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1 Introduction

Private companies find vaccines less financially rewarding than drugs. In 2001, the global

marketplace for therapeutic drugs exceeded $300 billion, whereas worldwide vaccine sales

were only about $5 billion . . . . It is not hard to understand why major pharmaceutical

companies, capable of developing drugs and preventive vaccines, generally invest in drugs

that patients must take every day rather than shots given only occasionally. Drug company

executives have investors to answer to, after all.

—Patricia Thomas, author of Big Shot: Passion, Politics, and the Struggle

for an AIDS Vaccine (Thomas 2001), quoted from Thomas (2002)

More than 40 million people are infected with HIV/AIDS, 95 perfect of whom live in developing

countries. Because antiretroviral drugs are difficult to deliver in the poorest countries, vaccines arguably

offer the best hope for defeating the epidemic (International AIDS Vaccine Initiative 2002).1 Yet private

investment in HIV/AIDS vaccine research remains minimal relative to both the health burden of the disease

and to investments in antiretroviral drug research.2 This paper explores whether economic factors could

create gaps between social and private incentives to invest in vaccines relative to drugs that might help

explain this gap in investment. Although our analysis focuses on the case of HIV/AIDS, much of our work

is also applicable to other sexually transmitted diseases and, more broadly, to other diseases for which

there is substantial heterogeneity in risk of infection.

Thomas’ (2002) view that firms prefer drugs to vaccines because drugs are administeredmore frequently

appears to be widely held (e.g., see also Rosenberg 1999). Yet from the perspective of neoclassical

economics, this explanation seems odd. In the benchmark case of a risk-neutral, rational consumer with

no credit constraints, the consumer would be willing to pay the expected present value of the stream of

benefits in an up-front lump sum for a vaccine, and thus it might seem that vaccines and drugs should

yield equivalent revenues if they are equally efficient technologically.

Consumer myopia or other forms of irrationality of course may lead drugs to be more profitable than

1Unlike vaccines, drugs require diagnosis, often must be taken on a long-term basis, and frequently have side effects that

require monitoring by highly trained medical personnel, who are scarce in the poorest countries. Only 50,000 of the 30 million

people with HIV/AIDS in Africa are using antiretroviral therapies (Moeti 2003), while three quarters of the world’s children

receive a standard package of vaccines (Kim-Farley et al. 1992).
2The International AIDS Vaccine Initiative (2002) estimates total investment in HIV/AIDS vaccine R&D at between $430

and $470 million, only between $50 and $70 million of which has come from private industry. As of this writing at least 20

antiretroviral drugs have been approved by the U.S. Food and Drug Administration. Huff (2003) cites the total R&D investment

for the most recently approved antiretroviral drug (T-20, or Enfuvirtide) at $600 million. DiMasi, Hansen, and Grabowski (2003)

estimate that an average of $802 million in R&D investment is required to get a new medicine from lab to patient.
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vaccines. Drugs will also be more profitable if they are cheaper to develop, are more effective cures, and

have fewer side effects. However, in this paper we show revenue equivalence can break down even in the

benchmark case, because developers of the two medicines differ in their ability to capture the social value

of their innovation due to differences in the timing of the administration of vaccines and drugs.

If consumers differ in their ex ante infection risk due to differences, for example, in the number

of sexual partners, monopolists will be able to extract more surplus with drugs than vaccines. This

result hinges on the interaction between the heterogeneity in infection risk and the differential timing of

the administration of the medicines. Vaccines are administered before the disease is contracted, when

consumers still have private information regarding their infection risk; drugs are sold after the disease

is contracted, when consumers with positive valuation no longer have private information regarding their

infection risk. The reduction in private information in moving from vaccines to drugs allows the firm to

extract more surplus with drugs.

A simple example illustrates this point. Suppose that out of 100 people, 90 have a 10 percent chance

of contracting a disease and 10 have a 100 percent chance. Let the harm from the disease be $100.

For simplicity, assume consumers are risk-neutral, and thus are willing to pay $10 for each 10 percent

reduction in their chance of getting the disease and $100 to be cured if they contract the disease. Suppose

the medicines are perfectly effective, have no side effects, and are costless to manufacture. If the firm

develops a drug, it sells to all people who contract the disease at a price of $100. In expectation,

19 consumers contract the disease (all 10 high-risk consumers, along with 9 low-risk consumers). So

expected drug revenue is $1,900, which corresponds to the social value of the product. In contrast, if the

firm develops a vaccine, it could either charge $100 and sell only to the 10 high-risk consumers, or charge

$10 and sell to all 100 consumers. Either way, the firm’s vaccine revenue is $1,000, only about half the

revenue from a drug and only about half the social value of the product.

In Section 3, we prove that for any distribution of infection risk with a nontrivial amount of consumer

heterogeneity, a drug yields more revenue than a similarly effective vaccine. The ratio of drug to vaccine

revenue is less than two for left-skewed distributions, equal to two for uniform distributions, greater than

two for right-skewed distributions, and can be arbitrarily high for highly skewed distributions of infection

risk.
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Empirically, distributions of numbers of sexual partners, and hence disease risk, are extremely skewed.

In Section 4 we calibrate our model with data on rates of partner change in the United States. Our

calibration suggests drug revenue could exceed vaccine revenue by more than a factor of four.

In Section 5, we provide evidence that, consistent with the model’s prediction, drugs are significantly

more likely, and vaccines significantly less likely, to have been developed for sexually transmitted diseases.

We then consider a series of extentions to the basic model. Since governments are large purchasers of

pharmaceuticals in many countries, in Section 6 we allow for government procurement. We argue that, if

the prices the government pays are influenced by the threat point of profits the firm could realize on the

private market if bargaining breaks down, to the extent that vaccines are less profitable than drugs on the

private market they will also be less profitable when sold to the government. This suggests a potential

rationale for committing in advance to purchase vaccines at a prespecified price or for subsidizing vaccine

R&D more than drug R&D.

In Section 7, we address the complication that heterogeneity among consumers in willingness to pay for

a drug conditional on being infected (e.g., due to income) may prevent a drug monopolist from appropriating

all consumer surplus. We show that, if income covaries negatively with risk of infection and firms cannot

price discriminate based on income, vaccines may be relatively more profitable than drugs. Calibrations

suggest that if firms’ ability to engage in international price discrimination broke down, incentives to

develop HIV/AIDS drugs could fall below incentives to develop vaccines.

In Section 8, we examine implications of the differing durability of vaccines and drugs for rent

extraction. Vaccines provide durable protection against disease, whereas antiretroviral drugs provide only

temporary relief. We confirm the intuition from standard analyses of the durable-good-monopoly problem

(see, e.g., Coase 1972; Stokey 1981; Bulow 1982; and Gul, Sonnenschein, and Wilson 1986) that in the

presence of heterogeneous consumers durability leads to a commitment problem. This is yet another factor

biasing firms against developing vaccines. It turns out that vaccines are slightly different from standard

durable goods, so new formal analysis is needed. High-demand vaccine consumers are at high risk of

contracting the disease; if they contract the disease, the vaccine cannot cure them, reducing their incentive

to wait for lower vaccine prices in the future.

In Section 9, we consider the impact of differences in the timing of drug and vaccine use when drug
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and vaccine developers have temporary market power but must compete with each other and, after some

delay, must compete with “me-too” products and generics. We show that competition can exacerbate the

bias against vaccines. Drug developers are able to capture significant rents during the temporary period

in which they have market power by serving the initial stock of infected consumers. Rents are difficult

to capture with vaccines because vaccines cannot be used to treat the initial stock of infected consumers.

Vaccines can only be used by subsequent generations, who will not be willing to pay much for vaccines

if they anticipate entry of cheap generic drugs in the future.

Our work is related to the industrial organization literature on monopoly pricing when consumers

gradually learn their demands. Lewis and Sappington (1994) and Courty (2003) assume consumers are

initially identical, whereas we assume consumers have private information about their infection risk ex

ante. Courty and Li (2000) compare optimal ex ante and ex post schemes under general conditions, where

ex ante schemes are allowed to involve refunds. Refunds are impossible for vaccines because, once the

vaccine is administered, the benefit is inalienable from the consumer. Clay, Sibley, and Srinagesh (1992)

and especially Miravete (1996) are closest to our work. Our application calls for a specific mapping

from ex ante private values into ex post types, whereas Miravete considers general functional forms for

the mapping. The specificity in this one dimension allows us to examine general distributions of ex ante

infection risk rather than the particular class of beta distributions examined by Miravete, and to establish

bounds on the profit ratio both in the limit and as a function of skewness of the infection risk, all of

which are new results in the literature. Our analysis of social welfare in Section 3, empirical analysis in

Sections 4 and 5, and theoretical extensions in Sections 6 through 9 are new as well.

In a companion paper (Kremer, Snyder, and Williams 2004), we examine another reason firms can

appropriate more consumer surplus with drugs than with vaccines. Vaccines are more likely than drugs

to interfere with disease transmission. We build an integrated economic and epidemiological model and

find that the revenue gap between drugs and vaccines, and the ratio of social-to-private value, will be

largest in the case of rare diseases, and indeed can be arbitrarily large in percentage terms for sufficiently

rare diseases. Thus, holding constant the total burden of disease, firms will find developing vaccines for

the common but less serious diseases like the flu more profitable than for rarer but more deadly diseases.

Since HIV/AIDS is rare in the high-income countries that account for the bulk of pharmaceutical revenue,
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the model suggests that firms will be able to capture a greater fraction of the social value of drugs than of

vaccines.

Finally, this paper is also related to recent empirical work on the effect of market size (Acemoglu and

Linn 2003) and public policies (Finkelstein 2004) in determining pharmaceutical R&D investments for

a given product. Here, we present a theoretical model, calibrations, and empirical evidence suggesting

that R&D incentives across products are distorted, that these distortions can be large, and that they have

affected the development of medicines for sexually transmitted diseases. To the extent these distortions

have inhibited HIV/AIDS vaccine research, the welfare consequences are potentially enormous.

2 Model

Suppose a monopoly pharmaceutical manufacturer, called the firm, has the choice of developing a vaccine

or a drug. For the purposes of this model, we will define a vaccine as a medicine administered as a

preventative measure before a disease is contracted and define a drug as a medicine administered after a

disease has been contracted.3

The firm chooses whether to develop a vaccine, a drug, or both. Let kj ∈ [0,∞) be the present

discounted value of the fixed cost of developing medicine j, where j = v for the vaccine and j = d for

the drug. Let cj ∈ [0,∞) be the present discounted value of the cost of administering medicine j to an

individual consumer. Note that the drug may be administered later in a consumer’s life than a vaccine, and

so the nominal cost of the drug may be discounted more heavily than the vaccine, but such discounting

is reflected in cj since it is expressed as a present discounted value. Let ej ∈ [0, 1] be the efficacy of

medicine j, that is, the probability that medicine j prevents the consumer from experiencing harm from

the disease. Let sj ∈ [0, 1] be the expected present discounted harm of side effects from medicine j, that

is, the probability that a consumer experiences side effects multiplied by the present discounted value of

the harm from the side effects conditional on experiencing them. Assume the events that the medicine is

ineffective or produces side effects are independent for a given consumer, and each are independent across

3We recognize that not all medicines fit neatly in these definitions. For example, some vaccines, called therapeutic vaccines,

boost the immune systems of individuals who are already infected, and thus would be technically classified as drugs for the

purposes of our model. For another example, statins function as both cholesterol-reducing drugs and as heart-disease preventatives,

and thus could be considered a hybrid case for the purposes of our model.
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consumers. Let pj ∈ [0,∞) be the present discounted value of the price the firm receives for medicine

j.4 For j = v, d, b, where b represents the firm’s developing both medicines, let πj be producer surplus,

Πj = πj − kj be profit, CSj be consumer surplus, and Wj = CSj + Πj be social welfare. Let W̃j be

social welfare in the benchmark in which prices are set by a social planner at marginal cost.

Before purchasing any medicine, consumer i learns his or her infection risk xi ∈ [0, 1]. Assume xi

is a random variable with cumulative distribution function F (xi). Each consumer in the population has

a type given by an independent draw from this distribution. Variable xi is private information for the

consumer; the firm only knows the distribution from which xi is drawn.
5 This assumption captures the

fact that the consumer’s background and/or actions put him or her into a risk category that he or she

can observe more accurately than can outsiders. For example, engaging in unprotected sex with multiple

partners or in intravenous drug use would put a person at higher risk of contracting HIV/AIDS, but such

behaviors would be difficult for a firm to monitor accurately enough to be able to charge a discriminatory

price. Although our focus here is on HIV/AIDS, this type of heterogeneity is relevant for other diseases:

for example, frequenting mosquito-infected tropical regions increases the chances of contracting malaria

but, again, may be difficult to monitor accurately.

Define Φ(x̂) = Pr(xi ≥ x̂) =
∫ 1
x̂ dF (xi), implying that, if the distribution of infection risk is

continuous, Φ(x̂) = 1 − F (x̂), while if the distribution is discrete or mixed with an atom at x̂, Φ(x̂) =

1 − F (x̂) + Pr(x̂). Define the expectations operator E(xi) =
∫ 1
0 xi dF (xi).

