is then defined 

as a co-inventor of at least one nanotechnology patent registered at the USPTO. The following 

indicators of collaboration are based on the characteristics of the collaborative links, 

collaborations and collaborators. 

3.1 Indicators of collaboration intensity 

Figure 2 shows both the number of cooperative links (collaborating pairs) existing in each 

interval as well as the total number of all collaborations which took place between all of these 

pairs. The fact that the count of the collaborations increases faster than the number of 

collaborating pairs is indicative of an increased intensity of cooperation activity in Canadian 

nanotechnology throughout the years. Figure 3, which features the gradually increasing values for 

both average numbers of collaborators and collaborations per inventor, further confirms that. 

 

Figure 2: Number of collaborating pairs and 
collaborations in each subnetwork  

Figure 3: Average number of collaborators and 
collaborations per inventor in each subnetwork 

Slightly higher values are observed in the full network: An inventor in a Canadian 
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average number of collaborators per inventor found by Beaucage and Beaudry (2006) who 

observed 5.12 collaboration partners per Canadian biotechnology inventor. We calculated an 

average number of collaborators per inventor for the networks of Balconi et al. (2004, calculated 

from p.139, Table 5) in order to compare it with our full network. Our calculation shows that the 

networks of Balconi et al. (2004) have on average 2.09 collaborators per inventor, considerably 

less than the 5 collaboration partners observed in our network. The difference could be explained 

by the distinct samples of patents selected for the analysis: Contrarily to our narrowly focused 

patent sample (nanotechnology), in the study of Balconi et al., the industry range is quite broad. 

Newman’s findings (2001a) differ even more from our results. He observed a much larger 

number of collaborators in his innovation networks; especially for the scientists in experimental 

disciplines (an average high-energy physics scientist had 173 collaborators during a five year 

period!). Nevertheless, the fact that his networks were created from the co-authorship of the 

scientific articles and not the patents may explain the discrepancy. The average number of 

authors in this discipline is also relatively high compared with the number of inventors on a 

typical patent. 

 

Figure 4: Maximum number of collaborators per 
inventor in each subnetwork 

Figure 5: Frequency distribution of the number of 
collaborators per inventor in the entire network 

Some inventors in our network also have a considerably higher number of relationship ties: 

the highest one amounting to 54 co-inventors. Figure 4 illustrates the maximum number of 
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inventor had only 17 collaborators in the oldest subnetwork, but later this number has more than 

doubled when one inventor has been engaged in the joint research projects with 42 different 

collaborators during the five year period. Most inventors naturally not only never reach such high 

collaborating scores, but their collaborator counts are even well below the subnetwork averages 

(see Figure 5 for the distribution of the frequencies of collaborators in the full network). 

Canadian nanotechnology inventors most commonly have one (12%), two (19%), three (16%) or 

four (13%) collaborators. Only a small amount of inventors (4%) do not collaborate on their 

patent(s) with anybody, and only a few (8%) have more than 10 co-inventors. 

3.2 Size of the collaboration teams 

The size of collaboration teams is here represented by the average number of co-inventors in 

one patent. The entire Canadian nanotechnology network has on average 3.34 inventors per 

patent. The evolution of the team size in five-year periods is shown in Figure 6. It has increased 

from less than 2.8 to well over 3.4 co-inventors. This implies that Canadian inventors have 

slightly increased their tendency to collaborate more intensively and to exchange information 

with other researchers than in the past. For comparison we also provide the average number of 

co-inventors in a patent calculated per year of granting (see Figure 7). The evolution here seems 

to be more dramatic, since the five- year period aggregation smoothens the huge differences in 

the means of individual years. Also note that in Figure 7 we included the patents issued before 

1989, when the total counts of patents were often very low and the averages are thus not highly 

representative. 

