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1
  These empirical findings are further corroborated by the analytical results for specific stochastic volatility models

reported in Andersen, Bollerslev and Meddahi (2004).

2
  Earlier influential work on homoskedastic jump-diffusions include Ball and Torous (1983), Beckers (1981), Jarrow

and Rosenfeld (1984) and Merton (1976), while Jorion (1988) and Vlaar and Palm (1993) have previously incorporated jumps in
the estimation of discrete-time ARCH and GARCH models; see also the discussion in Das (2002).

I.  Introduction

Volatility is central to asset pricing, asset allocation and risk management.  In contrast to the estimation

of expected returns, which generally requires long time spans of data, the results in Merton (1980) and Nelson

(1992) suggest that volatility may be estimated arbitrarily well through the use of sufficiently finely sampled

high-frequency returns over any fixed time interval.  However, the assumption of a continuous sample path

diffusion underlying these theoretical results is invariably violated in practice at the highest intradaily sampling

frequencies.  Thus, despite the increased availability of high-frequency data for a host of different financial

instruments, practical complications have hampered the implementation of direct high-frequency volatility

modeling and filtering procedures (see, e.g., the discussion in Aït-Sahalia, Mykland and Zhang, 2005;

Andersen, Bollerslev and Diebold, 2003; Engle 2000; Russell and Engle, 2005; and Rydberg and Shephard,

2003).

In response to this, Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys (2001)

(henceforth ABDL), Barndorff-Nielsen and Shephard (2002a,b), and Meddahi (2002), among others, have

recently advocated the use of so-called realized volatility, or variation, measures constructed from the

summation of high-frequency intradaily squared returns as a way of conveniently circumventing the data

complications, while retaining (most of) the relevant information in the intraday data for measuring, modeling

and forecasting volatilities over daily and longer horizons.  Indeed, the empirical results in ABDL (2003)

suggest that simple reduced form time series models for realized volatility perform as well, if not better, than

the most commonly used GARCH and related stochastic volatility models in terms of out-of-sample

forecasting.1

At the same time, other recent studies have pointed to the importance of explicitly allowing for jumps,

or discontinuities, in the estimation of specific parametric stochastic volatility models, and in the pricing of

options and other derivatives instruments (e.g., Andersen, Benzoni and Lund, 2002; Bates, 2000; Chan and

Maheu, 2002; Chernov, Gallant, Ghysels, and Tauchen, 2003; Drost, Nijman and Werker, 1998; Eraker, 2004;

Eraker, Johannes and Polson, 2003; Johannes, 2004; Johannes, Kumar and Polson, 1999; Maheu and McCurdy,

2004; Khalaf, Saphores and Bilodeau, 2003; and Pan, 2002).  In particular, it appears that the conditional

variance of many assets is best described by a combination of a smooth and very slowly mean-reverting

continuous sample path process, along with a much less persistent jump component.2

Set against this backdrop, the present paper seeks to further advance the reduced-form volatility
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  This approach is distinctly different from the recent work of Aït-Sahalia (2002), who relies on direct estimates of the

transition density function for identifying jumps.
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forecasting approach advocated in ABDL (2003) through the development of a practical non-parametric

procedure for separately measuring the continuous sample path variation and the discontinuous jump part of the

quadratic variation process.  Our approach builds directly on the new theoretical results in Barndorff-Nielsen

and Shephard (2004a, 2005) involving so-called bi-power variation measures constructed from the summation

of appropriately scaled cross-products of adjacent high-frequency absolute returns.3  Implementing these ideas

empirically with more than a decade long sample of five-minute high-frequency returns for the DM/$ foreign

exchange market, the S&P500 market index, and the 30-year U.S. Treasury yield, we shed new light on the

dynamic dependencies and the relative importance of jumps across the different markets.  We also demonstrate

important gains in terms of volatility forecast accuracy by explicitly differentiating impact of the jump and

continuous sample path component.  These gains obtain at daily, weekly, and even monthly forecast horizons. 

Our new HAR-RV-CJ forecasting model incorporating the jumps builds directly on the reduced form

heterogenous AR model for the realized volatility, or HAR-RV model, due to Müller et al. (1997) and Corsi

(2003), in which the realized volatility is parameterized as a linear function of the lagged realized volatilities

over different horizons.

The plan for the rest of the paper is as follows.  The next section briefly reviews the relevant bi-power

variation theory.  Section III details the high-frequency data and highlights the most important qualitative

features of the raw jump measurements for each of the three markets.  Section IV describes the HAR-RV

volatility forecasting model and the resulting gains obtained by explicitly including the raw jump measures as

additional explanatory variables.  Section V presents a simple statistical procedure for measuring only the most

“significant” jumps.  Guided by the extensive simulation evidence in Huang and Tauchen (2005), we also

discuss how the test statistic may be adapted to guard against empirically realistic market microstructure

frictions in the actual high-frequency data.  We then illustrate how many of the most significant jumps

identified by the robust-to-market-microstructure frictions test statistics may be directly associated with

specific macroeconomic news announcements, and further go on to characterize the temporal dependencies in

the resulting significant jump time series.  Building on this, Section VI shows how separately including the

significant jumps and the corresponding continuous sample path variability measures as explanatory variables

in a reduced form HAR-RV-CJ forecasting model further enhance the accuracy of the realized volatility

forecasts.  Section VII concludes with several suggestions for future research.
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II.  Theoretical Framework

Let p(t) denote the time t logarithmic price of the asset.  The continuous-time jump diffusion processes

traditionally used in asset pricing finance are then most conveniently expressed in stochastic differential

equation form as,

dp(t)   =   µ(t) dt  +  F(t) dW(t) +  6(t) dq(t) ,       0#t#T, (1)

where µ(t) is a continuous and locally bounded variation process, the stochastic volatility process F(t) is strictly

positive and continuous, W(t) denotes a standard Brownian motion, and q(t) is a counting process with

(possibly) time-varying intensity 8(t).  That is P[dq(t)=1] = 8(t)dt, where 6(t)/p(t)-p(t-) refers to the size of the

corresponding discrete jumps in the logarithmic price process.  The quadratic variation (or notional

volatility/variance in the terminology of ABD, 2003) for the cumulative return process, r(t) /  p(t) -  p(0), is

then given by

(2)[r ,r ]
t
' m

t

0

σ2(s) ds % j
0<s#t

κ2(s) ,

where by definition the summation consists of the q(t) squared jumps that occurred between time 0 and time t. 

Of course, in the absence of jumps, or q(t)/0, the summation vanishes, and the quadratic variation simply

equals the integrated volatility.

Several recent studies concerned with the direct estimation of continuous time stochastic volatility

models have highlighted the importance of explicitly incorporating jumps in the price process along the lines of

the formulation equation (1) (e.g., Andersen, Benzoni and Lund, 2002; Eraker, Johannes and Polson, 2003;

Eraker, 2004; Johannes, 2004; Johannes, Kumar and Polson, 1999).  Moreover, the specific parametric model

estimates reported in this literature have generally suggested that any dynamic dependencies in the occurrences

or sizes of the jumps are much less persistent than the dependencies in the continuous sample path volatility

process.  However, rather than relying on these more traditional model-driven procedures for estimating each of

the two components in equation (2), we will here rely on a new non-parametric and purely high-frequency-data-

driven approach for separately measuring the two components.

A.  High-Frequency Data, Bi-Power Variation, and Jumps

Let the discretely sampled )-period returns be denoted by, rt,) / p(t) - p(t-)).  For ease of notation we

normalize the daily time interval to unity and label the corresponding discretely sampled daily returns by a
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  We will use the terms realized volatility and realized variation interchangeably in the following.
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single time subscript, rt+1 / rt+1,1.  Also, we define the daily realized volatility, or variation, by the summation

of the corresponding 1/) high-frequency intradaily squared returns,4

(3)RV
t%1

(∆ ) / j
1/∆

j'1

r
2

t% j@∆ ,∆ ,

where for notational simplicity and without loss of generality 1/) is assumed to be an integer.  Then, as

emphasized in the series of recent papers by Andersen and Bollerslev (1998), ABDL (2001), Barndorff-Nielsen

and Shephard (2002a,b) and Comte and Renault (1998), among others, it follows directly by the theory of

quadratic variation that the realized variation converges uniformly in probability to the increment to the

quadratic variation process as the sampling frequency of the underlying returns increases.  That is,

(4)RV
t%1

(∆ ) 6 m
t%1

t

σ 2(s)ds % j
t<s#t%1

κ2(s) ,

for )60.  Thus, in the absence of jumps the realized variation is consistent for the integrated volatility that

figures prominently in the stochastic volatility option pricing literature.  This result, in part, motivates the

reduced-form time series modeling and forecasting procedures for realized volatilities advocated in ABDL

(2003).  It is clear, however, that in general the realized volatility will inherit the dynamic dependencies in both

the integrated volatility, and if present, the jump dynamics.  Although this does not impinge upon the

theoretical justification for directly modeling and forecasting RVt+1()) through simple reduced-form time series

procedures, it does suggest that even better forecasting models may be constructed by separately measuring and

modeling the two components in equation (4).

Set against this backdrop, the present paper seeks to further enhance on the predictive gains

demonstrated in ABDL (2003) through the use of new and powerful asymptotic results (for )60) in Barndorff-

Nielsen and Shephard (2004a, 2005) that allow for separate (non-parametric) identification of the two

components of the quadratic variation process.  Specifically, define the standardized realized bi-power

variation measure,

(5)BV
t%1

(∆ ) / µ
&2

1 j
1/∆

j'2

* r
t% j@∆ ,∆

* * r
t% (j&1)@∆ ,∆

* ,

where  µ1 / %(2/π) = E(|Z|) denotes the mean of the absolute value of standard normally distributed random



5
  Corresponding general asymptotic results for so-called realized power variation measures have recently been

established by Barndorff-Nielsen and Shephard (2003, 2004a); see also Barndorff-Nielsen, Graversen and Shephard (2004) for a
survey of related results.  In particular, it follows that in general for 0<p<2 and )60,

RPV
t%1(∆ ,p ) / µ

&1
p ∆

1&p/2 j
1/∆

j'1

* r
t% j@∆ ,∆ *

p 6 m
t%1

t

σ p(s)ds,

where µp / 2p/2Γ(½(p+1))/Γ(½) = E(|Z|p).  Hence, the impact of the discontinuous jump process disappears in the limit for the
power variation measures with  0<p<2.  In contrast, RPVt+1(),p) diverges to infinity for p>2, while RPVt+1(),2) /  RVt+1())

converges to the integrated volatility plus the sum of the squared jumps, as in equation (4).  Related expressions for the conditional
moments of different powers of absolute returns have also been utilized by Aït-Sahalia (2003) in the formulation of a GMM-type
estimator for specific parametric homoskedastic jump-diffusion models.
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variable, Z.  It is then possible to show that for )60,5 

(6)BV
t%1

(∆ ) 6 m
t%1

t

σ 2(s)ds .

Hence, as first noted by Barndorff-Nielsen and Shephard (2004a), combining the results in equations (4) and

(6), the contribution to the quadratic variation process due to the discontinuities (jumps) in the underlying price

process may be consistently (for )60) estimated by

(7)RV
t%1

(∆ ) & BV
t%1

(∆ ) 6 j
t<s#t%1

κ2(s).