Whether or not consumer i contracts the disease is represented by Bernoulli random variable σi, where

σi = 1 indicates i contracts the disease, an event that occurs with probability xi, and σi = 0 indicates i

does not contract the disease, an event that occurs with probability 1 − xi. The key difference between

a vaccine and a drug thus hinges on when the medicine is administered relative to the realization of σi.

A vaccine is administered before σi is realized and a drug is administered after. Throughout most of the

paper, we will assume the firm cannot commit to prices ex ante. This means that the drug price will extract

all of the surplus of a consumer who contracts the disease. The commitment assumption is without loss

4We will assume a caveat emptor regime in which the consumer bears the liability for harm, consumers’ willingness to pay

will be reduced by the harm they expect from side effects, and pj will reflect a discount for this lower willingness to pay.

The results would be identical assuming a caveat venditor regime in which the firm bears liability for harm. Other exogenous

legal/liability costs can be embodied in kj if the costs are fixed or in cj if the costs vary with the number of consumers who

receive the medicine.
5Analysis of the case in which xi is publicly observable but the firm cannot discriminate on xi is identical.
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of generality in the monopoly case since the optimal drug price without commitment is the same as the

optimal price with commitment. The assumption of no commitment serves merely to simplify the proofs.

Suppose consumers are risk-neutral. If a consumer contracts a disease and has not had a vaccine

or does not receive a drug, he or she experiences harm h ∈ [0,∞) in present discounted value terms.

Normalize the mass of consumers to unity. To rule out trivial cases, assume

ejh − sj > cj for j = v, d. (1)

The assumption in (1) ensures that the producer surplus from serving a consumer with the highest possible

infection risk xi = 1 is positive for both medicines. If (1) did not hold for medicine j, it is immediate

that the firm would not develop the medicine. Finally, let D be the total social burden of the disease, i.e.,

D = hE(xi), a term we will use to normalize our welfare measures in the subsequent analysis.

The next proposition, proved in the Appendix, provides expressions for the firm’s profits which we

will use to determine which medicine it will develop in equilibrium.

Proposition 1. The firm’s profit from developing a vaccine alone is

Πv = max
pv∈[0,∞)

{(pv − cv)Φ(x̂(pv))} − kv (2)

from developing a drug alone is

Πd = (edh − sd − cd)E(xi)− kd (3)

and from developing both medicines is

Πb = max
pv∈[0,∞)

{
(edh − sd − cd)

[∫ x̂(pv)

0
xi dF (xi) + (1 − ev)

∫ 1

x̂(pv)
xi dF (xi)

]

+ (pv − cv)Φ(x̂(pv))

}
− (kv + kd),

(4)

where x̂(pv) = (pv + sv)/(evh).

In equation (2), Πv is the result of a standard monopoly pricing problem. At a price of pv , a consumer

with infection risk x̂(pv) is indifferent between purchasing the vaccine and not. The vaccine producer

earns markup pv − cv for the mass of consumers Φ(x̂(pv)) with infection risk xi ≥ x̂(pv). To understand

the expression for Πd in (3), note that the firm sells the drug ex post at a price that extracts the consumer’s
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entire ex post surplus p∗d = edh− sd. The drug producer earns markup p∗d − cd for the mass of consumers

E(xi) who become infected. Finally, to understand the expression for Πb in (4), consider the two terms in

the maximand. The firm sells the vaccine at price pv to those with infection risk xi ≥ x̂(pv), generating

producer surplus equal to the second term in the maximand. The firm sells the drug ex post at a price

that extracts a consumer’s entire ex post surplus p∗d = edh − sd to those who contract the disease, both

those with infection risk xi < x̂(pv) who did not purchase the vaccine and those with xi ≥ x̂(pv) who

purchased the vaccine but for whom the vaccine was ineffective. The producer surplus from the drug

equals the first term in the maximand. Because the drug is priced to extract a consumer’s entire ex post

surplus, the presence of the drug does not affect the consumer’s vaccine consumption decision, so the

cutoff x̂(pv) has the same functional form whether the vaccine is developed alone as in (2) or together

with the drug as in (4).6

We can use the profit expressions from Proposition 1 to characterize which medicine the firm develops

in equilibrium. It develops a vaccine alone if Πv > max(Πd, Πb, 0), a drug alone if Πd > max(Πv , Πb, 0),

both if Πb > max(Πv, Πd, 0), and neither if max(Πv, Πd, Πb) < 0.

Comparative statics with respect to kj , cj , ej , and sj are straightforward. Ceteris paribus, the firm

prefers to develop medicine j, either alone or together with the other medicine, if medicine j is cheap to

develop (kj is low), cheap to produce a dose (cj is low), involves mild side effects (sj is low), and is an

effective cure (ej is high).
7

Examination of equations (2) and (3) reveals some inherent factors in favor of drugs. The generalized

marginal cost of administering medicine j—generalized to include both the cost of producing a dose cj

and the cost of side effects sj—is borne with certainty by each consumer who is vaccinated whether or not

6The proof of Proposition 1 allows for the full range of complicated mechanisms to sell vaccines. The proof shows that the

simple mechanism of selling the vaccine at a linear price is optimal. The assumption that the firm cannot commit ex ante to a

drug price restricts the possible mechanisms that can be used to sell drugs to the one we consider—a linear price that extracts an

infected consumer’s entire ex post surplus. However, it can be shown that allowing more complicated mechanisms that would

be feasible with commitment would not increase the firm’s profit.
7The model does not exhaust the list of factors that might lead the firm to prefer vaccines over drugs or vice versa. It is

straightforward to extend the model to consider alternative factors. For example, if consumers have diminishing marginal utility

of other consumption, vaccines would become relatively more profitable, since they would provide insurance to consumers for

which consumers would pay a premium. This premium may be substantial, since consumers would presumably be willing to pay

a high fraction of income for a drug, and hence would be relatively risk-averse. If consumers face per-period liquidity constraints,

the constraint may bind less with drugs since the total payment with drugs may be spread out in installments (with a payment

for each separate drug treatment), whereas the total payment for the vaccine would need to be paid in a lump sum at the time

the vaccine is administered.
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they would eventually have contracted the disease, but is only borne by consumers who actually contract

the disease with a drug. Hence the cost of administering a drug will tend to be lower ceteris paribus. On

the other hand, it could be argued that other inherent factors favor vaccines. Since people often learn they

have a disease only after suffering some harm from symptoms, whereas a vaccine, if effective, can prevent

the appearance of any symptoms. To capture this factor, one could increase ev relative to ed in the model,

favoring vaccines.

All of the factors from the previous paragraph and the comparative static effects from the paragraph

before that influence private and social R&D incentives the same way. Indeed, in the special case of

homogeneous consumers, we can make a stronger statement: Proposition 2 states that if consumers are

homogeneous, private and social R&D incentives are identical.

Proposition 2. Assume xi takes on a single, known value in the population of consumers, implying there

is no heterogeneity in the distribution of infection risk. Then the firm’s choice of whether to develop a

vaccine, drug, both, or neither is identical to a social planner’s.

The proposition follows immediately from the fact that, with homogeneous consumers, the monopolist can

extract 100 percent of consumer surplus and thus fully internalize social welfare. In the next section, we

argue that heterogeneity in infection risk drives a wedge between private and social incentives, leading to

a bias against vaccines.

3 Distribution of Infection Risk

The analysis is simplest in the case in which cj = sj = 0 and ej = 1 for j = v, d: both medicines are

costless to produce and administer, have no side effects, and are perfectly effective. Our positive analysis

will focus on this case throughout the remainder of the paper, although the key normative propositions

will hold for general parameters.

Given cj = sj = 0 and ej = 1 for j = v, d, developing the medicine with a lower development cost

kj is socially efficient. By Proposition 2, if consumers are homogeneous, the monopolist develops the

lower-kj medicine. If consumers are heterogeneous in their infection risk, there may be a bias against

developing a vaccine in that the monopolist chooses to develop the drug over the vaccine even though

kv < kd. We will adopt the following formal measure of what we mean by this “bias” against vaccines in
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Figure 1: PB as a measure of bias in the firm’s private incentives against developing a vaccine. (Drawn

assuming cj = sj = 0 and ej = 1 for j = v, d.

firms’ private incentives:

PB = sup
(kv ,kd)∈[0,∞)2

{(
kd − kv

D

)
1
(
Πd > max(Πv, 0)

)}
(5)

where 1 is the indicator function. In words, PB is an upper bound on how much more developing a drug

could cost than a vaccine, but the firm still develops the drug.8 It is expressed as a percentage of the

total social burden of the disease, D. The idea behind PB is that, if one had an uninformed prior over

the space of free parameters (kv, kd), if PB = 0, there would be no bias in favor of drugs in that the

set of parameters for which a drug is developed has the same measure as the set for which a vaccine is

developed (Figure 1, Panel I). If PB > 0, the set of parameters for which a drug is developed has a larger

measure than the set for which a vaccine is developed (Figure 1, Panel II). Another nice feature of PB

is that, given our parametric assumptions, there is a simple mapping between it and the ratio of producer

8An analogous measure of the bias against drugs could be defined. Proposition 4 implies that this analogous measure would

never be positive.
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surplus πv/πd, as the next proposition shows.

Proposition 3. Assume cj = sj = 0 and ej = 1 for j = v, d. Then PB = 1− (πv/πd).

By Proposition 3, we can equivalently consider PB or the ratio πv/πd to analyze the firm’s bias against

vaccines.

As argued above, if there is no heterogeneity in the distribution of infection risk, the monopolist

develops the lower-kj medicine, which in turn implies PB = 0. The next proposition, proved in the

Appendix, shows that, if there is any heterogeneity in infection risk, then PB > 0; and so there is a bias

against vaccine development.

Proposition 4. Assume cj = sj = 0 and ej = 1 for j = v, d. Assume there is nontrivial heterogeneity

in the distribution of infection risk; i.e., at least two distinct subintervals of (0, 1] have positive measure.
Then πd > πv, or, equivalently, PB > 0. That is, the firm earns more producer surplus from a drug than
a vaccine, and is thus biased against developing the vaccine. The firm weakly prefers not to develop both

medicines and strictly prefers not to if kv > 0.

Proposition 4 implies that if there is heterogeneity in infection risk, then the set of parameters for

which different medicines are developed is given by Figure 1, Panel II. The locus of equal fixed costs (the

45 degree line) lies below the region in which vaccines are developed, so it follows that, for equal fixed

costs, either a drug is developed or, if fixed costs are sufficiently high, no medicine is developed. Only if

kd is sufficiently high relative to kv will a vaccine be developed.

Figure 2 provides simple graphical arguments that can be used to establish Proposition 4. Substituting

the parametric assumptions from the statement of the proposition into equation (2) and noting πv = Πv+kv,

we have πv = maxpv∈[0,∞) {pvΦ(pv/h)}. Now Φ(pv/h) is the demand curve for a vaccine. Figure 2

graphs the corresponding inverse demand curve. One can see that πv is the area of the largest shaded

rectangle that can be inscribed under the inverse demand curve. Substituting the parametric assumptions

from the statement of the proposition into (3) and noting πd = Πd +kd, we have πd = hE(xi), which can

be shown, integrating by parts, to be equal to the whole area under the inverse demand curve. No matter

how the rectangle is inscribed, and no matter the shape of the curve, the area of the rectangle will be less

than the area under the whole curve, so πd > πv.

We have shown that the firm earns more producer surplus from drugs than from vaccines and in that

sense is biased against vaccines, raising the question of how much more producer surplus drugs provide.
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Figure 2: Geometric comparison of producer surplus from vaccines and drugs. (Drawn assuming cj =
sj = 0 and ej = 1 for j = v, d.)

We will answer this question in a series of propositions, starting with the case in which xi is a discrete

random variable of arbitrary form and building from there.

Suppose that consumers fall into R risk classes indexed by r = 1, . . . , R. Within each risk class r,

consumers have the same probability xr of contracting the disease. Consumers observe their risk class,

but the firm cannot. We will arrange the risk classes without loss of generality such that 0 ≤ x1 ≤ · · · ≤

xR ≤ 1. Let mr ∈ (0, 1) be the mass of consumers in risk class r and normalize the mass of the total

population such that
∑R

r=1 mr is equal to one. The next proposition, proved in the Appendix, shows that

the number of risk classes determines a tight upper bound on the amount the profit from a drug exceeds

that from a vaccine, and this proposition will serve as a useful building block for subsequent results.

Proposition 5. Assume cj = sj = 0 and ej = 1 for j = v, d. For any ε > 0, there exist distributions of
consumers in R risk classes such that πv/πd < 1/R + ε. That is, we can find distributions of consumers
in R risk classes such that the producer surplus from a vaccine can be made arbitrarily close to 1/R

times the producer surplus from a drug or, equivalently, PB can be made arbitrarily close to 1 − 1/R.
Moreover, 1/R is a lower bound on πv/πd.