The largest number of co-inventors in one patent in our nanotechnology patent database is 

24, but this appeared only on two separate occasions. It is of interest to note that the largest 

number of authors on a single paper found by Newman (2001a) was 1681 co-authors, nearly 

188x times the average number of scientists on a typical paper in the studied database (high-

energy physics). Scientific papers have traditionally been authored by more numerous co-authors 

than patents, since joint article authorship was found to reflect a variety of things other than 

exchange of information and research collaboration.5 Even though the legal requirements for 

                                                 

5 Cockburn and Henderson (1998) suggest that article co-authorship may be offered as a quid pro quo for supplying 
information or resources, it can serve as a means of resolving disputes about priority, it may also be an 
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article co-authorship and patent co-inventorship are officially very similar, the numbers of article 

co-authors are on average much higher than the numbers of co-inventors of the patent which 

reflects the same discovery or invention. Ducor (2000) found that the number of article co-

authors is on average more than three times higher than the number of inventors on the 

corresponding patent.  

 

Figure 6: Average number of co-inventors in a patent 
in each subnetwork 

Figure 7: Average number of co-inventors in a 
patent per year measured in the year of granting 

3.3 Repetitiveness of collaboration with the same partner 

Around 34% of all the collaborative relations between pairs of inventors in the complete 

Canadian nanotechnology network involve repetitive collaborations. In some cases the 

cooperative relationships proved to be very fruitful, as the most frequent collaboration between a 

pair of inventors was repeated 50 times (i.e., the collaborating pair had obtained 50 patents 

together). Figure 8 displays the maximum number of collaborations repeated with the same 

partner in each interval. The highest number of patents filed together by the same authors during 

any five-year period is 35. Most of the relationships between a pair of inventors are, however, 
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one time collaborations (i.e., they resulted in only 1 patent). Figure 9 shows the share of the 

repetitive collaborations out of the total number of collaborations starting at around 15%, then 

steadily increasing in time and reaching 35% in recent years. Repeated collaborations with the 

same partner foster mutual trust and confidence. A higher frequency of collaboration between 

two inventors hence leads to a more profound research relationship, which may involve an 

exchange of information of higher quality and a transmission of a greater amount of valuable 

scientific knowledge. 

 

Figure 8: Maximum number of collaborations 
with the same partner in each subnetwork 

Figure 9: Percentage of repeated collaborations with 
the same partners in each subnetwork 

3.4 Geographical aspects of collaboration 

Since an important part of our research deals with geographical aspects of collaboration, we 

have located the residence addresses of all inventors in the database and found that 

nanotechnology activity in Canada is concentrated in several regions. We have identified eight 

Canadian nanotechnology clusters6 of which four are important nanotechnology agglomerations, 

while the other four are smaller regions moderately active in nanotechnology. We classified 

geographically the collaborations according to their location as collaborations inside clusters 

(both inventors in a collaborating pair are from the same cluster), outside clusters (one inventor in 

                                                 
6 The cluster in this study is defined as a geographically continuous region active in nanotechnology (as measured by 
the patent production). 
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a pair resides in a different cluster or elsewhere in Canada) and outside Canada (one inventor in a 

pair resides abroad). The proportions among these types of collaborations constitute a 

collaboration pattern of the Canadian nanotechnology inventors, which is our main geographical 

indicator. Figure 10 shows the evolution of the indicator during each five-year moving interval. It 

suggests that most nanotechnology cooperation (60%) takes place within a very short 

geographical distance - inside clusters - but only around 10-15% of collaborations are carried out 

among inventors residing in distinct specific Canadian clusters. International research 

relationships represent relatively high shares of collaborative activities (20%-30%). The overall 

collaboration pattern has slightly changed over time, the most important change being the gradual 

increase in the frequency of the inter-cluster joint research partnerships (the percentage has 

almost doubled throughout the years). 

 

Figure 10: Change in the collaboration pattern of Canadian nanotechnology inventors over time 

We have also calculated these proportions separately for each cluster. The results displayed 

in Figure 11 show that the collaborative pattern are much more disparate for distinct clusters than 

for distinct time periods. In Toronto, which is the cluster with the highest number of 

nanotechnology inventors (41% of all the inventors residing in Canadian clusters), around 68% of 

collaborations between pairs of inventors take place within the cluster, where sufficient 

knowledge has already been accumulated. In 24% of collaborations, the expertise is sought 

abroad and only 7% of collaborative interests are directed towards partners in other clusters or 

elsewhere in Canada. Other nanotechnology agglomerations are much smaller than Toronto in 
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terms of inventor counts and the percentage of their intra-cluster collaborations is lower as well 

(40-54%). Researchers in these clusters probably do not find all the needed expertise inside their 

own clusters and thus have to look for collaborators outside the cluster or outside Canada more 

frequently. The figure also shows that some of the Canadian inventors who decide to collaborate 

outside their clusters prefer to do so with foreign inventors. The preference of foreign over 

domestic collaborators is most evident for the larger clusters (Toronto, Montreal and Edmonton) 

which also show the smallest percentages of collaborating pairs where each inventor comes from 

a distinct cluster. However, in smaller agglomerations (Calgary, Edmonton, Kingston and also 

Ottawa) inventors who wish to collaborate outside their clusters still prefer to keep their 

collaborative ties inside Canada. 

