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ABSTRACT

In this paper, we use identification-robust methods to agfesempirical adequacy of a New Key-
nesian Phillips Curve equation. We focus on the Gali andI&&rt(1999) specification, on both
U.S. and Canadian data. Two variants of the model are studietbased on a rational-expectations
assumption, and a modification to the latter which consistssing survey data on inflation expec-
tations. The results based on these two specifications iexdarp differences concerning: (i)
identification difficulties, (ii) backward-looking behawj and (ii) the frequency of price adjust-
ments. Overall, we find that there is some support for theilydKPC for the U.S., whereas the
model is not suited to Canada. Our findings underscore thetfoeemploying identification-robust
inference methods in the estimation of expectations-bdgadmic macroeconomic relations.

Key words: macroeconomics; inflation dynamics; New Keynesian RisliCurve; identification
robust inference; weak instruments; optimal instruments.

JEL classification: C13, C52, E31
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1. Introduction

A standard feature of macroeconomic policy models is an temualescribing the evolution of
inflation. Nowadays, this process is typically modelled dgylarid New Keynesian Phillips curve
(NKPC). This specification results from recent efforts todeicthe short-run dynamics of inflation
starting from optimization principles; see, for examplaeadiford (2003) and the references therein.
In its basic form, the NKPC stipulates that inflation at tiea function of expected future inflation
and the current output gap. With its clearly-elucidateatbtcal foundations, the NKPC possesses
a straightforward structural interpretation and therefpresents, in principle, a strong theoretical
advantage over traditional reduced-from Phillips curvelsi¢h are only statistically justified).

However, given the statistical failure of the basic NKPCniatation when confronted with
data, the curve has since evolved into its more empiricadiple hybrid form. In particular, it was
noted that: (i) adding lagged inflation to the mod&yifrid NKPQ corrects the signs of estimated
coefficients [see Fuhrer and Moore (1995), Fuhrer (1997)Rolerts (1997)], and (ii) using a
measure of real marginal cost derived from a given prodadiimction instead of the output gap
yields a better statistical fit according to GMM-based eatas and tests [see, for example, Gali and
Gertler (1999) and Gali, Gertler and Lopez-Salido (200Xgt the question of which production
function (.e., which marginal cost measure) is empirically preferableds yet resolved, as the
choice for the marginal cost proxy seems to affect evidemcthe weight of the backward-looking
term; see Gagnon and Khan (2005). In addition, there arerdiit theoretical ways of incorporating
backward-looking behavior in the curve, and they yieldedéint outcomes; see Fuhrer and Moore
(1995), Gali and Gertler (1999) and Eichenbaum and Fislgg42

Discriminating between competing alternatives calls farable econometric methods. Full-
information models are typically nonlinear and heavilygraetrized So, in practice, these models
are often estimated by applying standard limited-inforora{LI) instrumental-variable (IV) meth-
ods to first-order conditions of interest. Indeed, the papiyl of NKPC models stems in large part
from studies such as Gali and Gertler (1999) and Gali et @0XPwho found empirical support for
their version of the curve using the generalized method aherds (GMM), and the fact that the
model is not rejected by HansenJstest.

But even as the popularity and usage of the curve has grovtigjsins have been raised with
respect to its empirical identifiability. The main issue haitlV methods such as GMM are not
immune to the presence of weak instruments; see, for exafpkeur (1997, 2003), Staiger and
Stock (1997), Wang and Zivot (1998), Zivot, Startz and Nel€b098), Stock and Wright (2000),
Dufour and Jasiak (2001), Stock, Wright and Yogo (2002)bddegen (2002), Khalaf and Kichian
(2002, 2004), Dufour and Khalaf (2003), and Dufour and Taam@005, 2004, 2003 2003).
These studies demonstrate that standard asymptotic prasefivhichimpose identification away
without correcting for local almost-nonidentificationdundamentally flawed and lead to spurious
overrejections, even with fairly large samples. In pattcuthe following fundamental problems
do occur: in models which may not be identified over all theapaster space, (i) ususiype tests

For example, Gali and Gertler (1999) appeal to the assumfttiat a proportion of firms never re-optimize, but that
they set their prices using a rule-of-thumb method; Eichenband Fisher (2004) use dynamic indexing instead.
2In this literature, some of the parameters are typicallibcaled while others are estimated.



have significance levels that may deviate arbitrarily froweit nominal levels since it is not possible
to bound the null distributions of the test statistic, ang\Wald-type confidence intervals [of the
form: estimatet (asymptotic standard error) (asymptotic critical point)] have dramatically poor
coverage irrespective of their nominal level because theyaunded by construction; see Dufour
(1997)3

To circumvent the difficulties associated with weak instemts, the above cited recent work
on IV-based inference has focused on two main directions flse surveys of Dufour (2003) and
Stock et al. (2002)]: (i) refinements in asymptotic analysfgch hold whether instruments are
weak or not ¢.g, Staiger and Stock (1997), Wang and Zivot (1998)), Stock\atmjht (2000),
Kleibergen (2002), Moreira (200§, and (ii) finite-sample procedures based on proper pjvots
i.e. statistics whose null distributions do not depend oisance parameter or can be bounded
by nuisance-parameter-free distributiobsndedly pivotal functiongDufour (1997), Dufour and
Jasiak (2001), Dufour and Khalaf (2002), and Dufour and T@a&in{2005, 2004, 2008 2003)].
The latter include methods based on Anderson and Rubin&9(1AR) pivotal F-statistic which
allow unboundecdtonfidence sets.