In the proof of Proposition 5, contained in the Appendix, we construct a distribution of consumers in

which the masses of the R risk classes {mr}R
r=1 decline geometrically. Further, we specify probabilities
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{xr}R
r=1 such that the firm earns the same profit whether it sells to all consumers at a low price hx1, to

all consumers but the lowest risk class at a higher price hx2, and so on up to selling to the highest risk

class alone at price hxR.

A corollary of Proposition 5 is that there exist distributions of consumer types such that the producer

surplus from vaccines is arbitrarily smaller than that from drugs. This can be seen by taking the limit as

R approaches infinity in the proposition. Stated formally, we have the following proposition.

Proposition 6. Assume cj = sj = 0 and ej = 1 for j = v, d. There exist distributions of consumers such
that πv/πd can be made arbitrarily close to zero or, equivalently, PB can be made arbitrarily close to its

theoretical upper bound of 1.

Proposition 5 has another straightforward corollary, to the simplest possible case of consumer het-

erogeneity, that is, the two-type case with a low-risk class and a high-risk class. The example from the

Introduction (with 100 consumers, 90 of whom have a 10 percent chance of contracting the disease and 10

of whom have a 100 percent chance) is such a case. As noted in the Introduction, producer surplus from

a vaccine is only 53 percent of that from a drug in this example. Proposition 5 implies that the producer

surplus from a vaccine can be as little as half that from a drug in the two-type case, but no less. The

example from the Introduction approaches this bound of one half, and we can come closer to the bound

with examples in which the size of the high-risk pool as well as the probability of contracting the disease

in the low-risk pool are reduced. For example, consider a population of 100 consumers, 99 of whom have

a 1 percent chance of contracting the disease, and one of whom has a 100 percent chance. Then it can

be shown, given the assumption from the example in the Introduction that the harm from the disease is

$100, that producer surplus from a drug is $1,990 while producer surplus from a vaccine is $1,000, only

slightly more than half as much.

The two-type case provides important insights into the settings in which firms will strongly prefer

drugs to vaccines. First, our results suggest that the gap in producer surplus between vaccines and drugs

will be especially large in the case of skewed distributions of consumer risk: distributions in which a large

segment of the population has a very small probability of contracting the disease and a small segment of

the population has a large probability of contracting the disease will create the largest relative incentives

for the firm to develop drugs. Proposition 7 provides a more formal statement of the relationship between

skewness of the infection-risk distribution and the ratio of producer surplus πv/πd.
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Figure 3: Ratio of producer surpluses depends on skewness of density and curvature of inverse demand.

(Drawn assuming cj = sj = 0 and ej = 1 for j = v, d.)

Proposition 7. Assume cj = sj = 0 and ej = 1 for j = v, d. Let f(xi) be the density function
associated with consumer types xi. Assume f(xi) is differentiable. If f ′(xi) = 0 (implying xi is uniformly

distributed), then πv/πd = 1/2. If f ′(xi) > 0 (a sufficient condition for right-skewness), then πv/πd >

1/2. If f ′(xi) < 0 (a sufficient condition for left-skewness), then πv/πd < 1/2.

The proof, following from results in Malueg (1993), is illustrated in Figure 3. The case f ′(xi) = 0 is

drawn in Panel I of the figure. If f ′(xi) = 0, then xi is uniformly distributed and has no skewness. The

associated inverse demand curve Φ(pv/h) can easily be shown to be linear. By calculations similar to

the proof of Proposition 1 in Malueg (1993), the area of the largest rectangle that can be inscribed under

the curve (πv in our setting) is half of the area under the curve (πd in our setting), so πv/πd = 1/2. If

f ′(xi) > 0 as in Panel II of the figure, then the distribution of xi is left-skewed. The associated inverse

demand can be shown to be concave. By Malueg (1993) (and by inspection of Panel II), the area of the

largest rectangle that can be inscribed under the inverse demand curve is more than half the area under the
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inverse demand curve, so πv/πd > 1/2. If f ′(xi) < 0 as in Panel III of the figure, then the distribution

of xi is right-skewed, and the associated inverse demand can be shown to be convex. By Malueg (1993)

(and by inspection of Panel III), the area of the largest rectangle that can be inscribed under the inverse

demand curve is less than half the area under the curve, so πv/πd < 1/2. In sum, in the baseline case

with xi following a uniform distribution and thus having no skewness, the producer surplus from vaccines

is half that from drugs. Right-skewness increases the bias against vaccines.

Propositions 4 through 7 dealt with the positive question of how the shape of the distribution of

infection risk affects the firm’s bias against developing a vaccine. We now turn to the normative question

of the potential social cost of this bias. The next proposition, proved in the Appendix, states there is

socially too little incentive to develop a vaccine relative to a drug.

Proposition 8. The firm never develops a vaccine unless it is socially efficient to do so. There exist

cases in which the firm develops a drug but it would have been socially efficient to develop a vaccine.

The results are true whether in the benchmark the social planner chooses medicines but the monopolist

chooses prices (so social welfare is Wj ) or the social planner chooses both medicines and prices (so

social welfare is W̃j).

The proof of the proposition is fully general, holding for arbitrary parameters cj , sj , and ej , not just the

normalized values cj = sj = 0 and ej = 1 for j = v, d.

Having demonstrated that the bias against vaccines is socially inefficient, we turn to an analysis of the

conditions under which the social cost is large and how large it can possibly be. To this end, we introduce

a measure of social cost that is analogous to our index of the bias in private incentives PB:

SB = sup
(kv ,kd)∈[0,∞)2

{(
Wv − Wd

D

)
1
(
Πd > max(Πv, 0)

)}
. (6)

In words, SB is the greatest possible social cost of the bias against vaccines, equal to the loss of welfare

if the firm develops a drug when a vaccine would have provided more social welfare. It is expressed

as a percentage of the total social burden of the disease D. SB ranges from zero for no social cost to a

maximum value of 1. The next proposition provides a simple formula for SB.

Proposition 9. Assume cj = sj = 0 and ej = 1 for j = v, d. Then SB = CSv/D.

The proof of Proposition 9 provided in the Appendix is more general than stated above. The proposition
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continues to hold if we relax our parametric assumptions and redefine SB to be the supremum where

parameters cj , sj , ej are freely varied in addition to kj , j = v, d. This is because the supremum over these

freely varying parameters happens to be attained for the assumed values cj = sj = 0 and ej = 1. This

remark also applies to the other propositions involving SB, namely Propositions 10 and 11, below.

Proposition 10. If Φ is linear, SB = 1/4. If Φ is concave, SB ∈ [0, 1/3]. If Φ is convex, SB ∈ [1/8, 5/8].
The bounds are tight in that distributions of infection risk can be constructed such that SB comes arbitrarily

close to the bounds.

Proposition 10 implies that in the benchmark case of a uniform distribution of infection risk, a case

argued earlier (Figure 3, Panel I) leads to a linear Φ and thus a linear inverse demand curve, the social

cost of the firm’s bias toward drugs can be as much as 1/4 of the total social burden of the disease. If

there is positive-skewness in the distribution of infection risk, leading to a convex Φ and thus a convex

inverse demand curve, the social cost of the firm’s bias against vaccines can be as much as 5/8 (62.5

percent) of the total social burden of the disease.

4 Calibrations for Sexually Transmitted Diseases

In this section, we calibrate the model for sexually transmitted diseases in general and also for the spe-

cific case of HIV/AIDS. We estimate the underlying distribution of infection risk using data on sexual

behavior in the U.S. population. The 1999–2000 National Health Examination Survey (U.S. Centers for

Disease Control 2000), which we will refer to as NHANES, provides nationally representative data on the

lifetime number of sexual partners broken down by the individual’s gender and sexual orientation.9 The

distribution of lifetime sexual partners is highly skewed: the median is 4, but the mean is 13.2. Skewness

in the distribution of lifetime sexual partners induces skewness in the distribution of infection risk in our

calibrations, which in turn leads to a large gap between the producer surplus from a vaccine and a drug.

In our first calibration, we assume the same probability of transmission per partner independent of

gender or sexual orientation. We assume the simplest possible mapping, a linear mapping, from lifetime

sexual partners to infection risk. Figure 4 graphs the resulting inverse demand curve. The skewed

9Due to data limitations, we assume individuals are exclusively heterosexual or homosexual. Data limitations prevent us from

accounting for another source of heterogeneity, intravenous drug use, in the calibrations.
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distribution of infection risk produces a highly convex inverse demand curve. Recall πv is given by the

area of the largest rectangle that can be inscribed under the curve (the shaded rectangle in the figure)

and πd by the area under the curve. The vertical axis was truncated to make the graph more readable,

hiding some of the area under the curve. Still, it is apparent that πv is much less than πd. To be precise,

πv/πd = 0.23. It follows that PB = 0.77. Using the formula from Proposition 9, it can be shown

SB = 0.44.

Our second calibration also applies to sexually transmitted diseases in general. We maintain all the

assumptions from the previous paragraph but change the mapping from lifetime sexual partners into

infection risk. We will replace the linear mapping with a mapping due to Kaplan (1990). The virtue

of the Kaplan over the linear mapping is that it allows for concavity that is consistent with available

medical evidence (see, e.g., Winkelstein et al. 1987 for a study of the mapping for homosexual males

in San Francisco). More sophisticated models would require parameters for which we do not have good

proxies. Following Kaplan (1990), suppose there is a constant probability β of being infected from each

partner regardless of past contact history. Then a person with n sexual partners would have probability

1 − (1 − β)n of ever contracting the disease. We will take β = 0.06 percent, equal to an estimate of the

current HIV/AIDS prevalence rate in the United States, which according to UNAIDS (2004) is 0.6 percent,

times the average per-partner transmission rate, which following Roskstroh et al. (1995) we will take to

be 10 percent. Figure 5 graphs the resulting inverse demand curve. One can compute πv/πd = 0.24,

PB = 0.76, and SB = 0.56.

Our last calibration is directed toward the specific case of HIV/AIDS. An additional possible source of

heterogeneity with HIV/AIDS beyond the heterogeneity in the rate of partner change is that the prevalence

rate is much higher for a small subgroup, homosexual males, than for the general population. The

NHANES data allow us to estimate the distribution of lifetime sexual partners for homosexual males

separately from that for the rest of the population. We will use the Kaplan model to map lifetime sexual

partners into infection risk. For homosexual males, we will take βh = 4.3 percent, equal to the estimated

HIV/AIDS prevalence rate among homosexual males in the United States of 14 percent times the per-partner

transmission rate for homosexual males.10 Royce et al. (1997) estimate the male-to-male transmission rate

10These prevalence rates can be computed as follows. Let Ph (respectively, Po) be the population of homosexual males (others)

and βh (βo) be the prevalence rate among homosexual males (others). Ph and Po can be estimated from the NHANES data.
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Figure 4: Inverse demand curve for sexually transmitted-disease calibration with probability of infection

assumed linear in lifetime number of sexual partners. (Drawn assuming cj = sj = 0 and ej = 1 for
j = v, d and h = 1. To aid visualization, the vertical axis has been truncated from pv = 1 to pv = 0.25.)

Figure 5: Inverse demand curve for sexually transmitted-disease calibration using Kaplan model of proba-

bility of infection. (Drawn assuming cj = sj = 0 and ej = 1 for j = v, d and h = 1. To aid visualization,
the vertical axis has been truncated from pv = 1 to pv = 0.25.)
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Figure 6: Inverse demand curve for HIV/AIDS calibration. Probability of infection given by the Kaplan

model. Transmission rate for homosexual males allowed to differ from rest of population. (Drawn assuming

cj = sj = 0 and ej = 1 for j = v, d and h = 1. To aid visualization, the vertical axis has been truncated
from pv = 1 to pv = 0.25.)

at three times the male-to-female transmission rate, so we will take this rate to be 30 percent. For others

in the population, we will take βo = 0.028 percent, equal to the estimated HIV/AIDS prevalence rate for

non-homosexual males in the United States of 0.28 percent (see footnote 10) times the average per-partner

transmission rate of 10 percent from Rockstroh et al. (1995). Figure 6 graphs the resulting inverse demand

curve. One can compute πv/πd = 0.30, PB = 0.70, and SB = 0.02. This calibration contrasts with the

first two in that, rather than selling the vaccine at a low price to a large segment of the population, the

profit-maximizing strategy is to sell to a small segment of high-risk homosexual males at a very high price.

The profit ratio is similar to that in the first two calibrations, but the maximum possible social distortion,

SB, is much smaller at 2 percent. SB is so small in the last calibration because the vaccine is sold to so

few consumers and thus does not generate much social welfare in the last calibration.