 

*outside: inventors residing in Canada but outside the clusters 

Figure 11: Collaboration pattern of Canadian nanotechnology inventors in each cluster 
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important role has been much discussed in the literature7. We defined these prominent 

researchers in our dataset based on patent quantity only, or based on both the quantity and quality 

simultaneously. Moreover, we included the examination of the most prominent researchers based 

on their record of forward citations in scientific articles.  

According to the number of patents as the only discriminatory factor we identified 40 prolific 

inventors (with 15 or more patents), out of which 23 are considered to be star inventors (with 

more than 20 patents) and 4 of them are deemed “superstars” (with more than 50 patents). Note 

that the most productive inventor in Canadian nanotechnology has registered 87 nanotechnology 

patents at the USPTO. This is considerably more than any other researcher in the group (see 

Figure 7), we may be measuring a “lab director effect” here. 

We then incorporated patent quality as a second discriminatory factor and created a Quantity 

and Quality Patent Index (QQ Index), which takes into consideration both the patent counts and 

the mean patent value for each inventor8. This indicator modifies the number of patents according 

to the gap between the average number of claims of a particular inventor and an average number 

of claims for all the inventors in the database. According to this QQ Index, we have identified 

37 QQ-prolific inventors (with QQ Index value of 20 or more), out of which 18 are QQ-star 

inventors (with minimal QQ Index value of 30) and 3 inventors are called QQ-superstars (with 

QQ Index values of 50 or more).  

The third indicator, which is the number of forward citations to the researchers’ articles, 

represents the scientist’s ability to contribute to the knowledge development. ISI Web of 

KnowledgeSM provides a list of individuals that have made fundamental contributions to the 

                                                 

7 Zucker and Darby (1996), Zucker et al. (1996), Zucker et al. (1998a) and Zucker et al. (1998b) show the 
importance of star scientists in the biotechnology sector and emphasize the positive effects on the performance of the 
firms collaborating with the stars. Moreover, Zucker et al. (1998b) and Prevenzer (1997) argue that in the 
biotechnology sector, star scientists often capitalize on their knowledge through firm start-ups. 

8 Quantity and Quality Patent Index (QQ Index):  
avg

avg
ii

i C
CN

QQIndex
*

= , where 

QQIndexi…the value of the QQ Index indicator for inventor i 
Ni……..…..the number of the USPTO patents invented or co-invented by inventor i 

avg
iC …......the average number of patent claims for all the USPTO patents invented or co-invented by inventor i 

Cavg…….....the average number of patent claims for all the inventors in the database 
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advancement of science and technology in recent decades. The list includes only the researchers 

with a really extraordinary accomplishment, since it comprises less than 0.5% of all publishing 

researchers in the database. We have blended the data from the list of the highly cited scientists in 

nanotechnology into our database of inventors. We have found that 12 of our inventors are also 

highly influential scientists and scholars. However, none of these 12 highly cited inventors is a 

producer of an extraordinarily high number of patents. In fact, many of the ones present in our 

database have invented or co-invented only 1 patent. Moreover, the fact that we found only 12 

matching scientists in both lists suggests that there are many highly influential nanotechnology 

researchers (as acknowledged by their citing colleagues) who never filed any patent application at 

the USPTO. We assume that these highly cited scientists come mostly from an academic 

environment, where the publication performance is more appreciated and more rewarding than 

impressive patent scores. The scientists with the most prolific publication record may thus often 

neglect the patent application opportunities.  

