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Abstract

The paper investigates asymptotically efficient inference in general time series like-

lihood models with time varying parameters. Inference procedures for general loss

functions are evaluated by a weighted average risk criterion. The weight function fo-

cusses on persistent parameter paths of moderate magnitude, and is proportional to

the distribution function of a Gaussian random walk. It is shown that asymptotically

efficient inference is equivalent to efficient inference in a Gaussian local level model.

By implication, estimators of the parameter path and tests of parameter stability are

integrated in one unified asymptotic framework. In practice, efficient estimators and

test statistics can hence easily be obtained by variants of Kalman smoothing.
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1 Introduction

Instabilities in the parameters of time series models have attracted considerable attention in

recent years. The focus of these efforts has mostly been to determine whether instabilities

are present: Tests for parameter constancy were proposed and analyzed by Nyblom (1989),

Andrews (1993), Andrews and Ploberger (1994), Hansen (2000) and Elliott and Müller

(2003), among others. Empirically, instabilities are found to be quite widespread in linear

postwar macro-relations, cf. Stock and Watson (1996).

Once instabilities are identified, the natural next step is to document their form. Under

the restriction of the instability being of the structural break type, the problem boils down

to the determination of the time and magnitude of the break–cf. Bai and Perron (1998), for

instance, for a recent contribution. More generally, though, instabilities can arise through

all kinds of nonconstant parameter evolution. The question then arises how to estimate the

parameter path in unstable time series models.

This paper considers the problem of estimating the parameter path in general, unstable

time series likelihood models. We consider estimators that minimize a weighted average risk

criterion, where the weighting is over alternative parameter paths. The considered weighting

function focusses on persistent parameter paths of the ’Gaussian Random Walk’—type, so

that the estimation problem becomes akin to a nonlinear filtering/smoothing problem with

a Random Walk state equation.

The concentration on persistent parameter paths is plausible for many applications in

economics, as the underlying forces of the parameter changes are often perceived as drifts of

preferences, market structures or institutions rather than as sudden shifts. As a modelling

strategy, it has found widespread applications: see, for instance, Cooley and Prescott (1976),

Harvey (1981), Sims (1993), Stock and Watson (1996), and Primiceri (2004), among many

others.

The weight function concentrates on parameter paths of a magnitude for which the data

contains only limited information about its form, for all sample sizes. This is the same order

of magnitude against which efficient tests of parameter stability have nontrivial power, but

not power exactly equal to one. This focus captures the fact that in many applications,

it will not be possible to determine the parameter path precisely. In such circumstances,

relatively good estimators are those that extract this limited information efficiently.

The main result of this paper is that under some weak regularity assumptions on the

likelihood, inference in the unstable general model is asymptotically equivalent to inference
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in a Gaussian local level model. The score vector of the general model, evaluated at the usual

maximum likelihood estimator that ignores the instability, plays the role of the observation

equation in the local level model. This in particular implies that for a wide class of loss func-

tions, an asymptotically efficient estimator of the parameter path is obtained by applying

a smoother to the sequence of scores. In addition, efficient instability tests that maximize

weighted average power over random walk parameter evolutions can be based on this effi-

cient parameter path estimator: An asymptotically efficient test rejects stability when the

estimated parameter path is ’too variable’ as measured by a specific quadratic form in the

estimated parameter instability, just like a standard Wald (1943) statistic.

The rest of the paper is organized as follows. Section 2 gives a heuristic derivation of the

asymptotic equivalence between the general filtering/smoothing problem and the local level

model, and defines the suggested parameter path estimators and test statistics. Section 3

introduces the estimation problem in detail, discusses the regularity conditions and contains

the main results. Section 4 concludes. Proofs are collected in an appendix.

2 Motivation and Definition of Efficient Parameter Path

Estimators and Stability Tests

Consider a stable time series model with a log-likelihood function of the form
PT

t=1 lt(θ), with

parameter θ ∈ Θ ⊂ Rk. Take a true time varying parameter path {θ0+δt}Tt=1, where {δt}Tt=1
is normalized by the constraint

P
δt = 0, where ’

P
’ denotes a sum over t = 1, · · · , T . The

sample information about the path {δt}Tt=1 is then fully contained in the function
P

lt(θ0+δt).

Let θ̂ be the maximum likelihood estimator of θ0 ignoring parameter instability, i.e. θ̂

maximizes
PT

t=1 lt(θ). Denote the sequence of k × 1 score vectors by st(θ) = ∂lt(θ)/∂θ and

the sequence of k × k Hessians by ht(θ) = ∂st(θ)/∂θ
0. By a second order Taylor expansionX

lt(θ0 + δt) =
X
[lt(θ̂ + δt)− st(θ̂)

0(θ̂ − θ0)]− 1
2
(θ̂ − θ0)

0
³X

ht(θ̃t)
´
(θ̂ − θ0)

where θ̃t lies on the line segment between θ0 + δt and θ̂ + δt.

Under standard conditions, (θ̂−θ0) = Op(T
−1/2). Suppose the likelihood model is regular

enough to ensure a ’Local Law of Large Numbers’ for the Hessians, such that for sequences

{θt} with θt close to θ̂ for t = 1, · · · , T , T−1Pht(θt) + Ĥ
p→ 0, where the matrix Ĥ is

defined as Ĥ = −T−1Pht(θ̂). When the analysis focusses on relatively small parameter

variations with δt = Op(T
−1/2), the quadratic term can then be approximated by (θ̂ −
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θ0)
0
³P

ht(θ̃t)
´
(θ̂ − θ0) ≈ −T (θ̂ − θ0)

0Ĥ(θ̂ − θ0), which does not depend on {δt}. The
function

P
lt(θ̂+δt) hence contains ’almost’ as much information about {δt} as the functionP

lt(θ0 + δt).

Now by another Taylor expansionX
(lt(θ̂ + δt)− lt(θ̂)) =

X
st(θ̂)

0δt + 1
2

X
δ0tht(θ̄t)δt

where θ̄t lies on the line segment between θ̂ and θ̂ + δt. For parameter variations that are

small and persistent, the quadratic term can be approximated by
P

δ0tht(θ̄t)δt ≈ −
P

δ0tĤδt.

The reason is that the persistence in {δt} leads to a ’local’ averaging of ht(θ̄t): take τ 0 and
τ 1 > τ 0 such that (τ 1− τ 0) is large but (τ 1 − τ 0)/T is small, so that δt is close to δτ0 for all

t = τ 0, · · · , τ 1. Then
τ1X

t=τ0

δ0tht(θ̄t)δt ≈ δ0τ0

Ã
τ1X

t=τ0

ht(θ̄t)

!
δτ0 .

Repeating this local average argument over the whole sample and invoking a Local Law of

Large Numbers argument leads to
P

δ0tht(θ̄t)δt ≈ −
P

δ0tĤδt.

Clearly
P

st(θ̂)
0Ĥ−1st(θ̂) does not depend on {δt}. With the approximations in place,

we can writeX
(lt(θ̂+ δt)− lt(θ̂))− 1

2

X
st(θ̂)

0Ĥ−1st(θ̂) ≈ −12
X
(Ĥ−1st(θ̂)− δt)

0Ĥ(Ĥ−1st(θ̂)− δt) (1)

Ignoring constants, the right-hand side of (1) is the the log-likelihood function of the Gaussian

random variable Ĥ−1st(θ̂) with mean δt and covariance matrix Ĥ−1. The information in the

sample about δt can therefore be approximately summarized by the observation equation

Ĥ−1st(θ̂) = δt + νt

where νt ∼i.i.d.N(0, Ĥ−1)–a local level observation equation. For a ’state equation’ of δt
that posits its evolution as a demeaned Gaussian Random Walk (in order to satisfy the

normalization constraint
P

δt = 0), the efficient smoothing formula now becomes a variant

of the usual Kalman equations. The filtering analogue, of course, can easily be obtained by

considering the end-point of the smoothed parameter path of a subset of the data. Also,

efficient stability tests that maximize weighted average power against alternatives of Gaussian

RandomWalk parameter evolution can be based on pseudo likelihood ratio statistics derived

from the local level model.

The following section makes these heuristic arguments precise under some fairly general

regularity conditions on the likelihood. For many applications, the efficient estimator of the

parameter path can be computed as follows:
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1. Compute the maximum likelihood estimator of the model, denoted by θ̂, assuming the

parameter to be constant through time.

2. For each t = 1, · · · , T , collect the p ≤ k elements of the k × 1 score vector st(θ̂) that
correspond to the time varying parameters in a new p× 1 vector xt, i.e. xt = Γ0st(θ̂)

for some k × p selector matrix Γ that consists of p columns of Ik.

3. Compute the normalized sequence x̃t = Γ0Ĥ−1Γxt, t = 1, · · · , T , where Ĥ = −T−1PT
t=1 ht(θ̂).

4. Let z1 = x̃1, and compute

zt = razt−1 + (x̃t − x̃t−1), t = 2, · · · , T

where ra = 1 − ā/T . That is, generate an p × 1 AR(1) process initialized at x̃1 and
innovations ∆x̃t.

5. Compute the residuals {z̃t}Tt=1 of a linear regression of {zt}Tt=1 on {rt−1a Ip}Tt=1.

6. Let z̄T = z̃T , and compute

z̄t = raz̄t+1 + (z̃t − z̃t+1), t = 1, · · · , T − 1

7. The efficient estimator of the parameter path is now given by {Γ0θ̂ + x̃t − raz̄t}Tt=1.

This procedure depends on the positive parameter ā, which corresponds to the signal-to-

noise ratio in the smoothing problem: The smaller ā, the smoother the estimated parameter

path {Γ0θ̂+x̃t−z̄t}Tt=1 becomes. We suggest a default value of ā = 10. This value corresponds
roughly to the degree of instabilities empirically found in macro series, cf. Stock and Watson

(1998).

In addition, it is the natural choice from a testing perspective: Stability tests that max-

imize weighted average power over Gaussian Random Walk alternatives achieve power of

about 50% against the alternative with a signal-to-noise ratio of that magnitude. An as-

ymptotically efficient test for parameter stability (of the parameters selected by Γ) can be

based on the statistic

Ĵ =
TX
t=1

(x̃t − z̄t)
0x̃t

where stability is rejected for large values. Asymptotic critical values for ā = 10 are given

in Elliott and Müller (2003).
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For the computation of the test statistic, it is advisable to replace Ĥ in step 3 by a

consistent estimator of the long-run variance of {xt}Tt=1. An attractive choice for such an
estimator is derived in Andrews (1991). This replacement yields asymptotically correctly

sized tests even when the likelihood model is misspecified, as long as the score represents a

valid moment condition.