In sum, the results are similar across the calibrations. In all three, producer surplus from a vaccine

Given the 0.6 percent figure for HIV/AIDS prevalence from UNAIDS (2004), βh and βo must satisfy (βhPh + βoPo)/(Ph +
Po) = 0.6. Assuming the ratio of AIDS cases between two subgroups equals the ratio of HIV/AIDS cases provides another
equation: (βhPh)/(βoPo) = 480, 509/396, 765, where 480,509 is the cumulative number of reported AIDS cases resulting from
homosexual male contact as of 2002 and 396,765 the number of cases due to other causes (U.S. Centers for Disease Control

2004). Solving these two equations simultaneously gives the values of βh and βo in the text.
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would be less than a third that from a drug. The cost of developing a drug could be higher than that of a

vaccine by more than 70 percent of the total social burden of the disease and the firm could still have an

incentive to develop the drug. The social cost of this bias against vaccines varies across the calibrations but

can be more than half the total social burden of the disease. Thus, heterogeneity in the actual distribution

of infection risk appears to be sufficient to make the bias against vaccines, which we identified in theory,

large enough to be of practical concern.

5 Empirical Tests Based on Sexual Transmission

The model suggests that distortions toward drugs and away from vaccines are greater for diseases with

highly skewed distributions of infection risk than for diseases for which people have similar infection risks.

We do not have data on the distribution of infection risk for many diseases. A rough distinction can be

drawn, however, between sexually transmitted and other diseases. Section 4 showed that the distribution

of one of the main risk factors for sexually transmitted diseases, number of partners, has considerable

variance and skewness in the population. For other diseases, especially diseases spread through the air

like influenza, individuals’ risk is likely to be more homogeneous. The fact that sexual transmission is at

best an imperfect indicator of heterogeneity of infection risk is likely to reduce the power of our empirical

tests that follow.

We test the prediction that heterogeneity in the distribution of infection risk, as proxied by sexual

transmission, is associated with a lower likelihood of vaccine development and a higher likelihood of drug

development using data on diseases and their associated medicines. The main data came from the list of

Nationally Notifiable Infectious Diseases for the United States (U.S. Centers for Disease Control 2003).

This list is maintained by state and national public health officials; it includes diseases whose spread

is considered to need monitoring in the United States. The dataset was supplemented by the Maryland

Department of Health list of common diseases (Maryland Department of Health 2003), which includes some

common but non-notifiable diseases such as influenza and rotavirus. For this list of diseases, information

was compiled from various public health sources (the U.S. National Institutes of Health, Department of

Health and Human Services, and Centers for Disease Control) on the types of medicines available to treat
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the disease and whether sexual contact is the most common means of transmission.

Table 1: Summary statistics

Number of diseases in data set

For which For which

Transmission mode Total vaccine developed drug developed

Sexually transmitted 10 1 9

Non-sexually transmitted 65 25 44

Total 75 26 53

Note: Categories may not sum to totals because some diseases have both a drug and a vaccine and some diseases have neither.

Table 4 in the Appendix contains the dataset, consisting of 75 diseases. Table 1 provides summary

statistics. Consistent with the model, virtually all sexually transmitted diseases (9 out of 10, 90 percent)

have a drug treatment but no vaccine. For non-sexually transmitted diseases, the division is more even

between those with a vaccine (25 of 65, 38 percent) and with a drug treatment (44 of 65, 68 percent).

To provide a measure of statistical significance for these differences, we ran ordinary least squares

regressions in which the dependent variable is an indicator for the medicine developed and the main variable

of interest is an indicator for whether the disease is sexually transmitted.11 The regressions include fixed

effects for type of organism (parasite, virus, fungus, bacterium), because the medical literature suggests

the technological difficulty of developing vaccines and drugs varies among these organisms. For example,

unlike viruses, most bacterial infections can be treated with antibiotics. The results are reported in Table 2.

Vaccines are significantly less likely to be developed for sexually than non-sexually transmitted diseases

(a coefficient of –0.365, significant at the 5 percent level). Drugs are significantly more likely to be

developed for sexually than non-sexually transmitted diseases (a coefficient of 0.340, significant at the 5

percent level). The fixed effects for type of organism come in as expected, with vaccines significantly

more likely, and drugs significantly less likely, to be developed for viruses than the other diseases.

The results are generally stronger if we restrict attention to the subsample of 63 diseases for which some

11We ran a linear probability model (i.e., ordinary least squares regression) rather than alternative (e.g., probit, logit) speci-

fications because sexual transmission is a perfect predictor of vaccine development for bacterial diseases, leading to a problem

in estimating these alternatives. Probit results that pool bacterial and viral diseases in a single category, thereby avoiding the

problem of perfect prediction, produced results similar to those reported in Table 2.
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Table 2: Probability of developing medicines

All diseases Diseases having some medicine

Dependent variable: Vaccine Drug Both Neither Vaccine Drug Both

developed developed developed developed developed developed developed

(1) (2) (3) (4) (5) (6) (7)

Sexually transmitted −0.365∗∗ 0.340∗∗ −0.239∗ −0.214∗ −0.498∗∗∗ 0.199 −0.299∗∗

(0.148) (0.134) (0.139) (0.127) (0.142) (0.180) (0.149)

Virus 0.611∗∗∗ −0.477∗∗∗ 0.130 −0.004 0.757∗∗∗ −0.600∗∗∗ 0.157
(0.157) (0.143) (0.148) (0.135) (0.165) (0.113) (0.174)

Fungus −0.036 0.221 −0.077 −0.262 −0.094 −0.024 −0.118
(0.282) (0.257) (0.266) (0.243) (0.274) (0.187) (0.289)

Bacterium 0.310∗∗∗ 0.049 0.244∗ −0.115 0.312∗∗ −0.058 0.254
(0.149) (0.136) (0.140) (0.128) (0.155) (0.106) (0.163)

Constant 0.036 0.779∗∗∗ 0.077 0.262∗∗ 0.094 1.024∗∗∗ 0.118
(0.137) (0.125) (0.129) (0.118) (0.145) (0.098) (0.153)

R2 0.244 0.317 0.100 0.062 0.385 0.479 0.127

Notes: Ordinary least squares regressions. Regressions (1) through (4) use 75 observations; (5) through (7) use 63 observations.

Omitted disease fixed effect is parasite. Significantly different from zero in a two-tailed test at the ∗10 percent level, ∗∗5

percent level, ∗∗∗1 percent level.

Table 3: Probability of developing medicines, controlling for adult onset of disease

All diseases Diseases having some medicine

Dependent variable: Vaccine Drug Both Neither Vaccine Drug Both

developed developed developed developed developed developed developed

(1) (2) (3) (4) (5) (6) (7)

Sexually transmitted −0.201 0.325∗ −0.145 −0.269∗ −0.327∗ 0.114 −0.213
(0.178) (0.166) (0.171) (0.157) (0.178) (0.123) (0.190)

Adult onset −0.291 0.026 −0.166 0.099 −0.300 0.150 −0.150
(0.189) (0.172) (0.177) (0.162) (0.192) (0.132) (0.205)

Virus 0.598∗∗∗ −0.476∗∗∗ 0.122 0.000 0.741∗∗∗ −0.591∗∗∗ 0.150
(0.156) (0.144) (0.148) (0.136) (0.163) (0.112) (0.175)

Fungus −0.051 0.222 −0.085 −0.257 −0.113 −0.015 −0.128
(0.280) (0.259) (0.266) (0.244) (0.271) (0.187) (0.290)

Bacterium 0.316∗∗ 0.048 0.247∗ −0.117 0.309∗∗ −0.056 0.253
(0.148) (0.136) (0.140) (0.128) (0.153) (0.106) (0.164)

Constant 0.051 0.778∗∗∗ 0.085 0.257∗∗ 0.113 1.015∗∗∗ 0.128
(0.136) (0.126) (0.129) (0.119) (0.144) (0.099) (0.154)

R2 0.270 0.317 0.112 0.067 0.411 0.490 0.134

Notes: See the notes to Table 2.
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medicine has been developed [Table 2, columns (5) through (7)]. The model suggests there are reasons

orthogonal to the heterogeneity in the infection risk distribution, reasons such as a low disease burden h,

that it may not be worthwhile to develop any medicine. Excluding diseases for which no medicine has

been developed can thus be expected to reduce the noise in the regressions. The one exception to the

appearance of generally stronger results is the effect in column (6) of sexual transmission on the probability

a drug is developed, which remains positive but becomes statistically insignificant.

Other factors could affect the relative cost of developing medicines for sexually transmitted diseases or

the social burden of these diseases. One additional factor for which we have data is average age of disease

onset. This variable will help address a concern that vaccines are most useful for childhood diseases

because vaccines are usually administered in childhood, whereas sexually transmitted diseases are usually

contracted by adults. Table 3 reports regressions including an indicator for whether the disease typically

strikes adults. As expected because of its correlation with sexual transmission, the inclusion of the adult-

onset indicator reduces the magnitude and significance of the sexual transmission coefficients. However,

sexually transmitted diseases are still significantly more likely to have a drug treatment developed in the

column (2) regression including all diseases (a coefficient of 0.325, significant at the 10 percent level)

and are still significantly less likely to have a vaccine developed in the column (5) regression including

the subset of diseases for which a medicine has been developed (a coefficient of –0.327, significant at the

10 percent level). The adult-onset indicator comes in as expected, making vaccines less likely and drug

treatments more likely, but is not significant in any regression.

6 Government Purchases

In the remainder of the paper, we consider various extensions to our model of Section 2. Thus far, we have

focused on the case of pharmaceutical sales on private markets. For many vaccines, however, governments

are the main purchasers, not private parties. We argue in this section that our results are still applicable

to the case of government procurement as long as price negotiations between the firm and the government

are influenced by the threat point of the profits the firm would realize with private sales if negotiations

with the government broke down.
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Suppose the firm and government engage in Nash bargaining over the sale of medicine j after the firm

has decided which medicine to develop and has sunk its investment in R&D. For ease of comparison, we

will assume that this sunk cost is the same for either medicine. Assume the government’s objective is to

maximize consumer surplus and the firm’s is to maximize profit.12

Given these objectives, the “pie” over which the parties bargain equals the potential social welfare from

optimal use of the medicine (i.e., marginal-cost pricing), which recall is denoted W̃j . Let T
f
j be the firm’s

threat point in Nash bargaining and T g
j be the government’s. Then the Nash bargaining formula yields the

following expression for Nj , the firm’s equilibrium surplus: Nj = (W̃j +T f
j −T g

j )/2. Assuming parties’

threat points are given by what they would earn if it the medicine were sold on the private market rather

than to the government, we have T f
j = Πj and T g

j = CSj .
13 Substituting these threat points into the Nash

bargaining formula,

Nj =
1
2
(W̃j + Πj − CSj). (7)

To assess whether introducing government procurement solves the problem of the social cost of a bias

against vaccines, we will introduce a bit more notation. Define

SBG = sup
(kv ,kd)∈[0,∞)2

{(
W̃v − W̃d

D

)
1
(
Nd > max(Nv, 0)

)
}

. (8)

SBG is the greatest possible social cost of the bias against vaccines as a percentage of the total social

burden of the disease. It is the analogue of SB from equation (6), except SBG is for the case of sales to the

government rather than sales on the private market. The next proposition, proved in the Appendix, implies

that allowing for government purchases does not eliminate the social cost of the bias against vaccines;

indeed, by some measures it can exacerbate it.

Proposition 11. SBG ≥ SB.

The proof follows from the fact that with government procurement, the government sets efficient prices.

Thus, there is more social welfare at stake (W̃j rather than Wj), and a larger potential distortion from the

12Assuming alternatively the government’s objective is to maximize social welfare, with equal weights given to producer and

consumer surplus, Nash bargaining would trivially result in the allocation of all surplus to the firm.
13There are other possibilities for threat points. For example, the government could hypothetically refuse to grant approval for

private sales of the medicine in the event of a bargaining breakdown, implying T f
j = 0. However, at least in the United States

(by far the largest single market), once approval is granted the government would not stop private sales of the product.
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wrong choice of medicine, than when medicines are sold on the private market at monopoly prices.14

It can be verified that Proposition 11 holds in the calibrations from Section 4. In the first calibration,

SBG = 0.72 > 0.44 = SB. In the second calibration, SBG = 0.78 > 0.56 = SB. In the third calibration,

SBG = 0.51 > 0.02 = SB.

The conclusion that government procurement does not eliminate the social cost of the bias against

vaccines is essentially an instance of the familiar hold-up problem (Klein, Crawford, and Alchian 1978).

The firm decides which medicine to develop before negotiating with the government. Recognizing that it

does not appropriate all the surplus in bargaining, the firm may distort its decision to appropriate more

surplus; thus the firm is concerned about how profitable the medicines are relative to each other in the

threat point, that is, on the private market.

In the model, there are advantages to having the government commit to prices before firms invest,

because this will help protect the firm’s R&D from hold up by the government and thus enhance investment.

This point has been made before. What the analysis in this section makes clear is that precommitment

to prices will also encourage the firm to make the socially efficient decision regarding which medicine

to develop. In the model, if the government can set prices before the firm makes this decision, it can

induce the firm to develop the vaccine precisely when it is socially efficient to do so, i.e., when W̃v > W̃d.