This methodology has enabled us to identify in total 60 prominent inventors. 48 of them are 

either prolific or QQ-prolific scientists, where 29 are scientists were indicated as prolific by both 

measures concurrently. The remaining 12 are the highly cited scientists. Our special focus was on 

the QQ-stars and QQ-prolific inventors and the levels of collaboration with other inventors and 

between each other. Even though the number of QQ-star inventors has been steadily rising, their 

share in the total number of inventors has decreased substantially (from 6% to almost 1%) over 

the years (see Figure 12). As for the collaboration indicators, first we measured the share of 

patents which were created in collaboration with QQ star scientists (see Figure 13). This 

measure has been rising initially (from 30% to almost 36%) but then it has started its downward 

course and reached almost 22% in the recent years. Note that even though there are around twice 

as many QQ-prolific scientists (37) as QQ-star scientists (18) in the database, the share of patents 

created in collaboration with QQ-prolific scientists is only slightly higher than the share of the 

patents created in collaboration with QQ-star scientists. This again points towards the importance 

of the QQ-star scientists and their role in the knowledge diffusion. Finally, the share of the 

patents created in collaboration with highly cited scientists has a generally increasing tendency 

as well. 
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Figure 12: Share of inventors which are QQ-stars or 
highly cited scientists 

Figure 13: Share of patents created in collaboration 
with at least one QQ-star, QQ-prolific or highly cited 
inventor 

Furthermore, we investigated how many QQ-star scientists usually collaborate together. Out 

of all the patents created in collaboration with QQ-star scientists, the shares of the ones co-

invented by 2 or 3 QQ-star scientists have been increasing over time, while collaboration of 4 or 

more QQ-star scientists together is becoming less popular as is also the presence of only one QQ-

star in the research group (see Figure 14). 

 

Figure 14: Shares of patents created in collaboration with 1, 2, 3 or 4 and more QQ-star scientists 

0%

1%

2%

3%

4%

5%

6%

7%

% of QQ star scientists
% of highly cited scientists

0%

10%

20%

30%

40%

50%

% of patents with min one QQ star scientist
% of patents with min one QQ prolific scientist
% of patents with min one highly cited scientist

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 and more QQ‐stars

3 QQ‐star scientists

2 QQ‐star scientists

1 QQ‐star scientist



 19

To conclude, even though the absolute number of collaborations with QQ-star scientists has 

been rising over time, their share is in fact decreasing, since increasingly more inventors with low 

patent scores tend to file patent applications. Around 20-35% of patents have been created while 

collaborating with at least one QQ-star scientist. The mutual collaboration among 2 or 3 QQ-star 

scientists is increasing in popularity. 

4. Network indicators 

An important advantage of the network approach consists in the fact that indicators derived 

from it take into consideration all the network relationships and not only the immediate 

collaborators or collaborations. As such network indicators are able to evaluate the transmission 

efficiency of the network structure and consequently the creation and diffusion of knowledge 

among researchers within the entire network. The following section presents some of the basic 

indicators used to characterize the nanotechnology innovation network. 

4.1 Network fragmentation 

In order to understand the importance of fragmentation in the collaboration network, let us 

first introduce the concept of components. A component is defined as a maximal connected 

subnetwork (Wasserman and Faust, 1994). It is a part of the network which includes a maximum 

number of vertices which are all directly or indirectly connected by links. Within a component all 

inventors are directly or indirectly interconnected and they are thus considered to collectively 

contribute to the innovation process. Figure 15 displays two examples of such components 

present in the network, which provide evidence of a strong inter-cluster cooperation. The group 

of inventors from Edmonton in Component #4 to the left collaborates with inventors from 

Vancouver and Montreal. One inventor connects this group to another group of inventors from 

Ottawa, Calgary and Montreal, which involves one international collaborator. Component #6 to 

the right shows one central inventor from Kingston who connects together three collaborating 

subgroups. One is purely Kingstonian. The second group involves mainly Calgary inventors with 

one foreign inventor. The third subgroup is much more diverse as it includes inventors from the 

Edmonton, Montreal, Ottawa and Vancouver clusters as well as inventors from outside the 

clusters and from outside Canada. The figure shows that inventors from very distant parts of 

Canada (and even from a different country) may actually be much better interconnected and thus 

able to exchange scientific knowledge, than inventors which are collocated within close 
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geographical proximity (within the same cluster) but are not contained within the same 

component (no communication between the components is assumed).  