3 Asymptotically Efficient Inference in Unstable Time

Series Models

We begin by introducing some additional notation and definitions. Let (F ,F, P ) be a
probability space, on which all subsequent random elements are defined. The data yT =

(yT,1, · · · , yT,T ) in a sample of size T with parameter path {θ + δt}Tt=1 is drawn from a

parametric model with density

fT (θ, δ) = gT (yT )
TY
t=1

fT,t(θ + δt), θ + δt ∈ Θ

with respect to some σ-finite measure µT , where θ and δt are k × 1, δ = (δ01, · · · , δ0T )0 ∈
RTk and gT (yT ) does not depend on (θ, δ). This form of likelihood arises naturally in the

’forecasting error decomposition’ of models, where fT,t(θ + δt) is the conditional likelihood

of yT,t given past data, and gT (yT ) captures the contribution of the evolution of weakly

exogenous components (in the sense of Engle, Hendry, and Richard (1983)).

Alternative estimators, or generally decisions, are evaluated via a loss function LT :

Rk × RTk × AT 7→ [0, L̄] ⊂ R, where the action space AT is a metric spaces and LT is

assumed Borel-measurable with respect to the product sigma algebra on Rk × RTk × AT .

(For reasons that become apparent below, loss is also defined for parameter values outside

Θ.) The bound L̄ is finite and does not depend on T ; this assumption of bounded loss usually

has little practical importance, but greatly facilitates the subsequent analysis. When the true

parameter evolution is {θ+δt}Tt=1 and action a ∈ AT is taken, the incurred loss is LT (θ, δ, a).

A typical action could be an estimate of the entire entire parameter path, so that AT = ΘT ,

or an estimate of the parameter at a specific point in time, in which case AT = Θ. Decisions

â are measurable functions from the data to AT . The risk of decision â given parameter

evolution {θ + δt}Tt=1 is hence given as r(θ, δ, â) =
R
LT (θ, δ, â)fT (θ, δ)dµT , which in general

depends on δ and θ.
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Let Q be a measure on RTk, and let w : Θ 7→ R+0 be the Lebesgue density of a random
k × 1 vector. For each θ ∈ Θ, let VT (θ) = {δ : δt + θ ∈ Θ∀t} ⊆ RTk. The Weighted Average

Risk of decision â is then given by

WAR(â) =

Z
Θ

w(θ)

Z
VT (θ)

r(θ, δ, â)dQ(δ)dθ

The weight functions w andQ describe the importance attached to alternative true parameter

paths in the overall risk calculations: The weight function w attaches different weights to

the average true parameter value θ = T−1
PT

t=1(θ + δt), whereas Q describes the focus on

deviations from this baseline value.

We make the following condition on w and Q.

Condition 1 (a) Let Q = QT be multivariate normal, such that if δ ∼ QT then

δt = δ̃t − T−1
TX
l=1

δ̃l, t = 1, · · ·T

δ̃t − δ̃t−1 = T−1Ω1/2εt, t = 1, · · ·T, and δ̃0 = 0

for εt ∼i.i.d.N(0, Ik) for some nonnegative definite, nonrandom k × k matrix Ω.

(b) w is continuous on Θ.

Under Condition 1, the weighted average risk criterion focusses on parameter paths that

are persistent, since under Q, {δt}Tt=1 is distributed as a demeaned Gaussian Random Walk

and of relatively small magnitude, as the variance of random walk innovations is given by

T−2Ω, for some prespecified Ω.

The concentration on persistent parameter paths is appealing in many applications, as

the object of interest are low frequency movements. A structural interpretation of a time-

varying regression parameter as a time varying marginal effect, for instance, usually makes

more sense if the variation is of a persistent form. Also for forecasting purposes, it is natural

to focus on slowly drifting parameters, and then to construct efficient forecasts based on the

best guess of the parameter value at the end of the sample.

The sample size dependent choice of the innovation variance T−2Ω is motivated by a

desire to develop procedures that work well when there is relatively little information about

the parameter path. For parameter paths of fixed magnitude and persistence, larger samples

naturally contain more information, as more adjacent observations can be used to pinpoint

the value of the slowly varying parameter at a given date–cf. Robinson (1989), for instance.
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The sample size dependent choice T−2Ω counteracts this effect of having more information

as T becomes larger, making the estimation of the form of the scaled parameter variation

{T 1/2δt} difficult even asymptotically. In this way, the asymptotic arguments derived based
on the sequence of weights as described Condition 1 becomes relevant to the small sample

problem where there is in fact little information about the parameter evolution. And, of

course, parameter variations that are ’small’ in the statistical sense of being nontrivial to

detect need not to be small in an economic sense. In fact, many instabilities that economists

care about, such as those arising from Lucas-critique arguments, the stability of monetary

policy or the stability of economic growth have been difficult to determine empirically and

are hence ’small’ in the statistical sense.

Note that the weight function Q in Condition 1 concentrates its mass in the local neigh-

borhood in which efficient stability tests have nontrivial asymptotic power. A coherent

framework of testing for instabilities and a subsequent estimation of its form hence naturally

leads to the formulation in Condition 1. Specifically, consider the hypothesis test

H0 : δ = 0 against H1 : δ 6= 0. (2)

Possibly randomized tests ϕT are measurable functions from the data to the interval [0, 1],

where ϕT (yT ) indicates the probability of rejection when observing yT . Tests of the same

size can then usefully be compared by considering their weighted average power

WAP (ϕT ) =

Z
VT (θ)

Z
fT (θ, δ)ϕTdµTdQ(δ) (3)

as suggested by Andrews and Ploberger (1994). While (3) is potentially a function of θ,

we show below that there exists an efficient test ϕ∗T that maximizes (3) for all θ and whose

rejection probability under H0 does not depend on the stable value of θ either.

The nonnegative definite matrix Ω determines the relative variability of the parameters

in the model. When a subset of parameters is known to be stable, this knowledge can

be incorporated in Ω by setting the appropriate elements equal to zero. In general, the

’larger’ Ω, the more weight is put on parameter paths that diverge substantially (in the local

neighborhood) from the baseline value θ.

With the weighting of parameter paths specified as the distribution of a (demeaned)

Gaussian Random Walk, the problem of finding Weighted Average Risk minimizing actions

essentially becomes a nonlinear smoothing exercise. Subject to a measure theoretic qualifier,

the loss minimizing decision is the action a that minimizesR
Θ
w(θ)

R
VT (θ) fT (θ, δ)LT (θ, δ, a)dQ(δ)dθR

Θ
w(θ)

R
VT (θ) fT (θ, δ)dQ(δ)dθ

(4)
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for each data yT . With the weighting functions normalized to integrate to unity, this is

simply Bayes Rule for minimizing Bayes risk (4), which can be interpreted as finding the

action that minimizes the expected posterior loss, i.e. loss integrated with respect to the

posterior distributions of (θ, δ) under a prior of (θ, δ) that is proportional to the weights in

Condition (1).

A large literature has developed around numerically finding exact posterior distributions

in nonlinear filtering/smoothing problems, usually by Monte Carlo simulation techniques.

Some of the numerical approximations employ second order Taylor expansions similar to the

development in Section 2 above at some stage; see Durbin and Koopman (1997) and Shep-

hard and Pitt (1997), for instance. This paper complements this research by an asymptotic

analysis, yielding both a deeper theoretical understanding of the problem and a compu-

tationally simple and asymptotically efficient procedure for choosing the risk minimizing

action.

For the asymptotic analysis, we require some more notation and regularity conditions

on the likelihood fT (θ, δ). We speak of the data being generated ’under θ0 stable’ if the

true density of the data is given by fT (θ0, 0), i.e. there is no instability in the parame-

ters, and data generated ’under θ0 unstable’ if the density of the data is proportional toR
VT (θ) fT (θ0, δ)dQ(δ). Let [·] indicate the largest lesser integer function, and let ’

p→’ and ’⇒’
denote convergence in probability and weak convergence as T →∞, respectively.

Condition 2 Under θ0 stable

(DIFF) θ0 is an interior point of Θ, and in some neighborhood Θ0 ⊆ Θ of θ0, lt(θ) is

twice differentiable a.s. with respect to θ for t = 1, · · · , T.
(ID) For all � > 0 there exists K(�) > 0 and γ > 0 such that

P ( sup
||θ−θ0||≥�,θ∈Θ

T−1
X

sup
||v||<T−1/2+γ ,θ+v∈Θ

(lt(θ + v)− lt(θ0)) < −K(�))→ 1

(LLLN) Let BT be any decreasing neighborhood of θ0, i.e. BT = {θ : ||θ − θ0|| < bT} for
some sequence of real numbers bT → 0. Then

(i) T−1
TX
t=1

∙
sup
θ∈BT

ht(θ)− inf
θ∈BT

ht(θ)

¸
p→ 0

(ii) sup
λ∈[0,1]

¯̄̄̄
¯̄T−1 [λT ]X

t=1

[ht(θ0) +H]

¯̄̄̄
¯̄ p→ 0
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for some positive definite matrix H.

(FCLT) In the Skorohod metric on the set of cadlag functions on the unit interval

T−1/2
[·T ]X
t=1

st(θ0)⇒ H1/2W (·)

where W is a k × 1 vector Wiener processes.

Condition 2 is a set of fairly standard high level assumptions on the ’forecast error

decomposition’-part of the log-likelihood. (DIFF) assumes existence of two derivatives. (ID)

is a global identification condition, somewhat strengthened to ensure that even a slightly

perturbed evaluation of the likelihood at parameter values far from θ0 still yields a substan-

tially lower likelihood with high probability. (LLLN) is a Local Law of Large Numbers for

the second derivatives ht. Part (i) controls the average variability of the second derivative ht
as a function of the parameter. It is implied by the more primitive conditions A.2 and A.3

of Andrews (1987). See Gallant and White (1988) and Andrews (1992) for further discus-

sion of these assumptions. Part (ii) assumes linear accumulation of the average information.

While quite general, it does typically rule out models with stochastic or deterministic trends.

(FCLT) assumes a Functional Central Limit Theorem to hold for the sequence of scores eval-

uated at the true parameter. As {st(θ0)} constitutes a martingale difference sequence, and
typically T−1

P[λT ]
t=1 E[st(θ0)st(θ0)

0]→ λH uniformly in λ ∈ [0, 1], the high-level assumption
(FCLT) can be justified by invoking a FCLT for martingale difference sequences.

Note that Condition 2 puts assumptions only on the stable likelihood model, that is

on its behavior when the parameter path is constant. In the presence of time varying

parameters, most models generate nonstationary data, to which standard results are not

easily applicable. This is especially true for models with weakly exogenous regressors, like

Vector Autoregressive Regressions, where parameter instabilities lead to highly complicated

interactions between the evolution of the lagged variables and the unstable parameters.

We derive results for the unstable model as an implication of the contiguity of the se-

quence of densities of the unstable model {RVT (θ) fT (θ0, δ)dQ(δ)}T to the sequence of densities
{fT (θ0, 0)}T of the stable model. Contiguity formalizes the idea of these two densities being
close, such that whenever an approximation can be shown to be of order op(1) in the stable

model, it is also op(1) in the unstable model. See Vaart (1998) and Pollard (2001) for a

discussion of the concept of contiguity.