This provides another justification for advance purchase commitment programs for vaccines of the type

described by Kremer (2001).

7 Multiple Sources of Consumer Heterogeneity

This section considers the case in which consumers vary not only in probability x of contracting the

disease but also in a second dimension, y, willingness to pay for a unit reduction in probability of

infection. Variation in income provides a natural source of variation in y.15

If firms can perfectly price discriminate on the basis of y, the analysis from Section 3 can be generalized

14The fact that the maximum social cost of bias against vaccine (as measured by SB and SBG) is higher with government

procurement does not imply that government procurement increases social cost for all distributions of infection risk. For instance,

using the numerical example from the Introduction, it can be shown that if kd − kv ∈ (450, 900), the firm makes the socially
inefficient choice to develop a drug if medicines are sold on the private market but not if there is government procurement.

15In contemporaneous research, Kessing and Nuscheler (2002) study monopoly pricing of a vaccine when income is the sole

source of consumer heterogeneity.
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by calculating the vaccine and drug revenue given the marginal distribution of x at each value of y and

integrating over y. The qualitative conclusions will be similar to those in Section 3. On the other hand, if

firms cannot discriminate on the basis of y, either because y is unobservable or because of problems with

resale, we can generate cases in which our previous results are reversed, and the firm prefers to develop

a vaccine rather than a drug. In particular, the cases arise when x and y are negatively correlated.

Assume each consumer i has two pieces of private information: random variable xi ∈ [0, 1], continuing

to represent the probability that i will contract the disease, and random variable yi ∈ [0, h], representing i’s

willingness to pay for a given reduction in probability of infection. Let F (xi, yi) be the joint distribution

function, FX(xi) and FY (yi) be the marginal distribution functions, and FX |Y (xi|yi) and FY |X(yi|xi) be

the conditional distribution functions for xi and yi.

Assume the firm cannot discriminate on xi or yi. Maintain the parametric assumptions from Section 3:

cj = sj = 0 and ej = 1 for j = v, d.

Consider the vaccine producer’s profit-maximization problem. Let zi = xiyi be consumer i’s risk of

contracting the disease times her willingness to pay, and let G(zi) be the cumulative distribution function

associated with zi. Using this notation, and recalling our parametric normalizations, consumers buy the

vaccine if zi ≥ pv , implying the demand for the vaccine is Γ(pv), where Γ(pv) =
∫ h
pv

dG(zi). Hence

Πv = max
pv∈[0,∞)

{pvΓ(pv)} − kv. (9)

Next consider the drug producer’s profit maximization problem.16 Conditional on contracting the

disease, consumer i would be willing to buy the drug as long as his/her willingness to pay yi exceeds the

price pd. Integrating over the mass of consumers satisfying the condition yi ≥ pd implies that demand

for the drug is EX |Y (xi|yi ≥ pd)ΦY (pd), where EX |Y (·) is the expectation taken with respect to the
16To simplify the discussion, we ignore the possibility of developing both medicines. It can be shown that with multiple

sources of heterogeneity,

Πb = max
(pv,pd)∈[0,h]2

{
pvEY

(
EX|Y

(
xi

∣∣∣∣yi, xi >
pv

min(yi, pd)

))
+ pdEY

(
EX|Y

(
xi

∣∣∣∣yi, xi ≤
pv

min(yi, pd)

))}
.
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conditional distribution FX |Y and ΦY (pd) =
∫ h
pd

dFY (yi). Hence

Πd = max
pd∈[0,∞)

{
pdEX |Y (xi|yi ≥ pd)ΦY (pd)

}
− kd. (10)

We saw in Proposition 4 that when there was nontrivial heterogeneity in infection risk alone, πd > πv .

With multiple sources of heterogeneity, πv and πd can no longer be unambiguously ranked. Roughly

speaking, the amount of consumers’ private information embodied in (9)—a measure of the firm’s difficulty

in extracting rent from consumers—depends on the joint distribution of xi and yi, whereas the amount of

consumers’ private information embodied in (10) depends only on the marginal distribution of yi since xi

has been integrated out. Whether one or the other embodies less private information depends on whether

there is less private information in a joint or marginal distribution. If xi and yi are independent, integrating

one of the sources of private information out, as in (10), will reduce the amount of private information.

The result from Proposition 4, πd > πv , is recovered, as the following proposition, proved in the Appendix,

states.

Proposition 12. Assume cj = sj = 0 and ej = 1 for j = v, d. Assume there is non-trivial heterogeneity
in the distribution of infection risk. If the distributions of xi and yi are independent, then πd > πv.

On the other hand, there exist cases in which there is less private information in the joint distribution than

the marginal distribution of yi, in particular if xi and yi are negatively correlated. Then πv > πd.

We will demonstrate a case in which πv > πd in a calibration using data on the distribution of

HIV/AIDS prevalence and the distribution of income across countries. We will assume that price dis-

crimination is impossible across countries. If we assumed alternatively that price discrimination across

countries were possible, consumer heterogeneity would effectively disappear from the calibration for the

reasons noted above. Besides providing us with a convenient numerical illustration, the assumption of

no price discrimination across countries is relevant for policy. Although firms currently have at least a

partial ability to price discriminate across countries, recent challenges to international price discrimination

suggest this ability may be impaired in the future.17

Consider then the market as consisting of the entire world population. Treat all individuals within

17The calibration is thus relevant for the ongoing policy debate about facilitating the gray market in pharmaceuticals. See, for

example, Cramps and Hollander (2003) for an analysis of parallel pharmaceutical importation.
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Figure 7: Comparison of producer surplus from an HIV/AIDS vaccine to that from a drug in international

example with income heterogeneity and no price discrimination. (Drawn assuming cj = sj = 0 and ej = 1
for j = v, d. Axes have been scaled so a unit of area represents the same producer surplus in both panels.)

any given country as homogeneous, with the same income and chance of infection; the analysis could be

extended to allow for distributions of xi and yi within each country. We use country-level data on per-

capita GNP, population, and estimated number of HIV-positive individuals to approximate our two sources

of consumer heterogeneity.18 We approximate the risk of contracting the disease, xi, as the fraction of

people within a given country that are HIV-positive. The correlation of xi and per capita GNP yi across

countries for HIV/AIDS is significantly negative at −0.13, raising the possibility that πv > πd.

Figure 7, Panel I, shows the inverse demand curve for an HIV/AIDS vaccine, derived by plotting

price on the vertical axis against the sum of the countries’ populations whose expected benefit zi = xiyi

exceeds this price. The producer surplus from an HIV/AIDS vaccine equals the area of the largest

rectangle that can be inscribed under this curve. The firm maximizes profit by charging the price that just

18Population data are 1998 data from World Bank (2000); per-capita GNP data are 1998 data calculated with the World Bank

Atlas method in 2000 U.S. dollars from World Bank (2000); HIV data are the estimated number of HIV-positive 0-to-49 year

olds at the end of 1999 by country from UNAIDS (2000).
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induces consumers in the United States to buy and strictly induces consumers in Switzerland, Swaziland,

Namibia, the Bahamas, South Africa, and Botswana to purchase the vaccine. Figure 7, Panel II, shows

the inverse demand curve for a drug, derived by plotting price on the vertical axis against the sum of

countries’ populations whose benefit yi exceeds this price times xi, the risk of HIV/AIDS in the country.

Maximizing profit is equivalent to finding the rectangle of largest area inscribed under the curve. The

profit-maximizing drug price just induces consumers in France to buy and strictly induces consumers in

16 other countries to buy. The axes on the two panels of Figure 7 have been scaled so that a unit of area

in both represents the same revenue. The rectangle for the vaccine is slightly larger: πv/πd = 1.13.

While we have demonstrated a possible case in which πv > πd, this does not impair the practical

significance of our main results concerning a bias against vaccines. First, the calibration required price

discrimination to be impossible across countries, contrary to present policy. Second, while πv is slightly

larger than πd in the calibration, Wv is much larger than Wd. Thus, there exist configurations of kj ,

j = v, d, such that a drug is developed when it would have been socially efficient to have developed a

vaccine. The social cost of this distortion can be shown to be more than 9 percent of the total social

burden of the disease in this calibration. This conclusion is starker if we take an alternative measure of

social welfare that weighs lives saved equally regardless of countries’ incomes. The ratio of expected lives

saved, Ld/Lv, equals 0.19. Thus, while the firm’s incentive to develop a drug is roughly of the same

order of magnitude as a vaccine, the drug would only save a fifth of the number of lives.

8 Vaccine Producers as Durable-Good Monopolists

Vaccines tend to be more “durable” medicines than drugs: a single vaccine dose can sometimes pro-

vide lifetime protection, while drugs sometimes offer only temporary protection. Antiretroviral drugs for

HIV/AIDS are an extreme example, requiring daily doses. It is well-known that a durable-good monopo-

list serving a continuum of heterogeneous consumers faces a commitment problem (see, e.g., Coase 1972;

Stokey 1981; Bulow 1982; and Gul, Sonnenschein, and Wilson 1986). We will show that a vaccine

producer also faces a commitment problem, another effect biasing firms against vaccines relative to drugs.

Vaccines turn out to be an unusual commodity, introducing some unique economic effects, discussed below,
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to the standard durable-good-monopoly problem.

We will return to the model of Section 2 and modify it by assuming the fixed set of consumers live

for two periods. Let δ ∈ [0,∞) be the discount factor. At the start of the game, consumers learn their

types xi, distributed according to F (xi), where types are now reinterpreted to be the per-period hazard of

contracting the disease. Once infected, a consumer suffers harm h every period thereafter unless treated.

In each period, a consumer decides whether to purchase the vaccine (if available), then learns whether he

has contracted the disease, then decides whether to purchase a drug (if available). A vaccine is 100 percent

effective if administered before the disease is contracted, and its preventative effects last for the rest of

the game. It is ineffective if administered after the disease is contracted. A drug relieves 100 percent of

the harm h if administered after the disease is contracted, but this benefit does not last for future periods.

Normalize the other parameters as in Section 3: cj = sj = 0 for j = v, d. We will measure the extent of

the durable-good problem by comparing Πnc
j , the profit from medicine j given that the firm cannot commit

to prices across periods, to Πc
j , the profit if it can commit, and thus there is no durable-good problem.

It is easy to compute Πnc
d since the drug is sold at consumers’ reservation value in both periods:

pnc
d1 = pnc

d2 = h. We have

Πnc
d = (1 + δ)h

∫ 1

0
xi dF (xi) + δh

∫ 1

0
xi(1 − xi) dF (xi) − kd (11)

= h

∫ 1

0
(xi + 2δxi − δx2

i ) dF (xi) − kd. (12)

The first term on the right-hand side of (11) is the profit from consumers who contract the disease in the

first period. They can be charged h in both periods, generating a discounted revenue stream (1+δ)h each.

The second term is the profit from consumers who contract the disease in the second period. The integrand

is adjusted by 1 − xi since only that fraction of each type remain uninfected in the second period. The

lack of commitment does not affect drug profits because the optimal price with commitment also equals

h. Hence Πnc
d = Πc

d.

The profit from a vaccine is more complicated. In the no-commitment case we have

Πnc
v = pnc

v1Φ(x̂nc(pnc
v1)) + δpnc

v2

∫ x̂nc(pnc
v1)

pnc
v2/h

(1 − xi) dF (xi) − kv, (13)
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where

pnc
v1 = argmax

pv1

{
pv1Φ(x̂nc(pv1)) + δpe

v2(pv1)
∫ x̂nc(pv1)

pe
v2(pv1)/h

(1 − xi) dF (xi)

}
(14)

pe
v2(pv1) = argmax

pv2

{
pv2

∫ x̂nc(pv1)

pv2/h
(1− xi) dF (xi)

}
(15)

x̂nc(pv1) =
pv1 − δpe

v2(pv1)
(1 + δ)h− δpe

v2(pv1)
(16)

pnc
v2 = pe

v2(p
nc
v1). (17)

In the second period, the firm was not able to commit to a price. Thus, pnc
v2 is chosen to maximize

continuation profits as in equation (15). This gives the second term in the expression for vaccine profit

(13). In the first period, the marginal consumer with type x̂nc is indifferent between buying in the first

period and waiting until the second period. If he buys the vaccine in the first period, his surplus is simply

−pv1 since all harm is avoided. If he waits, with probability x̂nc he contracts the disease and suffers

discounted stream of harms (1 + δ)h, and with probability 1 − x̂nc he does not contract the disease and

buys the vaccine in the second period, yielding discounted surplus −δpv2. Since he is indifferent,

−pv1 = −(1 + δ)hx̂nc − δpv2(1 − x̂nc),

which, upon rearranging and substituting pe
v2(pv1) for pv2 yields equation (16). The first term on the right-

hand side of (13) is the profit generated by all consumers with types greater than the marginal consumer

buying at price pnc
v1, which as equation (14) indicates, is set to maximize profit recognizing the dependence

of the second-period price on it. Finally, equation (17) adds the condition that price expectations must be

consistent in equilibrium.