 

 

Figure 15: The fourth and sixth largest components (Components #4 and #6) 

For the fifteen-year span of our sample, the complete network of Canadian nanotechnology 

inventors comprises 407 components, while the number of components in the five-year moving 

intervals grows from 48 to around 265 (see Figure 16). Obviously, the number of components in 

the network is not a good measure of fragmentation, since more important networks will often 

have more components than smaller ones and still may be much less fragmented. An important 

network structure indicator is therefore the average size of the component. It indicates how many 

inventors in the network can on average exchange information with each other through direct or 

indirect cooperation links among them. Figure 17shows that the average component size in each 

subnetwork does not fluctuate much and is usually somewhere between 4.3 to 4.7 inventors. 

These numbers are only slightly smaller than an average component calculated for the entire 

network, which is 4.84.  
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Figure 16: The number of components in each 
subnetwork 

Figure 17: Average component size in each 
subnetwork 

Nevertheless, there are significant differences in the component sizes. In the complete 

network there is only one component of a substantial size and the rest of the components are 

relatively small: The largest component includes 336 inventors, the second one consists only of 

30 inventors and the third of 29 inventors. The distribution of the component sizes of the in the 

full nanotechnology network is shown in Figure 18: the first dot to the left far above the others 

identifies the largest component and the rest of the dots represent the components at least 10 

times smaller appearing as a continuous line. 

 

Figure 18: Distribution of component sizes in the complete network 
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an important network indicator. Inventors in a network with a large component can exchange 

scientific knowledge much easier than in other networks. The evolution of the two largest 

component sizes is shown in Figure 19. The size of the largest component has almost doubled 

during these years, from 82 to 154 interconnected inventors. The size of the second largest has 

tripled, but is still nowhere near the size of the dominant component.  

 

Figure 19: Sizes of the two largest components in 
each subnetwork 

Figure 20: Share of inventors that compose the 
largest component and share of single inventors in 
each subnetwork 
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existing in nanotechnology. We may be observing fragmentation of the subnetworks because of 

various nanotechnology specialisations and the development of new fields. 

Indeed, researchers often found a giant component in huge collaboration networks. In all 

seven scientific networks which he studied, Newman (2001a) observed a giant component of 

scientists, which gathers 90% of all scientists. His networks were also built from the five-year 

period data; however they were based on article co-authorships with a majority of inventors being 

academic scientists. The article-based networks usually have a distinct network structure (denser 

and more clustered) from the patent-based ones. Balconi et al. (2004), who did construct their 

networks from the EPO patent database, observed that the largest component in one of the 

subsectors gathers almost 60% of the non-single inventors, and it is followed by a second 

component which is 50 times smaller. The second largest one in our network is only 11 times 

smaller than the first one. Balconi et al. (2004), however, did not observe this large component in 

all their studied networks (subsectors) either. In some of the networks (of similar sizes as our full 

network) the largest component comprised only 2-3% of inventors and the second largest 

component was once or twice smaller as the largest one. The existence of the giant component 

was also confirmed by Putsch (2006). The network analysis of Fleming et al. (2006) revealed the 

emergence and disappearance of giant components in patent collaboration networks. He found 

emerging giant component in Silicon Valley, whose size increases dramatically, but did not find a 

similar one in Route 128.  

The number of isolates (single patent components) is the last measure of fragmentation to be 

discussed here. An isolate component consists of a single inventor who has not collaborated with 

anybody else. In the complete network, only around 4% of all components (78 components) are 

isolates. Figure 20 shows the evolution of the percentage of inventors who do not have any 

collaborator in their five-year interval subnetwork. The value of the share fluctuates slightly, but 

a general tendency seems to be quite stable (around 4%-5%) and slowly decreasing with time.  

The main characteristics and structure of the 20 largest components in the network are shown 

in Table 1. From the composition numbers it is obvious that most of the components consist of 

the inventors residing in several distinct clusters. This is particularly true for the larger 

components, some of which are geographically spread all over the country and abroad as well. 

Nevertheless, some of the components (e.g., Components #5, #12, #14), mostly the smaller ones, 
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present solely intra-cluster cooperation within Canada. When an inventor from outside the cluster 

cooperates, he is mainly foreign. In fact, 19 of the 20 components presented include at least one 

foreign collaborator. Note that some of these international components consist of completely 

majority of foreign inventors with only one or two Canadians (e.g., Components #7 or #11). 