To summarize the main results in a compact form, we need to define some additional

notation. For a > 0, let r̃a = 1
2
(2+a2T−2−T−1

√
4a2 + a4T−2) = 1−aT−1+ o(T−1). Let Aa
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be a T × T matrix with ones on the main diagonal and −r̃a on the first lower subdiagonal,
and let F = A−10 . Define the T ×1 vector e = (1, · · · , 1)0, the T ×T matrixMe = IT −ee0/T ,
and the T×T matrix Ga =Me−J−1a +J−1a e(e0J−1a e)−1e0J−1a , where Ja = r̃−1a FAaA

0
aF

0. Note

that if δ ∼ N(0, a2T−2MeFF
0Me) and yT |δ ∼ N(δ,Me) (i.e. the model is a scalar demeaned

exact local level model with Ω = a2), then δ|yT ∼ N(GayT , Ga). 1 Let P ∗ diag(a21, · · · , a2k)P ∗0
be the spectral decomposition of Ĥ1/2ΩĤ1/2, and define the Tk × Tk matrix

Σ = (IT ⊗ Ĥ−1/2P ∗)

"
kX
i=1

Gai ⊗ (ιk,iι0k,i)
#
(IT ⊗ P ∗0Ĥ−1/2) (5)

where ιk,i is the ith column of Ik and ’⊗’ denotes the Kronecker product. Let Φn stand for

the distribution N(0, In), and define the Tk × 1 vector ŝ as ŝ = (s1(θ̂)0, · · · , sT (θ̂)0)0.
The main result of the paper is the following Theorem.

Theorem 1 (a) Assume that the decision â∗ minimizesZ Z
LT (θ̂ + T−1/2Ĥ−1/2u,Σŝ+ Σ1/2δ, â)dΦTk(δ)dΦk(u)

for all yT . If Conditions 1 and 2 hold for all θ0 that satisfy w(θ0) > 0, then for all â

limT→∞[WAR(â)−WAR(â∗)] ≥ 0.

(b) Let ϕ∗T be the level α test under θ0 stable, i.e.
R
ϕ∗TfT (θ0, 0)dµT = α, that rejects for

large values of ŝ0Σŝ. Then under Conditions 1 and 2, for any other level α test ϕT under θ0

stable,

limT→∞[WAP (ϕ∗T )−WAP (ϕT )] ≥ 0.

Furthermore, the asymptotic distribution of ŝ0Σŝ under θ0 stable does not depend on θ0 and

is given by Elliott and Müller (2003) in their Lemma 2.

(c) Under Condition 2, with a prior on δ and θ that is proportional to the weights in

Condition 1, the total variation distance between the posterior distribution of (θ, δ) and the

distribution N(θ̂, T−1Ĥ−1) × N(Σŝ,Σ) converges to zero in probability both under θ0 stable

and under θ0 unstable.

1In order to see this, let Be the T × (T − 1) matrix satifying BeB
0
e = Me and B0

eBe =

IT−1. The unconditional distribution of B0
eyT then is N(0, B0

e(a
2T−2FF 0 + IT )Be), so that B0

eδ|yT ∼
N(B0

eGaMey, (B
0
eGaBe)

−1), where B0
eGaBe satisfies B0

eGaBe = (B0
e(a

2T−2FF 0 + IT )Be)
−1 + IT−1. The

statement now follows from Lemma 4 of Elliott and Müller (2003).
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Comments: 1. The matrix Σ can be understood as describing k local-level models

in the elements of the normalized score sequence {P ∗0Ĥ−1/2st(θ̂)}Tt=1, with signal-to-noise
ratios given by a1, · · · , ak, respectively. The optimal smoother for the true path of {δt}Tt=1
is given by Σŝ, with an uncertainty described by a Tk × 1 mean zero multivariate normal
with covariance matrix Σ. The three parts of Theorem 1 are different implications of the

asymptotic equivalence between the general model and these k scalar Gaussian local level

models. In addition, the asymptotic uncertainty about the average level of the parameter

path θ is described by a multivariate normal with mean θ̂ and covariance matrix T−1Ĥ−1,

just as in stable likelihood models. Note that this uncertainty concerning θ is independent

of the choice of weight function w.

2. Part (a) establishes that for arbitrary bounded loss functions, the decision that min-

imizes risk in the approximate Gaussian local level model is also asymptotically optimal in

the true model. Note that loss may be defined arbitrarily (subject to the bounding condi-

tion) for parameter values outside Θ, allowing the local level problem to be made entirely

spherical. For the wide range of loss functions for which one would choose the smoothed

path in a Gaussian local level model, an asymptotically efficient estimator is hence given by

θ̂ ⊗ e+ Σŝ. Note that such loss functions include those that consider a weighted average of

symmetric losses incurred by estimation errors in the parameter value for all t = 1, · · · , T,
but also a symmetric loss function that focusses entirely on, say, the value of the parameter

at date T . This kind of loss function might arise naturally in a forecasting problem.

For more general losses and decision problems, the asymptotically efficient decision can

still be obtained by implementing the efficient decision in the approximate local level model.

This typically represents a dramatic computational simplification.

3. Part (b) spells out the implications of the approximation for efficient tests of the null

hypothesis of parameter stability (2). With the smoother of the parameter instability δ being

Σŝ, and its uncertainty described by a zero mean multivariate normal with covariance matrix

Σ, the efficient test statistic is simply of the usual Wald form (Σŝ)0Σ+(Σŝ) = ŝ0Σŝ, where Σ+

denotes the Moore-Penrose inverse. Efficient estimation and testing in (potentially) unstable

models is hence unified in one coherent framework: Efficient instability tests are based on a

quadratic form in the efficient estimator of the instability.

In a linear Gaussian time series model, the test statistic ŝ0Σŝ becomes the statistic Ĵ

derived by Elliott and Müller (2003). For that special case of a Condition 2 model, they

prove asymptotically efficiency for a wider class of weighting functions on δ, that includes Q

of Condition 1.
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4. Part (c) describes the approximation result in Bayesian terms. The result for the

posterior distribution of θ is standard in stable models–see, for instance, Schervish (1995).

The approximation result for the posterior of δmight be more surprising: despite the fact that

the dimension of δ is the same as that of the data, the posterior of δ becomes arbitrarily close

to the Tk dimensional multivariate normal distribution N(Σŝ,Σ). This is a much stronger

statement than a convergence in distribution of, say, the posterior of T 1/2δ[·T ] viewed as an

element of the space of cadlag functions on the unit interval.

In practice, part (c) is useful for Bayesian analyses as it provides a simple to compute

approximation to the posterior of the unstable parameter path. Even if the exact small

sample posterior is required, the approximation of Theorem 1 can still be helpful, as numer-

ical methods typically require a reasonable initial guess of the posterior distribution. In the

appendix, we provide a simple algorithm for generating random variables with distribution

N(Σŝ,Σ).

When applying part (a) and (b) of Theorem 1, the question arises how to choose Ω. An

attractive default choice is Ω = diag(ā2Γ0H−1Γ, 0k−p) for some ā > 0, where Γ is the k × p

selector matrix that selects the p ≤ k (potentially) time varying elements of θ introduced in

Section 2. This choice of Ω equates the degree of uncertainty about the unstable elements of

δ in any given direction (in Rp) with the average sample information about that direction,

as under Condition 2, H−1 is the information matrix of θ. It hence leads to equal signal-

to-noise ratios in all unstable directions. It is also the only choice that yields asymptotic

results that do not depend on a particular parametrization. Nyblom (1989), Andrews and

Ploberger (1994) and Elliott and Müller (2003) argue for the same choice for their efficient

testing procedures.

Typically, of course, H is unknown, but it can be consistently estimated under θ0 stable.

As long as the loss function LT does not focus excessively on the scale of the estimated

parameter instability,2 a replacement of Ω by Ω̂ in the definition (5) of Σ, yielding Σ̂, does

not affect the optimality results.

Theorem 2 Suppose Ω̂
p→ Ω, and H̃

p→ H under θ0 stable. Then part (b) of Theorem 1

holds with Σ replaced with Σ̂, and if supθ,δ,a |LT (θ, (IT ⊗ (Ik +∆T ))δ, a) − LT (θ, δ, a)| → 0

for all sequences of k × k matrices ∆T → 0, then also part (a) of Theorem 1 holds with Σ

replaced by Σ̂ and Ĥ replaced by H̃.
2This qualifier is necessary, as one could construct pathological loss functions that ’detect’ the small

difference in scale between δ ∼ Q and (IT ⊗ Ω̂1/2(Ω+)1/2)δ ∼ Q.
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4 Conclusions

Most economic relationships are potentially unstable over time. In empirical work, this

translates into time varying parameters of estimated models. It has long been recognized (cf.

Cooley and Prescott (1976)) that it would often be desirable to keep track of this potential

instability. Going beyond time variation in the coefficients of Gaussian linear regression

models, however, typically leads to major numerical and computational complications.

This paper extends the applicability of straightforward Kalman formulae to much more

general models while preserving asymptotic efficiency. As long as the parameter evolution is

thought of as a Gaussian RandomWalk of moderate magnitude, a local level model with the

score as the observation is an asymptotically efficient summary of the sample information.

This implies that asymptotically efficient estimators of the parameter path, as well as efficient

tests of parameter stability, can easily be obtained from the sequence of scores.

The results of this paper are hence not only of theoretical interest, but they arguably

add a useful tool to the applied econometrician’s toolbox. At least for a ’first look’ at po-

tentially unstable time series models, the procedures suggested here constitute an attractive

alternative to numerical approximations to the exact solution: they are computationally

straightforward, they have rigorous asymptotic justifications, and they embed efficient tests

of parameter stability and efficient parameter path estimators in one coherent framework.
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5 Appendix
Proof of Theorem 1:

Proof of part (c). For θ0 ∈ Θ such that w (θ0) > 0, let LR (θ, δ) = fT (θ, δ)/fT (θ0, 0). The
posterior density of (θ, δ) given the data can be written as

ΘVT (θ)w(θ)LR (θ, δ) dQ(δ)dθR
Θw(θ)

hR
VT (θ) LR (θ, δ) dQ(δ)

i
dθ

.

Let u (θ) = T 1/2 (θ − θ0) , û = T 1/2(θ̂ − θ0) and dLRT (θ, δ) = exp[
P

st(θ̂)
0δt − 1

2

P
δ0tĤδt +

û0Ĥu (θ)− 1
2u (θ)

0 Ĥu (θ)]. Then the density of N(θ̂, T−1Ĥ−1)×N(Σŝ,Σ+) can similarly be written
as

w (θ0)dLRT (θ, δ)dQ(δ)dθ

w (θ0)
R R dLRT (θ, δ)dQ(δ)dθ

(see Lemma (8)). The total variation distance between the posterior distributions converges in
probability to zero if the L1 distance between their densities converges, i.e. ifZ Z ¯̄̄̄

¯ ΘVT (θ)w(θ)LRT (θ, δ)R
Θ

R
VT (θ)w(θ)LRT (θ, δ)dQ(δ)dθ

− w (θ0)dLRT (θ, δ)

w (θ0)
R R dLRT (θ, δ)dQ(δ)dθ

¯̄̄̄
¯ dQ(δ)dθ p→ 0.

