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Abstract

A big power is facing a small power that may have developed
WMDs. The small power can create strategic ambiguity by not al-
lowing arms inspections. We study the impact of strategic ambiguity
on arms proliferation and the probability of conflict. Strategic ambi-
guity is a substitute for actually acquiring new weapons: ambiguity
reduces the incentive for the small power to invest in a weapons pro-
gram, which reduces the risk of arms proliferation. Therefore, strategic
ambiguity tends to benefit the big power. On the other hand, strate-
gic ambiguity may hurt the small power because it does not always
protect it from an attack. Cheap-talk messages can be used to trigger
inspections when they are most valuable to the big power. To preserve
incentive compatibility, the “tough” messages which make inspections
more likely must imply a greater risk of arms proliferation.

1 Introduction
Many countries have deliberately created ambiguity about their capabilities.
The motivation of policy makers can be hard to decipher, especially in coun-
tries which lack democratic institutions and free press. However, analyses of
countries such as Israel, North Korea and Iraq seem to suggest that a policy
of ambiguity is meant to deter aggression without risking negative sanctions
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and preemptive strikes. For example, Saddam Hussein possessed weapons of
mass destruction in the early 1990’s, but not in the late 1990’s. He chose
a policy of ambiguity in both situations. When revealing to his inner circle
that Iraq had no WMDs, he “flatly rejected a suggestion that the regime
remove all doubts to the contrary” fearing such a revelation would embolden
his enemies to attack (Woods et al [31], p. 92 and Gordon and Trainor [10], p.
65).1 Strategic ambiguity can help a country which lacks advanced weapons
deter attacks, a policy which has been called “deterrence by doubt” (Gor-
don and Trainor [10], p. 65).2 A country which possesses weapons of mass
destruction may choose strategic ambiguity to avoid sanctions or preemptive
strikes.
The conventional wisdom is that ambiguity is detrimental to world peace

and, conversely, that arms inspections make us safer (e.g., Schrage [24]).
This conventional wisdom is embodied in Article 3 of the Treaty on the Non-
proliferation of Nuclear Weapons, known as the NPT [29]. The NPT requires
that nations submit to inspection and verification of nuclear facilities by the
IAEA. This is meant to promote peace and trust. However, Israel, India and
Pakistan have not signed the NPT, North Korea has withdrawn from it, and
Iran is close to violating it. The exact quality and quantity of WMDs in
these countries is unknown. For example, it is unclear if Pakistan and India
have intercontinental ballistic missiles or are developing them (Norris and
Kristensen [22], Norris, Kristensen and Handler [20]). Would the world be
safer if these countries could be forced to allow arms inspections ?
Sobel [25] formalized the idea that ambiguity makes it difficult to distin-

1Israel has followed a similar policy: “While Israel prefers not to discuss the nuclear
issue at all, the policy of intentional ambiguity is seen as a way of creating a deterrent,
without making it explicit, a position that could invite sanctions or encourage an arms
race in the Middle East.” Greg Myre [19], New York Times, December 12, 2006. Cohen
([7], p. 244) documents Nasser’s threat to attack Israel if he discovered a nuclear program.
North Korea’s Vice Minister of Foreign Affairs told visiting American scientists that their
policy of ambiguity protected them against punitive actions: “If you go back to the United
States and say that the North already has nuclear weapons, this may cause the U.S. to
act against us” (Hecker [13]).

2Deterrence is clearly a major concern for many countries. “In the contemporary world,
it is obvious that having access to advanced weapons shall cause deterrence and therefore
security, and will neutralize the evil wishes of great powers to attack other nations” (Iranian
newspaper editorial cited by Takeyh [26]). That the North Korean regime is motivated
largely by fear of being attacked was conceded by South Korea’s prime minister (Norris
and Kristensen [21], p 67). Such fear can be caused by uncertainty about an opponent’s
true intentions. It does not have to be objectively justified in order to influence behavior.
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guish the strong from the weak. In Sobel’s model, “deterrence by doubt”
can protect the weak from being attacked, while the strong prefer arms in-
spections. His argument relies on the assumption that a country’s strength
is exogenously given. Suppose instead weak countries can acquire advanced
weapons at a cost, and these weapons can be used to defend against an at-
tack. Ambiguity can only exist in equilibrium if the weak arm themselves
(secretly) with positive probability. To give a weak country an incentive to
arm, there must be a positive probability of war (or else secret weapons have
no value). Since an equilibrium with ambiguity involves randomized strate-
gies, ex post “mistakes” happen. A big power may attack a small power that
turns out to be well armed, which is bad for both. The welfare analysis of
ambiguity therefore becomes complex. Since strategic ambiguity is a sub-
stitute for actually acquiring WMDs, the equilibrium probability that the
small power arms itself is smaller under ambiguity than under a regime of
arms inspections. On the other hand, ambiguity leads to costly (equilibrium)
mistakes, and a welfare analysis must trade-off these costs and benefits. We
will show that if cheap-talk is allowed, then those leaders who are more likely
to make “mistakes” can send a message which increases the probability of an
inspection. This tends to make a “mixed regime”, where inspections happen
with some probability, welfare optimal. Notice that, unlike in Sobel’s model,
the strong countries do not necessarily want to force arms inspections on the
weak (say, by requiring them to sign the NPT). A weak country which is al-
lowed to practise “deterrence by doubt” has fewer reasons to acquire WMDs,
so ambiguity reduces the risk of arms proliferation, which benefits the strong
country. Conversely, forcing a weak country to honor Article 3 of the NPT
may increase its incentive to arm.
In our “arms proliferation game” there are two players, A and B, who are

the leaders of countries A and B. Country A is a big power that is known
to possess advanced weapons. Country B is a small power which initially is
unarmed, i.e., it lacks advanced weapons. But B can try to acquire advanced
weapons by making an investment. If this succeeds, then B will become
armed. Player A thinks there is a small probability that B is a “crazy” type
who would share his weapons with terrorists. Player B’s true type is soft
(unverifiable) information. In Baliga and Sjöström [2], we studied how soft
private information can trigger arms races and wars. In the current model,
we consider whether revelation of hard information can promote peace and
trust. Specifically, we assume weapons inspectors can verify whether or not
B is armed (but not whether or not he is “crazy”). Player A’s decision is
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whether or not to attack B. The optimal decision depends on A’s preferences
(his type) and his beliefs. At most three types of equilibria can exist in this
game. There is always an equilibrium with full ambiguity where B never
allows arms inspections, and a full disclosure equilibrium where he always
does. A more interesting possibility is a communication equilibrium involving
informative cheap-talk.
With full disclosure, B’s fear that A may attack him impels B to invest.

With full ambiguity, B has less incentive to invest, which tends to make A
better off. The only reason for A to want arms inspections in this case is if A
is an opportunistic type who wants to attack B if and only if B is unarmed.
(Perhaps A wants control of some resource or achieve “regime change” in
country B.) Clearly, the opportunistic type benefits from information about
B’s true strength. Opportunistic types are the concern of classical deterrence
theory. With full ambiguity, the probability that B invests is decreasing in
the cost of investing and increasing in the value of advanced weapons in a
conflict. If the cost of investing is low and/or the value of advanced weapons
is large, then B is likely to invest even under full ambiguity. In this case, the
opportunistic type prefers arms inspections. But if the cost is high and/or
the value is small, then ambiguity makes A better off, regardless of type.
The fact that different types of player A can disagree about whether am-

biguity is desirable suggests a role for cheap talk. Suppose player A can
send either a “tough” or a “conciliatory” message. The conciliatory message
encourages B to preserve ambiguity about his weapons capabilities, which
reduces B’s incentive to invest and thereby reduces the risk of arms pro-
liferation. The tough message, which can be interpreted as insisting that
B signs the NPT, removes the ambiguity and thereby increases the risk of
arms proliferation. In the communication equilibrium, A uses a “non-convex”
strategy. If A is a peaceful “dove” or an aggressive “hawk”, then he has an
intrinsic preference for a particular action (“don’t attack” for doves, “attack”
for hawks). These extreme types do not need arms inspections in order to
decide what to do, so they send the conciliatory message. It is the inter-
mediate types who send the tough message. These intermediate types are
opportunists who want to know if B is armed. (To be precise, in equilibrium
some opportunists who are “almost” hawks or “almost” doves must also send
the conciliatory message.) We show in the Appendix that any equilibrium
where cheap-talk is effective in influencing B’s investment decision can be
taken to have two messages. This property follows from a key implication of
incentive compatibility: a message which makes inspections more likely must
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increase the risk of arms proliferation.
In the communication equilibrium, player A can trigger inspections by

sending the tough message. By revealed preference, all of A’s types prefer
the communication equilibrium to the equilibrium with full disclosure. But B
may prefer full disclosure if ambiguity is not an effective deterrent. In both
the communication equilibrium and the full ambiguity equilibrium, some
opportunistic types will attack even though B is armed. The frequency of
such “mistakes” determines whether or not ambiguity is good for the small
power. There are parameter values where strategic ambiguity about the small
power’s arsenal is good for the big power but bad for the small power. The
key point is that ambiguity is a substitute for actually acquiring advanced
weapons, so more ambiguity means less arms proliferation.
Crawford and Sobel [8] and Green and Stokey [11] studied cheap talk