This is the central insight on which the theoretical and empirical results in the paper builds.  Of course, nothing

prevents the estimates of the squared jumps defined by the right hand-side of (7) from becoming negative in a

given finite ()>0) sample.  Thus, following the suggestion of Barndorff-Nielsen and Shephard (2004a), we

simply truncate the actual empirical measurements at zero,

(8)J
t%1

(∆ ) / max[ RV
t%1

(∆ ) & BV
t%1

(∆ ) , 0 ] ,

to ensure that all of the daily estimates are non-negative.

III.  Data and Summary Statistics

To highlight the generality of our empirical results related to the improved forecasting performance

obtained by separately measuring the contribution to the overall variation coming from the discontinuous price

movements, we present the results for three different markets.  We begin this section by a brief discussion of

the data sources, followed by a summary of the most salient features of the resulting realized volatility and



6
  We explicitly exclude all days with sequences of more than twenty consecutive five-minute intervals of no new prices

for the S&P500, and forty consecutive five-minute intervals of no new prices for the T-bond market.

7
  In order to mitigate the impact of market microstructure frictions in the construction of unbiased and efficient realized

volatility measurements, a number of recent studies have proposed ways of  “optimally” choosing )  (e.g., Aït-Sahalia, Mykland
and Zhang, 2005; Bandi and Russell, 2004a,b), sub-sampling schemes (e.g., Zhang, Aït-Sahalia and Mykland, 2005; Zhang, 2004),
pre-filtering (e.g., Andreou and Ghysels, 2002; Areal and Taylor, 2002; Bollen and Inder, 2002;  Corsi, Zumbach, Müller and
Dacorogna, 2001; Oomen 2002, 2004), Fourier methods (Barucci and Reno, 2002; and Malliavin and Mancino, 2002), or other
kernel type estimators (e.g., Barndorff-Nielsen, Hansen, Lunde and Shephard, 2004; Hansen and Lunde 2004a,b; and Zhou, 1996). 
For now we simply follow ABDL (2002, 2001), along with most of the existing empirical literature, in the use of unweighted five-
minute returns for each of the three actively traded markets analyzed here. However, we will return to a more detailed discussion of
the market microstructure issue and pertinent jump measurements in Section V below.
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jump series for each of the three markets.

A  Data Description

We present the results for three distinct markets: the DM/$ foreign exchange market, the aggregate

U.S. stock market as comprised by the S&P500 index, and the fixed income market as represented by the 30-

year U.S. Treasury bond yield.  The DM/$ volatilities cover the period from December 1986 through June

1999, for a total of 3,045 daily observations.  The underlying high-frequency spot quotations were kindly

provided by Olsen & Associates in Zurich, Switzerland.  This same series has been previously analyzed in the

series of papers by ABDL (2001, 2003).  The S&P500 volatility measurements are based on tick-by-tick

transactions prices from the Chicago Mercantile Exchange (CME) augmented with overnight prices from the

GLOBEX automated trade execution system, and cover the period from January 1990 through December 2002. 

The U.S. T-bond volatilities are similarly constructed from tick-by-tick transactions prices for the 30 year U.S.

Treasury Bond futures contract traded on the Chicago Board of Trade (CBOT), and cover the identical January

1990 through December 2002 period.  After removing holidays and other inactive trading days, this leaves us

with a total of 3,213 observations for each of the two futures markets.6  A more detailed description of the S&P

and T-bond data is available in Andersen, Bollerslev, Diebold and Vega (2005), where the same high-

frequency data are analyzed from a very different perspective.  All of the volatility measures are based on

linearly interpolated logarithmic five-minute returns, as in Müller et al. (1990) and Dacorogna et al. (1993).7 

For the foreign exchange market this results in a total of 1/) = 288 high-frequency return observations per day,

while the two futures contracts are actively traded for 1/) = 97 five-minute intervals per day.  For notational

simplicity, we omit the explicit reference to ) in the following, referring to the five-minute realized volatility

and jump measures defined by equations (3) and (8) as RVt and Jt , respectively.

B.  Realized Volatilities and Jumps

The first panels in Figures 1A-C show the resulting three daily realized volatility series in standard



8 Modeling and forecasting log volatility also has the virtue of automatically imposing non-negativity of fitted and

forecasted volatilities.

9
  The difference between the daily realized variation and bi-power variation measures result in negative estimates for the

squared daily jumps on 30.6, 27.9 and 18.3 percent of the days for each of the three markets, respectively.  As discussed further
below, in the absence of jumps, the difference should be negative asymptotically ()60) for half of the days in the sample.
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deviation form, or RVt
1/2 .  Each of the three series clearly exhibits a high degree of own serial correlation.  This

is confirmed by the Ljung-Box statistics for up to tenth order serial correlation reported in Tables 1A-C equal

to 5,714, 12,184, and 1,718, respectively.  Similar results obtain for the realized variances and logarithmic

transformations reported in the first and third columns in the tables.  Comparing the volatility across the three

markets, the S&P500 returns are the most volatile, followed by the exchange rate returns.  Also, consistent with

earlier evidence for the foreign exchange market in ABDL (2001), and related findings for individual stocks in

Andersen, Bollerslev, Diebold and Ebens (2002) and the S&P500 in Deo, Hurvich and Lu (2005) and Martens,

van Dijk and Pooter (2004), the logarithmic standard deviations are generally much closer to being normally

distributed than are the raw realized volatility series.  Hence, from a modeling perspective, the logarithmic

realized volatilities are more amenable to the use of standard time series procedures.8

The second panels in Figures 1A-C display the separate measurements of the jump components (again

in standard deviation form) based on the truncated estimator in equation (8).9  As is evident from the figures,

many of the largest realized volatilities are directly associated with jumps in the underlying price process. 

Some of the largest jumps in the DM/$ market occurred during the earlier 1986-88 part of the sample, while the

size of the jumps for the S&P500 has increased significantly over the most recent 2001-02 two-year period.  

Meanwhile, the size of the jumps in the T-Bond market seem to be much more evenly distributed throughout

the sample.  Overall, both the size and occurrence of jumps appear to be much more predictable for the

S&P500 than for the other two markets.

These visual observations are readily confirmed by the standard Ljung-Box portmanteau statistics for

up to tenth order serial correlation in the Jt , Jt
1/2, and log(Jt +1) series reported in the last three columns in

Tables 1A-C.  It is noteworthy that although the Ljung-Box statistics for the jumps are generally significant at

conventional significance levels (especially for the jumps expressed in standard deviation or logarithmic form),

the actual values are markedly lower than the corresponding test statistics for the realized volatility series

reported in the first three columns.  This indicates decidedly less own dynamic predictable dependencies in the

portion of the overall quadratic variation originating from the discontinuous sample path price process

compared to the dynamic dependencies in the continuous sample path price movements.  The numbers in the

table also indicate that the jumps are relatively least important for the DM/$ market, with the mean of the Jt

series accounting for 0.072 of the mean of RVt , while the same ratios for the S&P500 and T-bond markets



10
  Müller et al. (1997) heuristically motivates the HARCH model through the existence of distinct group of traders with

different investment horizons.

11  Mixtures of low-order ARMA models have similarly been used in approximating and forecasting long-memory type

dependencies in the conditional mean by Basak, Chan and Palma (2001), Cox (1991), Hsu and Breidt (2003), Man (2003),
O’Connell (1971) and Tiao and Tsay (1994), among others.  The component GARCH model in Engle and Lee (1999) and the
multi-factor continuous time stochastic volatility model in Gallant, Hsu and Tauchen (1999) are both motivated by similar
considerations; see also the discussion of the related multifractal regime switching models in Calvet and Fisher (2001, 2002).
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equal 0.144 and 0.126, respectively.

Motivated by these observations, we now put the idea of separately measuring the jump component to

work in the construction of new and simple-to-implement realized volatility forecasting models.  More

specifically, we follow ABDL (2003) in directly estimating a set of reduced-form time series models for each

of the different realized volatility measures in Tables 1A-C; i.e., RVt , RVt
1/2, and log(RVt ).  Then, in order to

assess the added value of separately measuring the jump component in forecasting the realized volatilities, we

simply include the raw Jt , Jt
1/2, and log(Jt

 + 1) jump series as additional explanatory variables in the various

forecasting regressions.

IV.  Reduced-Form Realized Volatility Modeling and Forecasting

A number of empirical studies have argued for the importance of long-memory dependencies in

financial market volatility.  Several different parametric ARCH and stochastic volatility formulations

have also been proposed in the literature for best capturing this phenomenon (e.g., Andersen and Bollerslev,

1997; Baillie, Bollerslev, and Mikkelsen, 1996; Breidt, Crato and de Lima, 1998; Dacorogna et al., 2001; Ding,

Granger and Engle, 1993; Robinson, 1991).  These same empirical observations have similarly motivated the

estimation of long-memory type ARFIMA models for realized volatilities in ABDL (2003), Areal and Taylor

(2002), Deo, Hurvich and Lu (2005), Koopman, Jungbacker and Hol (2005), Martens, van Dijk, and Pooter

(2004), Oomen (2002), Pong, Shackleton, Taylor and Xu (2004), Thomakos and Wang (2003), among others.

Instead of these exact, and somewhat complicated-to-estimate, fractionally integrated long-memory

formulations, we will here rely on the simple-to-estimate HAR-RV class of volatility models first proposed by

Corsi (2003).  The HAR-RV formulation is based on a straightforward extension of the so-called

Heterogeneous ARCH, or HARCH, class of models analyzed by Müller et al. (1997), in which the conditional

variance of the discretely sampled returns is parameterizes as a linear function of the lagged squared returns

over the identical return horizon together with the squared returns over longer and/or shorter return horizons.10 

Although the HAR type structure doesn’t formally possess long-memory, the mixing of relatively few volatility

components is capable of reproducing a remarkably slow decay that is almost indistinguishable from that of a

hyperbolic pattern over most empirically relevant forecast horizons.11



12
  The time series of realized volatilities in this and all of the subsequent HAR-RV regressions are implicitly assumed to

be stationary.  Formal tests for a unit root in RVt,+1 easily rejects the null hypothesis of non-stationarity for each of the three
markets.  Also, the standard log-periodogram estimates for the degree of fractional integration in RVt,+1 equal 0.347, 0.383, and
0.437, respectively, with a theoretical asymptotic standard error of 0.087.