Identification difficulties have led to re-examinations dfIRC models, and in particular of the
Gali and Gertler NKPC specification, by several authors eEsgly relevant contributions on this is-
sue include Linde (2001), Ma (2002), Nason and Smith (2068)Fauhrer and Olivei (2004). Linde
(2001) performs a small-scale simulation study based onliaGestler-type model and documents
the superiority of full-information maximum likelihood (ML) over GMM. In particular, GMM
estimates appear sensitive to parameter calibrations. 20@2) applies the asymptotic methods
proposed by Stock and Wright (2000) to the Gali and GertiK$C in view of getting confidence
sets that account for the presence of weak instruments.eTd&s are much too large to be infor-
mative, suggesting that the parameters of the curve aredhaet well-identified. Nason and Smith
(2003) study the identification issue of the NKPC in limiteflarmation contexts analytically, solv-
ing the Phillips curve difference equation. They show tiipidal GMM estimations of such curves
have parameters that are not identifiable (or nearly so)fahthformation methods (FIML) can
make identification easier. Applications toSJdata yield GMM estimates that are comparable to
the values obtained by Gali and Gertler (1999). In contthstir FIML estimates (which the au-
thors feel are more reliable) point to a greater role for baoki-looking behavior. For Canada,
the authors report that the NKPC is poorly identified, whetB®M or FIML estimation is used.
Finally, Fuhrer and Olivei (2004) consider improved GMMiesttion, where the instrumentation
stage takes the constraints implied by the structure fdynvato consideration. They demonstrate
the superiority of their approach through a Monte Carlo $ation. In addition, they estimate an
inflation equation using U.S. data, and obtain a large faM@wking component with conventional
GMM, but a much lower value for this parameter with “optim@MM and maximum likelihood.

In this paper, we reconsider the problem of estimating ioftetlynamics, in view of recent

3Poor coverage (which implies that the data is uninformativeut the parameter in question) is not really due to large
estimated standard errors, or even to poorly approximatedf€points. The problems stem from the method of building
the confidence set as an interval which is automatically fided"”. Any valid method for the construction of confidence
sets should allow for possibly unbounded outcomes, wheadh@ssible set of parameter values is unbounded (as occurs
when parameters are not identifiable on a subset of the pteaspace). In this case, a bounded confidence set would
inevitably "rule out" plausible parameter sets, with olmgdmplications on coverage.



econometric findings. Our aim is to produce more reliablergfice based on identification-robust
tests and confidence sets. A characteristic feature ofifab@tion-robust procedures is they should
lead to uninformative (e.g., unbounded) confidence setwine parameters considered are not
identified [see Dufour (1997)]. We focus on two types of prhaes: the AR procedure and a
method proposed by Kleibergen (2002). The AR procedure liscp&arly appropriate from the
viewpoint of validating a structural model, because theyrabust not only to weak instruments,
but also to missing instruments and more generally to th@ditation of a model for endogenous
explanatory variables [see Dufour (2003) and Dufour andritadi (2005, 2004)]. A drawback,
however, of the AR procedure comes from the fact that it ldadke inclusion of a potentially
large number of additional regressors (identifying instemts), hence a reduction in degrees of
freedom which can affect test power in finite samples. Tosassensitivity to this type of effect, we
also apply a method proposed by Kleibergen (2002), which yielgl power gains by reducing the
number of “effective” regressors (although at the experis@me robustness).

Our applications study U.S. and Canadian data using: (ip&mehmark hybrid NKPC of Gali
and Gertler, which uses a rational expectations assumati@h(ii) a modification to the latter which
consists in using survey-based measures of expectedontla@iur analysis allows one to compare
and contrast both variants of the model; this is relevanabge available studies imply that the
specification of the expectation variable matters emglyic&or instance, Gali and Gertler (1999)
suggest that, when the model is conditional on labour caster rational expectations, additional
lags of inflation are no longer needed. In contrast, Rob&@91) argues that those results are
sensitive to the specification of labour costs, and the neegtlude additional lags could reflect the
fact that expectations are not rational; see also Robed&7(11997, 1998). Our results reveal sharp
differences between the two specifications for U.S. and @ana

In section 2, we review the Gali and Gertler's (1999) NKPC riylspecification. In section
3, we describe the specific models and the methodology ustdsipaper. Section 4 discusses
our empirical results, and section 5 concludes. Detailshendata and a formal treatment of the
statistical procedures we apply are presented in Appesdicnd B.

2. Gali and Gertler's hybrid NKPC model

In Gali and Gertler’'s hybrid specification, firms evolve in amopolistically competitive environ-
ment and cannot adjust their prices at all times. A Calvetgpsumption is used to represent the
fact that a proportiord of the firms do not adjust their prices in periadin addition, it is assumed
that some firms do not optimize but use a rule of thumb wheimgettteir prices. The proportion
of such firms (referred to as the backward-looking pric¢esg} is given byw. In such an environ-
ment, profit-maximization and rational expectations leathe following hybrid NKPC equation
for inflation (m¢):
Tt = Ast + VBT + 7pTe-1, (2.1)

Tir1 = Eymip1 + v (2.2)

“For further discussion of this issue, see Dufour and Taain@003b, 2003).



where
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Eymy1 is expected inflation at timg s; represents real marginal costs (expressed as a percentage
deviation with respect to its steady-state value) ands unexpected inflation. The parametgr
determines the forward-looking component of inflation gpdts backward-looking parts is the
subjective discount rate.

Gali and Gertler rewrite the above NKPC model in terms of @gtinality conditions. Two
different normalizations are used for this purp8sEhe first one [orthogonality specification (1)] is
given by

Et[(ﬂ't — ASg — Vg1 — ’Ybﬂ't—l) 2] =0 (2.5)

while the second one [orthogonality specification (2)] is

Ei[(¢pms — Asy — YfTe+1 — YoTe—1)zt] =0 (2.6)

where¢ = (0 + w — wb + w(30). The vectorz; includes variables that are orthogonalutg ,
allowing for GMM estimation. Quarterly U.S. data are useithwr; measured by the percentage
change in the GDP deflator, and real marginal costs given éyotparithm of the labour income
share. The instruments include four lags of inflation, latstare, commodity-price inflation, wage
inflation, the long-short interest rate spread, and outppt(gheasured by a detrended log GDP).