These are probably much larger foreign components in which a few Canadian inventors 

participate. For instance, the whole Component #7 is based on collaboration on one single patent 

and is composed of 24 inventors, out of which 23 are foreign and only one is Canadian.  

Table 1: Main characteristics and composition of the 20 largest components in the Canadian nanotechnology 
innovation network 

Component # #1  #2 #3 #4 #5 #6 #7 #8 #9 #10 
Number of inventor 336 30 29 28 27 27 24 22 18 18 
Number of patents 492 24 30 18 13 5 2 26 13 15 
Patents per inventor 1.5 0.8 1 0.6 0.5 0.2 0.1 1.2 0.7 0.8 
Average number of claims 29.1 16.8 18.8 10.3 19.8 28.2 13 30.9 34 14.8 

Number of inventors in each cluster 
Toronto 156      1  11 10 
Montreal 11 21  2  1  10   
Ottawa 31  4 7  1    1 
Vancouver    2 21 1     
Edmonton   15 14  4   6  
Quebec  7      1   
Kingston 3  7   5     
Calgary 2   2       
out-of-cluster 7 1 1  2 12     
abroad 126 1 2 1 4 3 23 7 1 7 

 
Component # #11  #12 #13 #14 #15 #16 #17 #18 #19 #20 

Number of inventors 16 16 16 15 14 13 13 12 11 11 
Number of patents 4 5 14 6 29 17 4 12 5 5 
Patents per inventor 0.3 0.3 0.9 0.4 2.1 1.3 0.3 1 0.5 0.5 
Average number of claims 18 24.4 20 14.3 29.8 9.3 24.5 36 17.8 33.6 

Number of inventors in each cluster 
Toronto 2  3 13  11 5  6  
Montreal        5   
Ottawa        1 5  
Vancouver  6   9     4 
Edmonton           
Quebec   2        
Kingston           
Calgary           
out-of-cluster  3   1  1    
abroad 14 7 11 2 4 2 7 6  7 
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Table 1 also shows two additional indicators which characterize each component: first one 

concerns innovative productivity of the inventors (the ratio of patents per inventor) and the 

second one describes patent quality (average number of patent claims). The most productive 

component (Component #15) has 14 inventors whose repeated collaborating resulted in 29 

patents. The biggest component (#1) is the second most productive – 336 inventors from many 

diverse clusters created 492 patents. Its mean patent quality also belongs among the highest. 

Foreign components (Components #7 and #11) show very low ratios of patents per inventor and 

thus belong among the least productive ones. Nevertheless, this does not mean that the foreign 

inventors are less productive; rather it confirms that the large components composed mainly of 

foreign inventors have likely produced much greater number of patents, which are not considered 

here due to the absence of Canadian co-inventors. 

4.2 Network density 

Structural cohesion refers to the degree to which vertices are connected among themselves. 

The most common measure of cohesion is network density, which is the number of existing links 

in the network expressed as a proportion of the maximum number of possible links. This 

indicator is however not suitable for comparison of the networks of different sizes, and therefore 

we measured density by the average degree of a network. The degree of a vertex is the number of 

links directly connected to the vertex and represents the number of direct collaborators with 

whom an inventor has cooperated on at least one patent. The larger the number of direct co-

inventors of each inventor, the tighter is the network structure. The average degree of a network 

then denotes the average of the degrees of all vertices and it in fact also shows the average 

number of co-inventors in each subnetwork, which we discussed earlier. Another indicator of the 

structural cohesion which we used is the ratio edges/vertices (the number of the collaboration 

links in each network divided by the number of inventors). Both indicators show practically the 

same phenomenon and Figure 21shows that the trend points towards denser networks. This 

means that the access of Canadian nanotechnology inventors to knowledge has been improving 

over time. In denser networks inventors can directly or indirectly reach a greater amount of 

knowledge and a larger number of inventors. Consequently the possibility for two inventors to 

get in touch through a chain of personal acquaintances is higher as well.  
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Figure 21: Indicators of density in each subnetwork Figure 22: Indicators of centralization in each 
subnetwork 
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betweenness centrality of vertices in the network. Betweenness centrality of a vertex is defined as 

a proportion of all shortest distances between pairs of other vertices that include this vertex (de 

Nooy et al., 2004). An inventor is more central if a lot of the shortest paths between pairs of other 

inventors in the subnetwork have to go through him. Betweenness centrality is therefore based on 

the inventor’s importance to other inventors as an intermediary and it measures his control over 

the interactions between other inventors and thus over the flow of knowledge in the subnetwork. 