13
  Related mixed data sampling, or MIDAS in the terminology of Ghysels, Santa-Clara and Valkanov (2004),

regressions have recently been estimated by Ghysels, Santa-Clara and Valkanov (2005).
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A.  The HAR-RV-J Model

To define the HAR-RV model, let the multi-period normalized realized variation, defined by the sum

of the corresponding one-period measures, be denoted by,

RVt,t+h = h-1[ RVt+1  +  RVt+2  + ... + RVt+h ] , (9)

where h = 1, 2, ... .  Note that, by definition RVt,t+1 / RVt+1.  Also, provided that the expectations exist,

E(RVt,t+h)/ E(RVt+1 ) for all h.  For ease of reference, we will refer to these normalized measures for h=5 and

h=22 as the weekly and monthly volatilities, respectively.  The daily HAR-RV model of Corsi (2003) may then

be expressed as,12

RVt+1  =  $0  +  $D RVt  +   $W RVt-5,t  +  $M RVt-22,t  +  ,t+1 , (10)

where t = 1, 2, ..., T.  Of course, realized volatilities over other horizons could easily be included as additional

explanatory variables on the right-hand-side of the regression equation, but the daily, weekly and monthly

measures employed here afford a natural economic interpretation.13

This HAR-RV forecasting model for the one-day volatilities extends straightforwardly to models for

the realized volatilities over longer horizons, RVt,t+h.  Moreover, given the separate non-parametric

measurements of the jump component discussed above, the corresponding time series are readily included as an

additional explanatory variable over and above the realized volatility components, resulting in the new HAR-

RV-J model,

RVt,t+h  =  $0  +  $D RVt  +   $W RVt-5,t  +  $M RVt-22,t  +   $J Jt  +  ,t,t+h . (11)

With observations every period and longer forecast horizons, or h>1, the error term will generally be serially

correlated up to (at least) order h-1.  This will not affect the consistency of the regression coefficient estimates,

but the corresponding standard errors for the estimates obviously need to be adjusted for this overlapping data



14
  Note, that nothing prevents the forecasts for the realized volatilities from the HAR-RV-J model with βJ<0 from

becoming negative.  We did not find this to be a problem for any of our in-sample model estimates, however.  A more complicated
multiplicative error structure, along the lines of Engle (2002) and Engle and Gallo (2005), could  be employed to ensure positivity
of the conditional expectations.

15
  Note that although the relative magnitude of the R2’s for a given volatility series are directly comparable across the

two models, as discussed in Andersen, Bollerslev and Meddahi (2005), the measurement errors in the left-hand-side realized

volatility measures invariably result in a systematic downward bias in the reported R2’s vis-a-vis the inherent predictability in the

true latent quadratic variation process.
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problem.  In the results discussed below, we rely on the Bartlett/Newey-West heteroskedasticity consistent

covariance matrix estimator with 5, 10, and 44 lags for the daily (h=1), weekly (h=5), and monthly (h=22)

regression estimates, respectively.

Turning to the results reported in the first three columns in Tables 2A-C, the estimates for $D, $W, and

$M confirm the existence of highly persistent dependencies in the volatilities.  Interestingly, the relative

importance of the daily volatility component decreases from the daily to the weekly to the monthly regressions,

whereas the monthly volatility component tends to be relatively more important for the longer-run monthly

regressions.  Importantly, the estimates for the jump component, $J , are systematically negative across all

models and markets, and with few exceptions, overwhelmingly significant.14  Thus, whereas the realized

volatilities are generally highly persistent, the impact of the lagged realized volatility is significantly reduced

by the jump component.  For instance, for the daily DM/$ realized volatility a unit increase in the daily realized

volatility implies an average increase in the volatility on the following day of 0.430 + 0.196/5 + 0.244/22 =

0.480 for days where Jt =0, whereas for days in which part of the realized volatility comes from the jump

component the increase in the volatility on the following day is reduced by -0.486 times the jump component. 

In other words, if the realized volatility is entirely attributable to jumps, it carries no predictive power for the

following day’s realized volatility.  Similarly for the other two markets, the combined impact of a jump for

forecasting the next day’s realized volatility equal 0.341 + 0.485/5 + 0.165/22  - 0.472 = -0.027 and 0.074 +

0.317/5 + 0.358/22 - 0.152 = -0.002, respectively.

Comparing the R2 ’s for the HAR-RV-J models to the R2 ’s for the “standard” HAR model reported in

the last row in which the jump component is absent and the realized volatilities on the right-hand-side but not

the left-hand-side of equation (11) are replaced by the corresponding lagged squared daily, weekly, and

monthly returns clearly highlights the added value of the high-frequency data.  Although the coefficient

estimates for the $D, $W, and $M coefficients in the “standard” HAR models (available upon request) generally

align fairly closely with those of the HAR-RV-J models reported in the tables, the explained variation is

systematically lower.15  Importantly, the gains afforded by the use of the high-frequency based realized

volatilities are not restricted to the daily and weekly horizons.  In fact, the longer-run monthly forecasts result



16
  The R2 = 0.431 for the daily HAR-RV-J model for the DM/$ realized volatility series in the fourth column in Table

2A also exceeds the comparable in-sample one-day-ahead R2 = 0.355 for the long-memory VAR model reported in ABDL (2003).

17
  This same transformation has subsequently been used for other markets by Deo, Hurvich and Lu (2005), Koopman,

Jungbacker and Hol (2005), Martens, van Dijk and Pooter (2004), and Oomen (2002) among others.   Of course, the log-normal
distribution isn’t closed under temporal aggregation.  Thus, if the daily logarithmic realized volatilities are normally distributed,
the weekly and monthly volatilities can not also be log-normally distributed.  However, as argued by Barndorff-Nielsen and
Shephard (2002a) and Forsberg and Bollerslev (2002), the log-normal distributions for the volatility may be closely approximated
by Inverse Gaussian distributions, which are formally closed under temporal aggregation.
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in the largest relative increases in the R2 ’s, with those for the S&P500 and T-Bonds tripling for the HAR-RV-J

models relative to those from the HAR models based on the coarser daily, weekly and monthly squared returns. 

These large gains in forecast accuracy through the use of realized volatilities are, of course, entirely consistent

with the earlier empirical evidence in ABDL (2003), Bollerslev and Wright (2001) and Martens (2002), among

others, and further corroborated by the analytical results of Andersen, Bollerslev and Meddahi (2004).

B.  Non-Linear HAR-RV-J Models

Practical uses of volatility models and forecasts often involve standard deviations as opposed to

variances.  The second set of columns in Tables 2A-C thus reports the parameter estimates and R2 ’s for the

corresponding HAR-RV-J model cast in standard deviation form,

(RVt,t+h)
1/2  =  $0  +  $D RVt

1/2   +   $W (RVt-5,t)
1/2  +  $M (RVt-22,t)

1/2  +  $J Jt
1/2   +   ,t,t+h . (12)

The qualitative features and ordering of the different parameter estimates are generally the same as for the

variance formulation in equation (11).  In particular, the estimates for $J are systematically negative.  Similarly,

the R2 ’s indicate quite dramatic gains for the high-frequency based HAR-RV-J model relative to the standard

HAR model.  The more robust volatility measurements provided by the standard deviations also result in higher

R2 ’s than for the variance-based models reported in the first three columns.16

As noted in Table 1 above, the logarithmic daily realized volatilities are approximately unconditionally

normally distributed for each of the three markets.  This empirical regularity motivated ABDL (2003) to model

the logarithmic realized volatilities, in turn allowing for the use of standard normal distribution theory and

related mixture models.17  Guided by this same idea, we report in the last three columns of Tables 2A-C the

estimates for the logarithmic HAR-RV-J model,

log(RVt,t+h)  =  β0  +  βD log(RVt)  +  βW log(RVt,t-5)  +  βM log(RVt,t-22)  

+   βJ log(Jt+1)  +   ,t,t+h . (13)



18
  Formally, the logarithmic price process belongs to the continuous stochastic volatility semimartingale class of models

defined by equation (1) above in which q(t)/0.  As discussed by Barndorff-Nielsen and Shephard (2005), all continuous local
martingales with absolute continuous quadratic variation may be expressed in this way.
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The estimates are again directly in line with those for the HAR-RV-J models for RVt,t+h and (RVt,t+h)
1/2 discussed

earlier.  In particular, the $D coefficients are generally the largest in the daily models, the $W ’s are the most

important in the weekly models, and the $M ’s in the monthly models.  At the same time, the negative estimates

for the $J coefficients temper the persistency in the forecasts, suggesting that discontinuities, or jumps, in the

price processes tend to be associated with short-lived bursts in volatility.

V.  Significant Jumps

The empirical results discussed in the previous two sections rely on the simple non-parametric jump

estimates defined by the difference between the realized volatility and the bi-power variation.  As discussed in

Section II, the theoretical justification for these measurements is based on the notion of increasingly finer

sampled returns, or )60.  Of course, any practical implementation with a fixed sampling frequency, or )>0, is

invariably subject to measurement errors.  The non-negativity truncation in equation (8) alleviates part of this

finite-sample problem by eliminating theoretically non-sensible negative estimates for the squared jumps. 

However, the resulting Jt
1/2 series depicted in Figures 1A-C arguably exhibit an unreasonably large number of

non-zero small positive values as well.  From a more structural modeling perspective it may be desirable to

treat these small jumps as measurement errors, or part of the continuous sample path variation process, only

associating abnormally large values of RVt())-BVt()) with the jump component.  The next sub-section provides

a theoretical framework for doing so.

A.  Asymptotic Distribution Theory

The distributional results developed in Barndorff-Nielsen and Shephard (2004a, 2005) imply that under

ideal conditions and in the absence of jumps,18

(14)∆&1/2
RV

t%1
(∆ ) & BV

t%1
(∆ )

[ (µ
&4

1 % 2µ
&2

1 & 5) m
t%1

t

σ4(s )ds ]1/2

Y N ( 0 , 1 ) ,

for )60.  Hence, an abnormally large value of this standardized difference between RVt+1()) and BVt+1()) is

naturally interpreted as evidence in favor of a “significant” jump over the [t,t+1] time interval.  Of course, the
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  Similar results were obtained by using the robust realized quad-power quarticity measure advocated in Barndorff-

Nielsen and Shephard (2004a, 2005),
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Note however, that the realized quarticity,
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4

t% j@∆ ,∆ ,

used in estimating the integrated quarticity by Barndorff-Nielsen and Shephard (2002a) and Andersen, Bollerslev, and Meddahi
(2005) is not consistent in the presence of jumps, which in turn would result in a complete loss of power for the corresponding test
statistic obtained by replacing TQt+1(∆) in equation (17) with RQt+1(∆).
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integrated quarticity that appears in the denominator needs to be estimated in order to actually implement this

statistic.  In parallel to the arguments underlying the robust estimation of the integrated volatility by the

realized bi-power variation, it is possible to show that even in the presence of jumps, the integrated quarticity

may be consistently estimated by the normalized sum of the product of n$3 adjacent absolute returns raised to

the power of 4/n.  In particular, on defining the standardized realized tri-power quarticity measure,

(15)TQ
t%1

(∆ ) / ∆&1 µ
&3

4/3 j
1/∆

j'3

* r
t% j@∆ ,∆

*4/3 * r
t% (j&1)@∆ ,∆

*4/3 * r
t% (j&2)@∆ ,∆

*4/3 ,

where µ4/3 / 22/3@Γ(7/6)@Γ(½)-1 = E(|Z|4/3), it follows that for )60, 

(16)TQ
t%1

(∆ ) Y m
t%1

t

σ 4(s)ds .

Combining the results in equations (14)-(16), the “significant” jumps may therefore be identified by comparing

realizations of the feasible test statistics,19

(17)W
t%1

(∆ ) / ∆&1/2
RV

t%1
(∆ ) & BV

t%1
(∆ )

[ (µ
&4

1 % 2µ
&2

1 & 5) TQ
t%1

(∆ ) ]1/2
,

to a standard normal distribution.

Meanwhile, the extensive simulation-based evidence for specific parametric continuous time diffusions

reported in Huang and Tauchen (2005), suggests that the Wt+1(∆) statistic defined in (17) tends to over-reject

the null hypothesis of no jumps for large critical values.  At the same time, following the approach advocated



20
  In an earlier version of this paper, we relied on the log-based statistic,

U
t%1

(∆ ) / ∆&1/2
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(∆ )) & log(BV
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.