Gali and Gertler's estimations yield the following values fw, 6, ) : (0.27, 0.81, 0.89) for
specification (1), an@).49, 0.83, 0.91) for specification (2). When the subjective discount rateis r
stricted to one, the estimates #0e24, 0.80, 1.00) and(0.52, 0.84, 1.00), respectively. The implied
slopes are all positive and deemed to be statistically fsogmt using 1V-based asymptotic standard
errors, and the fact that the overidentifying restrictians not rejected by thé test. Accordingly,
Gali and Gertler conclude that there is good empirical supfow the NKPC. Furthermore, the
forward-looking component of inflation is more importanaththe backward-looking parité. the
estimated value of ; is larger than the one foy,).

However, given the severity of the size distortions indulcgdveak instruments, it is important
to ascertain that these results are not invalidated by sthgms® Ma (2002) uses corrected GMM
inference methods developed by Stock and Wright (2000) ¢wateate the empirical relevance

®In Gali and Gertler (1999), the orthogonality conditions eritten for the case = 0; see Gali et al. (2001) for the
general case.

SFor a detailed discussion on weak instruments and theictsfi@s discussed in the introduction) see Nelson and
Startz (199@), Nelson and Startz (198 Buse (1992), Choi and Phillips (1992), Maddala and Jed8§Z%), Angrist
and Krueger (1994), McManus, Nankervis and Savin (1994)n8pJaeger and Baker (1995), Cragg and Donald (1996),
Hall, Rudebusch and Wilcox (1996), Dufour (1997), Staiged &tock (1997), Wang and Zivot (1998), Zivot et al.
(1998), Stock and Wright (2000), Dufour and Jasiak (2001ght{and Hausman (2002, 2003), Kleibergen (2002),
Moreira (2003, 2003), Stock et al. (2002), Kleibergen and Zivot (2003), Wrigh®@3); several work is also cited in
Dufour (2003) and Stock et al. (2002).



of the NKPC specifications. The corrected 90 per cent confeleets (calles-sets) that Ma
calculates are very large, including all parameter valodise interval0, 3] for two of the structural
parameters, an, 8] for the third one. Since all parameter combinations derfveah these value
ranges are compatible with the model, this suggests thahpers are weakly identified. We will
now reassess the NKPC model using identification-robusivéak-instrument robust) methods.

3. Statistical framework and methodology

We consider here two econometric specifications in ordessess Gali and Gertler's NKPC. These
are given by:
T = ASt + VM1 + V-1 w1, t=1,..., T, (3.1)

and
T = ASt + V41 + V-1 w1, t=1,..., T, (3.2)

wherer, is a survey measure of inflation expectations. These two mddéer by their assumptions
on the formation of inflation expectations. In (3.1), expecinflation F;m;, 1 is proxied by the
realized valuer;,,, while in (3.2) it is replaced by the survey-based measurg of expected
inflation for 7. It is easy to see that both approaches raise error-in-Var@oblems and the
possibility of correlation between explanatory variakdesl the disturbance term in the two above
equations. Studies such as Roberts have noted that theamauhspecification for how expectations
are formed have important implications for the empiricdldity of the curve. That is, additional
lags not implied by the NKPC under rational expectations t@yequired, even if the model is
conditional on labour costs.

The parameters, v, and,, defined in equations (2.3), are nonlinear transformatafrthe
“deep parametersl, @, andf. The statistical details underlying our inference methoglp are
presented in Appendix B, where to simplify presentationadept the following notationy is the
T-dimensional vector of observations epn Y is theT x 2 matrix of observations og; and either
of m;11 and7,.1, X1 is the vector of observations on the inflation fag 1, X5 is theT x ke matrix
of the instruments (we use 24 instruments, see section 4) &the7'-dimensional vector of error
termsu;.

The methodology we consider can be summarized as followsabiain a confidence set with
level 1 — « for the deep parameters, we invert the F-test presented pegix B associated with
the null hypothesis

Hy:w=wg, =70y 0=20 (3.3)

wherewy, 3y, andf, are known values. Formally, this implies collecting theueslog, 5,, andé,
that are not rejected by the test (i.e. the values for whiehdht is not significant at level). Taking
equation (3.2) as an example, the test under considerattme@ds as follows (further discussion
and references are provided in Appendix BO.

1. Solve (2.3)-(2.4) for the values of v, and~, associated with, 3,, andf, : we denote
these by\o, 7o and~,.



2. Consider the regression [which we will denote the AR-esgion, in reference to Anderson
and Rubin (1949)] of

{m — Xost — o7t — Ypome—1} on{m;_1 and theinstruments. (3.4)

Under the null hypothesis [specifically (3.2)-(3.3)], theefficients of the latter regression
should be zero. Hence testing for a zero null hypothesis loesponse coefficients in (3.4)
provides a test of (3.3).

3. Compute the standard F-statistic for the exclusion aegliessors, namely,
{m¢—1 and theinstrument$

in the regression (3.4) [see (B.13) in Appendix B]. In thisisxt, the usual classical re-
gression framework applies so the latter F-test can bereefdp its usual F ox? cut-off
points.