games where only the receiver takes an action. In our model, both the sender
(A) and the receiver (B) take actions, which gives rise to a non-convexity.
When A’s types are ordered in the natural way according to their propensity
to attack, it is only the intermediate (opportunistic) types who have a demand
for information. A similar non-convexity appears in Baliga and Sjöström [2].
In that paper, with probability close to one each player wants to avoid a
conflict, but may be driven to attack out of fear. The paper showed how
this fear could be eliminated by cheap-talk. Deterrence was not an issue. In
the present paper, the key types are opportunistic types who attack out of
greed if they know the opponent is unarmed. Preventing conflict is therefore
a classic deterrence problem. Thus, the strategic logic here is quite different
from the one in Baliga and Sjöström [2], although in both models incomplete
information about the opponent’s type plays a key role.
There is a related literature on financial intermediation and auditing,

where costly inspections are used to verify incomes (Townsend [28], Diamond
[9], Bond [5], Border and Sobel [6] and Mookherjee and Png [18]). In this
literature, the value of information is traded off against the resource cost
of inspections. In our model, inspections do not consume significant real
resources. We instead focus on a commitment problem: player A cannot
commit not to attack if player B reveals that he is unarmed. We show that
the optimal policy may be to forego inspections in order to allow B the
security to take an action which is good for A (i.e., not to invest).
There exists an empirical literature which investigates the effect of con-

cealed self-protective devices on crime (Ayres and Levitt [1], Lott and Mus-
tard [16]). They argue that concealed self-protective devices generate a
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positive externality for those who are unprotected, and hence will be un-
dersupplied in equilibrium. We emphasize the negative externality B’s self-
protective weapons impose on A, and show that ambiguity may be welfare
improving because it reduces the incentive for B to arm himself.
The paper proceeds as follows. In Section 2, we describe the model.

In Section 3, we analyze equilibria without communication, where B either
always or never allows inspections. In Section 4 we consider communication
equilibria where A’s message determines whether or not inspections occur.
Section 5 concludes.

2 The Arms Proliferation Game

2.1 Strategies and Payoffs

There are two players, A and B. Initially, player B has no advanced weapons,
but he can try to improve his capabilities by making an investment. His
investment decision is binary: he either invests, or he doesn’t invest. If B
invests, he acquires weapons with probability σ ∈ (0, 1). The cost of investing
is k > 0. If B acquires advanced weapons then B is armed, otherwise B is
unarmed. If B invests then he will be armed with probability σ, but if he
doesn’t invest then he is unarmed for sure. Player A cannot directly observe
if B invests or is armed. However, “hard” information about B’s weapons
can be obtained by (perfectly reliable) inspectors. If there is an inspection,
then B incurs a small cost ε which is drawn from a distribution with support
[0, ε̄] and density h. The inspection publicly reveals whether B is armed or
unarmed.
In the final stage of the game, A decides whether or not to attack B. If

A attacks, then A gets a benefit a and B suffers a cost α. We refer to a as
player A’s type. It is A’s private information. Player B thinks a is drawn
from a continuous distribution with support [a0, a1], where a0 < 0 < a1. The
density is denoted f and the c.d.f. is denoted F . If B is armed with advanced
weapons, then he can use them if A attacks. This yields an expected benefit
γ ∈ (0,α) for B but an expected cost c > 0 for A. It is useful to define the
normalized cost of investing to be

κ ≡ k

σγ
.
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Player B has two possible types, “crazy” and “normal”. His true type is
his “soft” private information: while inspections can reveal if B is armed, they
cannot reveal if he is crazy or normal. Player B’s type is denoted t ∈ {z, n}
where z denotes crazy and n normal. Player A thinks the probability that B
is crazy is τ . If B is armed but A does not attack, then A’s and B’s payoffs
depend on B’s type t: A suffers a cost dt and B derives a benefit δt. The crazy
type may share the advanced weapons with terrorists, or use them for some
other purpose that could hurt A. Therefore, it is more costly for A if a crazy
type obtains advanced weapons than if a normal type obtains them: dz > dn.
We assume dn > 0 because weapons proliferation could be costly to A even
if B is not crazy (for example, terrorists may get hold of the technology even
if B is normal). The advanced weapons are intrinsically more valuable to a
crazy type than to a normal type: δz > δn. But they are more valuable in
war than in peace: δz < γ. We set δn = 0 for simplicity (we would obtain
the same results with δn > 0). To summarize, we assume

0 < dn < dz , δn = 0 < δz < γ.

To simplify, we assume that if A attacks B then he eliminates the threat
posed by B. (More generally, the threat could be reduced but not completely
eliminated.)
The payoffs are summarized in the following matrix.

B is armed B is unarmed
A attacks a− c, −α+ γ a, −α
No attack −dt, δt 0, 0

This payoff matrix does not include B’s cost of investment and the cost of
inspection. For example, if B invests but does not acquire advanced weapons,
there is an inspection, and A attacks, then B’s final payoff is −α− k − ε.
The solution concept is perfect Bayesian equilibrium. Along the equilib-

rium path, each player’s beliefs are computed from the equilibrium strategies
using Bayesian updating. Given these beliefs, each player’s behavior must
be sequentially rational.

2.2 Time Line

The time line is as follows.
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Time 0: Player A privately learns a ∈ [a0, a1] and player B privately
learns t ∈ {z, n}.
Time 1: Cheap-talk stage.
Time 2: Player B decides whether or not to invest.
Time 3: If B invested, then he privately learns whether or not he has

acquired weapons.
Time 4: The cost ε is realized. Player B decides whether or not to allow

inspections. If inspections take place, then the inspectors publicly reveal
whether or not B is armed.
Time 5: Player A decides whether or not to attack.

2.3 Parameter Restrictions

Player A is a dove if a < 0, an opportunist if 0 < a < c− (τdz + (1− τ ) dn) ,
and a hawk if a > c − (τdz + (1− τ ) dn) . The probability that A is a dove
is D ≡ F (0) > 0. The probability that he is a hawk is H ≡ 1 − F (c −
(τdz + (1− τ ) dn)) > 0.

Assumption 1: τdz + (1− τ) dn < c < dz.

The first inequality in Assumption 1 guarantees that opportunistic types
can exist. Without opportunistic types, the whole problem of deterrence
would be moot. Notice that the first inequality can be rewritten as

a > a− c− (− (τdz + (1− τ ) dn)). (1)

The left hand side of (1) is A’s gain from attacking an unarmed B. The right
hand side of (1) is A’s net benefit of attacking an armed B if B is crazy
with probability τ (i.e., the payoff from attacking minus the expected payoff
from not attacking). The inequality implies that given A’s prior τ , A is less
inclined to attack when B is armed than when B is unarmed. This is why
deterrence can be effective. Now the net benefit from attacking an armed B
who is thought to be crazy for sure is a− c − (−dz). The second inequality
of Assumption 1 says that a < a − c − (−dz). Thus, if A is convinced that
B is crazy then A becomes more inclined to attack if he finds out that B
is armed. If this inequality were violated, then regardless of A’s beliefs,
disclosing advanced weapons would always make A less likely to attack. In
this case, the unique equilibrium would involve full disclosure, just as in Sobel
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[25]. To support an equilibrium with ambiguity, A’s disutility from advanced
weapons in the hands of crazy types must be sufficiently big.3

Our second assumption guarantees that the cost of inspections is small
enough so that it does not significantly influence the set of equilibria.

Assumption 2:

ε̄ < min{(F (c− (τdz + (1− τ) dn))− F (c− dz)) (α− γ − δz) ,

(F (0)− F (c− dz))α, F (0)− F (c− b)}

Our final assumption ensures that the cost of investing is small enough,
so that A cannot achieve his “bliss point”.

Assumption 3:

k

σ
< (1− F (c− dz))(−α+ γ) + (1− F (0))α

If Assumption 3 were violated, then the cost of investing would be so high
that there would be an equilibrium where a normal type of B never invests
and always allows arms inspections. This case would not be very interesting.
However, many results, such as the structure and existence of communication
equilibrium, do not rely on Assumption 3.
We end this section with a useful preliminary result (the proof is in the

Appendix):

Proposition 1 In any perfect Bayesian equilibrium, the crazy type of player
B invests with probability one.

3Nuclear weapons in a “rouge nation” may not have the range to reach the United
States, but in the hands of terrorists they could destabilize world security. Assumption
1 captures a scenario where the benefit from eliminating this threat can be positive or
negative, depending on the assessment of the “type” of the “rouge leader”.
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3 Equilibria Without Communication

3.1 Equilibria with Full Disclosure

In an equilibrium with full disclosure, there is never any ambiguity about
B’s weapons on the equilibrium path. For example, an inspection may occur
with probability one, or B may allow inspections if and only if he is armed
(in which case a refusal to allow inspections reveals that B is unarmed).
With full disclosure, all of A’s types will send a message which minimizes
the probability that B invests. Thus, cheap-talk cannot be effective, i.e., the
probability that B invests cannot depend on A’s type. Without ambiguity,
communication cannot prevent arms proliferation. (Since B has no incentive
to reveal that he is crazy, we can without loss of generality assume that B
sends no message.)

Proposition 2 There is an equilibrium with full disclosure. Full disclosure
implies that both types of player B invest with probability one. Cheap-talk
cannot reduce the probability that B invests.