Details of these, qualitatively very similar, results are available upon request.

21
  As noted in personal communication with Neil Shephard, this may alternatively be interpreted as a shrinkage type

estimator for the jump component.
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by Barndorff-Nielsen and Shephard (2004b), different variance stabilizing transforms for the joint asymptotic

distribution of the realized volatility and bi-power variation measures generally give rise to much better

performing test statistics.  In particular, on applying the delta-rule to the joint bivariate distribution, Huang and

Tauchen (2005) find that the ratio-statistic,

(18)Z
t%1

(∆ ) / ∆&1/2
[ RV

t%1
(∆ ) & BV

t%1
(∆ ) ] RV

t%1
(∆ )&1

[ (µ
&4

1 % 2µ
&2

1 & 5) max{ 1 , TQ
t%1

(∆ ) BV
t%1

(∆ )&2 }]1/2
,

where the max adjustment follows by a Jensen’s inequality type argument as in Barndorff-Nielsen and

Shephard (2004b), is very closely approximated by a standard normal distribution throughout its entire

support.20  Moreover, the ratio-statistic in (18) also has reasonable power against several empirically realistic

calibrated stochastic volatility jump diffusion models.

Hence, the “significant” jumps are naturally identified by the realizations of Zt+1()) in excess of some

critical value, say M" ,

(19)J
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(∆ ) / I [ Z
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(∆ ) > Φ
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] @ [ RV
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(∆ ) & BV
t%1

(∆ ) ] ,

where I [ @ ] denotes the indicator function.21  Moreover, in order to ensure that the measurements of the

continuous sample path variation and the jump component add up to the total realized variation, the former

component is naturally estimated by the residual relationship,

(20)C
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t%1

(∆ ) .

Note that for M">0, the definitions in equations (19) and (20) automatically guarantee that both Jt+1," ()) and



22
  It is possibly, that by specifying α(∆)61 as an explicit function of )60, this approach may formally be shown to result

in period-by-period consistent (as )60) estimates of the jump component.  Of course, data limitations invariably restricts the
sampling frequency ()>0), so that such a result would arguably be of only limited practical use.

23
  More complicated non i.i.d. market microstructure noise components have been analyzed in the realized volatility

setting by Bandi and Russell (2004a) and Hansen and Lunde (2004a,b), among others.
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Ct+1," ()) are positive.22  Of course, the non-negativity truncation imposed in equation (8) underlying the

empirical jump measurements employed in the preceding two sections corresponds directly to α = 0.5, or Jt,0.5 .

B.  Market Microstructure Noise

As already discussed in Section III.A, a host of practical market microstrucure frictions, including the

use of discrete price grid points and bid-ask spreads, invariably renders the assumption of a continuously

observed logarithmic price process adhering to the semimartigale assumption fictitious. Instead, following Aït-

Sahalia, Mykland and Zhang (2005), Bandi and Russell (2004b), Zhang, Mykland and Aït-Sahalia (2005),

among others, assume that the observed price process is “contaminated” by a market microstructure noise

component, say p(t)=p*(t)+<(t), where p*(t) refers to the true (latent) semimartingale logarithmic price process

that would obtain in the absence of any frictions, while <(t) denotes an i.i.d. white noise component.23  The

discretely sampled )-period observed returns,

, (21)r
t,∆

/ p ((t) & p ((t&∆) % ν(t) & ν(t&∆) / r
(

t,∆ % η
t,∆

then equals the true (latent) returns plus the first-order moving average process, .  Assuming that theη
t,∆

variance of ν(t) does not depend upon ∆, the noise term will eventually (for )60) dominate the contribution to

the overall realized variation in (3) coming from the squared true (latent) high-frequency returns, formally

rendering  inconsistent as a measure for the quadratic variation of .  In practice, the impact ofRV
t%1

(∆ ) p ((t)

the market microstructure noise is most easily controlled through the choice of ∆.  And, it was exactly this bias-

variance tradeoff that motivated our choice of a five-minute sampling frequency for each of the three actively

traded markets analyzed here, as the frequency at which the bias in the realized variation measure in equation

(3) has largely disappeared.

By analogous arguments, the noise term will generally result in an upward bias in the new bi-power

variation measure in equation (5) for ∆ “too small,” as .  The first-order serialE(*r
(

t,∆* ) < E(*r
(

t,∆ % η
t,∆
* )

correlation in  further implies that any two adjacent observed returns, say  and , will beη
t,∆

r
t% j@∆ ,∆

r
t% (j&1)@∆ ,∆
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serially correlated.  In comparison to the realized variation measure based on the sum of the squared high-

frequency returns, this spuriously induced first-order serial correlation will therefore result in an additional

source of bias in the  measure.  Of course, similar arguments apply to the tri-power quarticity measureBV
t%1

(∆ )

in equation (15).  As discussed at length in Huang and Tauchen (2005), this in turn implies that in the presence

of market microstructure noise, the jump test statistics discussed in the previous section will generally be

biased against finding significant jumps.  In particular, it is possible to show that in the absence of jumps,

, so that the Wt+1(∆) test statistic defined in (17) will be negativelylim
∆64 [RV

t%1
(∆ ) & BV

t%1
(∆ ) ] ' κ < 0

biased.  Although comparable analytical results are not available for the ratio-statistic in equation (18), the

numerical calculations and extensive simulation evidence reported in Huang and Tauchen (2005) confirm that

for small values of ∆, the test tends to be under-sized, and this tendency to under-reject further deteriorates with

the magnitude of the variance of the ν(t) noise component.

Meanwhile, the spuriously induced first order serial correlation in the observed returns defined in

equation (21) is readily broken through the use of staggered, or skip-one, returns.  Specifically, replacing the

sum of the absolute adjacent returns in equation (5) with the corresponding staggered absolute returns, a

modified realized bi-power variation measure may be defined by,

(22)BV
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(∆ ) / µ
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1 (1 & 2∆ )&1 j
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* r
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where the normalization factor in front of the sum reflects the loss of two observations due to the staggering. 

Of course, higher order serial dependencies could be broken in an analogous fashion by further increasing the

lag length.  Similarly, the integrated quarticity may alternatively be estimated by the staggered realized tri-

power quarticity,
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1, t%1

(∆ ) / ∆&1 µ
&3

4/3 (1 & 4∆ )&1 j
1/∆

j'5

* r
t% j@∆ ,∆

*4/3 * r
t% (j&2)@∆ ,∆

*4/3 * r
t% (j&4)@∆ ,∆

*4/3 .

Importantly, as shown by Barndorff-Nielsen and Shephard (2004a), in the absence of the noise component,

these staggered realized variation measures remain consistent for the corresponding integrated variation

measures.  Consequently, the asymptotic distribution of the test statistic obtained by replacing  andBV
t%1

(∆ )

 in equation (18) with their staggered counterparts,  and , respectively, sayTQ
t%1

(∆ ) BV
1, t%1

(∆ ) TQ
1, t%1

(∆ )

, will also be asymptotically (for )60) standard normally distributed.  However, following theZ
1, t%1

(∆ )



24
  The systematic news announcement analysis in Andersen, Bollerslev, Diebold and Vega (2003, 2005) also point to

the U.S. trade balance as one of the most important regularly scheduled macroeconomic news releases for the foreign exchange
market.
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discussion above, the staggering should help alleviate the confounding influences of the market microstructure

noise, resulting in empirically more accurate finite sample approximations.

This conjecture is indeed confirmed by the comprehensive simulation results reported in Huang and

Tauchen (2005), which show that the ratio-statistic calculated with the staggered realized bi-power and tri-

power variation measures performs admirably for a wide range of market microstructure contaminants. 

Quoting from the conclusion in Huang and Tauchen (2005): “The Monte Carlo evidence suggests that, under

the arguably realistic scenarios considered here, the recently developed tests for jumps perform impressively

and are not easily fooled.”

Hence, in the empirical results reported on below we will rely on the Jt,"()) and Ct,"()) measures

previously defined in equations (19) and (20) calculated on the basis of the staggered  statistic.  ToZ
1, t

(∆ )

facilitate the notation, we will again omit the explicit reference to the sampling frequency, ), simply referring

to the “significant” jump and continuous sample path variability measures calculated from the five-minute

returns as Jt," and Ct," , respectively. The subsequent section summarizes various features of these jump

measurements for values of α ranging from 0.5 to 0.9999, or M" ranging from 0.0 to 3.719.

C.  Significant Jump Measurements and Macroeconomic News

Before summarizing the full sample time series evidence, it is instructive to look at a few specific days

to illustrate the working of the jump statistic.  To this end, Figure 2 displays the five-minute increments in the

logarithmic prices for a highly significant jump day and a day with a large continuous price move for each of

the three markets.  For ease of comparison, the logarithmic price has been normalized to zero at the beginning

of each day, so that a unit increment corresponds to a one-percent return in all of the graphs.

The first panel shows the movements in the DM/$ exchange rate on December 10, 1987.  The Z
1, t

statistics for this day equals 10.315, thus indicating a highly significant jump.  The timing of the jump, as

evidenced by the apparent discontinuity at 13:30 GMT, corresponds exactly to the 8:30 EST release of the U.S.

trade deficit for the month of October.24  Quoting from the Wall Street Journal: “The trade gap swelled to a

record $17.63 billion in October, sending the dollar and bonds plunging.”  Meanwhile, the second panel in the

first row depicts a similar large daily decline in the value of the dollar on September 17, 1992.  In fact, this is

the day in the entire sample with the highest value of BV1,t = 4.037.  At the same time, the  statistic for thisZ
1, t

day equals -0.326, and thus in spite of the overall large daily move, does not signify any jump(s).  This



25
  The results in Andersen, Bollerslev, Diebold and Vega (2005) again indicate that for the T-Bond market, news about

the NAPM index result in the overall highest five-minute return regression R2 among all of the regularly scheduled macroeconomic
announcements.
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particular day succeeds the day following the temporary withdrawal of the British Pound from the European

Monetary System, and it has previously been highlighted in the study by Barndorff-Nielsen and Shephard

(2005).  Again, quoting from the Wall Street Journal: “The dollar and the pound each sank more than 2%

against the mark as nervousness persisted in the currency market.”  Of course, without the benefit of the

intraday high-frequency data, the day-to-day price moves in the first two panels would look almost identical.

Turning to the second row in the figure, the first panel shows the five-minute movements in the

S&P500 on June 30, 1999.  As suggested by visual inspection of the plot, the = 7.659  statistic is againZ
1, t

highly significant.  Moreover, the apparent timing of the jump at 13:15 CST, or 14:15 EST, corresponds

exactly to the time of the 1/4% increase in the FED funds rate on that day.  However, that rate hike was

accompanied by a statement by the FED that it “might not raise rates again in the near term due to conflicting

forces in the economy,” which apparently was viewed as a positive sign by the market.  In contrast, on July 24,

2002, as depicted in the panel on the right, = -0.704, while BV1,t achieves its maximum value of 29.247. Z
1, t

The abnormally large daily return of 7.157 is also the largest over the whole sample.  Yet, this “rough” daily

move is made up of the sum of many “smooth” intraday price moves, with no apparent jump(s) in the process. 

Interestingly, the NYSE also saw a record trading volume of 2.77 billion shares on that day.