Tests of this type were originally proposed by Anderson aobiiR(1949) for linear Gaussian
simultaneous equations models. The AR approach transfaratsictural equation such as (3.2)
into the regular regression framework as in (3.4), for whitdndard finite-sample and asymptotic
distributional theory applies. The required transforioraiis extremely simple, despite the complex-
ity of the model under test. Indeed, the basic test we usaferance oy, 3,, andf, differs from
a standard IV-based Wald eitype one in the fact that it avoids directly estimating theictural
equation in (3.2), which faces identification difficultieB contrast, the AR-regression (3.4) sat-
isfies the usual classical regression assumptions (becausndogenous” variables appear on its
right-hand side). Whereas any statistical analysis of) (28uires identification constraints, these
are no longer needed for inference on the regression (3glshAwn more rigorously in Appendix
B, the AR-regression provides information on the strudtpeaameters because it is linked to the
reduced form associated with the structural equation .(Bf)identification-robust, we mean here
that the F-test is valid whether the model is identified or'not

Transforming the test problem to the AR-regression framkwowever comes at some cost:
the identification-robust F-test requires assessing [nrdgression (3.4)] the exclusion of_;
and the 24 available instruments (25 constraints), evemgtihthe number of structural parameters
under test is only. Instrument abundance thus leads to degrees-of-freedssedawith obvious
consequences on test power. It is possible to charactefhia¢ an “optimal” instrument set looks
like from the viewpoint of maximizing test power: up to a nmggilar transformation, the latter (say
Z) should be the mean of the endogenous explanatory variaties model or, which is equivalent,

X, x {the coefficient ofX in the first stage regression, assumed known},

"We emphasize in Appendix B that the latter test will be sizeem exactly if we can strictly condition on the
regressors and particularly the instruments for statisoalysis; weakly exogenous regressors in our dynamicemod
with instruments orthogonal to the regression error terrasiat in accord with the latter assumption. Nevertheldss, t
tests are still identification-robust. An exact test cah lsé devised for the NKPC model at hand despite its dynamic
econometric specification if one is willing to consider sgity exogenous instruments.



whereX; (as defined above) refers to the matrix of availab&rumentssee Dufour and Taamouti
(2003) and Appendix B of this paper. Here, the first stage regrasisidhe regression of the
left-hand side endogenous variables in (3.2) [marginal @od expected inflation] on the included
exogenous variable [the inflation lag] ad. More precisely, this involves applying steps 1-3 above
after replacing theénstrumentsby Z, whose dimension i§" x 2. So, the optimal identification-
robust F-test requires assessing [in the regression @&@xclusion ofr;_; and the two optimal
instruments (3 constraints); recall that the number ofcstinal parameters under test is indeed 3.
This provides optimal information reduction, which impesvthe power of the test (and thereby
may tighten the confidence sets based on these tests).

In practice, however, the coefficient &f; in the first-stage regressior/{ in Appendix B)
is not known, and estimates of this parameter must be "ptigge which of course only leads
to an “approximately optimal” procedure. As described infdu (2003), many procedures that
aim at being identification-robust as well as improving the procedure from the viewpoint of
power rely on different choices of. In particular, if a constrained OLS estimator imposing the
structure underlying (3.2) is useoﬂE in equation (B.15)], then the associated procedure yields
Kleibergen’s (2002) K-test.In other words, Kleibergen’s (2002) test obtains on apj\steps 1-3
above, replacing thestrumentsby

Zx = XoI19 .

To avoid confusion, the tests basedX¥pandZ are denoted by AR and AR-K, respectively. This
is the alternative “parsimonious identification-robust shall consider here.

Finally, inverting these tests to get confidence sets isezhaut as follows: using a grid search
over the economically meaningful set of valuesdos, andd, we sweep the economically relevant
choices forwg, 3,, andfy.® For each parameter combination considered, we computdattigtiss
AR and AR-K as described above and their respegiivalues. The parameter vectors for which
the p-values are greater than the levetonstitute a confidence set with leviel- «. Since every
choice ofwy, B, andf entails [using (2.3)] a choice fox, v, and~,, this procedure also yields
conformable confidence sets for the latter parameters. eftmsfidence sets reflect the structure,
and obtain without further computations, althouhvy, and~, are transformations of the deep
parameters. Therein lies a significant advantage in usingguroach as an alternative to standard
nonlinear Wald-based techniques.

To conclude, it is worth to emphasize two points. First, & tonfidence set obtained by invert-
ing an AR-type test is emptye. no economically acceptable value of the model deep parasnste
upheld by the data, then we can infer that the model is rejemitéhe chosen significance level. We
thus see that the procedure used here may be seen as anddeotifrobust alternative to the stan-
dard GMM-based/ test. In the same vein, utterly uninformative (too wide)fadence sets allow

8To correct for plug-in estimation effectsd. for estimatingiZ.), Dufour and Jasiak (2001), Dufour and Taamouti
(2003, 2003) recommend split sample estimation techniques, wherertestib-sample is used to estimafe and the
second sub-sample is used to run the optimal AR-test bas#tkdatter estimate. Results applying these versions of the
tests are available from the authors upon request.

We allow the range (0, 1) as the admissible space for each @fandg. The values are varied with increments of
0.03 forw and#, and by 0.01 fo3. The increment of 0.03 was chosen for the first two paramétatiser than 0.01) to
minimize the computational burden.



one to assess model fit, since unbounded confidence sets wourtter identification difficulties
[see the discussion in Dufour (2003)]. Our procedure (wiichieves, for practical purposes, the
same specification checks conveyed hy-type test) has a clear “built-in” advantage over GMM-
based t-type confidence intervals, backed by a non-signifitaest1°

Our procedure offers another important advantage notghgréhe latter standard approach. So
far, we have considered the estimation and test problenm giepecific significance (or confidence)
level «.. Alternatively, thep-value associated with the above defined tests, which peevadormal
specification check, can be used to assess the empiricalffieahodel. In other words, the values
(uniqueness is not granted)wf, 5,, andd, that lead to the largegtvalue formally yield the set of
“least rejected” models,e. models that are most compatible with the ddtén practice, analyzing
the economic information content of these least rejectedatsaassociated with the least rejected
“deep parameter” combinations) provides decisive and useful goodness-of-fit checks.