Proof. Suppose in equilibrium, B refrains from investing. With full dis-
closure, an unarmed B is attacked whenever a ≥ 0, which happens with
probability 1 − F (0). Consider a deviation where B invests and refuses in-
spections if successful, which triggers an attack with at most probability
1−F (c− dz) (because A will never attack if a < c− dz). The gain from this
deviation is at least

σ {(1− F (c− dz)) (−α+ γ) + σF (c− dz)δt − (1− F (0))(−α)}− k

This expression is strictly positive, by Assumption 3. Therefore, in any
full disclosure equilibrium, player B invests with probability one.
It remains to show that an equilibrium with full disclosure exists. Let

the equilibrium strategy specify that player B invests with probability one,
and he allows inspections if and only if he is armed. If inspections reveal
that B is armed, then A attacks if a − c > τdz + (1− τ) dn (A thinks B is
crazy with probability τ since both types are armed with probability σ). If
B refuses inspections, then A infers that B is unarmed, so A attacks if a ≥ 0.
If B should allow inspections even though he is unarmed, he is still attacked
if a ≥ 0, so he has no reason to allow inspections in this case. Suppose B
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deviates by refusing inspections when he is armed. This raises the probability
of attack from 1− F (c− (τdz + (1− τ ) dn)) to 1− F (0), which has a cost

(F (c− (τdz + (1− τ ) dn))− F (0)) (α− γ − δt)

The gain from the deviation is only ε. Assumption 2 guarantees that the
cost exceeds the benefit, so B prefers to reveal if he is armed. Finally, given
full disclosure, Assumption 3 guarantees that B prefers to invest.

3.2 Equilibria with Full Ambiguity

Proposition 2 implies that B prefers to invest unless there is some ambigu-
ity about his capabilities. In an equilibrium with full ambiguity, inspections
never occur on the equilibrium path. Clearly, with full ambiguity commu-
nication cannot be effective. For ambiguity to deter A from attacking, the
normal type of B must invest with sufficiently high probability. However, this
requires that A attacks with sufficiently high probability, or else the normal
type has no incentive to invest. The required equilibrium probabilities will
depend on the normalized cost of investing, κ.

Proposition 3 There is an equilibrium with full ambiguity. Full ambiguity
implies that B’s normal type invests with probability x̃, where 0 < x̃ < 1 if

κ > 1− F (σ (c− τdz − (1− τ)dn)), (2)

and x̃ = 1 otherwise. Cheap-talk cannot reduce the probability that B invests.

Proof. Proposition 1 implies that player B’s crazy type always invests. If
B never allows inspections, then all of A’s types simply want to minimize
the probability that B’s normal type invests. Therefore, the probability of
investment must be independent of A’s type. Let x̃ denote the probabil-
ity that the normal type of B invests. Thus, B is armed with probability
σ (τ + (1− τ )x̃) .
The equilibrium must satisfy a cut-off property: there is ã such that if

there is no inspection then A attacks if and only if a > ã. In equilibrium,
doves will not attack but hawks will. Type ã ∈ (a0, a1) must be indifferent
between attacking and not attacking. Type ã expects ã − σ(τ + (1 − τ)x̃)c
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by attacking, and −σ (τdz + (1− τ )x̃dn) by not attacking. The cut-off prop-
erty implies that type ã must be indifferent between his two actions. This
indifference condition holds if

ã = στ (c− dz) + σ(1− τ)x̃ (c− dn) (3)

If B deviates by allowing inspections, and he is found to be unarmed, then
A attacks if and only if a > 0. But if B is found to be armed, then we may
suppose A attacks if and only if a > c − dz. This is supported by the off—
the-equilibrium path belief that B is crazy (which is the belief most likely to
support the equilibrium, since it punishes B’s deviation most strictly). We
will show that ã > 0, so inspections always increase the probability of attack.
This clearly implies that B prefers to refuse inspections.
If 0 < x̃ < 1 then B’s normal type must be indifferent between investing

and not investing. Since B is attacked with probability 1 − F (ã), he is
indifferent between investing and not investing if

−(1− F (ã))α = −(1− F (ã))(α− σγ)− k (4)

which is the same as
κ− (1− F (ã)) = 0 (5)

If κ > 1−F (ã) then the normal type’s unique best response is not to invest,
so x̃ = 0. Similarly, if κ < 1 − F (ã) then the unique best response implies
x̃ = 1. Define

Γ(x) ≡ κ− (1− F (στ (c− dz) + σ(1− τ)x (c− dn)))
An equilibrium where 0 < x̃ < 1 requires that both (5)and (3) hold, which
implies Γ(x̃) = 0. Now,

k

σ
< (F (0)−F (c−dz)) (−α)+(1−F (c−dz))γ < (1−F (0))γ < (1− F (στ (c− dz))) γ

(6)
which implies κ < 1 − F (στ (c− dz)). (The first inequality in (6) follows
from Assumption 3, the second follows from c− dz < 0 and α > γ, the third
follows from στ (c− dz) < 0.) Therefore, Γ(0) < 0. Since Γ0(x) > 0, there is
x̃ ∈ (0, 1) such that Γ(x̃) = 0 if and only if Γ(1) > 0, which is equivalent to
(2). Thus, there are two possible cases.
Case (i): (2) holds. In this case, then there is x̃ ∈ (0, 1) such that

Γ(x̃) = 0, and this is the only candidate for a full ambiguity equilibrium.
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(Since Γ(0) < 0 < Γ(1), it is not possible that the normal type invests with
probability 0 or 1). It is indeed an equilibrium, because ã > 0. This follows
from

κ− (1− F (0)) < 0 = κ− (1− F (ã)).
where the first inequality is due to (6) and the second to (5).
Case (ii): (2) is violated. In this case, Γ(1) ≤ 0 so we must have x̃ = 1.

It is indeed an equilibrium, because (3) and Assumption 1 yield

ã = σ(c− τdz − (1− τ )dn) > 0.

In the proof of Proposition 3, equilibrium is supported by the belief that
B is crazy if inspections revealed that he is armed. These out-of-equilibrium
beliefs qualify as reasonable according to standard arguments, such as the D1
criterion of Banks and Sobel [3]. Indeed, the equilibrium payoff of an armed
normal type at the inspection stage is (−α + γ) (1− F (ã)) . If he allows
inspections, and A attacks with probability p, then his expected payoff is
(−α+ γ)p− ε. Thus, inspections would make the armed normal type weakly
better off if and only if

(−α+ γ)p− ε ≥ (−α+ γ) (1− F (ã)) . (7)

Similarly, inspections would make the armed crazy type strictly better off if
and only if

(−α+ γ)p+ (1− p) δz − ε > (−α+ γ) (1− F (ã)) . (8)

Since (7) implies (8), the D1 criterion suggests that the crazy type should be
assigned probability one if out-of-equilibrium inspections reveal B is armed.

In equilibrium, ambiguity has its price, because some opportunistic types
attack even though B is armed. The welfare implications of ambiguity depend
on the probability of such “mistakes”. It is useful to define

a∗ ≡ σdn (c− τdz − (1− τ ) dn)

(1− σ)c+ σdn
(9)

Assumption 1 implies

0 < a∗ < σ (c− (τdz + (1− τ) dn)) , (10)
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so type a∗ is an opportunist. To look at the implications of ambiguity, we
can distinguish two cases.

Case 1: Suppose the normalized cost of developing advanced weapons is
high:

κ > 1− F (a∗), (11)

where a∗ is defined by (9). The inequalities (10) and (11) imply that (2)
holds, so B refrains from investing with probability 1− x̃ > 0 behind the veil
of ambiguity. Clearly, hawks and doves strictly prefer full ambiguity to full
disclosure (under full disclosure B invests with probability one). Among the
opportunists, it is not hard to see that the one most likely to want inspections
is precisely type ã, defined by . The smaller is x̃, the more likely it is that
type ã prefers full ambiguity. Type ã’s expected utility under full ambiguity
is ã−σ (τ + (1− τ ) x̃) c. Compare this to the outcome where B always invests
and allows inspections. After the inspection, type ã attacks if and only if B
is unarmed, which happens with probability 1 − σ (from (3), type ã is an
opportunist). Thus, type ã’s expected payoff would be

(1− σ)ã− σ (τdz + (1− τ ) dn) .

Type ã prefers full ambiguity if and only if

(1− σ)ã− σ (τdz + (1− τ ) dn) < ã− σ (τ + (1− τ) x̃) c (12)

Using the definition of ã, (12) is equivalent to x̃ < x∗, where

x∗ ≡ (1− σ) τ (dz − c) + (1− τ) dn
(1− σ) (1− τ ) c+ σ (1− τ) dn

,

The first inequality in Assumption 1 implies x∗ < 1. Clearly, x̃ < x∗ if x̃ = 0.
Suppose instead that x̃ > 0. Since Γ(0) < 0 = Γ(x̃) < Γ(1) and Γ0(x) > 0,
we have x̃ < x∗ if and only if Γ(x∗) > 0, which is equivalent to (11). Thus, in
case 1 ambiguity reduces the risk of arms proliferation sufficiently to make
all of A’s types better off.
Case 2: Suppose the normalized cost of developing advanced weapons is

low:
κ < 1− F (a∗). (13)

If (2) holds, then B invests with probability x̃ < 1. Therefore, hawks
and doves strictly prefer full ambiguity to full disclosure. However, by a
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similar reasoning as in case 1, we find that (13) implies that type ã strictly
prefers full disclosure to full ambiguity (inequality (12) is reversed). If (2) is
violated, then B invests with probability one under full ambiguity, so some
opportunistic types strictly prefer full disclosure, because it allows them to
make better decisions. In case 2, ambiguity does not significantly reduce the
risk of arms proliferation. Therefore, there are always opportunistic types of
A who prefer disclosure.
So far, we have considered only A’s welfare. Now consider the situation

from the point of view of B. With full ambiguity, player A attacks when
a ≥ ã. With full disclosure, player A attacks if a ≥ c− τdz− (1− τ ) dn when
B is armed, and if a ≥ 0 when B is unarmed. Therefore, when moving from
full ambiguity to full disclosure, player B’s expected utility (not including
the cost of inspection) changes by an amount

σ(α− γ − δt) [F (c− τdz − (1− τ) dn)− F (ã)]− (1− σ)α [F (ã)− F (0)] .
(14)

The first term is positive. This term is due to the fact that with full
ambiguity, a measure F (c− τdz− (1− τ ) dn)−F (ã) of “tough” opportunists
attack B when he is armed. (Under full disclosure, B’s weapons would be
revealed and the tough opportunists would be deterred.) The second term is
negative. It is due to the fact that with full ambiguity, a measure F (ã)−F (0)
of “weak” opportunists do not attack B when he is unarmed. (Under full
disclosure, the weak opportunists would attack the unarmed B.) Thus, dis-
closure deters “tough” opportunists when B is armed, but ambiguity deters
“weak” opportunists when B is unarmed. Without making further assump-
tions on the distribution of A’s types we cannot sign the expression in (14).