The last row in the figure refers to the T-Bond market.  The apparent timing of the highly significant

jump, = 6.877, on August 1, 1996, corresponds directly to the release of the National Association ofZ
1, t

Purchasing Manager’s (NAPM) index at 9:00 CST, or 10:00 EST.25  Meanwhile, the second T-Bond panel for

December 7, 2002 again depicts a large daily, but generally “smooth” intraday, price move.  Interestingly, most

of the movements occurred in the morning following the release of a higher than expected jobless rate.  While

this didn’t result in an immediate jump in the T-Bond price, it reassured most economist’s that the FED would

cut its rate at the next Board meeting the following business day, which in fact it did.  According to Wall Street

Journal: “Economists said the jobs report removed any lingering doubts that the Federal Reserve will reduce

interest rates for the 11th time in the past 12 months when it meets tomorrow.”

The direct association of the highly significant jump days in Figure 2 with readily identifiable

macroeconomic news affirm earlier case studies for the DM/$ foreign exchange market in Barndorff-Nielsen

and Shephard (2005), and is directly in line with the aforementioned evidence in Andersen, Bollerslev, Diebold

and Vega (2003, 2005) among others, documenting significant intra-daily price moves in response to a host of

macroeconomic news announcements.  Similarly, Johannes (2004) readily associates the majority of the



26
  This ordering among the three markets is again consistent with the aforementioned evidence in Andersen, Bollerslev,

Diebold and Vega (2005), showing that equity markets generally respond the least to macroeconomic news announcements.
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estimated jumps in a parametric jump-diffusion model for daily interest rates with specific macroeconomic

news events.  At the same time, informal inspection suggests that not all of the jump days identified by large

values of the non-parametric high-frequency  statistic are as easily linked to specific “news” arrivals. Z
1, t

Indeed, it would be interesting, but beyond the scope of the present paper, to attempt a more systematic

characterization of the types of events that causes the different markets to jump.  Instead, we next turn to a

discussion of various summary statistics related to the time series of significant jumps employed in our

subsequent volatility forecasting models.

D.  Significant Jump Measurements and Dynamic Dependencies

To begin, the first row in Tables 3A-C reports the proportion of days with significant jumps for each of

the three markets based on the  statistic as a function of the significance level, α.  Although the use of α’s inZ
1, t

excess of 0.5 has the intended effect of reducing the number of days with jumps, the procedure still identifies

many more significant jumps than would be expected if the underlying price process was continuous.

Comparing the jump intensities across the three markets, the foreign exchange and the T-Bond markets

generally exhibit the highest proportion of jumps, whereas the stock market has the lowest.26  For instance,

employing a cutoff of " =0.999, or M" =3.090, results in 417, 244, and 424 significant jumps for each of the

three markets respectively, all of which far exceed the expected three jumps for a continuous price process 

(0.001 times 3,045 and 3,213, respectively).  Indeed, all of the daily jump proportions are much higher than the

jump intensities estimated with specific parametric jump diffusion models applied to daily or coarser frequency

returns, which typically suggest only a few jumps a year; see, e.g., the estimates for the S&P500 in Andersen,

Benzoni and Lund (2002).  Intuitively, just as the stock market crash of 1987 and the corresponding large

negative daily return on October 17 isn’t visible in the time series of annual equity returns, many of the jumps

identified by the high-frequency based realized variation measures employed here will invariably be blurred in

the coarser daily or lower frequency returns through an aliasing type phenomenon.

Turning to the second and third rows in the table, it is noteworthy that even though the proportions of

jumps depend importantly on the particular choice of ", the sample means and standard deviations of the

resulting jump time series aren’t nearly as sensitive to the significance level.  This observation is further

corroborated by the time series plots for each of the three markets in the third and fourth panels in Figures 1A-

1C, which show the  statistics and a horizontal line at 3.090, along with the resulting significant jumps,Z
1, t
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or .  It is evident that the test statistic generally picks out the largest values of Jt
1/2 as being significant, soJ

1/2

t ,0.999

that the sample means and standard deviations for the time series depicted in the second and the fourth panels

are all fairly close.

The Ljung-Box statistics for up to tenth order serial correlation in the Jt," series for the S&P500

reported in the fourth row in Table 3B are all highly significant, irregardless of the choice of ".  This is, of

course, at odds with most of the parametric jump-diffusion model estimates reported in the recent literature,

which as previously noted suggest very little, or no, predictable variation in the jump process.  Still, it is

noteworthy that the values of the Ljung-Box statistics for the significant S&P500 jumps are all much less than

the corresponding statistics for the realized variation series reported in Table 1B.  Meanwhile, the

corresponding Ljung-Box tests for the DM/$ and T-Bond jump series are not nearly as large, and generally

insignificant for the jumps defined by "’s in excess of 0.990.

This same general picture is further corroborated by the Likelihood Ratio test for the null of i.i.d. jump

occurrences against the alternative of a first-order Markov chain reported in the fifth row; see Christoffersen

(1998) for further details.  Under the null of no dependencies this test statistic should be asymptotically chi-

square distributed with one degree of freedom.  None of the test statistics for α equal to 0.999 or 0.9999 for the

DM/$ and T-Bond markets exceed the corresponding 95-percent critical value of 3.84, while the tests for the

S&P500 are highly significant.

Interestingly, when looking beyond the simply own linear dependencies and the Ljung-Box test for the 

Jt," series, a somewhat different picture emerges.  In particular, decomposing the Jt," series into the times

between jumps and the sizes of the corresponding jumps, there appears to be strong evidence for clustering in

the occurrences of the significant jumps for both the S&P500 and T-Bond markets, as evidenced by the Ljung-

Box test for up to tenth order serial correlation in the durations between the jumps, denoted by LB10, Dt,α  in

Table 3.  Similarly, the Ljung-Box tests for serial correlation in the time series of only the significant jumps,

denoted by LB10 , Jt,α 
+ in Table 3, strongly suggest that large (small) jumps tend to cluster together in time with

other large (small) jumps for both the DM/$ and S&P500 markets.  In contrast, for the T-Bond market and "

=0.999, only the durations but not the sizes of the jumps appear to cluster in time.

These more complex dynamic dependencies in the significant jump time series are further illustrated in

Figure 3, which plots the smoothed jump intensities and jump sizes for each of the three markets.  The graphs

are constructed by exponentially smoothing (with a smoothing parameter of 0.94) the average monthly jump

intensities and sizes for the significant jumps based on " =0.999.  The jump sizes are again expressed in

standard deviation form, or .  From the very first panel the DM/$ jump intensities are approximatelyJ
1/2

t ,0.999



27
  Of course, exponential smoothing automatically induces some serial correlation, so that the dependencies in the figure

should be carefully interpreted.  Note also that the common scale enforced on the three jump size panels tend to hide the subtle, but
systematic, decline in the sizes of the jumps for the DM/$ market over the sample period, as evidenced by the highly significant
LB10, Jt,α

+ in Table 3; see also the plot for the raw jump series in Figure 1A.

28
  For instance, following Bates (2000), Pan (2002) and Eraker (2004), the jump intensity could be specified as a

function of the diffusive, or spot volatility.  In the notation of equation (1), λ(t)=λ0+λ1σ(t).  Similarly, the sizes of the jumps could
be allowed to depend on the volatility and/or lagged past jump sizes, as in, e.g., κ2(t)=κ0+κ1σ(t)+κ2κ

2(t-1 ).  The recent discrete-time
parametric model estimates reported in Chan and Maheu (2002) and McCurdy and Maheu (2004) also point to the existence of
time-varying jump intensities in U.S. equity index returns.

29
  By “optimally” choosing ", it may be possible to further improve upon the empirical results reported below. 

However, for simplicity and to guard against obvious data snooping biases, we simply restrict "=0.999.
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constant throughout the sample.  Similarly, the smoothed jump sizes for the T-Bond market depicted in the last

panel vary very little over the sample period.  Meanwhile, all of the other four panels suggest the existence of

potentially important temporal dependencies in the jump arrival processes and jump sizes.27  It would be

interesting, but beyond the scope of the present paper, to further explore the formulation of parametric jump-

diffusion models best designed to capture these non-linear dependencies.28

Instead, we next turn to a simple extension of the HAR-RV-J volatility forecasting model introduced in

Section IV, in which we incorporate the time series of significant jumps as additional explanatory variables in a

straightforward linear fashion.

VI.  Reduced Form Realized Volatility Modeling and Forecasting Revisited

The regression estimates for the HAR-RV-J model reported in Section IV show that the inclusion of

the simple consistent daily jump measure corresponding to " =0.5 as an additional explanatory variable over-

and-above the daily realized volatilities result in highly significant and negative parameter estimations for the

jump coefficient.  These results are, of course, entirely consistent with the summary statistics for the jump

measurements discussed above, which indicate markedly less own (linear) serial correlation in the significant

jump series in comparison to the realized volatility series.  Building on these results, the present section

extends the HAR-RV-J model by explicitly decomposing the realized volatilities that appear as explanatory

variables on the right-hand-side into the continuous sample path variability and the jump variation utilizing the

separate non-parametric measurements based on the  statistic along with equations (19) and (20),Z
1, t

respectively.  In so doing, we rely exclusively on " =0.999, and the jump series depicted in the bottom panels

of Figures 1A-C.29  To facilitate the exposition, we omit the 0.999 subscript on the Jt,0.999 and Ct,0.999 series in

what follows.

A.  The HAR-RV-CJ Model



30
  For the two models to be nested the (implicit) choice of α employed in the measurements of  Jt,t+h and Ct,t+h should, of

course, also be the same across models.

31
  The lag one, six and twenty-three autocorrelations for the residuals from the three DM/$ HAR-RV-CJ models equal

-0.014, -0.026 and 0.003, respectively.  For the S&P500 the same residual autocorrelations are -0.011, 0.007, and -0.081, while for
the T-Bond market the correlations equal 0.003, -0.006 and -0.060, respectively.
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Defining the normalized multi-period jump and continuous sample path variability measures,

Jt,t+h = h-1[ Jt+1  + Jt+2  + ... + Jt+h ] , (24)

and,

Ct,t+h = h-1[ Ct+1  + Ct+2  + ... + Ct+h ] , (25)

respectively, the new HAR-RV-CJ model may be expressed as

RVt,t+h   =   β0   +   βCD Ct   +   βCW Ct-5,t  +  βCM Ct-22,t  +  
(26)

              +  βJD Jt    +   βJW Jt-5,t    +   βJM Jt-22,t    +  εt,t+h .

The model obviously nests the HAR-RV-J model in (11) for $D =$CD +$JD , $W =$CW +$JW , $M =$CM +$JM , and $J

=$JD , but in general it allows for a more flexible dynamic lag structure.30

Turning to the empirical estimates in the first three columns in Tables 4A-C, most of the coefficient

estimates for the jump components are insignificant.  In other words, the predictability in the HAR-RV realized

volatility regressions are almost exclusively due to the continuous sample path components.  For the DM/$ and

the S&P500 the HAR-RV-CJ models typically result in relatively modest increases in the R2 of less than 0.01 in

absolute value compared to the HAR-RV-J models in Tables 2A-B, whereas for the T-Bond market the

improvements are closer to 0.02, or about 4-5 percent in a relative sense.  The test for first, sixth, and twenty-

third order serial correlation in the residuals from the estimated daily (h=1), weekly (h=5) and monthly (h=22)

regressions, also indicate that the HAR-RV-CJ models have eliminated most of the strong serial correlation in

the RVt,t+h series.31  Still, some statistically significant autocorrelations remain at higher lags for some of the

models, suggesting that further refinements might be possible.