For any loss function L, let

RT :=

Z Z ¯̄̄̄
¯ΘuVT (u)w(θ0 + T−1/2u)

LRT (u, δ)

D
−w (θ0)

dLRT (u, δ)

D̂

¯̄̄̄
¯L(θ0 + T−1/2u, δ, a)dQ(δ)du

where Θu = {u : θ0 + T−1/2u ∈ Θ}, D =
R
Θu

R
VT (u)w(θ0 + T−1/2u)LRT (u, δ)dQ(δ)du, and bD =

w (θ0)
R R dLRT (u, δ)dQ(δ)du, and notice that the L1 distance between the posterior densities is RT

with L ≡ 1. Hence, showing that RT converges in probability for all bounded loss functions yields
the result. Now,

L̄−1RT ≤
Z Z ¯̄̄̄

¯ΘuVT (u)w(θ0 + T−1/2u)LRT (u, δ)

D
− w (θ0)

dLRT (u, δ)

D̂

¯̄̄̄
¯ dQ(δ)du

≤ D−1
Z Z ¯̄̄

ΘuVT (u)w(θ0 + T−1/2u)LRT (u, δ)− w (θ0)dLRT (u, δ)
¯̄̄
dQ(δ)du

+w (θ0)
¯̄̄
D−1 − D̂−1

¯̄̄ Z Z dLRT (u, δ) dQ(δ)du.

We show that

NT =

Z Z ¯̄̄
ΘuVT (u)w(θ0 + T−1/2u)LRT (u, δ)− w (θ0)dLRT (u, δ)

¯̄̄
dQ(δ)du = op (1) ,

bD−1 = Op (1) , and bD = Op (1), which yields as a corollary D − D̂ = op (1) and RT = op (1).
Write Z Z dLRT (u, δ) dQ(δ)du =

Z dLRT (0, δ) dQ(δ)

Z
exp

³
û0Ĥu− 1

2u
0Ĥu

´
du
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and note that
R
exp

³
û0Ĥu− 1

2u
0Ĥu

´
du = exp

³
1
2 û
0Ĥû

´ ¯̄̄
Ĥ
¯̄̄−1/2

(2π)k/2 . Given the consistency of

θ̂ under θ0 stable (see Lemma (2)), 12 û
0Ĥ−1û = Op (1), and Ĥ−H = op (1). Since H is not singular

by (LLLN), we can conclude that both exp
³
1
2 û
0Ĥ−1û

´ ¯̄̄
Ĥ
¯̄̄−1/2

and exp
³
−12 û0Ĥ−1û

´ ¯̄̄
Ĥ
¯̄̄1/2

are

Op (1). Lemma (6) states that both
R dLRT (0, δ) dQ(δ) and

³R dLRT (0, δ) dQ(δ)
´−1

are Op (1).

Both bD−1 and bD are therefore Op (1) .
It is now shown that NT = op (1). Let ST = {δ : T 1/2 supi,t |δi,t| < T 1/4},

NB,T =

Z Z
ST
¯̄̄
VT (u)ΘuLRT (u, δ)w(θ0 + T−1/2u)− w(θ0)dLRT (u, δ)

¯̄̄
dQ(δ)du,

NG,T =

Z
||u||<aT

Z
ST
¯̄̄
VT (u)ΘuLRT (u, δ)w(θ0 + T−1/2u)− w(θ0)dLRT (u, δ)

¯̄̄
dQ(δ)du,

where (aT )T≥1 is some increasing sequence to be defined below. Then

NT = (NT −NB,T ) + (NB,T −NG,T ) +NG,T ,

the sum of three terms, each of which is shown to converge in probability. From now on, Eδ[·] is
shorthand notation for integration on RTk with respect to Q.

For the first term, note that, by Markov’s inequality and because the tail probability of the
supremum of a Gaussian random walk decays exponentially,

P (

Z
Θu

Z
VT (u)

(1− ST )w(θ0 + T−1/2u)LRT (u, δ)dQ(δ)du > η)

≤ η−1
Z Z

Θu

Z
VT (u)

(1− ST )w(θ0 + T−1/2u)LRT (u, δ)dQ(δ)dufT (θ0, 0)dµT

= η−1
Z
Θu

Z
VT (u)

µZ
fT (θ0 + T−1/2u, δ)dµT

¶
(1− ST )w(θ0 + T−1/2u)dQ(δ)du

≤ η−1Eδ(1− ST )
Z
Θu

w(θ0 + T−1/2u)du

= η−1Eδ(1− ST )O
³
T k/2

´
→ 0.

By Lemma (6), Z Z
(1− ST )w (θ0)dLRT (u, δ)dQ(δ)du

≤ w(θ0) [Eδ(1− ST )]1/2
Z ∙Z dLRT (u, δ)

2dQ(δ)

¸1/2
du

= w(θ0) [Eδ(1− ST )]1/2Op (1)
p→ 0.

Hence, (NT −NB,T ) = op (1).
For the second term, pick any sequence of decreasing numbers ãi such that ãi → 0 as i → ∞.

For each i, by assumption (ID), there exists T ∗i such that for all T > T ∗i

P ( sup
θ∈Θ,||θ−θ0||≥ãi

T−1
X

sup
||v||<T1/4,θ+T−1/2v∈Θ

(lt(θ + T−1/2v)− lt(θ0)) < −K(ãi)) ≥ 1− ãi
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For any T , let iT be the largest i such that (i) T > T ∗i , (ii) T
1/2K(ãi) > 1 and (iii) T 1/4ãi > 1.

Note that iT →∞. Set aT = T 1/2ãiT . Then

P ( sup
θ∈Θ,T1/2||θ−θ0||≥aT

T−1
X

sup
||v||<T 1/4

(lt(θ+ T−1/2v)− lt(θ0)) < −K(T−1/2aT )) ≥ 1− T−1/2aT → 1

and T 1/2K(T−1/2aT ) > 1, and aT →∞.
Then Z

Θu∩{u:||u||≥aT }

Z
VT (u)

STw(θ0 + T−1/2u)LRT (u, δ)dQ(δ)du

≤ exp

"
sup

θ∈Θ,T 1/2||θ−θ0||≥aT
sup

δ∈ST∩VT (θ)

X
(lt(θ + δt)− lt(θ0))

#Z
w(θ0 + T−1/2u)du

= exp

"
sup

θ∈Θ,T 1/2||θ−θ0||≥aT

X
sup

||v||<T−1/4,θ+T−1/2v∈Θ
(lt(θ + v)− lt(θ0))

#
O
³
T k/2

´
≤ exp[−TK(T−1/2aT )]O

³
T k/2

´
≤ exp[−T 1/2]O

³
T k/2

´
→ 0

with probability converging to one. Moreover,Z
||u||≥aT

Z
STdLRTw(θ0)dQ(δ)du

≤ w(θ0)

Z
||u||≥aT

exp[û0Ĥu− 1
2u
0Ĥu]du

Z dLRT (0, δ)dQ(δ).

By Lemma (6) again,
R dLRT (0, δ)dQ(δ) = Op (1); with Z ∼ N (0, Ik),Z

||u||≥aT
exp

³
û0Ĥu− 1

2u
0Ĥu

´
du = exp

µ
1

2
û0Ĥû

¶ ¯̄̄
Ĥ
¯̄̄−1/2

(2π)k/2

×
¯̄̄
Ĥ
¯̄̄1/2

(2π)−k/2
Z
kuk≥aT

exp
³
−12 (u− û)0 Ĥ (u− û)

´
du

= Op (1)P
³°°°û+ Ĥ−1/2Z

°°° ≥ aT

´
≤ Op (1)P

³
kZk ≥ (aT − kûk)

°°°Ĥ1/2
°°°´ p→ 0

since (aT − kûk)
°°°Ĥ1/2

°°° = aT
°°H1/2

°°+Op (1)
p→∞ as T →∞. Hence,

NB,T −NG,T ≤
Z
Θu∩{u:||u||≥aT }

Z
VT (u)

STLRT (u, δ)w(θ0 + T−1/2u)dQ(δ)du

+

Z
||u||≥aT

Z
STdLRTw(θ0)dQ(δ)du

p→ 0.

Let AT :=
©
v ∈ Rk : kvk < aT

ª
and note that for T large enough, AT ⊂ Θu, by assumption

(DIFF), as θ0 is an interior point of Θ. By the same argument, for large enough T , ST ⊂ VT (u)
for all u ∈ AT . Assume in the following that T is large enough for these two set inclusions to hold.
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Since aT = o
¡
T 1/2

¢
, T−1/2u→ 0 for all u ∈ AT , so that by the continuity of w at θ0,

sup
||u||<aT

¯̄̄
w(θ0 + T−1/2u)− w (θ0)

¯̄̄
= o(1).

Moreover, it will be shown that
R
AT

R ST ¯̄̄LRT (u, δ)−dLRT (u, δ)
¯̄̄
dQ(δ)du = op(1); as argued

above,
R R dLRT (u, δ) dQ(δ)du = Op (1). It follows that

R
AT

R STLRT (u, δ)dQ(δ)du ≤
R R dLRT (u, δ)dQ(δ)du+

op (1), so that

sup
u∈AT

¯̄̄
w(θ0 + T−1/2u)− w (θ0)

¯̄̄ Z
AT

Z
STLRT (u, δ)dQ(δ)du

≤ o(1)Op(1) + op(1),

which gives the following bound:

NG,T =

Z Z
ATST

¯̄̄
VT (u)ΘuLRT (u, δ)w(θ0 + T−1/2u)−dLRTw(θ0)

¯̄̄
dQ(δ)du

≤ w(θ0)

Z Z
ATST

¯̄̄
LRT (u, δ)−dLRT (u, δ)

¯̄̄
dQ(δ)du

+ sup
u∈AT

¯̄̄
w(θ0 + T−1/2u)− w (θ0)

¯̄̄ Z Z
ATSTLRT (u, δ)dQ(δ)du

= op(1)

The remainder of the proof now shows that
R R ATST

¯̄̄
LRT (u, δ)−dLRT (u, δ)

¯̄̄
dQ(δ)du = op(1).