As stated above, the commitment problem does not affect drug profits: Πnc
d = Πc

d. The commitment

problem at least weakly reduces vaccine profit because in the commitment case the firm can always

commit to mimicking the price path from the no-commitment case. Hence Πnc
v ≤ Πc

v . In the Appendix,

we complete the proof of the following proposition by providing an example in which Πnc
v < Πc

v .

Proposition 13. Assume cj = sj = 0 and ej = 1 for j = v, d. The commitment problem associated with
the “durable” medicine, vaccines, increases the bias against developing vaccines versus drugs. That is,
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Πnc
d = Πc

d but Π
nc
v ≤ Πc

v, where examples can be provided in which the latter inequality is strict.

The durable-good problem analyzed here would increase the gap between drug and vaccine profit

the less durable are potential drug treatments and the more durable are potential vaccines for a disease.

Assuming that most potential vaccines would provide a lifelong cure, the relevant issue is the durability

of drug treatments across diseases. As noted above, existing antiretroviral drugs for HIV/AIDS are about

as nondurable as possible, requiring daily doses. Thus, there is no problem committing to high prices for

such HIV/AIDS drugs since the high-value consumers return to the market each day. There would be a

commitment problem with an HIV/AIDS vaccine providing lifelong protection.

We noted at the beginning of the section that the analysis for vaccines differs in the details from the

standard durable-good problem. High demanders of vaccines have less benefit from waiting until future

periods for prices to drop. High demanders of vaccines have a high risk of contracting the disease. Once

the disease is contracted, the vaccine is ineffective as a cure. Hence the commitment problem is less severe

for vaccines than standard durable goods. More formally, for a given price pv1, the cutoff type x̂nc(pv1)

is higher for vaccines, given in equation (16), than for standard durable goods, which can be shown to be

[pv1 − δpe
v2(pv1)]/h.19

9 Competing Firms

The previous sections have focused for simplicity on the case of a monopoly pharmaceutical manufacturer.

Modeling competition is more difficult than monopoly because, among other reasons, there is no one

canonical oligopoly model to start from. In this section, we show that bias against vaccines may persist,

indeed may be exacerbated, in a plausible model of competition in the industry, in which firms developing

a new medicine return an effective monopoly only temporarily.

To allow for generic entry, we will extend the model of Section 2 to an overlapping-generations setting.

In period 0, N ≥ 2 firms (branded manufacturers) sequentially decide whether to expend fixed cost kj

and develop medicine j or not to enter. Each period t = 1, 2, . . . thereafter, the old generation from t − 1

(Ot−1) dies, the young generation from t − 1 (Yt−1) becomes old (Ot), and a young generation (Yt) with

19Other complications arise because of the interaction between the durable-good problem and disease epidemiology. We discuss

these issues further in Kremer, Snyder, and Williams (2004).
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distribution of infection risk F (xi) is born. Consumers have the following lifecycle: young consumers

first learn of their infection risk, decide whether or not to be vaccinated if a vaccine is available, and then

turn old; old consumers contract the disease or not, decide whether or not to buy a drug if infected, and

then die. Old consumers suffer harm h if they contract the disease and do not purchase a drug or the drug

is ineffective. As in Section 2, we will allow for general parameter values ej , cj , sj , and kj for j = v, d.

We will abuse notation slightly and take h, cj , and sj to be current values rather than present discounted

values as in Section 2. Let δ ∈ [0, 1] be the per-period discount factor.

The first firm to develop a medicine enjoys temporary patent protection, preventing other branded

manufacturers or generic entrants from copying it. For simplicity, assume the effective length of a patent

is one period and, after that, either the medicine goes off patent or faces competition from “me-too”

drugs that have been designed around the patent.20 After medicine j goes off patent, a fringe of generic

manufacturers enter, and price falls to marginal cost cj . Although we have allowed for N ≥ 2 potential

entrants, at most two will enter the market in period 0 since there are only two different medicines: patents

prevent further branded entry in period 0. Thus, we can restrict attention to a first and second mover.

Note patents prevent the second mover from developing the same medicine as the first mover in period 0;

it must either produce the other medicine or not enter.

To derive the equilibrium of this model, note that if the first mover develops a drug, the present value

of its profit stream simply equals Πd from equation (3) whether the second mover produces a vaccine or

does not enter. The first mover earns this Πd by serving the infected in generation O1. It earns zero flow

profit serving subsequent generations because of generic entry. Note that the second mover also earns Πd

if it develops a drug given the first mover does not.

The first mover’s profit from developing a vaccine depends on what the second mover does. If the

second mover does not enter, the present value of the first mover’s profit stream has the same functional

form as Πv from equation (2), but where the cutoff type changes from x̂(pv) = (pv + sv)/(evh) to

x̂(pv) = (pv + sv)/(δevh). Label this profit Πv0. The first mover earns this Πv0 from selling to

consumers in generation Y1. The discount factor δ inserted in the new formula for x̂(pv) reflects the fact

that the benefit to consumers in generation Y1 from being vaccinated is the harm avoided in the next period

20Roughly speaking, the implication is that the patent’s effective length is about equal to the average time a person takes to

contract the disease conditional on eventually contracting it, a reasonable assumption for HIV/AIDS.
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when they become generation O2; this benefit thus needs to be discounted by δ. The first mover earns

zero flow profit serving subsequent generations because of generic entry.

If the second mover instead develops a drug, the first mover’s profit from a vaccine is lower because

consumers in generation Y1 anticipate cheap generic drugs will be available when they become generation

O2. The present value of the first mover’s profit stream again has the same functional form as Πv in

equation (2), but now the formula for the cutoff type is

x̂(pv) =
pv + sv

δev [cd + sd + (1− ed)h]
. (18)

Label this profit Πvd. Equation (18) comes from equating the surplus the marginal vaccine consumer in

generation Y1 obtains if he/she buys the vaccine to that if he/she waits until the next period and buys the

drug at price cd if he/she becomes infected. Equation (18) accounts for the fact that a vaccinated consumer

has the option of taking the drug the next period if the vaccine turns out to be ineffective. Again, the first

mover earns zero flow profit serving subsequent generations because of generic entry.

The next proposition characterizes the subgame-perfect equilibrium entry decisions.

Proposition 14. If Πvd > Πd > 0, the first mover develops a vaccine and the second mover a drug. If
Πd > Πvd > 0, the first mover develops a drug and the second mover a vaccine. If Πd > 0 > Πvd,

the first mover develops a drug and the second mover does not enter. If Πv0 > 0 > Πd, the first mover

develops a vaccine and the second mover does not enter. If 0 > max(Πd, Πv0), neither firm enters.

If we ignore knife-edge cases Πd = 0, Πv0 = 0, and Πvd = 0, we can summarize Proposition 14 neatly

as follows: a drug is developed (either alone or together with a vaccine) if and only if Πd > 0; a vaccine

is developed (either alone or together with a drug) if and only if (a) Πvd > 0 or (b) Πv0 > 0 > Πd.

Proposition 14 follows from the asymmetry between the development decisions for vaccines and drugs.

The drug is developed if and only if its stand-alone profit is positive. The entry of a vaccine is immaterial

because the vaccine does not compete directly for customers in generation O1 because vaccines cannot

treat consumers who are already infected. The conditions under which a vaccine is developed are more

restrictive. Development of a drug does affect vaccine profit because it is a substitute product for the

generation Y1 customers the vaccine profits from serving. This competition effect is in fact amplified

because the generation Y1 consumers will not only have access to the original drug but also will benefit
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from competition between that drug and generic drugs that follow the development of the original.

The next proposition, proved in the Appendix, formalizes the notion that the competition model adds

a new effect biasing firms in favor of drugs and against vaccines.

Proposition 15. Compare the present model involving competition among multiple firms capable of

developing vaccines and drugs to a model in which the entry decisions are made by a single firm,

retaining the assumption that the development of medicine j leads to generic entry in that medicine the
next period. The existence of multiple competing firms enlarges the set of parameters for which a drug

is developed but reduces the set of parameters for which a vaccine is developed.

The logic behind the proof is that a monopolist would internalize the negative externality drugs exert on

vaccines that arises because medicines are substitute products. There exist cases in which a monopolist

would not develop the drug in order to keep vaccine profit high, while a competitive firm develops the

drug since it does not care about the vaccine producer’s profits, and in some of these cases entry of the

drug deters the other competitive firm from developing a vaccine.

Proposition 15 states that competition generates a new effect biasing firms against vaccines in favor

of drugs. This competition effect may be socially costly, as shown by the next proposition, proved in the

Appendix.

Proposition 16. In the competitive model, social welfare never falls with a reduction in the cost of

developing a vaccine, kv, but may fall with a reduction in the cost of developing a drug, kd.

A reduction in the cost of developing a drug increases the incentive to develop a drug, which may deter

the entry of vaccines, even some vaccines that generate more social surplus than the drug. Competition

between vaccines and drugs is asymmetrically tougher on vaccines, so vaccines do not have a similar

competitive effect on drugs.

10 Conclusions

In this paper, we argued that differences in the timing of the administration of drugs and vaccines allow drug

manufacturers to extract more rent from consumers, driving a wedge between private and social incentives

to invest in vaccine R&D. If consumers are heterogeneous in their risk of infection, a monopolist can extract

more revenue from vaccines sold before the risk of infection is realized than from drugs sold when there
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is no longer heterogeneity in infection risk among consumers with positive valuation. The “durability” of

the medical benefits from vaccines makes it still harder for vaccine developers to appropriate consumer

surplus. Finally, when inventors are rewarded with market power that is only temporary—introducing

the possibility of competition between vaccines and drugs and competition from later generic entry—a

further asymmetry develops as future generic drug production constrains vaccine pricing, but drug pricing

is unaffected by competition from vaccines.

We showed that, in theory, the ratio between drug and vaccine producer surplus can be arbitrarily large

in the presence of infection-risk heterogeneity. We performed several empirical exercises to evaluate the

importance of this effect in practice. Calibrating our model to an estimated risk distribution for sexually

transmitted diseases in the United States gave an estimated drug-vaccine revenue gap of more than four-

fold, reflecting the skewness of the underlying distribution of number of lifetime sexual partners. As an

empirical test of the model, using data on infectious diseases, we regressed dummies for whether drugs

or vaccines have been developed on a dummy for whether the disease is sexually transmitted and other

controls. We found vaccines are significantly less likely, and drugs significantly more likely, to have been

developed for sexually transmitted than non-sexually transmitted diseases. These results provide support

for our theory: sexually transmitted diseases are likely to have more skewed risk distributions than non-

sexually transmitted diseases, and our theory suggests that diseases with relatively skewed risk distributions

should be more likely to have drug treatments than vaccines.

We extended the analysis to allow for alternative government procurement policies, dynamic consump-

tion decisions, and competing manufacturers. While the analysis becomes more complicated, none of these

extensions forces the bias against vaccines to disappear, and each can indeed introduce new effects that

may exacerbate it.

To the extent that distortions in pharmaceutical markets bias R&D investments toward drugs and away

from vaccines, developing countries would be particularly adversely affected. Although antiretroviral drugs

are keeping a high proportion of HIV/AIDS-infected individuals in high-income countries alive, it is much

more difficult for this technology to diffuse to low-income countries due to poor health infrastructure

coupled with lower levels of health spending. The development of an HIV/AIDS vaccine is arguably key

to curbing the epidemic, and the market distortions we discuss may be a significant obstacle to vaccine
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development. This suggests a case for subsidies to vaccine R&D beyond those for pharmaceutical R&D

in general or for committing to vaccine pricing in advance of R&D.
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Appendix

Proof of Proposition 1: First we will compute Πv . Consumers have unit demand for the vaccine. Thus,

by Theorem 4 of Harris and Raviv (1981), the optimal mechanism involves selling the vaccine at a linear

price pv. The marginal consumer purchases the vaccine if his or her loss of surplus if he buys is weakly

less than that if he does not buy: pv + (1 − ev)hxi + sv ≤ hxi, or, rearranging, xi ≥ x̂(pv), where
x̂(pv) = (pv + sv)/(evh) is the cutoff defined in the statement of the proposition. Since consumers have
unit mass,

Πv = max
pv∈[0,∞)

{(pv − cv) Pr(xi ≥ x̂(pv))} − kv

= max
pv∈[0,∞)

{(pv − cv)Φ(x̂(pv))} − kv

verifying equation (2).

Next, we will compute Πd. The firm cannot commit to a drug price ex ante, so sets pd to extract all the

ex post surplus from a consumer who contracts the disease. Equivalently, the loss of surplus if the infected

individual buys the drug equals his or her loss of surplus if he or she does not: pd + (−ed)h + sd = h,
or, rearranging, p∗d = edh − sd. Since consumers have unit mass,

Πd = (p∗d − cd)
∫ 1

0
xi dF (xi) − kd

= (edh − sd − cd)E(xi) − kd

verifying equation (3). It can be shown that, even if the firm could commit to a pricing mechanism ex

ante, its profit would be no higher than it would earn from the optimal mechanism if it had commitment

power.