4. Empirical results

We applied the above-defined inference methods to the hyiKBC models in (3.1) and (3.2)
for both U.S. and Canadian data. One difference betweenpagifgcations and those of Gali and
Gertler is that we use a real-time output-gap measure inghefsinstruments instead of a gap
detrended using the full sample. The latter measure doesppsar an appropriate instrument
since, when the full sample is used, lagged values of the ggg construction, related to future
information. To avoid this, we proceed iteratively: to dbtthe value of the gap at time we
detrend GDP with data ending in The sample is then extended by one more observation and the
trend is reestimated. This is used to detrend GDP and yielddue for the gap at time + 1.
This process is repeated until the end of the sample. Indlisidn, the gap measure at timéoes
not use information beyond that period and can thereforeskd as a valid instrument. We also
considered a quadratic trend for this purpbse.

Regarding survey expectations, the Federal Reserve BaRkizdelphia publishes quarterly
mean forecasts of the next quarter’s U.S. GDP implicit pde#ator. We first-difference this series
to obtain our inflation-expectations series for the &8 the case of Canada, the survey-based
inflation expectations series were obtained from CanadargeCence Board Survey; further details
on the Canadian data appear in Appendix A. For the remairanghles, other than the output gap,
we use the Gali and Gertler data and instrument set for the B8 the corresponding variables
in the case of Canada. Because of the expectations variablee data set, our samples start in
1970Q1.

ndeed, if the AR confidence set with leviel- « is empty, then the usual LIML over-identification test st will
exceed a specific bounds-based identification-robtlstvel critical point,i.e. the associated over-identification test is
conclusively significant at level.

"This method underlies the principles of Hodges-Lehmarimestrs; see Hodges and Lehmann (1963, 1983). Least-
rejected values may thus be interpreted as "point estithates

12We repeated our estimations using a cubically-detrendektiree gap measure, as well the Christiano-Fitzgerald
one-sided band-pass filter, and obtained qualitativelylaimesults.

1330urce:http://iwww.phil.frb.org/econ/spf/index.html.



Table 1. Anderson-Rubin tests with rational expectations

Test Type Unrestricted model
Max p-value | Deep parameters Reduced-form parametelsFreq.
(wa 6.7 ﬁ) (/\7 ’Yfa 'Yb)
AR u.s. 0.2771 (0.40,0.64, 0.96 (0.08, 0.60, 0.39) 2.78
Canada - - - -
AR-K u.sS. 0.9993 (0.40,0.61,0.98 (0.09, 0.59, 0.40) 2.56
Canada| 0.9990 (0.01,0.37,0.21 (1.53,0.21,0.03) 1.59

6 =10.99
Max p-value | Deep Parameters Reduced-form ParametefsFreq.
(wv 97 6) (/\v ’va Vb)
AR u.s. 0.2765 (0.37,0.64, 0.99 (0.08,0.63,0.37) 2.78
Canada - - - -
AR-K u.s. 0.9987 (0.37,0.64,0.99 (0.08,0.63,0.37) 2.78
Canadal| 0.2900 (0.01, 0.10, 0.99 (7.30,0.91, 0.09) 1.11

Note - AR is the Anderson-Rubin test and AR-K refers to thalkdegen test. Freq. is the average frequency
of price adjustment, measured in quarters.

We first apply the AR test to the U.S. data, and for equatioh) (8o assess the Gali and Gertler
(1999) reported estimates. Specifically, we test whethér andg are(0.27, 0.81, 0.89) or (0.49,
0.83, 0.91), which correspond to those authors’ estimatssdon their orthogonality specifications
(1) and (2), respectively. We find all tests to be significant@ventional levels, so that their
estimated parameter values are rejected. We then ask whigththe same instrument set, there
exists a value of the parameter vector for which the hybridP@Ks not rejected. Interestingly, we
find some dramatically different results depending on wérefB.1) or (3.2) is used.

For the U.S. rational expectation solution, we find a bounidgidfairly large confidence set.
This entails that there is a multitude of different parametembinations which are compatible
with the econometric model tested, although the set is moddiler than the S-sets constructed
by Mal* However, for the model using survey expectations the confieleset is empty (at the
95% level). Thus, there is not a single parameter value acaatibn which is compatible with this
particular econometric model, implying that with surveyegtations, the model is not identified.
With regards to the Canadian data, we find that the outconeesesersed. Thus, it is the model
with rational expectations that generates the empty camfeleset, while the specification using
survey data yields the non-empty one. The latter is so sinallthere are only some parameter

“There is a slight difference between our two instrument 9dtss set includes a constant and has no fourth lag for
any of the variables in levels.