Figure 22 shows the evolution of both indicators of centralization. Even though degree 

centralization fluctuates to a certain point, they both have a fairly clear decreasing tendency. It 

may be explained by an increasing specialisation of nanotechnology: a few highly central 

inventors are slowly disappearing and more inventors in less central positions within numerous 

nanotechnology specializations emerge. As a consequence, the communication within the 

network of Canadian nanotechnology inventors is getting less efficient with time as is the ability 

to spread knowledge throughout the network. 

4.4 Geodesic distances 

The geodesic distance is defined as the shortest path between two vertices, it is the length of 

a geodesic between them and depends on the number of intermediaries needed for an inventor to 

reach another inventor in the subnetwork. A short path length in innovation networks should 

improve knowledge production and knowledge diffusion (Cowan and Jonard, 2004; Fleming et 

al., 2004), since knowledge can move to the different parts of a network more quickly and spread 

more rapidly among inventors. Moreover, as Cowan and Jonard suggest, decreased path length 

will cause knowledge to degrade less by bringing new sources of ideas and perspectives from 

farthest parts of the network to the inventors.  

An indicator of the average distance of a network denotes the average of all shortest paths 

among all the vertices in the network. It could however be measured only in fully connected 

networks, as the distance between two unconnected vertices is not defined (it does not exist). 

First we calculated the average distance only between reachable vertices while excluding those to 

which no path exists. The results for each subnetwork in Figure 23show that the information 

travels among the connected inventors increasingly faster than before. Aware that the calculation 

which excludes the unreachable vertices may bring a certain bias to the results (any highly 

disconnected network should yield lower scores for geodesic distances), we calculated the 
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average distance in every largest component of each subnetwork and obtained similar results. It 

could be expected that the average path length in the larger components will get longer as well 

and the decreasing path lengths seen in the figure are thus rather surprising. They may however 

be an indication of a continual improvement in the subnetwork structure which enables 

increasingly more efficient knowledge diffusion as time progresses.  

 

Figure 23: Indicators of average distance in each 
subnetwork 

Figure 24: Indicator of cliquishness in each 
subnetwork 
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highly clustered neighbourhoods is often redundant. Moreover, empirical findings of Fleming et 

al. (2006) confirm the negative impact of the higher degree of clustering in the network on 

innovative productivity. They suggest that the optimal degree will apparently depend on a variety 

of factors. 

In order to capture the network cliquishness first we measured the degree of local clustering 

for each vertex with egocentric density of a vertex. Egocentric density of a vertex is the fraction 

of all pairs of the immediate neighbours of a vertex that are also directly connected to each other. 

Afterwards we calculated the average egocentric density of each subnetwork. As you can see in 

Figure 24, the degree of clustering fluctuates in time and does not have any clear tendency. The 

role of a high degree of cliquishness in the information transmission is still not obvious, but work 

is currently on the way to investigate its importance in the innovation production. 

5. Conclusions 

The purpose of this work was to study social networks of Canadian nanotechnology 

inventors, in which a co-inventorship of one or more nanotechnology patents registered at the 

USPTO represents a collaborative tie between two innovators. In order to explore the 

collaboration characteristics and network properties we have introduced two sets of indicators 

which allowed tracking the changes in the Canadian nanotechnology collaboration network in the 

period of 1989-2004. These indicators revealed not only the evolution of the collaborative 

environment in Canadian nanotechnology, but also the geographical patterns of the inventors` 

collaborative behaviour. Moreover, the indicators enabled us to evaluate the collaboration 

network efficiency in the knowledge diffusion. 