Finally, we will compute Πb. Suppose the firm charges pv ex ante for the vaccine. Since it cannot

commit to a drug price, pd is set to extract all the surplus from an infected individual. As computed in

the previous paragraph, p∗d = edh − sd. Since they obtain no net surplus from purchasing the drug, the

presence of the drug does not affect a consumer’s decision to purchase the vaccine ex ante. Consumer i
purchases the vaccine if xi ≥ x̂(pv). The quantity of the drug sold is

∫ x̂(pv)

0
xi dF (xi) + (1 − ev)

∫ 1

x̂(pv)
xi dF (xi) (A1)

where the first term is the mass of consumers who did not buy the vaccine and become infected and the

second term is the mass who bought the vaccine but the vaccine was ineffective for them. The producer

surplus from the drug equals p∗d − cd = hed − sd − cd times the quantity in (A1). The producer surplus

from the vaccine is, following the calculations in the first paragraph, (pv − cv)Φ(x̂(pv)). Adding the
producer surpluses together and subtracting the fixed cost of developing both medicines kv + kd gives the

expression for Πd in equation (4). Theorem 4 of Harris and Raviv (1981) establishes that the optimal

mechanism for selling the vaccine indeed involves a linear price pv as we have implicitly assumed in this

paragraph. Q.E.D.
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Proof of Proposition 3: We have

PB = sup
(kv,kd)∈[0,∞)2

{(
kd − kv

D

)
1
(
Πd > max(Πv , 0)

)}

= sup
(kv,kd)∈[0,∞)2

{(
kd − kv

D

)
1(kd − kv < πd − πv)

}

=
πd − πv

D
= 1− (πv/πd).

The second line holds by substituting Πj = πj − kj for j = v, d. (In the second line, it should also be
noted that kv can be chosen to be sufficiently small so that Πv ≥ 0. Hence the term Πd > max(Πv, 0)
reduces to Πd > Πv .) The third line is an algebraic manipulation. The last line holds since πd = D. To
verify πd = D, note that substituting cd = sd = 0 and ed = 1 into equation (3) implies Πd = hE(xi), in
turn implying πd = hE(xi). But D = hE(xi) as well. Q.E.D.

Proof of Proposition 4: Let cj = sj = 0 and ej = 1 for j = v, d. Substituting these values into
equation (2), noting πv = Πv + kv, and rearranging, we have

πv = max
pv∈[0,∞)

{
pv

∫ 1

pv/h
dF (xi)

}

= h

∫ 1

x̂∗
x̂∗ dF (xi)

where x̂∗ = argmaxx̂∈[0,1]

{
h
∫ 1
x̂ x̂ dF (xi)

}
. The second line holds by the change of variables x̂ = pv h.

Substituting the parameter normalizations into equation (3), noting πd = Πd + kd, and rearranging, we

have πd = h
∫ 1
0 xi dF (xi). Thus,

πd − πv = h

∫ 1

0

xi dF (xi) − h

∫ 1

x̂∗
x̂∗ dF (xi)

= h

∫ x̂∗

0
xi dF (xi) + h

∫ 1

x̂∗
(xi − x̂∗) dF (xi). (A2)

Both terms in expression (A2) are nonnegative. There cannot be a measure one of consumers at x̂∗ by

maintained assumption. Thus, there must be a positive measure on either a subset of (0, x̂∗), in which
case the first term in (A2) is positive, or on a subset of (x̂∗, 1], in which case the last term in (A2) is
positive. In either case, πd − πv > 0.

Finally, we analyze the firm’s incentive to develop both medicines. Now Πb ≤ D−(kv +kd). Further,
as argued above in the proof of Proposition 3, Πd = D − kd. Hence Πb ≤ Πd − kv ≤ Πd, with strict

inequality if kv > 0. Q.E.D.

Proof of Proposition 5: A distribution of consumers into R risk classes involves parameters {mr}R
r=1

and {xr}R
r=1. These 2R parameters can be freely chosen to generate as low as possible a value of πv/πd

subject tomr ∈ (0, 1) for all r = 1, . . . , R;
∑R

r=1 mr = 1; and 0 ≤ x1 ≤ · · · ≤ xR ≤ 1. Let θ ∈ (0, 1/2).
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Define

mr =

{
θr−1 if r > 1
1 −

∑R−1
r=1 θr if r = 1.

(A3)

The definition of risk-class masses in equation (A3) produces a geometrically declining sequence. As is

easily seen, this definition respects the constraints mr ∈ (0, 1) for all r = 1, . . . , R and
∑R

r=1 mr = 1.
Next, we set the risk-class probabilities {xr}R

r=1. We will set them so that the firm makes the same

revenue regardless of which risk class it decides to target with its preventative pricing. Specifically, we

will set xR = 1 and define the rest, {xr}R−1
r=1 , recursively by

hxr

R∑

i=r

mi = hxr+1

R∑

i=r+1

mi. (A4)

The left-hand side of equation (A4) is the revenue (and profit) from charging a price hxr and selling the

vaccine to risk classes r and higher. The right-hand side is the revenue (and profit) from charging a price

hxr+1 and selling to risk classes r + 1 and higher. As is easily seen, our definition of {xr}R
r=1 respects

the constraint 0 ≤ x1 ≤ · · · ≤ xR ≤ 1. From equation (3), we have πd =
∑R

r=1 hmrxr. By construction

implicit in (A4), we have πv = hx1; that is, it is weakly most profitable to charge hx1 for the vaccine

and sell to all consumers. Thus,

πd

πv
=

∑R
r=1 hmrxr

hx1

= m1 +
R∑

r=2

mrxr

x1

= m1 +
R∑

r=2

mr

mr + · · ·+ mR

= 1 −
R−1∑

r=1

θr +
R∑

r=2

θr−1

θr−1 + · · ·+ θR−1
.

We provided an argument previously for the first line. The second line holds by simple algebra. The

third line holds since it is equally profitable to sell the preventative to all consumers at price hx1 or

to consumers in risk classes r and above at price hxr, so that hx1 = hxr(mr + · · · + mR), implying
xr = x1/(mr + · · ·+ mR). The last line holds by substituting for {mr}R

r=1 from equation (A3). Taking

limits, limθ→0(πd/πv) = 1− 0 +
∑R

r=2 1 = R, or, equivalently, limθ→0(πv/πd) = 1/R. This shows that
for any ε > 0, and for the definitions of the parameters in (A3) and (A4), we can find θ > 0 such that
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πv/πd < 1/R + ε. To prove πv/πd ≥ 1/R for all distributions of consumers into R risk classes, note

Rπv = R max
r∈{1,...,R}

{
hxr

(
1 −

r−1∑

i=1

mi

)}

≥ R max
r∈{1,...,R}

{hxrmr}

≥
R∑

r=1

hxrmr

= πd.

Hence πv/πd ≥ 1/R. Q.E.D.

Proof of Proposition 8: For a drug, Πd = Wd = W̃d. For a vaccine, letting p∗v be the argmax associated

with the value function in equation (2),

Πv =
∫ 1

x̂(p∗v)
(p∗v − cv) dF (xi) − kv

≤
∫ 1

x̂(p∗v)

(evhxi − sv − cv) dF (xi)− kv

= Wv.

the first line holds by equation (2). The second line holds since xi ≥ x̂(p∗v) for all xi in the integrand,

implying evhxi − sv ≥ p∗v. The third line holds by definition. Since Wv ≤ W̃v , Πv ≤ W̃v. Note these

calculations hold for general parameter values, not just the normalized values cj = sj = 0 and ej = 1.
Putting these facts together, if Wd > Wv , then Πd = Wd > Wv ≥ Πv . Similarly, if W̃d > W̃d, then

Πd = W̃d > W̃v ≥ Πv . Thus, if it is socially efficient to develop a drug (by either measure Wj or W̃j ,

j = v, d), the firm will develop a drug in equilibrium.
To provide a case in which Wv > Wd but Πd > Πv , suppose xi is uniformly distributed on [0, 1];

kj = 1/8 for j = v, d; cj = sj = 0 for j = v, d; h = 1; ev = 1; and ed = 5/8. For a drug,
we have Πd = edE(xi) − kd = (5/8)(1/2) − 1/8 = 3/16 = Wd = W̃d. For a vaccine, Πv =
maxp∈[0,∞) {pvΦ(x̂(pv))} − kv = maxp∈[0,∞) {pv(1 − pv)} − kv = 1/4 − 1/8 = 1/8; p∗v = 1/2; Wv =∫ 1
p∗v

xi dxi−kv = 3/8−1/8 = 1/4; W̃v = E(xi)−kv = 1/2−1/8 = 3/8. Thus, Πd = 3/16 > 2/16 = Πv ,

but Wv = 4/16 > 3/16 = Wd, and W̃v = 6/16 > 3/16 = W̃d. Q.E.D.

Proof of Proposition 9: To provide a more general proof of the proposition, we will redefine SB as the

supremum over all the parameters rather than just the fixed costs. Let ω be a vector containing particular

values of the parameters kj , cj , sj , and ej for j = v, d. Let Ω be the set of all ω. Define

SB = sup
ω∈Ω

{(
Wv − Wd

D

)
1
(
Πd > max(Πv, 0)

)}
(A5)
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Then

SB = sup
ω∈Ω

{(
CSv + Πv − Πd

D

)
1(Πd > Πv)

}

= sup
ω′∈Ω′

{(
CSv

D

)}
.

The first line holds since Wv = CSv + Πv and since, as argued in the proof of Proposition 8, Wd = Πd.

(In the first line, it should also be noted that kv can be chosen to be sufficiently small so that Πv ≥ 0.
Hence the term Πd > max(Πv , 0) reduces to Πd > Πv .) The second line requires some work to prove.

We are allowed to choose kj , j = v, d, freely to maximize the expression in the supremum. Set kd −kv =
πd − πv − ε|πd − πv| for ε > 0. Hence Πd − Πv = πd − πv − (kd − kv) = ε|πd − πv |. By taking ε to
be arbitrarily close to zero, we can force Πd to approach Πv arbitrarily closely from above and get the

expression in the supremum arbitrarily close to CSv/D. The supremum is taken with respect to parameter

vectors ω′ ∈ Ω′, the space of all parameters except kj , j = v, d.
We next choose these other parameters to maximize CSv/D. Now

CSv =
∫ 1

x̂(p∗v)
(evhxi − sv − p∗v) dF (xi) (A6)

where p∗v is the argmax of the value function in (2). The right-hand side of (A6) can be shown to be
increasing in ev and decreasing in cv and sv . Thus, we will set ev = 1 and cv = sv = 0. Q.E.D.

Proof of Proposition 10: To provide a more general proof, we will adopt the definition of SB from

equation (A5). In view of the formula for SB from Proposition 9, it is apparent that h is just a scale
factor that divides out of CSv/D, so normalize h = 1 without loss of generality. After substituting h = 1,
cj = sj = 0 j = v, d, and ej = 1 j = v, d, CSv/D can be depicted using Figure 2. Abusing notation, let

A, B, and C be the areas of the indicated regions on the graph. Then CSv = A and D = A + B + C,

implying CSv/D = A/(A + B + C).
Suppose Φ is linear, implying inverse demand for the vaccine is linear. Then it is weakly concave,

and Proposition 1 of Maleug (1993) implies B ≥ 2A. It is also weakly convex, and Proposition 1 of
Maleug (1993) implies B ≤ 2A. Therefore, B = 2A. Elementary geometry then implies C = A. Hence

CSv/D = A/(A + 2A + A) = 1/4.
Suppose Φ is concave implying inverse demand for the vaccine is concave. Then Proposition 1 of

Malueg (1993) implies B ≥ 2A. Hence

A

A + B + C
≤ A

A + B

≤ A

A + 2A
= 1/3.

Therefore, SB ≤ 1/3. To show this bound is tight, consider an example with

Φ(x̂) =

{
2− 2x̂ x̂ ∈ (1/2, 1]
1 x̂ ∈ [0, 1/2]
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resulting in the inverse demand curve drawn in Figure 8. It is evident that 2A = B, C = 0, and so
CSv/D = A/(A + 2A) = 1/3, implying SB = 1/3.

By definition, SB ≥ 0. To show this lower bound is tight for concave Φ, take Φ(x̂) = 1, resulting
in the inverse demand curve drawn in Figure 9. It is evident that A = 0, and so CSv/D = 0, implying
SB = 0.