Table 2. Anderson-Rubin tests with survey expectations

Test type Unrestricted model
Max p-value | Deep parameters Reduced-form parametersFreq.
(w7 6.7 ﬁ) ()‘7 'Yfa 'Yb)
AR u.s. - - - -
Canada| 0.1009 (0.01,0.97,0.89 (0.00,0.88, 0.01) 33.33
AR-K u.sS. 0.9983 (0.01,0.61, 0.64 (0.38,0.63, 0.02) 2.56
Canada| 0.0890 (0.01,0.97,0.90 (0.00,0.89, 0.01) 33.33
8 =0.99
Max p-value | Deep parameters Reduced-form parametersFreq.
(wv 97 6) ()‘7 FVfa ’Yb)
AR u.s. - - - -
Canada| 0.0562 (0.01,0.97,0.99 (0.00, 0.98, 0.01) 33.33
AR-K u.s. 0.6057 (0.52,0.22,0.99 (0.40,0.29, 0.70) 1.28
Canada - - - -

Note - AR is the Anderson-Rubin test and AR-K refers to thalkdegen test. Freq. is the average frequency
of price adjustment, measured in quarters.

value combinations for which the model is statisticallyigdal

Along with the identification-robust confidence sets, on¢hef great advantages of using the
Anderson-Rubin method is that it yields the parameter coathin that is least rejected, or, alterna-
tively, that has the highegtvalue. Formally, as explained in the previous sectiors, ploint estimate
corresponds to the so-called Hodges-Lehmann estimateaamideccompared with point estimates
obtained using more conventional estimation methods (asdBMM). We report this estimate for
the U.S. and Canada in the upper panels of Tables 1 and 2ctespe From here, we can see
that, under rational expectations, the values of the degppetergw, 6, 3) that correspond to the
maximalp-value for the U.S. is given b§0.40, 0.64, 0.96). These translate into a value of 0.6 for
the coefficient of the forward-looking component on inflatie/ ), and 0.39 for the coefficient of
the backward-looking componef,). Furthermore, the coefficient on the marginal cost variable
is 0.08, and the average frequency of price adjustment &dquarters.

Based on the Hodges-Lehmann estimates, the findings previgigort for the optimization-
based Phillips curve, and the notion that the forward-lngkiomponent of the U.S. inflation process
is more important than its backward-looking part. In additithe estimate for the average frequency
of price adjustment is fairly close to the value of 1.8 obtdifbased on micro data [see, for example,
Bils and Klenow (2004)}> On the other hand, the graphs in the lower panel of Figure \ligea

5Gali and Gertler report average price adjustment freqesnuf about 3 to 4 quarters.
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Figure 1. AR and AR-K tests (U.S., Rational Expectations).
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Figure 2. AR-K tests (U.S., Survey Expectations).

gualification to the above statement.

The graph on the left depicts tl¥% (solid line, p-value = 0.05) and90% (dashed linep-
value= 0.10) confidence sets based on the AR test, and for the case wigesalifective discount
parameter is constrained to lie between 0.95 and 0.99. Anridtks the spot corresponding to
the highesip-value obtained (0.2797). Immediately, three featuresbmanoticed: (i) the sets of
parameter values not rejected that the test does not r¢jdnt & and 10% levels are fairly large,
(i) within these sets, there is more than an@alue that corresponds to a givénand vice-versa,
and (iii) the parameter combination that yields the highegalue is very close to points that have
a p-value of 0.10 only. In other words, even whgris constrained quite tightly, the uncertainty
regarding the estimated values of the other parametersatsvedy high. This is seen more easily
in the adjacent graph which depicts the values correspgrdithe95% confidence set in the
and~, space. Notice, in particular, that a value of 0.60 for thekbeerd-looking component of
inflation, and 0.37 for the forward-looking part is as likétyobtain as a value of 0.90 and 0.10 for
the forward and backward-looking components, respegtivel

Turning now to Canadian data, recall that the model witloreti expectations is not compatible
with the data, but that the one with survey expectations gadd a non-empty set. The results
corresponding to the highegtvalue for the latter are found in Table 2. In this case, th&imal
p-value is 0.1009 while the deep parameters @®61, 0.97, 0.89). Based on the fact that the
proportion of firms that follow a rule-of-thumb is practilsarero (v = 0.01), we would conclude
that a purely forward-looking model is applicable to Canadawever, a look at the reduced-form
parameters and the average frequency of price adjustmdintiia that the model is economically
not plausible. This is the case eversifs constrained to 0.99 in the estimatith.

Results based on Kleibergen’s statistic are also repontddbles 1 and 2. As for the AR tests,

8For this reason, and because all of the admissiblalues in the AR-based confidence sets equal 0.01, no figiges a
provided for Canada.
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two sets of outcomes are tabulated for each country: therpes values that yield the highest
testp-value for the unrestricted model appear in the upper pavtadle the lower one shows the
corresponding elements whgris constrained to 0.99.

Let us first examine the results for the U.S. with the ratianqdectations model. Whefix is
used as the instrument set, the model is least rejected égpalameter combination (0.40, 0.61,
0.98), and thep-value is 0.9993. These values are extremely close to thegsmted for the cor-
responding restricted estimation (withconstrained to 0.99) case, and also, to those of the AR
tests.

With the model based on survey expectations (Table 2), aifihndhe AR test yields an empty
confidence set for the U.S., AR-K test that corresponds tibkfgen’'s K-test (the AR-K test) yields
a least-rejected parameter combination that suggestsgstréorward-looking behaviour+(, =
0.63, v, = 0.02). In addition, when the subjective discount rate is comstd to 0.99, the AR-K
test now points to a much more important backward-looking@onent for inflation.

Our findings are somewhat similar with Canadian data. Alifinaihe AR-K test yields outcomes
similar to those of the AR test for the unrestricted modehvgitirvey expectations, with rational
expectations, the AR-K yields parameter values that suggkess important forward-looking role
in inflation. In addition, the estimate for the average frey of price adjustment is 1.6, very much
in line with micro data [as in Bils and Klenow (2004)]. Thessults are nevertheless difficult to
reconcile with the value foi, which is essentially zero. In addition, once the subjectiiscount
rate parameter is constrained to 0.99, the conclusionseorational expectations specification from
the AR-K test point to a much more important forward-lookzwmnponent of inflation; = 0.91,

v, = 0.09). The unusual feature in this case is the value of the coefficdn the marginal cost
variable,\, which stands at 7.30.