We summarize these findings in the following proposition:

Proposition 4 All of A’s types prefer full ambiguity to full disclosure if and
only if (11) holds. Player B prefers full ambiguity to full disclosure if and
only if the expression in (14) is negative.

Clearly, hawks and doves always at least weakly prefer full ambiguity
to full disclosure, since they have nothing to gain from inspections (their
actions will not depend on the arms inspector’s report). However, there is
a case, namely if (2) holds in Case 2, where hawks and doves strictly prefer
ambiguity while some opportunistic types strictly prefer disclosure. In this
case there is a conflict of interest among A’s types about whether inspections
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are desirable or not. In order to alleviate this conflict of interest, B’s decision
to allow inspections should be made to depend on A’s type.

Remark The key to maintaining ambiguity in equilibrium is that B, whether
he is armed or not, increases the probability of attack by allowing in-
spections. In our model, this property holds when B is unarmed be-
cause, by revealing this fact, B invites attack from opportunists who are
otherwise “deterred by doubt”. When B is armed, the property holds
because B invites attack not only from opportunists but also from doves
who fear he may be crazy. Other natural models would generate this
property in alternative ways. For example, suppose A’s type specifies
not only his level of aggression a, but also his cost of fighting, high (cH)
or low (cL). Assume that cL < τdz+(1− τ ) dn < cH .When A has a low
cost of fighting, he will attack an armed B even if he is a dove, as long as
cL− τdz + (1− τ) dn ≤ a ≤ 0. Such a “tough dove” prefers to preempt
weapons proliferation by fighting an armed B, but he does not want to
attack an unarmed B. As in our simpler model, if an unarmed B allows
inspections, it can increase the probability of attack by removing “de-
terrence by doubt”. But an armed B fears that revealing his weapons
would invite attack from tough doves. Here attacking would be opti-
mal for the tough dove, even if he thinks the probability that B is crazy
conditional of revealing weapons is equal to the probability conditional
on refusing inspections. Still, the tough dove would not attack without
inspections, because they do not want to attack an unarmed opponent.
Hence, the probability that an armed B is attacked can be raised if he
discloses his weapons status, whatever it may be. In our model, we
derive this property in a simpler way: some doves attack because they
think an armed B who allows an inspection must be crazy, and this
belief satisfies the standard refinement. Accordingly, there seems to be
no benefit from making the model more complex than it is.

4 Communication Equilibrium
All the equilibria we have studied so far involve no interesting role for com-
munication. We turn now to cheap-talk equilibria which are effective, i.e.,
the probability that B invests depends on A’s type.
Inspections generate information about B’s capabilities. This information

may be more or less useful, depending on A’s type. The extreme types (hawks
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and doves) dislike arms proliferation, but they do not benefit from inspec-
tions per se, because they will not act on the information that is generated.
The intermediate types are opportunistic and their optimal action depends
on whether B is armed or not. Hence, they are willing to trade-off a higher
probability of arms proliferation for a higher probability of inspections. This
suggests that communication equilibria will involve just two informative mes-
sages. The intermediate types send a “tough” message which reveals they are
opportunists. The tough message leads to inspections with probability one,
but also induces B to invest with probability one. The extreme types send
a “conciliatory” message which lead to inspections with probability strictly
less than one, but also induces B to invest with probability strictly less than
one. Thus, effective cheap-talk should involve just two messages, trading off a
higher probability of investment against a higher probability of inspections.
The next proposition confirms that this intuition is correct. If more than
two messages are sent in some equilibrium, then the equilibrium messages
can be divided into two classes, where all messages within a class lead to the
same probability distribution over outcomes. Hence, any equilibrium can be
replicated by a two-message equilibrium.

Proposition 5 All equilibria with effective cheap-talk are equivalent to a
two message equilibrium where, for some a0 and a00 with a00 > a0 > 0, player
A sends a “tough” message if a ∈ (a0, a00) and a “conciliatory” message
otherwise. After the tough message, player B invest with probability 1 and
allows inspections iff he is armed. After the conciliatory message, the normal
type of B arms with positive probability and refuses inspections with positive
probability if he is armed.

We sketch the proof of Proposition 5 here (the rigorous proof is in the
Appendix). Let M be some arbitrary message space, and consider any equi-
librium of the game. Let MC be the set of “conciliatory” messages that
minimize the probability that B invests. Let MT = M\MC be the set of
“tough” messages. Any type of A who either always or never attacks in
equilibrium must send a message inMC , since all he cares about is reducing
the probability that B invests. If cheap talk is effective in influencing B’s de-
cision to invest, then some types must send a message inMT , and they must
all be opportunists. They do not attack if inspections reveal B is armed, but
attack otherwise. Therefore, any message mT ∈ MT will cause B to invest
and reveal any weapons he acquires. As all messages inMT lead to the same
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outcome, we can assumeMT is a singleton. Furthermore, B must invest with
positive probability in response to any message mC ∈ MC , and must refuse
inspections with positive probability when he has weapons (otherwise, all
types of A would prefer to send a message in MC). The proof is finished by
showing that, in fact, all messages in MC must cause B to invest with the
same probability and refuse inspections with the same probability. Hence we
can assume MC is also a singleton.
All of A’s types weakly prefer the communication equilibrium to full dis-

closure, and there is strict preference for some. Indeed, any type of A can
induce the same equilibrium path as in the full disclosure equilibrium by
sending the tough message. Any type that does not do so and sends the
conciliatory message must prefer the communication equilibrium with ef-
fective cheap-talk. Hence, communication can broaden the set of circum-
stances where allowing some ambiguity improves the welfare of all of A’s
types. Player B faces a similar trade-off as in the full ambiguity equilibrium.
Sometimes, A attacks after sending the conciliatory message when he would
have been deterred by knowing B’s true arms capabilities.
We will now construct a communication equilibrium. It exists if and

only if two conditions are satisfied. First, we must be in case 2 of Section
3.2. Otherwise, all of A’s types would prefer ambiguity, and no-one would
send the “tough” message. Thus, the first condition is that (13) must hold.
Second, the prior probability that A is a hawk must be small. Otherwise, B
would invest for sure after the conciliatory message, which is sent by both
hawks and doves. It is intuitively clear that if A is likely to be a hawk
then ambiguity will not prevent B from investing. Specifically, the second
condition turns out to be

H

H +D
< κ. (15)

Proposition 6 Suppose

H

H +D
< κ < 1− F (a∗) (16)

There is a communication equilibrium where, for some a0 and a00, player A
sends a “tough” message if a ∈ (a0, a00) and a “conciliatory” message other-
wise. Player B is more likely to invest and more likely to allow inspections
following the tough message.
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Proof. Consider the following strategies. There is a0 and a00, where 0 < a0 <
a00 < c− τdz− (1− τ ) dn, such that A sends the tough message if a ∈ (a0, a00)
and the conciliatory message otherwise. Player B allows inspections if and
only if he hears the tough message and is armed. Player B’s crazy type
invests with probability one, regardless of message.
If A sends the tough message, then B’s normal type invests with prob-

ability 1, and allow inspections if and only if the investment is successful.
Since type a ∈ (a0, a00) who sends the tough message is opportunistic, he will
attack if inspections are refused or if inspections reveal that B is unarmed.
If they reveal that B is armed, then he will not attack.
If A sends the conciliatory message, then the normal type of B invests

with probability x ∈ (0, 1) and refuses inspections. If there is no inspection
following the conciliatory message, then A attacks if a ≥ a00 but not if a ≤
a0. If there is a “surprise inspection” which reveals that B is armed, then A
attacks if and only if a > c − dz. This is justified by the out-of-equilibrium
belief that B is a crazy type (which is consistent with the D1 criterion). If
the surprise inspection reveals that B is unarmed, then A attacks if and only
a > 0.
We nowmake sure that a0 and a00 are indifferent between the two messages.