These same qualitative results carry over to the non-linear HAR-RV-CJ models cast in standard

deviation and logarithmic form; i.e.,

(RVt,t+h)
1/2   =   β0   +   βCD Ct

1/2   +  βCW (Ct-5,t)
1/2   +   βCM (Ct-22,t)

1/2  
(27)
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+  βJD Jt
1/2   +    βJW (Jt-5,t)

1/2   +   βJM (Jt-22,t)
1/2   +  εt,t+h ,

and,

log(RVt,t+h)   =   β0   +   βCD log(Ct)   +   βCW log(Ct-5,t)  +  βCM log(Ct-22,t)

(28)
  +   βJD log(Jt +1)   +   βJW log(Jt-5,t +1)   +  βJM log(Ct-22,t +1)   +  εt,t+h ,

respectively.  The coefficient estimates for the jump components, reported in the last six columns in Tables 4A-

C, are again insignificant for most of the markets and forecast horizons.  In contrast, the estimates of $CD, $CW 

and $CM, which quantify the impact of the continuous sample path variability on the total future variation, are

all generally highly significant.

To further illustrate the predictability afforded by the HAR-RV-CJ model, Figures 4A-C plot the daily,

weekly, and monthly realized volatilities (again in standard deviation form) together with the corresponding

forecasts from the model in equation (27).  The close coherence between the different pairs of realizations and

forecasts is immediately evident across all of the markets and forecast horizons.  Visual inspection of the

graphs also show that the volatility in the U.S. T-Bond market is the least predictable, followed by the DM/$,

and then the S&P500.  Nonetheless, the forecasts for the T-Bond volatilities still track the overall patterns

fairly well, especially for the longer weekly and monthly horizons.

All told, these results further underscore the potential benefit from a volatility forecasting perspective

of separately measuring the individual components of the realized volatility.  It is possible that even further

improvements may be obtained by a more structured approach in which the jump component, Jt , and the

continuous sample path component, Ct , are each modeled separately.  These individual models for Jt and Ct

could then be used in the construction of separate out-of-sample forecasts for each of the components, as well

as combined forecasts for the total realized variation process, RVt,t+h = Ct,t+h + Jt,t+h.  We leave further work

along these lines for future research.

VII.  Concluding Remarks

Building on recent theoretical results in Barndorff-Nielsen and Shephard (2004a, 2005) for so-called

bi-power variation measures, we provide a simple and easy-to-implement practical framework for measuring

“significant” jumps in financial asset prices.  Applying the theory to more than a decade long sample of high-

frequency prices from the foreign exchange, equity, and fixed income markets, we find that the procedure

works well empirically.  Consistent with recent parametric model estimates, our non-parametric measurements

of the squared jumps are much less persistent (and predictable) than the continuous sample path, or integrated
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volatility, component of the quadratic variation process.  Meanwhile, the high-frequency data underlying our

estimates allow us to identify many more jumps than do the parametric models based on daily or courser

frequency data hitherto reported in the literature.  It also appears that many of the most significant jumps are

readily associated with specific macroeconomic news announcements.  When separately including the

continuous sample path and jump variability measures in a simple linear volatility forecasting model, we find

that only the former measure caries any predictive power, in turn resulting in significant gains relative to the

simple reduced form realized volatility forecasting models advocated in some of the recent literature.

The ideas and empirical results presented here are suggestive of several interesting extensions.  First, it

seems natural that jump risk may be priced differently from easier-to-hedge continuous price variability; see,

e.g., Santa-Clara and Yan (2004).  Hence, separately modeling and forecasting the continuous sample path, or

integrated volatility, and jump components of the quadratic variation process, as discussed above, is likely to

result in important improvements in derivatives and other pricing decisions.  Second, our choice of a five-

minute sampling frequency and the new skip-one realized bi-power and tri-power variation measures to

mitigate the market microstructure frictions in the high-frequency data were guided by somewhat ad hoc

considerations.  It would be interesting to further investigate the “optimal” choice of sampling frequency, or the

use of sub-sampling schemes in the construction of the bi- and tri-power variation measures.  The related

results for the realized variation measures in, e.g., Bandi and Russell (2004a,b), Hansen and Lunde (2004a,b)

and Zhang, Aït-Sahalia and Mykland (2005), should be helpful.  Third, if interest centers exclusively on

volatility forecasting, the use of more traditional robust power variation measures defined by the sum of

absolute high-frequency returns raised to powers less than two might afford additional gains over and above the

improvements provided by the bi-power variation and significant jump measures used here; the recent

empirical results in Forsberg and Ghysels (2004) are suggestive.  Fourth, casual empirical observations suggest

that very large price moves, or jumps, often occur simultaneously across different markets.  It would be

interesting to extend the present analysis to a multivariate framework explicitly incorporating such

commonalities through the use of quadratic covariation and appropriately defined co-power variation measures;

the abstract theoretical results in Barndorff-Nielsen, Graversen, Jacod, Podolskij and Shephard (2005) are

intriguing.  In addition to allowing for more accurate statistical identification of the most important, or

significant, jumps, this should also enhance our understanding of the underlying economic influences that

“drive” financial markets and prices.
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Table 1A

Summary Statistics for Daily DM/$ Realized Volatilities and Jumps
____________________________________________________________________________________

RVt RVt
1/2 log(RVt ) Jt Jt

1/2          log(Jt+1) 

Mean 0.508 0.670 -0.915 0.037 0.129 0.033
St.Dev. 0.453 0.245 0.657 0.110 0.142 0.072
Skewness 3.925 1.784 0.408 16.52 2.496 7.787
Kurtosis 26.88 8.516 3.475 434.2 18.20 108.5
Min. 0.052 0.227 -2.961 0.000 0.000 0.000
Max. 5.245 2.290 1.657 3.566 1.889 1.519
LB10  3786  5714  7060 16.58 119.4 63.19
____________________________________________________________________________________

Table 1B

Summary Statistics for Daily S&P500 Realized Volatilities and Jumps
____________________________________________________________________________________

RVt RVt
1/2 log(RVt ) Jt Jt

1/2          log(Jt+1) 

Mean 1.137 0.927 -0.400 0.164 0.232 0.097
St.Dev. 1.848 0.527 0.965 0.964 0.332 0.237
Skewness 7.672 2.545 0.375 20.68 5.585 6.386
Kurtosis 95.79 14.93 3.125 551.9 59.69 59.27
Min. 0.058 0.240 -2.850 0.000 0.000 0.000
Max. 36.42 6.035 3.595 31.88 5.646 3.493
LB10  5750 12184 15992 558.0  1868  2295
____________________________________________________________________________________

Table 1C

Summary Statistics for Daily U.S. T-Bond Realized Volatilities and Jumps
____________________________________________________________________________________

RVt RVt
1/2 log(RVt ) Jt Jt

1/2          log(Jt+1) 

Mean 0.286 0.506 -1.468 0.036 0.146 0.033
St.Dev. 0.222 0.173 0.638 0.069 0.120 0.055
Skewness 3.051 1.352 0.262 8.732 1.667 5.662
Kurtosis 20.05 6.129 3.081 144.6 10.02 57.42
Min. 0.026 0.163 -3.633 0.000 0.000 0.000
Max. 2.968 1.723 1.088 1.714 1.309 0.998
LB10  1022  1718  2238 20.53 34.10 26.95
____________________________________________________________________________________

Key: The first six rows in each of the panels report the sample mean, standard deviation, skewness and
kurtosis, along with the sample minimum and maximum.  The rows labeled LB10 give the Ljung-Box test
statistic for up to tenth order serial correlation.  The daily realized volatilities and jumps for the DM/$ in Panel
A are constructed from five-minute returns spanning the period from December 1986 through June 1999, for a
total of 3,045 daily observations.  The daily realized volatilities and jumps for the S&P500 and U.S. T-Bonds
in Panels B and C are based on five-minute returns from January 1990 through December 2002, for a total of
3,213 observations.



Table 2A

Daily, Weekly, and Monthly DM/$ HAR-RV-J Regressions
____________________________________________________________________________________

RVt,t+h  =  $0  +  $D RVt   +   $W RVt-5,t  +  $M RVt-22,t  +   $J Jt  +  ,t,t+h

(RVt,t+h)
1/2  =  $0  +  $D RVt

1/2  +   $W (RVt-5,t)
1/2  +  $M (RVt-22,t)

1/2  +   $J Jt
1/2  +  ,t,t+h

log(RVt,t+h)  =  $0  +  $D log(RVt)  +  $W log(RVt-5,t)  +  $M log(RVt-22,t)  +  $J log(Jt +1) +  ,t,t+h

____________________________________________________________________________________

RVt,t+h (RVt,t+h)
1/2 log(RVt,t+h)

_____________________ _____________________ ______________________

h 1 5 22 1 5 22 1 5 22
_____________________ _____________________ ______________________

$0  0.083  0.132  0.231  0.096  0.159  0.293 -0.122 -0.142 -0.269
(0.015) (0.018) (0.025) (0.015) (0.021) (0.034) (0.021) (0.030) (0.048)

$D  0.430  0.222  0.110  0.392  0.216  0.124  0.408  0.252  0.162
(0.043) (0.040) (0.022) (0.033) (0.028) (0.020) (0.030) (0.029) (0.027)

$W  0.196  0.216  0.218  0.248  0.264  0.243  0.271  0.265  0.221
(0.063) (0.055) (0.043) (0.046) (0.050) (0.040) (0.042) (0.051) (0.039)

$M  0.244  0.323  0.225  0.223  0.296  0.219  0.212  0.284  0.226
(0.061) (0.068) (0.062) (0.041) (0.056) (0.063) (0.036) (0.054) (0.065)

$J -0.486 -0.297 -0.166 -0.103 -0.047 -0.026 -0.762 -0.590 -0.395
(0.096) (0.070) (0.056) (0.039) (0.031) (0.029) (0.161) (0.176) (0.178)

R2
HAR-RV-J  0.364  0.417  0.353  0.431  0.472  0.386  0.476  0.502  0.407

R2
HAR  0.252  0.261  0.215  0.261  0.272  0.225  0.160  0.159  0.138

____________________________________________________________________________________

Key: The table reports the OLS estimates for daily (h=1) and overlapping weekly (h=5) and monthly (h=22)
HAR-RV-J volatility forecast regressions.  The realized volatilities and jumps are constructed from five-minute
returns spanning the period from December 1986 through June 1999, for a total of 3,045 daily observations. 
The standard errors reported in parentheses are based on a Newey-West/Bartlett correction allowing for serial
correlation of up to order 5 (h=1), 10 (h=5) and 44 (h=22), respectively.  The last two rows labeled R2

HAR-RV-J

and R2
HAR give the coefficients of multiple correlation from the HAR-RV-J model along with a HAR model

without any jumps replacing the realized volatilities on the right-hand-side of the regression with the
corresponding lagged daily, weekly, and monthly squared returns.