Figures 1 and 2 present U.S. graphed results for the AR-Kaeste case wherg is constrained
to fall between 0.95 and 0.99. Under rational expectatiéigufe 1), the confidence set based on
inverting the AR-K test is larger than that based on the ARrbstlts are in line with each other,
in the sense that the 95% confidence sets are more skewedisohigher~, than~;. Turning
to Figure 2, we find that the AR-K test produces strong supfmria larger backward-looking
component to inflation.

Taken collectively, the results in this section point tolgemns of weak identification in these
models. Nevertheless, we find that there is some suppottédmtbrid NKPC for the U.S., whereas
the model is not suited to Canada.

5. Conclusion

In this paper we used finite-sample methods to test the erapiélevance of Gali and Gertler's

(1999) NKPC equations, using AR tests as well as Kleibesyerore parsimonious procedure. We
focused on the Gali and Gertler’s (1999) specification, ah bbS. and Canadian data. Two variants
of the model were studied: one based on a rational-expestatissumption, and a modification to
the latter which consists in using survey data on inflatiopeetations. In the U.S. case, Gali

and Gertler's (1999) original data set were used exceptherautput gap measure and survey
expectations where applicable.
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First, we found some evidence of identification difficultyewrtheless, the maximgtvalue
arguments point out those parameter values for which theshisdeast rejected — a very useful
feature of our proposed identification-robust techniqugscond, we found support for Gali and
Gertler's hybrid NKPC specification with rational expetias for the U.S. Third, neither model
was found to be well-suited to describe inflation dynamigsGanada. Fourth, we found that, for
the cases where the Anderson-Rubin test yields an emptydeoick set, the AR-K procedure leads
to conflicting results for the restricted and unrestrictentigls.

These results underscore the need for employing identdficadbust inference in the estimation
of expectations-based dynamic macroeconomic relations.
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Appendix

A. Data description for Canada

The inflation expectations series is obtained from the Qenfe Board of Canada survey. Each
quarter, participants are asked to forecast the annuahgediGDP-deflator) inflation rate for the
current year. Let us denote], 74, 74, and7{, the annual average inflation forecasts made in
quarters 1, 2, 3, and 4 of a given year, respectively. Clefmigcasts that are made in the second,
third, and fourth quarters are likely to integrate realigaod observed) inflation in quarters 1, 1 and
2,and 1, 2 and 3, respectively.

To obtain a “pure” quarterly expectations series, we pro@efollows: First, denote the fore-
casted quarterly inflation rate in quarters 1 to 4tds74, 71, and74, respectively. Similarly, let
w1, 71, =1 be the realized quarterly inflation rates in quarters 1, 8, &mrespectively. Then, the
forecasted quarterly inflation rates are calculated asvi@li

71 = #¢/4

75 = (A5 —71)/3

R = (7 -l - 1))/2
# = (# - nd -} -9

The remaining data are quarterly time series from StasisTlignada’s database.
Any monthly data are converted to quarterly frequency.

Output gap is the deviation of real GDPy{ = InY;) from its steady state, approximated by
a quadratic trendj = 100(y; — u:), whereY; = 156001 — 156013 — 156018.

Price inflation is the quarterly growth rate of the total GDP deflator:
T = 100(1H.Pt — hlPt_l) andP;, = D15612

Wage inflation is the quarterly growth rate of compensation of employees:

wy = 100(InWy — InW,_1), whereW,; = D17023/N;.

N; = LFSA201 for 1970:1-1975:4 and&v; = D980595 for 1976:1-2000:4

Labour income share is the ratio of total compensation and nominal GDE: = InS;, and
st = 100(ls; — s), the labour income share in deviation from its steady-stateere s =
InS, S = 7 In(S;)/T andS; = (D17023 — D17001)/(D15612 * Y;).

Average real marginal costs for CD rmc;"? = s;.
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B. The AR test and related procedures
Consider the following structural equation:
y=Yé+ X1k + u, (B.1)

wherey is a1 x 1 dependent variablg; is a7 x m matrix of endogenous variableX; is aT x k;

matrix of exogenous variables, amds an error term that satisfies standard regularity cormtio

typical of IV regressions; see Dufour and Jasiak (2001). unamntext (see section 3y, is the

T-dimensional vector of observations on Y is theT x 2 matrix of observations og; and ;1

[or 7,11, depending on the contextk; is the vector of observations on the inflation lag 1, Xo

is theT x ko matrix of the instruments, andis theT-dimensional vector of error terms.
Suppose that the reduced form associated with the rigtd-b@le endogenous regressors is

Y = XII) + XoIl, +V (B.2)

whereV is anT x m matrix of error terms assumed to be cross-correlated andlated withu,
and.X is the matrix of available instrument$.In this case, the reduced form associated with (B.1)
is

y = Xyip1+ Xopas+u+Vé, (B.3)
P11 = H15 + K, P2 = Hg(s. (B4)

Identification constraints follow from (B.4) and amount i@ trank condition
rank(Ily) = m. (B.5)

Consider hypotheses of the form
Hy: 6 = 0p. (B.6)

In this case, the model transformed as follows
y—Ydo=Y(6—do) + X1k +u,
has reduced form
y—Ydy = Xi[II; (6 — 00) + k] + Xo[IT2 (6 — 00)] +u+ V (6 — do) - (B.7)

In view of this, the AR test assesses the exclusioX o{of sizeT" x k») in the regression af — Y d

YIn Dufour and Taamouti (2004) and Dufour (2003), we streas tfi) linearity of the latter reduced form is strictly
not necessary, (ii) further exogenous regressors ("egdilghstruments) may enter into the equation in additiorhto t
instrument set. To present the test in its simplest form, vatain the standard linear form (B.2) and refer the reader
to later references for disucussion of the more generahgefilote that the assumptions regarding the reduced form fo
Y do not affect the actual implementation of the test, so aupkfied presentation does not lack generality for prattica
purposes.
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on X; and X5, which can be conducted using a standastest. LetX = (X5, X3), and define
M=I-XX'X)"'X', M =I-X(X;X)) 'X].