Suppose type a00 sends the tough message. With probability σ, player B is
armed and type a00 gets −τdz − (1− τ) dn > a

00 − c. With probability 1− σ,
player B is unarmed and type a00 gets a00 > 0. Thus, the expected payoff is
(1−σ)a00−στdz−σ (1− τ ) dn. If type a00 sends the conciliatory message then
B will be armed with probability σ (τ + (1− τ )x) . Type a00 will attack, and
get expected payoff a00 − σ (τ + (1− τ )x) c (we verify later that attacking is
optimal). For type a00 to be indifferent between the two messages, we must
have

a00 = (τ + (1− τ )x) c− τdz − (1− τ ) dn < c− τdz − (1− τ ) dn (17)

If type a0 sends the tough message, his expected payoff is (1 − σ)a0 −
στdz − σ (1− τ ) dn. If type a0 sends the conciliatory message, he will not
attack (we verify later that this is optimal), and he gets expected payoff
−στdz − σ (1− τ )xdn. For type a0 to be indifferent, we must have

a0 =
(1− x)σ (1− τ) dn

1− σ
> 0 (18)

Define

x∗ ≡ (1− σ) τ (dz − c) + (1− τ ) dn
(1− σ) (1− τ) c+ σ (1− τ ) dn

< 1 (19)
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where the inequality follows from the first inequality in Assumption 1. If
x = x∗ is substituted into (17) and (18), we get a0 = a00 = a∗, as defined in
(9). Now (17) and (18) imply that a00 is increasing in x and a0 is decreasing
in x. Thus, a00 > a0 as long as x > x∗.
We now verify B’s incentive to play according to his strategy. First,

consider the decision to allow inspections. If he hears the tough message
but is unarmed, then B realizes he will be attacked whether or not he allows
inspections. He strictly prefers to refuse inspections to save the cost ε. If B is
armed then his expected payoff from allowing inspections following the tough
message is δt − ε, while his expected payoff from refusing is − (α− γ) . He
prefers to allow inspections as δt−ε > −(α−γ) by Assumption 2. Similarly,
B strictly prefers to refuse inspections after the conciliatory message since
inspections only increase the probability of an attack.
Next, consider the normal type’s decision to invest. If B hears the tough

message, then his expected payoff from investing is σ(−ε)+(1−σ)(−α). His
expected payoff from not investing is −α. Since α > ε, he prefers to invest.
Now consider the normal type’s investment decision following the concil-

iatory message. If B hears the conciliatory message, then he thinks A will
attack if a ≥ a00 but not if a ≤ a0. Accordingly, if B invests his expected
payoff is

− 1− F (a00)
F (a0) + 1− F (a00) (α− σγ)− k

If he does not invest, his expected payoff is

− 1− F (a00)
F (a0) + 1− F (a00)α

Player B’s normal type must be indifferent between investing and not invest-
ing (since 0 < x < 1), which is true if

(1− F (a00) + F (a0)) κ− (1− F (a00)) = 0 (20)

We can use (17) and (18) to substitute for a0 and a00 in (20). Define

Ψ(x) ≡
µ
1− F ((τ + (1− τ )x) c− τdz − (1− τ ) dn) + F

µ
(1− x)σ (1− τ ) dn

1− σ

¶¶
κ

−(1− F ((τ + (1− τ )x) c− τdz − (1− τ ) dn))

Notice that
Ψ(x∗) = κ− (1− F (a∗))
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and

Ψ(1) = (1−F (c− τdz− (1− τ) dn)+F (0))κ− (1−F (c− τdz− (1− τ ) dn))

The indifference condition (20) is verified, together with (17) and (18), if
x is chosen such that Ψ(x) = 0. Now, (16) is equivalent to Ψ(x∗) < 0 < Ψ(1).
By continuity, there is x ∈ (x∗, 1) such that Ψ(x) = 0. Since x > x∗, a00 > a0.
Notice that A’s extreme types (a < a0 and a > a00 ) are less interested in

inspections than the intermediate types. Since types a0 and a00 are indifferent
between the two messages, it is indeed optimal for the intermediate types to
send the tough message, and for the extreme types to send the conciliatory
message. Also, since B’s normal type always weakly prefers to invest, it is
optimal for the crazy type to always invest.
It remains to verify two assertions made above. First, it should not be

optimal for type a0 to send a conciliatory message and then attack. If type
a0 chooses such a strategy, then he gets

a0−σ (τ + (1− τ )x) c = a0−σ(a00+στdz+σ (1− τ ) dn) < (1−σ)a0−σ(τdz+(1− τ ) dn)

where the equality uses (17), and the inequality is due to a00 > a0. The right
hand side expression is what type a0 gets in equilibrium.
Second, it should not be optimal for type a00 to send a conciliatory message

and then not attack. If type a00 chooses such a strategy, then he gets

−στdz−σ (1− τ) xdn = −στdz−σ (1− τ ) dn+(1−σ)a0 < −στdz−σ (1− τ) dn+(1−σ)a00

where the equality uses (18), and the inequality is due to a00 > a0. The right
hand side expression is what type a00 gets in equilibrium.

The communication equilibrium has the same “non-convex” structure as
the cheap-talk equilibrium in Baliga and Sjöström [2]. Different types trade
off “coordination” and “cooperation” at different rates. The intermediate
types put a high value on coordination: they need information in order to
make an optimal decision. The extreme types mainly want the opponent to
cooperate (by not investing). Therefore, we can separate the extreme types
from the intermediate types. If the prior probability that A is a hawk is
low enough, specifically if H/(H + D) < κ, then the conciliatory message
reduces B’s fear of A, and lowers the risk of arms proliferation. However,
in Baliga and Sjöström [2], all decisions were made simultaneously so the
issue of strategic ambiguity did not arise. Since the current model allows the
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possibility of arms inspections taking place before A decides to attack, we
can study the costs and benefits of strategic ambiguity. As we have shown,
strategic ambiguity is required for effective communication.
As noted, all of A’s types weakly prefer the communication equilibrium

to full disclosure (and there is strict preference for some). Consider B’s pay-
off. With full disclosure, if B acquires weapons then he is attacked with
probability 1− F (c− τdz − (1− τ ) dn), otherwise he is attacked with prob-
ability 1 − F (0). In the communication equilibrium, if A sends the tough
message then B is attacked if and only if he has no weapons. If A sends the
conciliatory message, then B is attacked with probability

1− F (a00)
F (a0) + 1− F (a00) .

If we move from the communications equilibrium to full disclosure, B’s ex-
pected payoff changes by

σ(α− γ + δt) [F (c− τdz − (1− τ) dn)− F (a00)]− (21)

(1− σ) [F (a0)− F (0)]α− [1− (F (a00)− F (a0))]Eε.

The interpretation is similar to (14). The first term is positive and is due to
the fact that there is a measure F (c− τdz − (1− τ) dn)− F (a00) of “tough”
opportunists who send the conciliatory message but then attack B, even
though B may be armed. (Under full disclosure, the tough opportunists are
deterred by B’s weapons.) The second term is negative and is due to the
fact that there is a measure F (a0) − F (0) of “weak” opportunists who send
a conciliatory message and then do not attack, even though B may be un-
armed. (Under full disclosure, the weak opportunists attack whenever B is
unarmed.) Again, disclosure deters “tough” opportunists when B is armed,
but ambiguity deters “weak” opportunists when B is unarmed. Without
making further assumptions on the distribution F, we cannot sign the ex-
pression in (21). But, as δz > δn = 0, if the crazy type of B prefers the
communication equilibrium to full disclosure then so does the normal type.

Proposition 7 All of A’s types prefer the communication equilibrium stud-
ied in Proposition 6 to full disclosure. Player B faces a trade-off. Both types
of B prefer the communication equilibrium to full disclosure if and only if the
expression (21) is negative for the crazy type.
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There may be other communication equilibria which exist under a broader
set of circumstances than the one in Proposition 6. But they all share the
same qualitative properties: they must be equivalent to two message equi-
libria, A must prefer the communication equilibrium to the full disclosure
equilibrium and B faces a trade-off.

5 Concluding Comments
In policy debates, it is often argued that U.S. policy should be to eliminate
ambiguity (e.g., Schrage [24]). Sobel [25] pointed out that ambiguity makes
it more difficult to distinguish the weak from the strong, which protects the
weak from being attacked. This suggests that ambiguity may help weak
nations, but be harmful to strong nations. In this paper, we have shown
that if a weak nations’s incentive to acquire weapons is taken into account,
the opposite may be true. For ambiguity to be part of an equilibrium, the
small power (B) must have an incentive to invest with positive probability,
which means attacks must be sufficiently likely. Some of these attacks will
be “mistakes”: the leader of the big power (A) attacks even though he would
have been deterred, had he known the small power’s true capabilities. If
such mistakes are very likely, then strategic ambiguity hurts the small power.
We stress instead another positive aspect of ambiguity: it reduces the small
power’s incentive to acquire weapons. Accordingly, strategic ambiguity tends
to benefit the big power.
If A is an opportunistic type, then he wants information about B’s true

capabilities in order to avoid costly mistakes. In a communication equilib-
rium, opportunistic types send “tough” messages. This can be interpreted
as demands that B signs the NPT. Player B optimally responds by revealing
his true capabilities. Dovish types instead send “conciliatory” messages. If
B hears a conciliatory message, then he maintains a policy of ambiguity, but
he is less likely to actually acquire advanced weapons. Unfortunately, hawks
have an incentive to masquerade as doves and send a conciliatory message
as well. Therefore, the nature of the equilibrium set depends on the relative
likelihood of hawks and doves, H/(H +D). If H/(H +D) is too large then
a conciliatory message will not reassure B, who suspects a “false dove”, and
communication will be ineffective.
A second determinant of the equilibrium set is the normalized cost of