On AT and ST , T−1/2u = o (1) and supt |δt| = o (1), so that as T →∞, θ0+T−1/2u+δt ∈ Θ0∀t
and hence lt(θ) is almost surely twice differentiable with respect to θ by assumption (DIFF). Also
θ̂ ∈ Θ0 with probability converging to one. A series of second order Taylor expansions gives the
following expression for LRT (u, δ) (on AT and ST and for T large enough):

LRT (u, δ) =
fT (θ0 + T−1/2u, δ)

fT (θ0, 0)
=

fT (θ0 + T−1/2u, δ)
fT (θ0 + T−1/2u, 0)

fT (θ0 + T−1/2u, 0)
fT (θ0, 0)

= exp[
X

st(θ0 + T−1/2u)0δt + 1
2

X
δ0tht(θ̃t)δt]

exp[T−1/2
X

st(θ0)
0u+ 1

2u
0
³
T−1

X
ht(θ̃

1
)
´
u]

= exp[
X

st(θ0)
0δt + 1

2

X
δ0tht(θ̃t)δt + T−1/2u0

X
ht(θ̄)δt]

exp[T−1/2
X

st(θ0)
0u+ 1

2u
0
³
T−1

X
ht(θ̃

1
)
´
u]

= exp[
X

st(θ̂)
0δt + T−1/2û0

X
ht(θ̃

2
)δt +

1
2

X
δ0tht(θ̃t)δt + T−1/2u0

X
ht(θ̄)δt]

exp[û0H̃u+ 1
2u
0
³
T−1

X
ht(θ̃

1
)
´
u],

where θ̃t lies on the line segment between θ0 + T−1/2u and θ0 + T−1/2u + δt, θ̃
1
and θ̄ on that

between θ0 and θ0+T−1/2u, θ̃
2
on that between θ̂ and θ0, and H̃ = −T−1Pht(θ̃

2
) if it is positive
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definite, otherwise H̃ = Ik. Define

ςT = T−1/2û0
X

ht(θ̃
2
)δt +

1
2

X
δ0t
³
ht(θ̃t) + Ĥ

´
δt + T−1/2u0

X
ht(θ̄)δt

+û0(H̃ − Ĥ)u+ 1
2u
0
³
T−1

X
ht(θ̃

1
) + Ĥ

´
u

LRT (u, δ) = LRT (u, δ) exp[−û0Ĥu+ 1
2u
0Ĥu]

= exp

µX
st(θ̂)

0δt − 1
2

X
δ0tĤδt + ςT

¶
=dLRT (0, δ) exp ςT

and let Φ(u) stand for the distribution of u ∼ N(û, Ĥ−1). ThenZ
||u||<aT

Z
ST |dLRT (u, δ)− LRT (u, δ)|dQ(δ)du

= (2π)k/2|Ĥ|−1/2 exp[12 û0Ĥû]

Z
||u||<aT

Z
ST |dLRT (0, δ)− LRT (u, δ)|dQ(δ)dΦ(u).

As argued above, (2π)k/2|Ĥ|−1/2 exp[12 û0Ĥû] = Op(1). Also"Z
||u||<aT

Z
ST |dLRT (0, δ)− LRT (u, δ)|dQ(δ)dΦ(u)

#2
≤

Z
||u||<aT

Z
ST |dLRT (0, δ)− LRT (u, δ)|2dQ(δ)dΦ(u)

=

Z
||u||<aT

Z
ST [2dLRT (0, δ)(dLRT (0, δ)− LRT (u, δ))

+LRT (u, δ)
2 −dLRT (0, δ)

2]dQ(δ)dΦ(u).

Now,

EδSTdLRT (0, δ)(dLRT (0, δ)− LRT (u, δ)) = EδSTdLRT (0, δ)
2 (1− exp ςT )

≤ EδST exp
³
2
X

st(θ̂)
0δt
´
(1− exp ςT )

≤
³
EδST exp 4

X
st(θ̂)

0δt
´1/2 ¡

EδST (1− exp ςT )2
¢1/2

.

(where the first inequality follows from the negative definiteness of −Ĥ) and

EδST
³dLRT (0, δ)

2 − LRT (u, δ)
2
´
≤ EδST exp

³
2
X

st(θ̂)
0δt
´
(1− exp 2ςT )

≤
³
EδST exp 4

X
st(θ̂)

0δt
´1/2 ¡

EδST (1− exp 2ςT )2
¢1/2

.

Essentially same problem: show that EδST exp 4
P

st(θ̂)
0δt = Op (1) andµZ

AT

¡
EδST (1− exp p̃ςT )2

¢1/2
dΦ(u)

¶2
≤ EuATEδST (1− exp p̃ςT )2 = op (1)

for p̃ = 1, 2. For simplicity, set p̃ = 1; for p̃ = 2, the proof is essantially the same.
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First, recall that û = T 1/2
³
θ̂ − θ0

´
= H̃−1T−1/2

P
st(θ0). Hence,

T−1/2
X[λT ]

t=1

³
st(θ̂) + H̃T−1/2û

´
= T−1/2

X[λT ]

t=1

³
st(θ0) +

³
ht(θ̃

2
) + H̃

´
T−1/2û

´
= T−1/2

X[λT ]

t=1
st(θ0)

+T−1
X[λT ]

t=1

³
ht(θ̃

2
) + H̃

´³
H̃−1T−1/2

X
st(θ0)

´
where the process λ 7→ T−1

P[λT ]
t=1

³
ht(θ̃

2
) + H̃

´³
H̃−1T−1/2

P
st(θ0)

´
converges to zero uniformly

in λ, given conditions (LLLN) and (FCLT). Hence, λ 7→ T−1/2
P[λT ]

t=1 st(θ̂) +
[λT ]
T H̃û and λ 7→

T−1/2
P[λT ]

t=1 st(θ0) converge to the same limiting process. Because of the normalization constraint

on δ,
P

t

³
T−1

PT
l=1 s

0
l(θ0)

´
δt = 0, and we have

EδST exp
³
4
X

t
st(θ̂)

0δt
´
≤ Eδ exp

µ
4
X

t

³
st(θ̂) + T−1/2H̃û

´0
δt

¶
,

to which one can apply Lemma (1), and one obtains EδST exp 4
P

st(θ̂)
0δt = Op (1) .

Next, we bound EδST (1 − exp (ςT ))2 ≤ 1 + EδST exp (2ςT ) − 2EδST exp (ςT ). Let bT :=
T−1/2 (1 + aT ) and BT := {θ : kθ − θ0k ≤ bT}, a decreasing sequence of neighborhoods of θ0. On
ST and AT , θ̃t, θ̃

1
and θ̄ are in BT , and, by the

√
T -consistency of θ̂, θ̂ and θ̃

2
are in BT with

probability approaching one. For each t define

cT,t (θ0) =
X

i,j≤k supθ∈BT

¯̄̄
(ht (θ)− ht (θ0))i,j

¯̄̄
,

a random variable that does not depend on δ or u. For any k × k symmetric matrix B, the
ith eigenvalue of which we denote λi, and any v ∈ Rk, |v0Bv| ≤ (sup

i≤k
|λi|)v0v, and sup

i≤k
|λi| ≤p

tr (B0B) ≤Pi,j |bi,j |. Hence, on ST and AT ,X
δ0t
³
ht(θ̃t) + Ĥ

´
δt ≤

X
δ0t
³
ht(θ0) + Ĥ + cT,t (θ0) k

2Ik

´
δt.

Using the normalization constraint on δ again,
P

t

³
T−1/2û0H̃

´
δt = 0 and

P
t

³
T−1/2u0H̃

´
δt = 0,

and so

EδST exp (2ςT )
≤ Eδ exp 2[T

−1/2û0
X³

ht(θ̃
2
) + H̃

´
δt +

1

2

X
δ0t(ht(θ0) + Ĥ + cT,t (θ0) Ik)δt

+T−1/2u0
X³

ht(θ̄) + H̃
´
δt + û0(H̃ − Ĥ)u+

1

2
u0
³
T−1

X
ht(θ0) + Ĥ + cT,t (θ0) Ik

´
u]

The same procedure with now cT,t (θ0) :=
P

i,j≤k inf
θ∈BT

¯̄̄
(ht (θ)− ht (θ0))i,j

¯̄̄
gives an upper bound

for −2EδST exp (ςT ). In both cases, the bound takes the form

exp[p

µ
û0(H̃ − Ĥ)u+

1

2
u0
³
T−1

X
ht(θ0) + Ĥ + cT,t (θ0) Ik

´
u

¶
]

×Eδ exp

µX
v0tδt +

1

2

X
δ0twtδt +

X
u0w̃tδt

¶
,
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with p = 1, 2 and where v0t = pT−1/2û0
³
ht(θ̃

2
) + H̃

´
, wt = p

³
ht(θ0) + Ĥ + cT,t (θ0)

´
, and w̃t =

pT−1/2
³
ht(θ̄) + H̃

´
, which satisfy the assumption of Lemma (3):

sup
λ

T−1
[λT ]X
t=1

³
ht(θ0) + Ĥ + cT,t (θ0) Ik

´
= op (1) ,

sup
λ

T−1
[λT ]X
t=1

³
ht(θ̄) + H̃

´
= op (1) ,

sup
λ

T−1
[λT ]X
t=1

³
ht(θ̃

2
) + H̃

´
û = op (1) .

An application of Lemma (3) thus gives

Eδ exp

µX
v0tδt +

1

2

X
δ0twtδt +

X
u0w̃tδt

¶
=
³
1 + D̃

´
expu0∆̃p,Tu

where, for p = 1, 2, ∆̂p,T are op(1) k × k matrices that do not depend on u, and supu D̃ = op (1) .
Hence

(−2)2−pEδST exp (pςT )
≤ (−2)2−p exp[u0

³
∆̃p,T + pT−1

³X
ht(θ0) + Ĥ + cT,t (θ0) Ik

´´
u+ pû0(H̃ − Ĥ)u](1 + D̃)

= (−2)2−p exp[u0∆p,Tu+ pû0(H̃ − Ĥ)u](1 + D̃)

where ∆p,T := ∆̂p,T + pT−1
³P

ht(θ0) + Ĥ + cT,t (θ0) Ik

´
= op (1).