Table 2B

Daily, Weekly, and Monthly S&P500 HAR-RV-J Regressions
____________________________________________________________________________________

RVt,t+h  =  $0  +  $D RVt   +  $W RVt-5,t  +  $M RVt-22,t  +  $J Jt  + ,t,t+h

(RVt,t+h)
1/2  =  $0  +  $D RVt

1/2  +   $W (RVt-5,t)
1/2  +  $M (RVt-22,t)

1/2  +  $J Jt
1/2   +  ,t,t+h

log(RVt,t+h)  =  $0  +  $D log(RVt)  +  $W log(RVt-5,t)  +  $M log(RVt-22,t)  +  $J log(Jt +1)  +  ,t,t+h

____________________________________________________________________________________

RVt,t+h (RVt,t+h)
1/2 log(RVt,t+h)

_____________________ _____________________ _____________________

h 1 5 22 1 5 22 1 5 22
_____________________ _____________________ _____________________

$0  0.088  0.186  0.387  0.060  0.102  0.205 -0.065  0.001  0.022
(0.054) (0.066) (0.074) (0.020) (0.030) (0.038) (0.015) (0.019) (0.036)

$D  0.341  0.220  0.109  0.375  0.262  0.169  0.348  0.235  0.164
(0.094) (0.064) (0.040) (0.041) (0.038) (0.029) (0.028) (0.025) (0.024)

$W  0.485  0.430  0.287  0.354  0.395  0.291  0.329  0.363  0.260
(0.111) (0.097) (0.093) (0.064) (0.067) (0.071) (0.041) (0.050) (0.049)

$M  0.165  0.220  0.279  0.239  0.270  0.357  0.285  0.334  0.444
(0.067) (0.079) (0.088) (0.040) (0.058) (0.069) (0.031) (0.046) (0.054)

$J -0.472 -0.228 -0.075 -0.213 -0.134 -0.054 -0.260 -0.187 -0.105
(0.102) (0.078) (0.067) (0.051) (0.041) (0.046) (0.062) (0.064) (0.080)

R2
HAR-RV-J  0.415  0.569  0.474  0.604  0.697  0.634  0.693  0.761  0.727

R2
HAR  0.248  0.239  0.159  0.322  0.320  0.275  0.197  0.219  0.218

____________________________________________________________________________________

Key: The table reports the OLS estimates for daily (h=1) and overlapping weekly (h=5) and monthly (h=22)
HAR-RV-J volatility forecast regressions.  The realized volatilities and jumps are constructed from five-minute
returns spanning the period from January 1990 through December 2002, for a total of 3,213 daily observations.
The standard errors reported in parentheses are based on a Newey-West/Bartlett correction allowing for serial
correlation of up to order 5 (h=1), 10 (h=5) and 44 (h=22), respectively.  The last two rows labeled R2

HAR-RV-J

and R2
HAR give the coefficients of multiple correlation from the HAR-RV-J along with a HAR model without

jumps replacing the realized volatilities on the right-hand-side of the regression with the corresponding lagged
daily, weekly, and monthly squared returns.



Table 2C

Daily, Weekly, and Monthly U.S. T-Bond HAR-RV-J Regressions
____________________________________________________________________________________

RVt,t+h  =  $0  +  $D RVt   +   $W RVt-5,t  +  $M RVt-22,t  +   $J Jt   +  ,t,t+h

(RVt,t+h)
1/2  =  $0  +  $D RVt

1/2   +   $W (RVt-5,t)
1/2  +  $M (RVt-22,t)

1/2  +  $J Jt
1/2   +  ,t,t+h

log(RVt,t+h)  =  $0  +  $D log(RVt)  +  $W log(RVt-5,t)  +  $M log(RVt-22,t)  +  $J log(Jt +1)  +   ,t,t+h

____________________________________________________________________________________

RVt,t+h (RVt,t+h)
1/2 log(RVt,t+h)

_____________________ _____________________ _____________________

h 1 5 22 1 5 22 1 5 22
_____________________ _____________________ _____________________

$0  0.077  0.088  0.126  0.118  0.152  0.222 -0.353 -0.323 -0.473
(0.012) (0.013) (0.017) (0.017) (0.021) (0.031) (0.044) (0.051) (0.080)

$D  0.074  0.084  0.044  0.066  0.082  0.044  0.104  0.100  0.063
(0.031) (0.016) (0.011) (0.026) (0.014) (0.009) (0.024) (0.015) (0.012)

$W  0.317  0.217  0.160  0.319  0.215  0.162  0.324  0.206  0.154
(0.050) (0.043) (0.040) (0.045) (0.039) (0.036) (0.043) (0.039) (0.032)

$M  0.358  0.416  0.373  0.369  0.429  0.388  0.379  0.440  0.395
(0.056) (0.055) (0.070) (0.046) (0.051) (0.068) (0.046) (0.053) (0.070)

$J -0.152 -0.202 -0.140 -0.047 -0.062 -0.042 -0.869 -0.693 -0.545
(0.099) (0.042) (0.034) (0.032) (0.018) (0.015) (0.240) (0.129) (0.123)

R2
HAR-RV-J  0.130  0.308  0.340  0.171  0.332  0.360  0.200  0.351  0.379

R2
HAR  0.067  0.128  0.105  0.072  0.117  0.093  0.025  0.042  0.035

____________________________________________________________________________________

Key: The table reports the OLS estimates for daily (h=1) and overlapping weekly (h=5) and monthly (h=22)
HAR-RV-J volatility forecast regressions.  The realized volatilities and jumps are constructed from five-minute
returns spanning the period from January 1990 through December 2002, for a total of 3,213 daily observations.
The standard errors reported in parentheses are based on a Newey-West/Bartlett correction allowing for serial
correlation of up to order 5 (h=1), 10 (h=5) and 44 (h=22), respectively.  The last two rows labeled R2

HAR-RV-J

and R2
HAR give the coefficients of multiple correlation from the HAR-RV-J model along with a HAR model

without jumps replacing the realized volatilities on the right-hand-side of the regression with the corresponding
lagged daily, weekly, and monthly squared returns.



Table 3A

Summary Statistics for Significant Daily DM/$ Jumps
____________________________________________________________________________________

α 0.500 0.950 0.990 0.999 0.9999

Prop. 0.859 0.409 0.254 0.137 0.083
Mean. 0.059 0.047 0.037 0.028 0.021
St.Dev. 0.136 0.137 0.135 0.131 0.127
LB10 , Jt," 65.49 26.30 6.197 3.129 2.414
LR , I(Jt," >0) 0.746 2.525 0.224 0.994 0.776
LB10 ,Dt,α 10.78 9.900 7.821 6.230 19.95
LB10 ,Jt,α 

+ 73.62 116.4 94.19 87.69 34.57
____________________________________________________________________________________

Table 3B

Summary Statistics for Significant Daily S&P500 Jumps
____________________________________________________________________________________

α 0.500 0.950 0.990 0.999 0.9999

Prop. 0.737 0.255 0.141 0.076 0.051
Mean. 0.163 0.132 0.111 0.095 0.086
St.Dev. 0.961 0.961 0.958 0.953 0.950
LB10 , Jt," 300.6 271.9 266.4 260.9 221.6
LR , I(Jt," >0) 2.415 1.483 12.83 8.418 7.824
LB10 , Dt,α 50.83 31.47 22.67 36.18 49.25
LB10 , Jt,α 

+ 320.8 146.0 77.06 35.11 25.49
____________________________________________________________________________________

Table 3C

Summary Statistics for Significant Daily U.S. T-Bond Jumps
____________________________________________________________________________________

α 0.500 0.950 0.990 0.999 0.9999

Prop. 0.860 0.418 0.254 0.132 0.076
Mean. 0.048 0.038 0.030 0.021 0.016
St.Dev. 0.094 0.096 0.096 0.090 0.085
LB10 , Jt," 30.34 30.37 27.85 19.80 18.85
LR , I(Jt," >0) 4.746 21.62 13.69 3.743 1.913
LB10 , Dt,α 45.55 100.1 59.86 103.3 81.42
LB10 , Jt,α 

+ 21.23 17.18 15.18 9.090 11.98
____________________________________________________________________________________

Key: The significant jumps for each of the three market, Jt," , are determined by equation (19) along with the
staggered bi-power and tri-power variation measures in equations (23) and (23), respectively.  The first row in
each of the panels gives the proportion significant jump days for each of the different α’s.  The next two rows
report the corresponding mean and standard deviation of the jump series, while the row labeled LB10, Jt,"  gives
the Ljung-Box tests for up to tenth order serial correlation.  LR , I(Jt," >0) denotes the Likelihood Ratio test for
i.i.d. jump occurrences against a first Markov chain, while LB10, Dt,α  and LB10, Jt,α 

+ refer to the Ljung-Box tests
for serial correlation in the corresponding durations, or times between jumps, and the sizes of the significant
jumps, respectively.



Table 4A

Daily, Weekly, and Monthly DM/$ HAR-RV-CJ Regressions
____________________________________________________________________________________

RVt,t+h  =  $0  +  $CD Ct   +   $CW Ct-5,t  +  $CM Ct-22,t  +   $JD Jt  +   $JW Jt-5,t  +  $JM Jt-22,t  +  ,t,t+h

(RVt,t+h)
1/2 = $0 + $CD Ct

1/2 +  $CW (Ct-5,t)
1/2 + $CM (Ct-22,t)

1/2  +  $JD Jt
1/2 +  $JW (Jt-5,t)

1/2 + $JM (Jt-22,t)
1/2 + ,t,t+h

log(RVt,t+h)  =  $0  +  $CD log(Ct)  +  $CW log(Ct-5,t)  +  $CM log(Ct-22,t)  +

 $JD log(Jt +1) +  $JW log(Jt-5,t +1)  +  $JM log(Ct-22,t +1)   +  ,t,t+h

____________________________________________________________________________________

RVt,t+h (RVt,t+h)
1/2 log(RVt,t+h)

_____________________ _____________________ ______________________

h 1 5 22 1 5 22 1 5 22
_____________________ _____________________ ______________________

$0  0.083  0.131  0.231  0.096  0.158  0.292 -0.095 -0.114 -0.249
(0.015) (0.018) (0.025) (0.015) (0.021) (0.034) (0.024) (0.036) (0.057)

$CD  0.407  0.210  0.101  0.397  0.222  0.127  0.369  0.205  0.130
(0.044) (0.040) (0.021) (0.032) (0.029) (0.019) (0.026) (0.021) (0.016)

$CW  0.256  0.271  0.259  0.264  0.289  0.264  0.295  0.318  0.258
(0.077) (0.054) (0.046) (0.048) (0.051) (0.042) (0.039) (0.048) (0.040)

$CM  0.226  0.308  0.217  0.212  0.281  0.205  0.217  0.270  0.213
(0.072) (0.078) (0.074) (0.044) (0.060) (0.068) (0.036) (0.055) (0.071)

$JD  0.096  0.006 -0.002  0.022  0.001  0.003  0.043  0.024 -0.004
(0.089) (0.040) (0.017) (0.027) (0.017) (0.010) (0.111) (0.076) (0.044)

$JW -0.191 -0.179 -0.073 -0.006  0.001  0.002 -0.076 -0.317 -0.127
(0.168) (0.199) (0.125) (0.033) (0.044) (0.028) (0.239) (0.327) (0.242)

$JM -0.001  0.055 -0.014 -0.034 -0.011  0.014 -0.690 -0.301 -0.261
(0.329) (0.460) (0.604) (0.057) (0.087) (0.127) (0.408) (0.668) (0.990)

R2
HAR-RV-CJ  0.368  0.427  0.361  0.443  0.486  0.397  0.485  0.514  0.415

____________________________________________________________________________________

Key: The table reports the OLS estimates for daily (h=1) and overlapping weekly (h=5) and monthly (h=22)
HAR-RV-CJ volatility forecast regressions.  All of the realized volatility measures are constructed from five-
minute returns spanning the period from December 1986 through June 1999, for a total of 3,045 daily
observations.  The weekly and monthly measures are given by the scaled sum of the corresponding daily
measures.  The significant daily jump and continuous sample path variability measures are based on equations
(19) and (20), respectively, along with the staggered power variation measures in equations (22) and (23), using
a critical value of α = 0.999.  The standard errors reported in parentheses are based on a Newey-West/Bartlett
correction allowing for serial correlation of up to order 5 (h=1), 10 (h=5) and 44 (h=22), respectively.