investing, κ. Recall that κ is higher the bigger is the cost k of investing; the
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smaller is the probability σ that B will acquire advanced weapons; and the
smaller is the value of advanced weapons, γ. With ambiguity, the probabil-
ity that B invests is decreasing in κ. If κ is small then B very likely will
attempt to get advanced weapons, whether there is ambiguity or not. Thus,
the smaller is κ, the more likely it is that the opportunistic type prefers in-
spections. But if κ is high then ambiguity makes A better off regardless of
type.
We have analyzed a game with two players. In reality, several big pow-

ers with divergent interests may interact with the same small power. The
communication stage then becomes a game with multiple senders and one
receiver. Such games have been analyzed by Battaglini [4] and Krishna and
Morgan [15]. A dovish big power (that would never in any circumstance at-
tack) would strive to reduce the likelihood of arms proliferation, while a more
opportunistic big power may instead try to force inspections. Our model
provides some insights into these many-player interactions, but a complete
analysis is left for future work.
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6 Appendix
This appendix contains the proofs of Propositions 1 and 5. We restate the
Propositions for completeness.
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Proposition 1 In any perfect Bayesian equilibrium, the crazy type of
player B invests with probability one.
Proof. Consider any perfect Bayesian equilibrium. Let x(m, t) denote the
probability that type t ∈ {z, n} invests after player A has sent message m.
If x(m,n) > 0 for some m ∈ M then x(m, z) = 1. This follows from δz >
δn, which makes the crazy type strictly more willing to invest. Conversely,
x(m, z) < 1 implies x(m,n) = 0.
In order to obtain a contradiction, suppose x(m, z) < 1 for some m, and

let M∗ ⊆ M be the set of messages that minimize x(m, z). If m∗ ∈ M then
x(m∗, z) < 1 and x(m∗, n) = 0.
Claim 1: If m∗ ∈M∗ then 0 < x(m∗, z) < 1 for .
Proof of claim: By hypothesis, x(m∗, z) < 1. Suppose x(m∗, z) = 0. In

this case, B will be unarmed for sure following messagem∗. Clearly, all of A’s
types will send a message inM∗, since a zero probability that B invests is the
best possible outcome for A. Since B will be known to be unarmed, player
A attacks if and only if a ≥ 0, which happens with probability 1 − F (0).
Suppose B changes to a strategy where he invests, and refuses inspections
if the investment succeeds. Since A never attacks when a − c < −dz, the
probability of an attack can be at most 1 − F (c − dz), and B’s expected
improvement will be at least

σ {(1− F (c− dz)) (−α+ γ)) + F (c− dz)δt − (1− F (0))(−α)}− k

This is strictly positive by Assumption 3. This contradiction proves the
claim.
Claim 2: Player A must send a message in M∗ if a > 0 or a < c− dz.
Proof of claim: If a− c > −dn then A always attacks, so at the message

stage he simply wants to minimize the probability that B is armed. He
does this by sending a message in M∗. Similarly, if a − c < −dz then A
never attacks, and again he wants to minimize the probability that B is
armed. Finally, consider the case 0 < a ≤ c − dn. If A sends m∗ ∈ M∗ and
then (regardless of what happens at the inspections stage) attacks for sure,
then his expected payoff is a − στx(m∗, z)c. Suppose instead he sends m0 /∈
M∗. Following this message, B’s crazy type will be armed with probability
σx(m0, z) and his normal type will be armed with probability σx(m0, n). If B
is unarmed, A prefers to attack (since a > 0). If B is armed, then A prefers
to attack if and only if B is crazy (since −dz < a− c < −dn). Therefore, A’s
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maximum possible payoff from sending message m0 is

(1− τσx(m0, z)− (1− τ )σx(m0, n))a+ τσx(m0, z)(a− c) + (1− τ )σx(m0, n)(−dn)
= (1− σ (1− τ )x(m0, n)) a− στx(m0, z)c− σ (1− τ )x(m0, n)dn
< a− στx(m∗, z)c

sincea > 0 and x(m∗, z) < x(m
0
, z). This proves the claim.

Notice that claim 2 implies M∗ 6= ∅.
Claim 3: If any m∗ ∈M∗ was sent and B is armed, then B will not allow

inspections.
Proof of claim: To obtain a contradiction, suppose that following m∗ ∈

M∗, there is a positive probability that inspections are allowed and reveal
that B is armed. Since only crazy types invest (x(m∗, z) > 0 = x(m∗, n)), B
will be known to be crazy once he reveals that he is armed. Thus, all types
of A with a ≥ c − dz will attack. Since type a < c − dz will never attack
in any situation, if B is armed he is strictly better off not revealing it, since
inspections are costly and will not reduce the probability of attack. This
contradiction proves the claim.
Claim 4: Following anym∗ ∈M∗, there must be positive probability that

B is unarmed and refuses inspections.
Proof of claim: Suppose that if B observes m∗ ∈ M∗ and is unarmed,

then he allows inspections with probability one. It follows that if B refuses
inspections, he will be known to be armed. Therefore, following message m∗

there is never ambiguity about whether or not B is armed. Since m∗ ∈ M∗

both minimizes the probability that B arms and also fully reveals if B is armed
or not, all types of A will either send m∗, or else some equivalent message in
M∗ (i.e., a message which also fully reveals if B is armed). Since x(m∗, n) = 0
form∗ ∈M∗, the normal type will never invest in this equilibrium, will always
allow inspections, and will be attacked whenever a > 0. So his expected payoff
is

(1− F (0)) (−α)− Eε (22)

where Eε is the expected value of ε. Now, in no circumstance would A ever
attack if a < c−dz. Therefore, if B invests and then allows inspections if and
only if the investment fails, his expected payoff is at least

σ {(1− F (c− dz)) (−α+ γ) + F (c− dz)δt}+(1−σ) {(1− F (0))(−α)− Eε}−k
(23)
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Assumption 3 implies that (23) is strictly greater than (22) for both types of
B. Thus, the normal type can improve on his equilibrium payoff by investing.
This contradiction proves the claim.
Now we can complete the proof of the Proposition. Let ζ denote the

probability that A attacks, conditional on a message inM∗ having been sent
and inspections refused. For any m∗ ∈ M∗, x(m∗, z) > 0 = x(m∗, n), so
following message m∗ player B will be either unarmed or armed and crazy.
In either case, A prefers to attack if a ≥ 0. Thus, by claim 2, if a ≥ 0 then A
sends a message inM∗ and then attacks for sure. Type a < c−dz also sends
a message M∗, but never attacks. Therefore, 1− F (0) ≤ ζ ≤ 1− F (c− dz).
Following any m∗ ∈ M∗, when B is unarmed he at least weakly prefers to
refuse inspections. Thus, conditional on some message in M∗ having been
sent and player B not investing, B’s expected payoff is −ζα. On the other
hand, if after any m∗ ∈ M∗ B invests and then refuses inspections, then his
expected payoff conditional on a message in M∗ is

σ {ζ (−α+ γ) + (1− ζ)δt}+ (1− σ)ζ(−α)− k
≥ σ(1− F (c− dz)) (−α+ γ) + (1− σ)ζ(−α)− k
> −σ(1− F (0))α− (1− σ)ζα ≥ −ζα

where the first inequality is due to ζ ≤ 1− F (c− dz) and δt ≥ 0, the second
to Assumption 3, and the third to 1− F (0) ≤ ζ. Therefore, both types of B
will strictly prefer to invest in response conditional on receiving a message
in M∗, a contradiction of x(m∗, n) = 0.
We now turn to our characterization of the set of effective cheap-talk

equilibria. Player A sends a message m ∈ M, where M is an arbitrary
message space. Of course, by relabeling messages, we obtain many equilibria
that are equivalent, in the sense of producing the same outcomes. We are
interested in the final outcomes, not the particular labeling of messages.
Proposition 5 All equilibria with effective cheap-talk are equivalent to a

two message equilibrium where, for some a0 and a00 with a00 > a0 > 0, player
A sends a “tough” message if a ∈ (a0, a00) and a “conciliatory” message
otherwise. After the tough message, player B invest with probability 1 and
allows inspections iff he is armed. After the conciliatory message, the normal
type of B arms with positive probability and refuses inspections with positive
probability if he is armed.
Proof. Without loss of generality, we may assume player A’s types do not
randomize over messages. Let A(m) be the set of types of player A who send
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message m in equilibrium. (That is, a ∈ A(m) if type a sends m.) Without
loss of generality, we may assume A(m) 6= ∅ for all m ∈M (since a message
which is never sent can be dropped). We know that the crazy type invests
with probability 1. Let x(m) be the probability that the normal type of
player B invests when player A sends m ∈M. By Bayes’ rule, the probability
that B is crazy conditional on being armed and message m having been sent
is

τ(m, armed) ≡ τ

τ + (1− τ)x(m)
.

Notice that τ (m,armed) ≥ τ . The set of messages that minimize x(m) is
denoted MC ⊆ M. Let MT ≡ M\MC . By definition, if mC ∈ MC and
mT ∈ MT , then x(mC) < x(mT ) ≤ 1. If communication is effective in
influencing B’s investment decision, some types of A must send a message in
MC , and some types must send a message in MT .
When B is unarmed, whether he is normal or crazy is payoff irrelevant, so

there is no reason to distinguish the unarmed normal type from the unarmed
crazy type. Abusing terminology, let B’s ex post type be denoted t ∈ {z, n, u},
where n denotes that B is armed and normal, z that B is armed and crazy, and
u denotes that B is unarmed. Let I(m, t, ε) be the probability that player B
allows inspections following messagem, when his ex post type is t ∈ {z, n, u}
and the cost of inspection is ε ∈ [0, ε̄]. This formulation is without loss of
generality, because all unarmed players must make the same decision at the
inspection stage (for the same ε).
Conditional only on m and t, the probability of inspections is

I(m, t) ≡
Z ε̄

0

I(m, t, ε)h(ε)dε.