Now, with probability approaching one, Ĥ − 2∆p,T is non-singular, and so

Eu exp[u
0∆p,Tu+ pû0(H̃ − Ĥ)u](1 + D̃)

= Eu exp[u
0∆p,Tu+ pû0(H̃ − Ĥ)u] + op (1)

= op (1) + |Ĥ1/2||Ĥ − 2∆p,T |−1/2

× exp
µ
−1
2
û0Ĥû+

1

2
û0(p(H̃ − Ĥ) + Ĥ)

³
Ĥ − 2∆p,T

´−1
(p(H̃ − Ĥ) + Ĥ)û

¶
= op (1) + (1 + op (1)) exp

µ
−1
2
Z̃ 0HZ̃ +

1

2
Z̃ 0HH−1HZ̃ + op (1)

¶
= 1 + op (1)

(where Z̃ is a random variable such that û d→ Z̃) and Eu (1−AT ) exp[u
0∆p,Tu+ pû0(H̃ − Ĥ)u](1+

D̃) ≤ (Eu (1−AT ))
1/2Op (1)

p→ 0. Hence

EuATEδST (1− exp ςT )2
≤ EuAT ((1 +EδST exp 2ςT − 2EδST exp ςT )
≤ 1− 2Eu exp[u

0∆1,Tu+ û0(H̃ − Ĥ)u] +Eu exp[u
0∆2,Tu+ 2û0(H̃ − Ĥ)u] + op (1)

= 1− 2|Ĥ1/2||Ĥ − 2∆2,T |−1/2 (1 + op (1)) + |Ĥ1/2||Ĥ − 2∆1,T |−1/2 (1 + op (1)) + op (1)

= op (1)
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Summing up,
R
||u||<aT

R ST |dLRT (u, δ)−LRT (u, δ)|dQ(δ)du = op (1), which proves that NG,T =

op (1), which proves part (c) of the Theorem.
Proof of part (a). Define f1 =

R
Θ

R
VT (θ)w(θ)fT (θ, δ)dQ(δ)dθ so that

WAR(â) =

Z R
Θ

R
VT (θ)w(θ)LR (θ, δ)L(θ, δ, â)dQ(δ)dθR
Θ

R
VT (θ)w(θ)LR (θ, δ) dQ(δ)dθ

f1dµT .

For the decision rule â, write

\WAR(â) =

Z Z Z
L(θ̂ + T−1/2Ĥ−1/2u,Σŝ+ (Σ1/2)+δ, â)dΦTk(δ)dΦk(u)f1dµT

=

Z ÃR R
w (θ0)dLRT (θ, δ)L(θ, δ, a)

w (θ0)
R R dLRT (θ, δ)dQ(δ)dθ

dQ(δ)dθ

!
f1dµT

and note that

WAR(â)−WAR(â∗) =
³
\WAR(â)−\WAR(â∗)

´
+
³
WAR(â)−\WAR(â)

´
+
³
\WAR(â∗)−WAR(â∗)

´
≥

³
WAR(â)−\WAR(â)

´
+
³
\WAR(â∗)−WAR(â∗)

´
and the result is proved if limT→∞[WAR(â) −\WAR(â)] = 0 for all decision rules â. With RT

defined as in the proof of part (c),¯̄̄
WAR(â)−\WAR(â)

¯̄̄
≤

Z
RT f1dµT

≤
Z
Θ
w(θ)

µZ
RT

µZ
fT (θ, δ)dQ(δ)

¶
dµT

¶
dθ

The latter expression converges to zero if
R
RT

¡R
fT (θ, δ)dQ(δ)

¢
dµT is bounded uniformly in θ

and converges to zero for all θ ∈ Θ such that w (θ) > 0. But f∗1 (θ) =
R
fT (θ, δ)dQ(δ) is a density

for the data yT ; Lemma (9) shows that it is contiguous to fT (θ, 0), for all such θ. Hence, given that
RT ≤ 2L̄, if RT converges to zero in probability under θ stable, ∀η > 0, ∃T ∗ : P (RT > η) ≤ 1

2 L̄
−1 η

2
and Z

RT fT (θ0, 0)dµT ≤ P (RT > η/2) 2L̄+ P (RT ≤ η/2)
η

2
≤ η

for all T ≥ T ∗ and, together with contiguity,
R
RT f

∗
1 (θ)dµT → 0 for all θ, which completes the

proof of part (a).

Proof of part (b). Write WAP (ϕT ) =
R
ϕT

³R
VT (θ) fT (θ, δ)dQ(δ)

´
dµT = κ

R
ϕT f̃(θ)dµT ,

where f̃(θ) = κ−1
R
VT (θ) fT (θ, δ)dQ(δ) and κ is a normalisation factor so that f̃(θ) is a density.

By the Neyman-Pearson Lemma, the efficient test is based on the likelihood ratio LRT (yT , θ) =

f̃ (θ) /f (θ, 0) which is shown in Lemma (9) to be close to
R dLRT (θ, δ) dQ (δ). By Lemma (8),

with υ = ŝ and C = Ĥ,
R dLRT (θ, δ) dQ (δ) =

kY
i=1

µ
1−r2Tai

T (1−r2ai)r
T−1
ai

¶−1/2
exp

¡
1
2 ŝΣŝ

¢
, the asymptotic

distribution of which is independent of θ0 under the null H0 : δ = 0

Proof of Theorem 2:
to be added.
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Lemma 1 For any k × 1 process (zt) for which a FCLT holds,

Eδ exp

µXT

t=1
z0tδt

¶
= Op (1) .

Proof. Let zT := (z01, ..., z0T )
0 and recall that δ d

=
¡
T−1MeF ⊗ Ω1/2

¢
ε, where ε ∼ N (0, IkT ), so

that, with ezT := ¡T−1/2F 0Me ⊗ Ω1/2
¢
zT ,

Eδ exp

µXT

t=1
z0tδt

¶
= Eε exp

³
T−1/2ez0T ε´

=
Y

i≤k exp

Ã
T−1

X
t

ez2i,t
!
= Op (1) .

Lemma 2 Under Condition (2) and θ0 stable, the maximum likelihood estimator of θ̂ is consistent
for θ0 and Ĥ provides a consistent estimator for H.

Proof. to be added.

Lemma 3 Let {wT,t}Tt=1, {w̃T,t}Tt=1 be sequences of k × k matrices and {vT,t}Tt=1 be a sequence of
k × 1 vectors satisfying

sup
λ

T−1/2
[λT ]X
t=1

(T−1/2wT,t, w̃T,t, vT,t)
p→ 0.

Then, under Condition 1,Z
exp[

X
v0tδt +

X
δ0tw̃T,tu+

1
2

X
δ0twT,tδt]dQ(δ) = exp[u

0∆Tu] (1 +D)

where ∆T
p→ 0 and D

p→ 0 do not depend on u.

Proof. Recall that δT
d
=
¡
T−1MeF ⊗ Ω1/2

¢
ε, where ε ∼ N (0, IkT ). Let

v0T =
³
v0T,1Ω

1/2, ..., v0T,TΩ
1/2
´0
,

ST =
³
IT ⊗Ω1/2

´⎛⎜⎝ wT,1 0 0

0
. . . 0

0 0 wT,T

⎞⎟⎠³IT ⊗ Ω1/2´ ,
S̃T =

³
IT ⊗Ω1/2

´⎛⎜⎝ w̃T,1 0 0

0
. . . 0

0 0 w̃T,T

⎞⎟⎠ ,

and let µT :=
¡
ITk − 2T−2AT

¢−1 ¡
T−1MeF ⊗ Ik

¢ ³
v + S̃T (eT ⊗ u)

´
, AT := (F

0Me ⊗ Ik)ST (MeF ⊗ Ik).

Let (λi,t)i≤k,t≤T denote the eigenvalues of −2T−2AT . It will be shown that and sup
i,t≤T

|λi,t| ≤
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qP
λ2i,t = op (1), so that the matrix

¡
ITk − 2T−2AT

¢
is invertible with probability approaching

one. Then

Eδ exp
³X

v0tδt +
X

δ0tw̃T,tu+
1
2

X
δ0twT,tδt

´
= Eδ exp

³
δ0
³
IT ⊗Ω−1/2

´³
v + S̃T (eT ⊗ u)

´
+ 1

2δ
0
³
IT ⊗ Ω−1/2

´
ST

³
IT ⊗Ω−1/2

´
δ
´

= Eε exp
³
ε0
¡
T−1F 0Me ⊗ Ik

¢ ³
v + S̃T (eT ⊗ u)

´
+ 1

2ε
0 ¡T−1F 0Me ⊗ Ik

¢
ST
¡
T−1MeF ⊗ Ik

¢
ε
´

= Eε exp
³
ε0
¡
T−1F 0Me ⊗ Ik

¢ ³
v + S̃T (eT ⊗ u)

´
+ T−2 12ε

0AT ε
´

=

Z
dε(2π)−kT/2 exp

µ
−1
2
ε0ε+ ε0

¡
T−1F 0Me ⊗ Ik

¢ ³
v + S̃T (eT ⊗ u)

´
+ T−2

1

2
ε0AT ε

¶
=

Z
dε(2π)−kT/2 exp

µ
−1
2
(ε− µ)0

¡
ITk − T−22AT

¢
(ε− µ) +

1

2
µ0
¡
ITk − 2T−2AT

¢
µ

¶
= exp

µ
1

2
µ0
¡
ITk − 2T−2AT

¢
µ

¶ ¯̄
ITk − 2T−2AT

¯̄1/2
.

Note that, by taking a second order Taylor expansion in the neighborhood of 1 for each (i, t),

ln
¯̄
IkT − 2T−2AT

¯̄
=

X
i,t
ln (1 + λi,t)

=
X

i,t
λi,t − 1

2

X
i,t
λ2i,t

1

(1 +mi,t)
2 ,

where mi,t ∈ [1− λi,t, 1 + λi,t]. Now, Lemma (4) shows that

−1
2

X
i,t
λi,t = T−2tr

¡¡
F 0Me ⊗ Ik

¢
ST (MeF ⊗ Ik)

¢
= T−2

X
i≤k tr

¡
F 0MeS

i
TMeF

¢
= op (1) ,

(where the diagonal T × T matrix Si
T has the elements ST corresponding to the ith parameter on

the diagonal) and

−1
2

X
i,t
λ2i,t = T−4tr

³¡¡
F 0Me ⊗ Ik

¢
ST (MeF ⊗ Ik)

¢2´
= T−4

X
i≤k tr

³¡
F 0MeS

i
TMeF

¢2´
= op (1) .

So, given that sup
i,t≤T

|λi,t| ≤
qP

λ2i,t = op (1) and mi,t ∈ [1− λi,t, 1 + λi,t], the Taylor expan-

sion’s remainder is bounded by

Ã
sup
i,t

1
(1+mi,t)

2

!P
i,t λ

2
i,t = Op (1) op (1) with probability approach-

ing one. In addition,
¯̄
IkT − 2T−2AT

¯̄
is independent of u, and we may therefore conclude that

ln
¯̄
IkT − 2T−2AT

¯̄
= op (1) uniformly in u, i.e.¯̄

IkT − 2T−2AT

¯̄
= 1 + op (1) .
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Now, we have¡
T−1MeF ⊗ Ik

¢
v =

³
IT ⊗Ω1/2

´
T−1

³
(v1 − v̄)0 · · · (PT

t=1 vt − v̄)0
´0

and ¡
T−1MeF ⊗ Ik

¢
S̃T (eT ⊗ u) =

³
IT ⊗ Ω1/2

´
T−1

³
u0(w̃1 − w̄)0 · · ·u0(PT

t=1 w̃t − w̄)0
´0

where v̄ = T−1
PT−1

t=0 vt+1 (T − t) and w̄ = T−1
PT−1

t=0 w̃t+1 (T − t). The quadratic forms in those
processes are bounded:

v0
¡
T−1F 0Me ⊗ Ik

¢ ¡
ITk − 2T−2AT

¢−1 ¡
T−1MeF ⊗ Ik

¢
v

≤ sup
i,t

¯̄̄
(1 + λi,t)

−1
¯̄̄
v0
¡
T−1F 0Me ⊗Ω

¢ ¡
T−1MeF ⊗ Ik

¢
v.