Table 4B

Daily, Weekly, and Monthly S&P500 HAR-RV-CJ Regressions
____________________________________________________________________________________

RVt,t+h  =  $0  +  $CD Ct   +   $CW Ct-5,t  +  $CM Ct-22,t  +   $JD Jt  +   $JW Jt-5,t  +  $JM Jt-22,t  +  ,t,t+h

(RVt,t+h)
1/2 = $0 + $CD Ct

1/2 +  $CW (Ct-5,t)
1/2 + $CM (Ct-22,t)

1/2  +  $JD Jt
1/2 +  $JW (Jt-5,t)

1/2 + $JM (Jt-22,t)
1/2 + ,t,t+h

log(RVt,t+h)  =  $0  +  $CD log(Ct)  +  $CW log(Ct-5,t)  +  $CM log(Ct-22,t)  +

 $JD log(Jt +1) +  $JW log(Jt-5,t +1)  +  $JM log(Ct-22,t +1)   +  ,t,t+h

____________________________________________________________________________________

RVt,t+h (RVt,t+h)
1/2 log(RVt,t+h)

_____________________ _____________________ ______________________

h 1 5 22 1 5 22 1 5 22
_____________________ _____________________ ______________________

$0  0.143  0.222  0.393  0.062  0.103  0.202 -0.063  0.003  0.026
(0.040) (0.057) (0.075) (0.018) (0.028) (0.037) (0.013) (0.019) (0.036)

$CD  0.356  0.224  0.135  0.381  0.262  0.183  0.320  0.224  0.162
(0.067) (0.043) (0.023) (0.041) (0.031) (0.024) (0.028) (0.022) (0.020)

$CW  0.426  0.413  0.204  0.367  0.413  0.272  0.368  0.383  0.274
(0.120) (0.114) (0.070) (0.063) (0.072) (0.061) (0.043) (0.053) (0.049)

$CM  0.111  0.168  0.319  0.163  0.206  0.322  0.246  0.297  0.403
(0.063) (0.076) (0.070) (0.042) (0.062) (0.065) (0.032) (0.049) (0.056)

$JD -0.153 -0.016  0.005 -0.043 -0.013  0.005 -0.006 -0.027  0.018
(0.063) (0.049) (0.022) (0.043) (0.027) (0.017) (0.066) (0.049) (0.031)

$JW  0.465  0.362  0.456  0.082  0.096  0.132  0.062  0.163  0.198
(0.233) (0.205) (0.287) (0.071) (0.075) (0.113) (0.105) (0.126) (0.176)

$JM  0.355  0.458  0.215  0.133  0.170  0.190  0.207  0.233  0.246
(0.304) (0.448) (0.202) (0.054) (0.084) (0.105) (0.085) (0.136) (0.201)

R2
HAR-RV-CJ  0.421  0.574  0.478  0.613  0.700  0.639  0.696  0.763  0.722

____________________________________________________________________________________

Key: The table reports the OLS estimates for daily (h=1) and overlapping weekly (h=5) and monthly (h=22)
HAR-RV-CJ volatility forecast regressions.  All of the realized volatility measures are constructed from five-
minute returns spanning the period from January 1990 through December 2002, for a total of 3,213 daily
observations.  The weekly and monthly measures are given by the scaled sum of the corresponding daily
measures.  The significant daily jump and continuous sample path variability measures are based on equations
(19) and (20), respectively, along with the staggered power variation measures in equations (22) and (23), using
a critical value of α = 0.999.  The standard errors reported in parentheses are based on a Newey-West/Bartlett
correction allowing for serial correlation of up to order 5 (h=1), 10 (h=5) and 44 (h=22), respectively.



Table 4C

Daily, Weekly, and Monthly U.S. T-Bond HAR-RV-CJ Regressions
____________________________________________________________________________________

RVt,t+h  =  $0  +  $CD Ct   +   $CW Ct-5,t  +  $CM Ct-22,t  +   $JD Jt  +   $JW Jt-5,t  +  $JM Jt-22,t  +  ,t,t+h

(RVt,t+h)
1/2 = $0 + $CD Ct

1/2 +  $CW (Ct-5,t)
1/2 + $CM (Ct-22,t)

1/2  +  $JD Jt
1/2 +  $JW (Jt-5,t)

1/2 + $JM (Jt-22,t)
1/2 + ,t,t+h

log(RVt,t+h)  =  $0  +  $CD log(Ct)  +  $CW log(Ct-5,t)  +  $CM log(Ct-22,t)  +

 $JD log(Jt +1) +  $JW log(Jt-5,t +1)  +  $JM log(Ct-22,t +1)   +  ,t,t+h

____________________________________________________________________________________

RVt,t+h (RVt,t+h)
1/2 log(RVt,t+h)

_____________________ _____________________ ______________________

h 1 5 22 1 5 22 1 5 22
_____________________ _____________________ ______________________

$0  0.085  0.095  0.133  0.133  0.166  0.236 -0.337 -0.335 -0.473
(0.011) (0.012) (0.017) (0.016) (0.019) (0.031) (0.040) (0.052) (0.079)

$CD  0.107  0.064  0.031  0.087  0.069  0.034  0.091  0.068  0.036
(0.031) (0.015) (0.006) (0.025) (0.013) (0.006) (0.022) (0.012) (0.007)

$CW  0.299  0.238  0.196  0.306  0.223  0.180  0.297  0.203  0.168
(0.051) (0.047) (0.037) (0.045) (0.042) (0.033) (0.043) (0.042) (0.030)

$CM  0.366  0.426  0.369  0.367  0.428  0.380  0.389  0.439  0.382
(0.062) (0.062) (0.068) (0.048) (0.055) (0.065) (0.046) (0.055) (0.064)

$JD -0.136 -0.010 -0.019 -0.080 -0.006 -0.007 -0.769 -0.090 -0.091
(0.055) (0.021) (0.008) (0.026) (0.012) (0.006) (0.185) (0.082) (0.041)

$JW  0.230  0.050 -0.075  0.090  0.043 -0.004  0.775  0.227 -0.289
(0.122) (0.081) (0.067) (0.033) (0.029) (0.025) (0.390) (0.298) (0.271)

$JM -0.271 -0.145 -0.116 -0.113 -0.076 -0.057 -1.319 -0.477 -0.034
(0.177) (0.216) (0.245) (0.045) (0.058) (0.075) (0.589) (0.773) (0.918)

R2
HAR-RV-CJ  0.144  0.325  0.377  0.192  0.353  0.393  0.222  0.365  0.400

____________________________________________________________________________________

Key: The table reports the OLS estimates for daily (h=1) and overlapping weekly (h=5) and monthly (h=22)
HAR-RV-CJ volatility forecast regressions.  All of the realized volatility measures are constructed from five-
minute returns spanning the period from January 1990 through December 2002, for a total of 3,213 daily
observations.  The weekly and monthly measures are given by the scaled sum of the corresponding daily
measures.  The significant daily jump and continuous sample path variability measures are based on equations
(19) and (20), respectively, along with the staggered power variation measures in equations (22) and (23), using
a critical value of α = 0.999.  The standard errors reported in parentheses are based on a Newey-West/Bartlett
correction allowing for serial correlation of up to order 5 (h=1), 10 (h=5) and 44 (h=22), respectively.



Figure 1A
Daily DM/$ Realized Volatilities and Jumps

Key:  The top panel shows daily realized volatility in standard deviation form, or RVt
1/2.  The second panel

graphs the jump component defined in equation (8), Jt
1/2.   The third panel shows the Z1,t(∆) statistic, with the

0.999 significance level indicated by the horizontal line.  The bottom panel graphs the significant jumps

corresponding to " =0.999, or .  See the main text for further details.J
1/2

t ,0.999



Figure 1B
Daily S&P500 Realized Volatilities and Jumps

Key:  The top panel shows daily realized volatility in standard deviation form, or RVt
1/2.  The second panel

graphs the jump component defined in equation (8), Jt
1/2.   The third panel shows the Z1,t(∆) statistic, with the

0.999 significance level indicated by the horizontal line.  The bottom panel graphs the significant jumps

corresponding to " =0.999, or .  See the main text for further details.J
1/2

t ,0.999



Figure 1C
Daily U.S. T-Bond Realized Volatilities and Jumps

Key:  The top panel shows daily realized volatility in standard deviation form, or RVt
1/2.  The second panel

graphs the jump component defined in equation (8), Jt
1/2.   The third panel shows the Z1,t(∆) statistic, with the

0.999 significance level indicated by the horizontal line.  The bottom panel graphs the significant jumps

corresponding to " =0.999, or .  See the main text for further details.J
1/2

t ,0.999



Figure 2
Intraday Price Movements

Key:  The figure graphs the five-minute intraday price increments for days with large jump statistics Z1,t(∆)
(left-side panels), and days with large daily price moves but numerically small jump statistics (right-side
panels).



Figure 3
Smoothed Jump Intensities and Jump Sizes

Key: The figure graphs the exponentially smoothed (with a smoothing parameter of 0.94) average monthly
jump intensities and sizes for the significant jumps based on " =0.999.  The jump sizes are expressed in

standard deviation form, or . J
1/2

t ,0.999



Figure 4A
Daily, Weekly and Monthly DM/$ Realized Volatilities and HAR-RV-CJ Forecasts

Key:  The top, middle and bottom panels show daily (h=1), weekly (h=5) and monthly (h=22) realized

volatilities,  (left scale), and the corresponding forecasts from the HAR-RV-CJ model in standardRV
1/2

t , t%h

deviation form in equation (27) (right scale).  See the main text for further details. 



Figure 4B
Daily, Weekly and Monthly S&P500 Realized Volatilities and HAR-RV-CJ Forecasts

Key:  The top, middle and bottom panels show daily (h=1), weekly (h=5) and monthly (h=22) realized

volatilities,  (left scale), and the corresponding forecasts from the HAR-RV-CJ model in standardRV
1/2

t , t%h

deviation form in equation (27) (right scale).  See the main text for further details. 



Figure 4C
Daily, Weekly and Monthly U.S. T-Bond Realized Volatilities and HAR-RV-CJ Forecasts

Key:  The top, middle and bottom panels show daily (h=1), weekly (h=5) and monthly (h=22) realized

volatilities,  (left scale), and the corresponding forecasts from the HAR-RV-CJ model in standardRV
1/2

t , t%h

deviation form in equation (27) (right scale).  See the main text for further details.