The probability that B is crazy conditional on being armed and allowing
inspections following message m ∈M is

τ (m, allow,armed) ≡ τI(m, z)

τI(m, z) + (1− τ )x(m)I(m,n)
.

The probability that B is crazy conditional on being armed and refusing
inspections after message m ∈M is

τ(m, refuse,armed) ≡ τ (1− I(m, z))
τ (1− I(m, z)) + (1− τ )x(m) (1− I(m,n)) .
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Also, let att(m,allow,armed) be the probability that A attacks after message
m if B allows inspections which reveal he is armed. Similarly, att(m,allow,unarmed)
is the probability that A attacks if B allows inspections which reveal he is
unarmed, and att(m,refuse) is the probability that A attacks if B refuses
inspections. The proof has 14 steps.

Step 1: Suppose after message m, there is positive probability that in-
spections reveal B is armed. Then,
(a) att(m,allow,armed) < att(m,refuse);
(b) if type a ∈ A(m) sends message m and then attacks when inspections

reveal B is armed, then he must also attack if inspections are refused; and
(c) τ(m,allow,armed) ≥ τ(m,armed) ≥ τ (m,refuse,armed) (the inequali-

ties are strict if B refuses inspections with positive probability when armed).
Proof: (a) Both armed types of B want to minimize the probability of

attack as δt ≥ 0 > −α + γ. Also, inspections are costly for B. Hence, when
armed, B will allow inspections after message m ∈M only if they lower the
probability of attack.
(b) If a ∈ A(m) and type a attacks if inspections are refused, then if a0 > a

and a0 ∈ A(m), type a0 also attacks. Hence, for any message m ∈ M, there
is a cut-off type ã such that if inspections are refused, then type a ∈ A(m)
attacks if and only if a ≥ ã. Similarly, there is a type â such that if inspections
reveal that B is armed, then type a ∈ A(m) attacks if and only if a ≥ â .
Part (a) implies â > ã, which implies (b).
(c) The armed type t ∈ {n, z} with cost shock ε is willing to allow an

inspection if and only if

att(m, allow,armed) (−α+ γ) + (1− att(m, allow,armed)) δt − ε

≥ att(m, refuse) (−α+ γ) + (1− att(m, refuse)) δt.

If this condition holds for t = n, then it holds strictly for t = z, because
δz > δn and 1 − att(m,allow,armed) > 1 − att(m,refuse) by part (a). As
crazy types are more willing to allow inspections than normal types, (c) is
proved. This completes the proof of step 1.

The remaining steps will establish that, without loss of generality, we can
assume MC = {mC} and MT = {mT}. Moreover, we will show that

I(mT , z) = I(mT , n) = 1,

I(mT , u) = I(mC , u) = 0
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and either
I(mC , z) = I(mC , n) = 0

or
1 = I(mC , z) > I(mC , n) > 0.

This corresponds with the communication equilibrium from Section 4, if mC

is interpreted as the conciliatory message and mT as the tough message. It
is then easy to show that investment and attack decisions must also be the
same.

Step 2: Doves and hawks only send messages in MC .
Proof: Suppose a ∈ A(m), where a is a dove or a hawk. We claim m ∈

MC . Notice that if, along the equilibrium path following message m, type a
either never attacks or always attacks, then clearly m ∈ MC , for otherwise
type a could increase his expected payoffs by reducing the probability that
B invests. There are three cases to consider.
Case 1 : Suppose inspections never occur on the equilibrium path after

message m is sent.
For a dove with a ≤ 0, the expected payoff from not attacking is

−σ (τdz + (1− τ) x(m)dn) ≥ −σ (τdz + (1− τ ) dn) > a− σc

by Assumption 1, so his best-response is to never attack. Hence, m ∈MC.
For a hawk with a ≥ c − (τdz + (1− τ ) dn), the expected payoff from

attacking is

a− σ (τ + (1− τ )x(m)) c

= (1− σ (τ + (1− τ) x(m))) a+ σ (τ + (1− τ )x(m)) (a− c) ≥
(1− σ (τ + (1− τ) x(m))) a− σ (τ + (1− τ) x(m)) (τ(m, armed)dz + (1− τ(m, armed))dn)

= (1− σ (τ + (1− τ) x(m))) a− σ (τdz + (1− τ )x(m)dn)

> −σ (τdz + (1− τ )x(m)dn)

as a > 0 and τ(m,armed) ≥ τ . Hence, a hawk’s best-response is to always
attack. Hence, m ∈MC.
Case 2 : Suppose inspections always occur on the equilibrium path after

message m is sent.
Suppose type a ∈ A(m) is a dove. If inspections reveal that B is unarmed,

the dove does not attack. If in addition he doesn’t attack when inspections
reveal that B is armed, then he never attacks, so m ∈MC. Suppose instead
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that type a attacks if inspections reveal B is armed. Then all types a0 ∈ A(m)
with a0 ≥ a also attack if inspections reveal B is armed. By part (a) of step
1, an armed type must expect that an attack occurs with higher probability
if he refuses inspections. Hence, there must be some types a0 ∈ A(m) with
a0 < a who do not attack when inspections reveal B is armed. Hence, there
is a0 ∈ A(m) who never attacks, so m ∈MC .
Suppose type a ∈ A(m) is a hawk. Following message m, type a attacks

inspections reveal B is unarmed. If inspections reveal B is armed, the payoff
from attacking is

a− c ≥ − (τdz + (1− τ ) dn) ≥ − (τ(m, armed)dz + (1− τ(m, armed)) dn)

and hence a always attacks. Therefore, m ∈MC .
Case 3 : Suppose inspections sometimes (but not always) occur on the

equilibrium path after message m is sent.
Sub-case 3.1: If B always allows inspections when armed, then B’s equi-

librium strategy fully reveals his capabilities with probability one. Hence,
the argument in Case 2 shows m ∈MC .
Sub-case 3.2: Suppose armed types sometimes accept and sometimes

reject inspections on the equilibrium path in response to message m ∈M .
Suppose type a ∈ A(m) is a dove. Then type a does not attack if inspec-

tions reveal B is unarmed. Suppose type a attacks if inspections are refused.
This implies that

−λ (τ (m, refuse, armed)dz + (1− τ(m, refuse,armed)) dn) ≤ a− λc < −λc
(24)

whereλ is the probability that B is armed conditional on refusing inspections.
(The first inequality of (24) says that type a prefers to attack, the second is
due to a < 0.) Notice that (24) implies that

−c > − (τ (m, refuse,armed)dz + (1− τ (m, refuse,armed)) dn). (25)

We than have

a− c ≥ − (τ(m, refuse, armed)dz + (1− τ (m, refuse, armed)) dn) (26)

> − (τ(m, allow, armed)dz + (1− τ(m, allow, armed)) dn)

The first inequality in (26) is due to the fact that, since the first inequality in
(24) holds for λ ≤ 1, (25) implies it also holds when λ is replaced by 1. The
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second inequality in (26) is due to τ(m,allow,armed) > τ (m,refuse,armed),
from part (c) of step 1. Now, (26) implies that type a strictly prefers to
attack when B allows inspections which reveal that he is armed. Hence, any
dove in A(m) who attacks when inspections are refused also attacks when
inspections show B is armed. More generally, if type a ∈ A(m) attacks when
inspections show B is armed, then any type a0 > a in A(m) also attacks
when inspections show B is armed. But this implies att(m,allow,armed) ≥
att(m,refuse), contradicting part (a) of step 1. This contradiction proves
that type a does not attack if inspections are refused. If type a attacks when
inspections reveal that B is armed then, by step 1 (b), he must also attack if
inspections are refused, which contradicts the previous sentence. So in fact
a dove a ∈ A(m) never attacks, hence m ∈MC .
Suppose type a ∈ A(m) is a hawk. Then,

a−c ≥ − (τdz + (1− τ) dn) > − (τ(m, allow,armed)dz + (1− τ (m, allow,armed)) dn)
(27)

(The first inequality is due to the definition of hawk, the second is due to
τ(m,allow,armed) > τ(m,armed) ≥ τ from step 1 (c).) Now (27) implies that
type a attacks if inspections reveal B is armed. Part (b) of step 1 implies
type a also attacks if inspections are refused. Since hawks certainly attack if
inspections reveal B is unarmed, type a always attacks. Hence m ∈MC .
Sub-case 3.3: Finally, suppose B never allows inspections when armed,

after m was sent. Then he must sometimes allow inspections when unarmed,
otherwise we are in case 1. Hence, the probability of attack must be lower
after inspections reveal B is unarmed than after he refuses inspections:

att(m, allow,unarmed) < att(m, refuse). (28)

By an argument like in the proof of step 1 part (b), (28) implies that if there
is any type in A(m) who attacks when inspections reveal B is unarmed, he
must also attack when inspections are refused, hence he always attacks. In
this case, m ∈ MC . Suppose instead that no type in A(m) attacks when
inspections reveal B is unarmed, i.e., only doves send message m. But then
in response to message m, a normal type of B should refrain from investing,
and then reveal that he is unarmed. Therefore, x(m) = 0, which certainly
impliesm ∈MC .