As was argued above, sup
i,t

¯̄̄
(1 + λi,t)

−1
¯̄̄
= Op (1) . Let λ̄ (Ω) be tha largest eigenvalue of Ω. Since

the process λ 7→ T−1/2
³P[λT ]

t=1 vt − v̄
´
converges to zero by assumption,

v0
¡
T−1F 0Me ⊗ Ik

¢ ¡
T−1MeF ⊗ Ik

¢
v = T−1

X
t

³
T−1/2

³Xt

l=1
vl − v̄

´´0
Ω
³
T−1/2

³Xt

l=1
vl − v̄

´´
≤ λ̄ (Ω)T−1

X
t

T−1
³Xt

l=1
vl − v̄

´0 ³Xt

l=1
vl − v̄

´
≤ λ̄ (Ω)T−1sup

t

³Xt

l=1
vl − v̄

´0 ³Xt

l=1
vl − v̄

´
= op (1) .

By the same token,¡
e0T ⊗ u0

¢
S̃T
¡
T−1F 0Me ⊗ Ik

¢ ¡
T−1MeF ⊗ Ik

¢
S̃T (eT ⊗ u)

= T−1
X
t

³
T−1/2

³Xt

l=1
u0(w̃1 − w̄)

´´
Ω
³
T−1/2

³Xt

l=1
(w̃1 − w̄)u

´´
≤ u0

Ã
λ̄ (Ω)T−1

X
t

T−1/2
³Xt

l=1
(w̃1 − w̄)

´
T−1/2

³Xt

l=1
(w̃1 − w̄)

´!
u

= u0∆Tu

where ∆T
p→ 0 and is independent of u.

Hence,

Eδ exp
³X

v0tδt +
X

δ0tw̃T,tu+
1
2

X
δ0twT,tδt

´
= (1 + op (1)) expu

0∆Tu.

Lemma 4 Under the assumptions of Lemma (3),X
i≤k tr

¡
F 0MeS

i
TMeF

¢
= op

¡
T 2
¢

X
i≤k tr

³¡
F 0MeS

i
TMeF

¢2´
= op

¡
T 4
¢
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Proof. For notational simplicity, we set Ω = Ik, assume that k = 1 and ignore indexing the
parameters by i.

Expand tr (F 0MeSTMeF ) into

tr
¡
F 0STF

¢− 2T−1tr ¡F 0ST ee0F ¢+ T−2tr
¡
F 0ee0ST ee0F

¢
= tr

¡
F 0STF

¢− 2T−1e0FF 0ST e+ T−2
¡
e0ST e

¢ ¡
e0FF 0e

¢
Let σt := Ω1/2

¡Pt
l=1wT,l

¢
Ω1/2, σ̃1 := σT , and, for t = 2, ..., T , σ̃t := σT − σt−1, and remark that

supλ σ[λT ]/T = op (T ) . With

Υ := F 0STF =

⎛⎜⎜⎜⎝
σ̃1 σ̃2
σ̃2 σ̃2

· · ·
· · ·

σ̃T
σ̃T

...
...

. . .
...

σ̃T σ̃T · · · σ̃T

⎞⎟⎟⎟⎠
so that |tr (F 0STF )| ≤ T sup

t≤T
|σ̃t| = op

¡
T 2
¢
. Moreover,

¯̄
e0STFF 0e

¯̄
=
¯̄̄X

t
(T − t+ 1) σ̃t

¯̄̄
≤ O

¡
T 2
¢
sup
t≤T

|σ̃t| = op
¡
T 3
¢
,

e0ST e = σT = op (T ) , and e0FF 0e =
P

t2 = Op

¡
T 3
¢
allow to conclude that tr (F 0MeSTMeF ) =

op
¡
T 2
¢
+ T−1op

¡
T 3
¢
+ T−2op (T )Op

¡
T 3
¢
= op

¡
T 2
¢
.

Expand tr
³
(F 0MeSTMeF )

2
´
into

tr
¡
Υ2
¢− 4T−1 ¡e0FF 0STFF 0WT e

¢
+ 2T−2

¡
e0FF 0e

¢ ¡
e0STFF 0ST e

¢
+2T−2

¡
e0ST e

¢ ¡
e0FF 0STFF 0e

¢
+ 2T−2

¡
e0STFF 0e

¢2
−4T−3 ¡e0ST e¢ ¡e0STFF 0e¢ ¡e0FF 0e¢+ T−4

¡
e0FF 0e

¢2 ¡
e0ST e

¢2
,

the sum of seven terms, a1 to a7, the last three of which are op
¡
T 4
¢
from the previous steps.

For a1,

Υ2 =

⎛⎜⎜⎜⎜⎜⎜⎝

PT
t=1 σ̃

2
t · · ·

...

. . .
jσ2j +

PT
t=j+1 σ̃

2
t

. . .

...

· · · T σ̃T

⎞⎟⎟⎟⎟⎟⎟⎠
so that

a1 = tr
¡
Υ2
¢
=
XT

t=1
(2t− 1) σ̃2t

≤
µXT

t=1
2t− T

¶Ã
sup
t≤T

|σ̃t|
!2
= Op(T

2)op
¡
T 2
¢

= op
¡
T 4
¢
.
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From e0STFF 0ST e =
P

t σ
2
t = op

¡
T 3
¢
we can conclude that a3 = op

¡
T 4
¢
. Finally,¯̄

e0FF 0STFF 0e
¯̄

≤ e0F

⎛⎜⎜⎜⎜⎜⎜⎝

PT
t=1 |σ̃t| (T − t+ 1)

...
|σ̃j |

Pj
t=1 (T − t+ 1) +

PT
t=j+1 |σ̃t| (T − t+ 1)

...
|σ̃T |T (T + 1) /2

⎞⎟⎟⎟⎟⎟⎟⎠
=

µ
sup
t
|σ̃t|
¶
e0F

⎛⎜⎝ Op

¡
T 2
¢

...
Op

¡
T 2
¢
⎞⎟⎠

= op (T )Op

¡
T 4
¢
= op

¡
T 5
¢

gives a2 = op
¡
T 4
¢
and a3 = op

¡
T 4
¢
.

Lemma 5 Let p ≥ 1, andgLRT (δ) = exp
¡P

st (θ0)
0 δt − 1

2

P
δ0tHδt

¢
. Then, under θ0 stable,

Eδ

³gLRp

T (δ)−dLRp

T (0, δ)
´
= op (1) .

Proof. Recall that û = T 1/2
³
θ̂ − θ0

´
= H̃−1T−1/2

P
st(θ0). Because of the normalization

constraint on δ,
P

t

³
T−1

PT
l=1 s

0
l(θ0)

´
δt = 0, and so¯̄̄

Eδ

³gLRp

T (δ)−dLRp

T (0, δ)
´¯̄̄2 ≤ Eδ exp

³
2p
X

st (θ0)
0 δt
´

×Eδ

∙
1− exp

µ
2p
X³

st(θ̂)− st(θ0) + T−1
PT

l=1 sl(θ0)
´0
δt − p

X
δ0t(Ĥ −H)δt

¶¸2
= Eδ exp

³
2p
X

st (θ0)
0 δt
´

×Eδ

h
1− exp

³
2pT−1/2û0

X³
ht(θ̃

2
) + H̃

´
δt − p

X
δ0t(Ĥ −H)δt

´i2
.

Now, an application of Lemma (3) with wT,t = −p(Ĥ−H), vT,t = 2pT−1/2û0
P³

ht(θ̃
2
) + H̃

´
, and

u = 0 gives Eδ exp(2pT
−1/2û0

P³
ht(θ̃

2
) + H̃

´
δt − p

P
δ0t(Ĥ −H)δt) = 1 + op (1) and similarly for

Eδ exp(4pT
−1/2û0

P³
ht(θ̃

2
) + H̃

´
δt − 2p

P
δ0t(Ĥ −H)δt). Hence

Eδ

∙
1− exp

µ
2pû0

X³
ht(θ̃

2
) + H̃

´0
δt − p

X
δ0t(Ĥ −H)δt

¶¸2
= op (1) .

An application of Lemma (1) gives Eδ exp
¡
2p
P

st (θ0)
0 δt
¢
= Op (1) since an FCLT applies to

the score sequence under θ0. The result now follows.

Lemma 6 For all θ0 ∈ Θ, under θ0 stable, we have (a) For any p ≥ 1, Eδ
gLRp

T (δ) = Op (1); (b)

For any p ≥ 1, Eδ
dLRp

T (0, δ) = Op (1); (c) For any p ≥ 1,
³
Eδ
gLRp

T (δ)
´−1

= Op (1) .
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Proof. Part (b) follows from part (a) and Lemma (5).
For part (a), Lemma (7) shows that Eδ

gLRT (δ) takes on a particular form for which arguments
in all points (but for notation) similar to those of the proof of Lemma 2 in Elliott and Müller

(2003), show that Eδ
gLRT (δ)

d→ V (θ0) =
kY
i=1

³
2aie−ai
1−e−2ai

´ 1
2
exp (χ) , where χ = Op (1) is the (weak)

limit of −12
Pk

i=1 s
∗0
0,i (Gai −Me) s

∗
0,i. The same type of argument applies for p > 1, to show that

Eδ
gLRp

T (δ)
d→ V p (θ0) := C

1
2
p exp

¡
χp
¢
where χp = Op (1).

For part (c), given that distribution of V (θ0) is absolutely continuous (see Elliott and Müller

(2003)), one can apply the continuous mapping theorem to show that has
³
Eδ
gLRp

T (δ)
´−1 d→

V p (θ0)
−1 .

Lemma 7 Let s∗0 :=
¡
Me ⊗ P ∗0H−1/2¢ s0 be the vector of the demeaned normalized scores and

s∗i
¡
θ0
¢
its subvector corresponding the ith parameter. Then

Eδ
gLRT (δ) =

kY
i=1

µ
2aie

−ai

1− e−2ai

¶ 1
2

exp

⎛⎝gJ(T
−1/2

[T ·]X
t=1

s∗i,t
¡
θ0
¢
)

⎞⎠+ op(1),

where

gJ

⎛⎝T−1/2
[T ·]X
t=1

ut

⎞⎠ = −aJu (1)2 − a2
Z

J2u −
2a

1− e−2a

µ
e−aJu (1) + a

Z
e−asJuds

¶2

+

µ
Ju (1) + a

Z
Ju

¶2
and

Ju (s) := T−1/2
[Ts]X
t=1

ut − a

Z s

0
e−a(s−λ)

⎛⎝T−1/2
[Tλ]X
t=1

ut

⎞⎠ dλ.