The statistic then takes the form

(y=Ydo) (My — M) (y —Ydqo) /ks

AR (50) = (y _ Y&O)/M (y — Y&O) / (T - kl - kQ) .

(B.8)

Under the null hypothesis, assuming strong exogeneity daditically, independently distributed
(i.i.d.) normal errors,
AR (6¢) ~ F(ko, T — k1 — ko). (B.9)

Following the usual classical regression analysis, therlatrong hypotheses on the error terms can
be relaxed so that, under standard regularity conditions,

ko AR (60) ¥ X2 (k) . (B.10)

It is important to emphasize that identification constiaizte not used here (exactly or asymptot-
ically). In other words (B.9) or (B.10) hold whether (B.5)vsrified or not; this is what “identi-
fication robustness” usually means. The test can be reaxlignded to accommodate additional
constraints on the coefficients of (the full vector or a arlys&i of) theX; variables. For example,
the hypothesis

Hy:6 =6, k= Ko, (B.11)

can be assessed in the context of the transformed regression

y—Yéo—Xllio = Xl[H1(5—50)+(/€—/40)}
+X2[U2 ((5 — 50)] —+u + Vv (5 — (50) (B.12)

which leads to the following F-statistic

(y — Yo — Xiro) (I — M) (y — Yo — X1ko) /(k1 + ko)

AR (8¢, %) = .
(0, %) (y — Yoo — X1ro) M (y — Yo — Xaro) / (T — k1 — ks)

(B.13)

While the test in its original form was derived for the caseevehthe first-stage regression is
linear, we re-emphasize that it is in fact robust to: (i) thedfication of the model fo¥", and (ii)
excluded instruments; in other words, the test is validndigas of whether the first-stage regression
is linear, and whether the matriXs includes all available instruments. As argued in Dufou@0
since one is never sure that all instruments have been aecbior, the latter property is quite
important. Most importantly, this test [and several vaisagiscussed in Dufour (2003)] is the only
truly pivotal statistic whose properties in finite samples @bust to the quality of instruments.

Note that exactness strictly requires that we can condiioX (i.e. we can takeX as fixed
for statistical analysis). This holds particularly for timstruments. In the presence of weakly ex-
ogenous regressors, the test remains identification-tobbe intuition underlying this result is the
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following: conducting the test via the Anderson-Rubin esgions (B.7)-(B.12)wWhich constitute
statistical reduced fornj®asily transforms the test problem from the IV-regres$iohich requires
(B.5)] to the classical linear regression statistical fesmrark jwhich does not requiréB.5)]. This
provides an attractive solution to identification difficet, a property not shared by 1V-based Wald
statistics nor GMM-based J-tests.

Despite the latter desirable statistical properties, ¢sé as presented above provides no guid-
ance for practitioners regarding the choice of instrumemmsddition, simulation studies reported
in the above-cited references show that the power of AR-tgps may be affected by the number
of instruments. To see this, consider the case of (B.1)}(Bhére, the AR test requires assessing
(in the regression of — Y §y, on X; and X3) the exclusion of th&" x ko variables inX,, even
though the number of structural parameters under test {fhe structural parameter under tést
is m x 1). On recalling that identification entails, > m, we see that over-identification (or al-
ternatively, the availability of more instruments) leadsdiegrees-of-freedom losses with obvious
implication on power. To circumvent this problem, an optiinatrument (in the sense that it yields
apoint-optimaltest) is given by

7 = XoIl,

wherell; is the coefficient ofX5 in the first-stage regression, i.e. the regression of X; and X5;
see Dufour and Taamouti (20003 Formally, this implies applying (B.9) or (B.13), replagiXs by
Z (observe thak, intervene in these statistics vid = I— X (X’ X) "1 X’ whereX = (X1, X»)).

Clearly, the latter optimal instrument involves infornmatireduction, for the associated AR-test
amounts to testing for the exclusion of the< m variables inZ, which preserves available degrees-
of-freedom even if the model is highly over-identified. Iinet words, the optimal test can reflect
the informational content of all available instrumentshwib statistical costs.

Unfortunately, I1, is unknown so the approximate optimal instruments need® testimated,
with obvious implications on feasibility and exactness.f@u (2003) shows that if the OLS esti-
mator

Ty = (X{M Xo) L X5MY (B.14)

of I15 in the unrestricted reduced form multivariate regressi®2)is used in the construction of
Z, then the associated statistic coincides with the LM ddtedefined by Wang and Zivot (1998).
In addition, the K-statistic of Kleibergen (2002) may beeireted as based on an approximation
of the optimal instrument [see Dufour and Khalaf (2003)]. this case,ll, is replaced by its
constrained reduced form OLS estimates imposing the stalddentification condition (B.5):

[y — Yo MY
[y =Yoo My —Ydo]

19 = ITy — (XM X2) " X)M; [y — Y 6] (B.15)

Wang and Zivot (1998) show that the distribution of the LMtistic is bounded by the? (ks)
distribution; Kleibergen (2002) shows thatyd (m) cut-off point is asymptotically identification-
robust for the K-statistic. To obtain dni(m, .) or x? (m) cut-off point for both statistics correcting
for plug-in effects, split sample methods (where the firbt-sample is used to estimatg, and the
second to run the AR-test based on the latter estimate) rsayalexploited; see Dufour and Jasiak
(2001) and Dufour and Taamouti (208)3
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