Step 3: I(mT , u) = 0 for all mT ∈MT .
Proof: By step 2, message mT ∈ MT reveals that A must be an oppor-

tunist. Therefore, if B is unarmed, then he will refuse inspections following
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messagemT ∈MT . (If he were to allow inspections, he would pay ε > 0 only
to be attacked for sure.)

Step 4: I(mT , n) = I(mT , z) = x(mT ) = 1 for all mT ∈ MT . If message
mT ∈ MT is sent and there is no inspection, then an attack occurs with
probability one.
Proof: Inspections must occur with positive probability following mT , or

else all types of A would prefer to send mC ∈ MC . Since I(mT , u) = 0 by
step 3, whenever inspections occur they must reveal that B is armed, so step
1 applies. Specifically, if some type a ∈ A(mT ) attacks after the inspections,
then he must also attack if inspections are refused, by step 1 (b). That means
he always attacks (since I(mT , u) = 0), so he is better of sending mC ∈
MC , a contradiction. Hence, no type in A(mT ) attacks after inspections
have revealed B is armed. If some type a ∈ A(mT ) doesn’t attack when
inspections are refused, then this type never attacks (since I(mT , u) = 0), so
he is better of sending mC ∈ MC , a contradiction. Hence, when inspections
are refused, the probability of attack is one. On the other hand, as we have
seen, if inspections reveal B is armed then the probability of attack is zero.
This clearly means B strictly prefers to allow inspections when armed, hence
I(mT , n) = I(mT , z) = 1 for any mT ∈MT . It also implies B strictly prefers
to invest when he hears message mT ∈ MT , so x(mT ) = 1. Indeed, if after
hearing message mT ∈ MT player B invests and allows inspections if and
only if he is armed, his payoff is σ(δt−Eε)− (1− σ)α− k. By not investing
he gets −α. Assumption 3 implies that he prefers to invest.
Step 5: We can assume, without loss of generality, that MT = {mT} is a

singleton.
Proof: Steps 2 and 4 imply that any type of player A who sends a message

mT ∈ MT must be an opportunist who attacks if and only if inspections
reveal no arms or inspections are refused. Also, x(mT ) = 1 for all mT ∈MT .
Therefore, all messages in MT lead to the same outcome, so we may as well
assume there is only one such message.

Step 6: Following any mC ∈MC , I(mC , n) < 1.
Proof: Since the only reason to send the message mT ∈MT is to improve

the chance of an inspection, steps 3 and 4 imply we cannot have I(mC , n) =
I(mC , z) = 1. By an argument as in step 1 (c), crazy types are more willing to

allow inspections than normal types, so we must have I(mC , z) > I(mC , n).
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Step 7: Doves never attack on the equilibrium path and hawks always
attack.
Proof: Consider the doves. By step 2, we know they send only messages

inMC . In the proof of step 2, case 1, we established that if inspections never
occur on the equilibrium path, doves do not attack. So assume inspections
occur with positive probability on the equilibrium path following mC . First,
suppose I(mC , u) > 0 = I(mC , z) = I(mC , n). Now, if inspections reveal B
is unarmed, then all types with a > 0 attack. For the unarmed to be willing
to allow inspections, the inspections must strictly reduce the probability of
attack. This implies that some doves (a < 0) who send mC must attack if
inspections are refused. These doves get no more than −σ(τ+(1−τ)x(mC))c
from sendingmC , since they end up attacking whenever B is armed. If instead
they sendmT and never attack, they get −σ(τdz+(1−τ )dn). Thus, for them
to prefer to send mC , we need

−σ(τ + (1− τ)x(mC))c ≥ −σ(τdz + (1− τ)dn) (29)

If type a > 0 sends mT , as shown above, in equilibrium he will attack
whenever B is unarmed, and he gets

(1− σ)a− σ(τdz + (1− τ)dn) < a− σ(τ + (1− τ )x(mC))c

The inequality uses 1− σ < 1 and (29). But, the right hand side is what he
gets if he sendsmC and always attacks. Thus, no type a > 0 will sendmT , so
mT is never sent in equilibrium, a contradiction. Therefore, I(mC , u) > 0 =
I(mC , z) = I(mC , n) is impossible. Thus, if inspections sometimes occur,
they must sometimes occur when B is armed, so we can use step 1. By
step 6, they must also be refused with positive probability when B is armed.
Suppose type a = 0 sends mC and inspections are refused. Let σ̃ denote
the probability B is armed, conditional on inspections being refused after
message mC ∈ MC . Then, after the refusal, type a = 0 prefers to attack if
and only if

−σ̃c ≥ −σ̃ (τ (m, refuse)dz + (1− τ(m, refuse))dn) (30)

We will show this inequality leads to a contradiction. Step 1 (c) implies
τ(m,refuse) ≤ τ (m,allow,armed). Therefore, (30) implies

−c ≥ − (τ (m, allow,armed)dz + (1− τ(m, allow,armed))dn)
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so (30) implies type a = 0 also prefers to attack if inspections reveal B is
armed. Hence, type a = 0 prefers to always attack, which is to say

−σ ¡τ + (1− τ)x(mC)
¢
c ≥ −σ (τdz + (1− τ)dn) .

But then,as 1− σ < 1, for opportunists with a > 0 we have

a− σ
¡
τ + (1− τ) x(mC)

¢
c > (1− σ) a− σ (τdz + (1− τ )dn) . (31)

The right-hand-side of (31) is the expected payoff to an opportunist from
sending message mT ∈MT . Hence, (31) implies no opportunist sends a mes-
sage in MT and in fact all types send messages in MC . But this contradicts
our assumption that the equilibrium displays effective communication. This
contradiction shows (30) cannot hold, so type a = 0 strictly prefers not to
attack if inspections are refused, and hence so do all types with a < 0. If
there is positive probability that inspections reveal B is armed, then if type
a < 0 attacks in this case, he must also attack if inspections are refused, by
step 1 (b), which contradicts the previous sentence. Thus, if type a < 0 sends
mT , he will not attack if inspections are refused, or if they reveal that B is
armed. Since he will certainly not attack if inspections show B is unarmed,
type a < 0 will never attack. A similar argument shows that hawks always
attack on the equilibrium path.

Step 8: I(mC , u) = 0 for all mC ∈MC .
Proof: If message mC ∈ MC is sent and inspections are refused, hawks

attack but not doves (by step 7). Clearly, if B hears message mC ∈MC and
is unarmed, he has no reason to allow inspections. Indeed, inspections cannot
convince the hawks not to attack, and if some opportunist also sends mC , he
will attack if inspections reveal that B is unarmed. Therefore, I(mC , u) = 0.

Step 9: 0 < x(mC) < 1 for mC ∈ MC , so B’s normal type is indifferent
between investing and not investing when he hears mC .
Proof: Suppose x(mC) = 0 for mC ∈MC . Then, after message mC , only

crazy types are armed. Clearly, any type a > 0 prefers to send mC rather
than mT , in view of mT = 1. But then, by step 2, no type sends mT , which
contradicts communication being effective. Thus, x(mC) = 0 is impossible.
On the other hand, x(mC) < x(mT ) = 1.

Step 10: There are cut-off points a0 and a00, where 0 < a0 ≤ a00 < c−τdz−
(1− τ ) dn, such that A sends mT if a ∈ (a0, a00). He sends some mC ∈MC if
a < a0 or a > a00.

37



Proof: The proof of Step 7 established that type a = 0 strictly prefers not
to attack if inspections are refused on the equilibrium path. Some “weak”
opportunists with a close to zero must have the same strict preference as type
a = 0. Let a0 > 0 be the supremum of all such types. All types such that
a < a0 must send mC ∈MC and then not attack if there are no inspections.
Similarly, it can be shown that “tough” opportunists with types just less than
c− τdz− (1− τ) dn must be sending messages in MC and attacking if player
B refuses inspections. Let a00 be the infimum of all such types. All types
such that a > a00 must send mC and then attack if there are no inspections.
Necessarily, 0 < a0 ≤ a00 < c− τdz − (1− τ) dn.

Step 11: For all mC ∈MC , I(mC , n) = I∗ < 1 .
Proof: Step 6 established I(mC , n) < 1. In this case, if both the crazy

type and the normal type never allow inspections after all messages in M c,
we are done. Now, if type z is willing to allow inspections, they must reduce
the probability of attack. Hawks always attack by step 7. Therefore, if
inspections reveal that B is armed, some “tough” opportunists (a00 < a <
c−τdz−(1− τ ) dn) must not attack. If I(mC , n) = 0, then when inspections
reveal B is armed A can infer that B is crazy, so all opportunists would attack,
contradicting the previous sentence. Therefore, 0 < I(mC , n) < I(mC , z) =
1. By definition, x(mC) is the same for all mC ∈ MC . This implies we must
have I(mC , n) constant for allmC that are sent in equilibrium. Otherwise, all
“tough” opportunists (a00 < a < c−τdz−(1− τ ) dn) must send such messages
as they attack on the equilibrium path iff inspections are refused. But then,
the incentive of the normal type of B to arm is higher after such messages
and x(mc) cannot be constant for all messages mc ∈M c, a contradiction.
Step 12: We can assume, without loss of generality, that MC = {mC} is

a singleton.
Proof: Step all messages in MC yields the same outcome, so we may

assume there is only one such message.

Step 13 proves that any equilibrium with I(mC , n) = I(mC , z) = 0 for all
mC ∈MC is outcome-equivalent to the communication equilibrium described
in Section 4.

38



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