Proof. For each T , an application of Lemma (8) with C = H and υ = s0 gives

Eδ
gLRT (δ) = Eδ exp

µ
s00δ −

1

2
δ0 (IT ⊗H) δ

¶

=
kY
i=1

Ã
1− r2Tai

T (1− r2ai)r
T−1
ai

!−1/2
exp

Ã
−1
2

kX
i=1

s∗00,i (Gai −Me) s
∗
0,i

!
.

Now, by assumption (FCLT), a functional central limit theorem applies to the sequence of
scores

¡
st(θ

0)
¢
t≥1. Hence, the k processes

¡¡
I ⊗ P ∗0H−1/2¢ s0¢i,t satisfy the conditions of Lemma

6 in Elliott and Müller (2003). Moreover,
µ

1−r2Tai
T (1−r2ai)r

T−1
ai

¶− 1
2

→
³
2aie−ai
1−e−2ai

´ 1
2
, and the result follows

from Lemma 6 in Elliott and Müller (2003).

Lemma 8 Let C be a k × k positive definite, symmetric matrix, υ = (υ01, ..., υ0T )
0 a Tk × 1 vector,

and P ∗Cdiag (c1 · · · ck)P ∗0C be the spectral decomposition of C1/2ΩC1/2; let υ̃ =
¡
Me ⊗ P ∗0C C

−1/2¢ and
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υ̃i its T × 1 sub-vector corresponding the ith component of υt; let K (C) =
kY
i=1

µ
1−r2Tci

T (1−r2ci)r
T−1
ci

¶−1/2
and

Σ (C) =
³
Me ⊗ C−1/2P ∗C

´Ã kX
i=1

(Me −Gci)⊗
¡
ιk,iι

0
k,i

¢!³
Me ⊗ P ∗0C C

−1/2
´
.

Then, (i) for any h ∈ L1 (Q),Z
h (δ) exp

µX
υ0tδt −

1

2

X
δ0tCδt

¶
dQ (δ)

=
kY
i=1

Ã
1− r2Tci

T (1− r2ci)r
T−1
ci

!−1/2
exp

Ã
−1
2

kX
i=1

υ̃0i (Gci −Me) υ̃i

!

×
Z

h
³
(Σ (C)1/2)+δ +Σ (C) υ

´
dΦTk (δ)

= K (C) exp

µ
1

2
υ0Σ (C) υ

¶Z
h
³
(Σ (C)1/2)+ (δ +Σ (C) υ)

´
dΦTk (δ)

= K (C) exp

µ
1

2
υ0Σ (C) υ

¶Z
h (δ) dN

¡
Σ (C) υ,Σ (C)+

¢
and (ii) the density of N(Σŝ,Σ+) can be written as

dLRT (0, δ)dQ(δ)R dLRT (0, δ)dQ(δ)
.

Proof. (i) Recall that Be
T×(T−1)

satisfiesBeB
0
e =Me andB0eBe = IT−1.DefineKΩ := T−2B0eFF 0Be⊗

Ω, Λ := diag (c1 · · · ck), KΛ := T−2B0eFF 0Be ⊗ Λ, Ξ−1 := K−1
Ω + (IT−1 ⊗ C) and µ (υ) :=

Ξ (B0e ⊗ Ik) υ, and let δ∗
k(T−1)×1

∼ N (0,KΩ). From Lemma (1) in Elliott and Müller (2003),

(Be ⊗ Ik)
¡
K−1

Λ + (IT−1 ⊗ Ik)
¢−1 ¡

B0e ⊗ Ik
¢
=

kX
i=1

(Me −Gci)⊗
¡
ιk,iι

0
k,i

¢
so that

(Be ⊗ Ik)Ξ
¡
B0e ⊗ Ik

¢
= (Be ⊗ Ik)

³
IT−1 ⊗ C−1/2P ∗C

´¡
B0e ⊗ Ik

¢
(Be ⊗ Ik)

¡
K−1

Λ + (IT−1 ⊗ Ik)
¢−1

× ¡B0e ⊗ Ik
¢
(Be ⊗ Ik)

³
IT−1 ⊗ P ∗0C C−1/2

´ ¡
B0e ⊗ Ik

¢
=

³
Me ⊗ C−1/2P ∗C

´Ã kX
i=1

(Me −Gci)⊗
¡
ιk,iι

0
k,i

¢!³
Me ⊗ P ∗0C C

−1/2
´

=
³
IT ⊗ C−1/2P ∗C

´Ã kX
i=1

(Me −Gci)⊗
¡
ιk,iι

0
k,i

¢!³
IT ⊗ P ∗0C C−1/2

´
= Σ (C) ,
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Moreover, from Lemma 4 (iii) in Elliott and Müller (2003),

|KΩ|−1/2
¯̄
Ξ−1

¯̄−1/2
=

¯̄
KΩ

¡
K−1

Ω + I
¢¯̄−1/2

= |KΩ + I|−1/2

=
¯̄
B0eHaBe

¯̄−1/2
=

Ã
1− r2Tci

T (1− r2ci)r
T−1
ci

!−1/2
.

Also, from Condition (1), (Be ⊗ Ik) δ
∗ d
= δ so thatZ

h (δ) exp

µX
υ0tδt −

1

2

X
δ0tCδt

¶
dQ (δ)

= Eδh (δ) exp

µ
υ0δ − 1

2
δ0 (IT ⊗C) δ

¶
= Eδ∗h ((Be ⊗ Ik) δ

∗) exp
µ
υ0 (Be ⊗ Ik) δ

∗ − 1
2
δ∗0
¡
B0e ⊗ Ik

¢
(IT ⊗ C) (Be ⊗ Ik) δ

∗
¶

=

Z
dδ∗ (2π)−

T−1
2 |KΩ|−1/2 h ((Be ⊗ Ik) δ

∗) exp
µ
−1
2
δ∗0K−1

Ω δ∗
¶

× exp
µ
υ0 (Be ⊗ Ik) δ

∗ − 1
2
δ∗0 (IT−1 ⊗ C) δ∗

¶
= |KΩ|−1/2

¯̄
Ξ−1

¯̄−1/2
exp

µ
1

2
υ0Σ (C) υ

¶
×
Z

dδ∗ (2π)−
T−1
2 |Ξ|−1/2 h ((Be ⊗ Ik) δ

∗) exp
µ
−1
2
(δ∗ − µ (υ))0Ξ−1(δ∗ − µ (υ))

¶
= K (C) exp

µ
1

2
υ0Σ (C) υ

¶Z
h ((Be ⊗ Ik) δ) dN(µ (υ) ,Ξ)

= K (C) exp

µ
1

2
υ0Σ (C) υ

¶Z
h (δ) dN(Σ (C) υ,Σ (C))

= K (C) exp

µ
1

2
υ0Σ (C) υ

¶Z
h
³
(Σ (C)1/2)+ (δ −Σ (C) υ)

´
dN(0, ITk)

(ii) From part (i), with h ≡ 1, with υ = ŝ, C = Ĥ, Σ = Σ (C), anddLRT (0, δ) = exp
³
ŝ0δ − 1

2δ
0Ĥδ

´
gives

R dLRT (0, δ)dQ(δ) = K(Ĥ) exp
¡
1
2 ŝ
0Σŝ
¢
anddLRT (0, δ)dQ(δ) = K(Ĥ) exp

¡
1
2 ŝ
0Σŝ
¢
dN(Σŝ,Σ+).

Lemma 9 For all θ0 ∈ £, (a) The densities f∗1 (θ0) :=
R
fT (θ0, δ)dQ(δ) and f∗0 (θ0) := fT (θ0, 0)

are contiguous; (b) The densities f̃(θ) = κ−1
R
VT (θ) fT (θ, δ)dQ(δ) and f∗0 (θ0) := fT (θ0, 0) are con-

tiguous.

Proof. Part (a). By Lemma (6.4) of Vaart (1998), it suffices to show that f∗1 (θ0) /f∗0 (θ0)
converges in distribution under f∗0 (θ0) to a random variable V (θ0) such that EV (θ0) = 1.

29



Now, Eδ (1− ST )dLRT (0, δ) = op (1) since
³
Eδ (1− ST )dLRT (0, δ)

´2 ≤ Eδ (1− ST )Eδ
dLR2T (0, δ) =

op (1)Op (1) by Lemma (6), and, by Markov’s inequality,

P (Eδ (1− ST )LRT (0, δ) > η) ≤ η−1Eδ (1− ST )
µZ

fT (θ0, δ)dµT

¶
= η−1Eδ (1− ST ) = o (1) .

It follows that
¯̄̄
Eδ

³dLRT (0, δ)− LRT (0, δ)
´¯̄̄2 ≤ EδST

¯̄̄dLRT (0, δ)− LRT (0, δ)
¯̄̄2
+ op (1). Note

that when u = 0, LRT (0, δ) = exp
³P

st(θ̂)
0δt + T−1/2û0

P
ht(θ̃

2
)δt +

1
2

P
δ0tht(θ̃t)δt

´
ςT = T−1/2û0

X
ht(θ̃

2
)δt +

1
2

X
δ0t
³
ht(θ̃t) + Ĥ

´
δt

LRT (0, δ) = dLRT (0, δ) exp ςT

= exp

µX
st(θ̂)

0δt − 1
2

X
δ0tĤδt + ςT

¶
.

The same arguments as in the proof of part (c) of Theorem (1) can be applied to show that

EδST
¯̄̄dLRT (0, δ)− LRT (0, δ)

¯̄̄2
= op (1). Hence, Eδ

dLRT (0, δ) − EδLRT (0, δ)
p→ 0. Applying

Lemma (5) then gives that f∗1 (θ0) /f∗0 (θ0) and Eδ
gLRT (δ) share the same limit. Lemma (7) together

with Lemma 2 in Elliott and Müller (2003), shows that Eδ
gLRT (δ)

d→ V (θ0) with EV (θ0) = 1,
which completes the proof of part (a).

Part (b). Note thatEδ (1− ST )VT (θ)dLRT (0, δ) = op (1) since
³
Eδ (1− ST )VT (θ)dLRT (0, δ)

´2 ≤
Eδ (1− ST )Eδ

dLR2T (0, δ) and so¯̄̄
Eδ

³
κ−1VT (θ)LRT (0, δ)−dLRT (0, δ)

´¯̄̄
≤ EδSTLRT (0, δ)

¯̄
κ−1VT (θ)− 1

¯̄
+EδST

¯̄̄
LRT (0, δ)−dLRT (0, δ)

¯̄̄
+ op (1)

≤ max
¡
1,
¯̄
κ−1 − 1¯̄¢EδSTLRT (0, δ) + op (1)

= op (1) ,

which proves part (b).
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