The proof for the case in which Φ is convex is more complicated. First, we will derive the lower

bound on SB. It can be shown that we can restrict attention to Φ of the following form without loss of

generality:

Φ(x̂) =





0 x̂ ∈ [b1, 1]

b1 − x̂

m1
x̂ ∈

[
b2 − b1

m2 − m1
, b1

)

b2 − x̂

m2
x̂ ∈

[
0,

b2 − b1

m2 − m1

)

resulting in the inverse demand curve drawn in Figure 10. The inverse demand curve is a linear spline with

two segments, `1 and `2, wheremi ≥ 0 is the absolute value of the slope and bi ≥ 0 is the vertical intercept
of `i extended. The parameters bi and mi will be specified so that a weakly largest rectangle that can be

inscribed under the inverse demand curve, B, hits the inverse demand curve along segment `1. It can be

shown that A = b2
1/8m1 and B = b2

1/4m1. To minimize CSv/D = A/(A + B + C), we will maximize
C subject to the constraint that B remain inscribed as it is and is not replaced by a rectangle inscribed so

its corner touches segment `2. This implies b2
2/4m1 = b2

1/4m1. The further requirement that `2 intersect

point (0, 1) implies b2 = m2 = b2
1/m1. Tedious calculations show A/(A + B + C) = (b1 + m1)/8m1.

This expression is minimized for b1 = 0. In the limit as b1 → 0, A/(A + B + C) → m1/8m1 = 1/8.
Hence SB ≥ 1/8. Since we established this bound by construction, it is tight.

To obtain an upper bound on SB in the case Φ is convex, we can perform similar calculations on the

inverted analogue of Figure 10. One can show A/(A+B+C) ≤ (5m1−3b1)/8m1), which is maximized
for b1 = 0. Hence A/(A + B + C) ≤ 5/8, implying SB ≤ 5/8. Since we established this bound by
construction, it is tight. Q.E.D.

Proof of Proposition 11: To provide a more general proof of the proposition, analogous to equation

(A5) we will redefine SBG as the supremum over all the parameters rather than just the fixed costs:

SBG = sup
ω∈Ω

{(
W̃v − W̃d

D

)
1
(
Nd > max(Nv, 0)

)
}

. (A7)
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Figure 8: Example used to prove tightness of bound SB ≤ 1/3 when Φ is concave

Figure 9: Example used to prove tightness of bound SB ≥ 0 when Φ is concave

Figure 10: Example used to prove SB ≥ 1/8 when Φ is convex
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We have

SBG = sup
ω∈Ω

{(
W̃v − W̃d

D

)
1(W̃d + Πd − CSd > W̃v + Πv − CSv)

}

=

sup
ω∈Ω

{(
1
D

)
(W̃v − Πv + πv − W̃d + Πd − πd + kd − kv)

× 1((W̃d − Πd + 2πd − CSd − W̃v + Πv − 2πv + CSv)/2 > kd − kv)

}

= sup
ω′∈Ω′

{
1

2D
(W̃v − Πv − W̃d + Πd − CSd + CSv)

}

= sup
ω′∈Ω′

{
1

2D
(W̃v − Πv + CSv)

}

= sup
ω′∈Ω′

{
CSv

D
+

W̃v − Wv

2D

}

≥ SB.

The first line holds by substituting for Nj from equation (7) into the formula for SBG in (8). (In the first

line, it should also be noted that kv can be chosen to be sufficiently small so that W̃v + Πv − CSv ≥ 0,
implying the term Nd > max(Nv, 0) reduces to Nd > Nv or, equivalently, W̃d + Πd −CSd ≥ W̃v + Πv −
CSv.) The second line holds by substitutingΠj = πj −kj . The third line holds by judicious choice of free

parameters kj . The details of the argument are analogous to a similar step in the proof of Proposition 9

and are omitted. Note that the supremum is taken with respect to parameter vectors ω′ ∈ Ω′, the space of
all parameters except kj, j = v, d, the same notation as used in the proof of Proposition 9. The fourth line

holds since W̃d = Πd (see, e.g., the proof of Proposition 8), implying CSd = 0. The fifth line holds since
Wv = Πv + CSv . The last line holds since W̃v − Wv ≥ 0, implying SBG ≥ supω′∈Ω′{CSv/D} = SB,

where the last equality was shown in the proof of Proposition 9. Q.E.D.

Proof of Proposition 12: Suppose the distributions of xi and yi are independent. Then

πv = max
p∈[0,∞)

{∫ 1

0

[∫ h

p/xi

p dFY (yi)

]
dFX(xi)

}

≤
∫ 1

0
max

p∈[0,∞)

{∫ h

p/xi

p dFY (yi)

}
dFX(xi)

=
∫ 1

0
max

p′∈[0,∞)

{∫ h

p′
p′xi dFY (yi)

}
dFX(xi)

=
∫ 1

0
xi max

p′∈[0,∞)

{∫ h

p′
p′ dFY (yi)

}
dFX(xi)

= E(xi) max
p′∈[0,∞)

{
p′ΦY (p′)

}

= πd.
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The first and last lines hold by using the independence assumption in the formulae (9) and (10) and noting

πj = Πj + kj , j = v, d. The rest of the steps are algebraic manipulations. The inequality in the second

line is strict if there is nontrivial heterogeneity in the distribution of xi. Q.E.D.

Proof of Proposition 13: The proof is completed by providing an example in which Πnc
v < Πc

v . Suppose

there are 100 consumers with a 50 percent chance of contracting the disease and 100 with a 10 percent

chance. Let δ = 1 and h = 100. The optimal commitment strategy is to sell to the high-risk consumers
only in the first period at a price of 125, which extracts all their expected surplus (with probability 0.5,

they contract the disease in the first period, leading to a stream of harms of 200; with probability 0.5×0.5,
they contract the disease in the second period, leading to harm 100, for a total expected harm of 125).

Hence, Πc
d = 12, 500.

Under no commitment, it turns out to be optimal to sell the vaccine to all high-risk types at a price of

105 in the first period and all low-risk types at a price of 10 in the second period. The first-period price

of 105 makes the high-risk types just indifferent between buying in the first period and waiting to buy at

the lower price in the second. Hence, Πnc
v = 11, 400 < Πc

v . Q.E.D.

Proof of Proposition 15: Compare the model of Section 9 involving competition between drugs and

vaccines, which we will label Model 1, to the monopoly model laid out in the statement of Proposition 15,

which we will label Model 2. We begin by proving two facts that will be useful later in the proof. Fact 1

is that Πb, the monopolist’s profit from developing both medicines, equals Πd + Πvd. Conditional on

developing both, the monopolist’s optimal pricing strategy is to charge a drug price maximizing profit

from sales to generation O1, yielding marginal profit Πd, and charging a vaccine price that maximizes

profit from sales to generation Y1 given generics will enter the drug market, yielding marginal profit Πvd.

Fact 2 is that Πb ≤ Πd +Πv0. This holds because Πv0 ≥ Πvd because of the negative externality between

vaccines and drugs due to their substitutability.

Suppose the parameters are such that a drug is not developed in equilibrium in Model 1. By Proposi-

tion 14, Πd < 0. (We will ignore knife-edged cases such as Πd = 0 throughout the proof for simplicity.
It is easily seen that the proof holds for these cases as well.) But Πd < 0 implies Πb < Πv0 by Fact 2,

in turn implying max(Πd, Πb) < max(Πv0, 0), and so a drug would not be developed in equilibrium in
Model 2.

Suppose the parameters are such that a vaccine is developed in equilibrium in Model 1. By Proposi-

tion 14, either (a) min(Πd, Πvd) > 0 or (b) Πv0 > 0 > Πd. If (a) holds, then by Fact 1, Πb = Πd +Πvd >

Πd > 0. Thus, max(Πv0, Πb) > max(Πd, 0). Thus a vaccine is developed in equilibrium in Model 2.
If (b) holds, then again max(Πv0, Πb) > max(Πd, 0), and so a vaccine is developed in equilibrium in
Model 2.

The proof is completed by constructing a case in which a drug is developed in equilibrium in Model 1

but a vaccine is developed in equilibrium in Model 2. Let consumers be homogeneous, with xi = 1 for all
i. Let δ = ev = 1. Let cj = sj = 0 for j = v, d. Let kd < edh and kv ∈

(
(1−ed)h, (1−ed)h+kd

)
. It can

be shown that Πd = edh−kd > 0, Πv0 = h−kv, and Πvd = (1−ed)h−kv < 0. By Proposition 14, since
Πd > 0 and Πvd < 0, a vaccine alone is developed in equilibrium in Model 1. Since kv < (1− ed)h+kd,

Πv0 > Πd. Hence Πv0 > Πd > Πd + Πvd = Πb, where the last step holds by Fact 1. Thus, a vaccine

alone is developed in equilibrium in Model 2. Q.E.D.

Proof of Proposition 16: All of the direct and indirect effects of reducing kj on social welfare are non-

positive except possibly for one: the possibility of deterring entry by the other medicine. Proposition 14
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implies that a drug will be developed if Πd > 0, independent of the vaccine’s entry decision, and thus
independent of kv. So reducing kv weakly increases social welfare.

The proof is completed by demonstrating a case in which a reduction in kd reduces social welfare.

Let consumers be homogeneous, with xi = 1 for all i. Let ev = 1. Let cj = sj = 0 for j = v, d. Let
kv ∈

(
(1 − ed)h, h

)
. We will compare the case in which kd is high, namely kd ∈ (edh,∞), to a case in

which kd is low, namely kd = 0. In the first case, Πd = edh − kd < 0. Further, Πv0 > 0. Hence by
Proposition 14, a vaccine alone is developed. The present discounted value of the stream of social welfare

in equilibrium is
δh

1 − δ
− kv . (A8)

In the second case, Πd = edh − kd = edh > 0. Further, Πvd = (1 − ed)h − kv < 0. Hence by
Proposition 14, a drug alone is developed. The present discounted value of the stream of social welfare

in equilibrium is
edh

1 − δ
− kd. (A9)

The limit as δ → 1 of the ratio of expression (A8) to (A9) equals 1/ed. Thus, for δ sufficiently close to
one, both kd and social welfare are higher in the first than the second case. Q.E.D.
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Table 4: Data set used in Section 5

Sexually Medicine Typical Age

Disease Organism transmitted developed of onset

anthrax bacterium no both all

botulism bacterium no drug all

brucellosis bacterium no drug all

campylobacteriosis bacterium no drug all

chancroid bacterium yes drug adult

chlamydia trachomatis bacterium yes drug adult

cholera bacterium no both all

coccidioidomycosis fungus no drug all

conjunctivitis (“pink eye”) bacterium no drug all

coxsackievirus (“hand, foot, mouth disease”) virus no none child

cryptosporidiosis parasite no none all

cyclosporiasis parasite no drug child

cytomegalovirus virus yes drug all

diphtheria bacterium no both all

ebola virus no none all

ehrlichiosis bacterium no drug all

encephalitis bacterium no vaccine all

enterohemorrhagic escherichia coli bacterium no none all

erythema infectiosum (“fifth disease”) virus no none all

genital warts virus yes drug adult

genital herpes virus yes drug adult

giardiasis parasite no drug child

gonorrhea bacterium yes drug adult

haemophilus influenzae type b (hib) bacterium no both all

hansen disease (leprosy) bacterium no drug all

hantavirus pulmonary syndrome virus no none all

head lice parasite no drug all

hemolytic uremic syndrome bacterium no none all

hepatitis A virus no vaccine all

hepatitis B virus yes vaccine all

hepatitis C virus no drug adult

histoplasmosis fungus no drug all

HIV/AIDS virus yes drug all

impetigo bacterium no drug child

influenza virus no vaccine all

kawasaki unknown no drug child

legionellosis (“legionnaire disease”) bacterium no drug all

leptospirosis bacterium no drug all

listeriosis bacterium no drug all

lyme disease bacterium no both all

malaria parasite no drug all

measles virus no vaccine child

meningococcal disease virus no both all

mononucleosis virus no none all

mumps virus no vaccine child

mycobacterium marinum bacterium no drug adult

mycoplasma bacterium no drug child

pertussis (“whooping cough”) bacterium no both all
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Table 4 continued

Sexually Medicine Typical age

Disease Organism transmitted developed of onset

pinworm parasite no drug child

plague bacterium no drug all

pneumococcal disease bacterium no both all

poliomyelitis virus no both all

psittacosis bacterium no drug all

Q fever bacterium no drug all

rabies virus no both all

ring worm parasite no drug child

rocky mountain spotted fever bacterium no drug all

rubella virus no vaccine child

salmonellosis bacterium no none all

scabies parasite yes drug adult

scarlet fever bacterium no drug child

shigellosis bacterium no none all

smallpox virus no both all

streptococcal disease bacterium no both all

syphilis bacterium yes drug all

tetanus bacterium no both all

toxic-shock syndrome bacterium no none adult

toxoplasmosis parasite no drug all

trichinosis parasite no none child

tuberculosis bacterium no both all

tularemia bacterium no both all

typhoid fever bacterium no both all

varicella (“chicken pox”) virus no both child

vibrio vulnificus illness bacterium no drug all

viral gastroenteritis (“rotavirus”) virus no vaccine child

yellow fever virus no vaccine all

Notes: Kawaski syndrome is listed above, but is omitted from the data set of 75 observations used in the regressions because

the type of organism causing it is unknown. In determining the type of medicine developed for various diseases we followed

the medical literature rather than making a personal judgment based on definitions in the model. Sources for the data provided

in the text.
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