We observe that the Canadian nanotechnology inventors have an increasing tendency to 

build cooperative ties with a higher number of partners and to collaborate with them on the 

nanotechnology projects more intensively than they have done so in the past. The sizes of the 

cooperation teams working on the projects leading to the nanotechnology patent applications are 

getting bigger as well. These collaboration indicators suggest that Canadian nanotechnology 

inventors have been increasingly able to diffuse greater amounts of valuable scientific knowledge 

among a higher number of other inventors and therefore both to emit and to absorb more 

knowledge spillovers. Nurturing the collaboration teams with a fresh knowledge from distinct 
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research environments leads to an increased opportunity for an innovative recombination of that 

knowledge and enhances thus the inventors` future creativity. Nanotechnology inventors also 

tend to return for subsequent collaborations to the same partners with whom they have already 

collaborated within the past five years. Repeated collaborations with the same partner foster 

mutual trust and confidence. A higher frequency of collaboration between two inventors hence 

leads to a more profound research relationship, which may involve an exchange of information of 

higher quality (e.g., a rare or undisclosed knowledge). 

We have also examined the prominent researchers in Canadian nanotechnology clusters. We 

proposed to take into consideration the patent quality when identifying the prolific inventors, and 

developed a measure which includes both the patent count and the patent value in the equation. 

Furthermore, we have also identified the scientists whose publications are the most highly cited. 

We discovered that the most prominent researchers and scientists superior in the nanotechnology 

field do not usually produce patents or register them at the USPTO. We offered an explanation 

based on the differences in the reward systems in academic and industrial environments. 

Investigation of the evolution of the collaboration with the QQ star scientists has shown that even 

though the absolute number of collaborations with QQ-star scientists has been rising over time, 

their share is in fact decreasing, since increasingly more inventors with low patent scores tend to 

file patent applications. In general, around 20-35% of patents have been created while 

collaborating with at least one QQ-star scientist. Also we noticed that the mutual collaboration 

among 2 or 3 QQ-star scientists is increasing in popularity. 

We also examined the evolution of the structural network properties in time and related them 

to the likely efficiency of the nanotechnology innovation network in terms of knowledge 

diffusion. First we described the changes in the pattern of fragmentation of the nanotechnology 

network which have developed during the 15 year period. Even though the size of the largest 

component in the network has been increasing with time in its absolute value, it has contained 

fewer inventors proportionally to the network size in each of the studied intervals. The large 

components allow a longer reach to the inventors who could thereby benefit from non-redundant 

knowledge originating in remote locations. The decreasing relative size of the largest component 

means that the network structure does not offer the best possible opportunity for capturing the 

distant information, which the inventors in the network of such size could have. Nonetheless, the 



 31

smaller components have been growing relatively much faster and the mean component size has 

remained in fact fairly unchanged throughout the time. Also, the share of isolate components – 

the inventors not connected to any other collaborating partner and thus working in isolation - has 

slightly decreased during the studied period. We concluded that the described development of the 

network fragmentation is caused by an increasing specialization of nanotechnology. As new 

fields are emerging the inventors are disconnecting themselves from the main component and 

regrouping into the smaller components representing specialized branches.  

We have also proposed four other network indicators which characterize the properties of the 

structure of the nanotechnology collaboration network: density, average distance, centralization 

and cliquishness (clustering). We observe that the Canadian nanotechnology network has become 

denser with time, i.e. more cohesive and tight. This suggests that inventors have become more 

closely interconnected among themselves and their chances for knowledge exchange have thus 

been enhanced. Also, the average distances in the network are getting shorter and knowledge 

could thus be transferred faster and through less intermediaries. On the other hand, the structure 

of the Canadian nanotechnology network is becoming less centralized as the time progresses, 

which is probably also due to the increasing nanotechnology specialization. Inventors in the 

highly centralized networks make use of a clear network centre which enables knowledge to 

spread easier. The decreasing centralization should hence slow down knowledge transmission 

through the network. Finally, we have not observed any trend in the changes of the network`s 

local clustering. A definite relationship between the cliquishness and the knowledge diffusion has 

however still not been fully established. 

The impact of the network structure on the ability to transmit information through the 

network has already been studied, and some researchers have even explored the relationship 

between some network properties and innovation, but due to contradictory results a consensus 

has yet to be reached. The exact role of the network architecture in the knowledge creation and 

especially in the innovation generation thus still remains to be determined. At the present time we 

are working on the econometric model in order to establish an unambiguous relationship between 

network structure and innovative propensity. 
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