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What Can Rational Investors Do
About Excessive Volatility?

Abstract

We determine and analyze the trading strategy that would allow an investor to take advantage of the
excessive stock price volatility that has been documented in the empirical literature on asset pricing. We
construct a general equilibrium model where stock prices are excessively volatile because there are two
classes of agents and one class places is overconfident about a public signal. As a result, these agents
change their expectations too often, sometimes being excessively optimistic, sometimes being excessively
pessimistic. We analyze the trading strategy of the rational investors who are not overconfident about
the signal. While rational risk-arbitrageurs benefit from trading on their belief that the market is being
foolish, when doing so they must hedge future fluctuations in the market’s foolishness. We find that
fixed-income instruments can be used for the purpose of hedging. Thus, our analysis illustrates that risk
arbitrage cannot be based on just a current price divergence; it must include also a protection against
trading risk. We also show that the presence of a few rational traders is not sufficient to eliminate the
excessive volatility effect of overconfident investors generated by the presence of overconfident investors.
Furthermore, overconfident investors of this kind tend to survive for a long time before being driven out
of the market by rational investors.



1 Introduction

As Shiller (1981) and LeRoy and Porter (1981) have pointed out, it may very well be the case that
“stock prices move too much to be justified by changes in subsequent dividends.”1 The volatility of
stock prices, if it is excessive relative to the volatility of fundamentals, may be an indication that the
financial market is not information efficient. If so, there must exist a trading strategy that allows a
rational, intertemporally optimizing investor (a “risk arbitrageur”) to take advantage of this inefficiency.
The main goal of the present paper is to calculate and understand that strategy.2

In the model we construct, some investors are non-Bayesian in the sense that that they give too
much credence to public signals just as in Scheinkman and Xiong (2003), who call these investors
“overconfident”.3 We refer to “excessive volatility” as a situation in which, for the given utility functions
of agents, the level of volatility is larger than it would be under rational Bayesian learning.4 Because
some investors in our model are overconfident about the public signal, they change their minds too often
about economic prospects, and this is the source of excessive volatility. Of course, it is well-known that
complete irrationality in the manner of positive “feedback traders” à la De Long, Shleifer, Summers, and
Waldmann (1990b) can amplify the volatility of stock prices. The added volatility creates “noise-trader
risk” for rational arbitrageurs, thereby creating a limit to arbitrage. However, feedback traders may not
be the best representation of irrational behavior as they constitute excessively easy game for rational
investors. Furthermore, models of feedback trading do not discuss the budget constraint of the feedback
traders, and therefore, leave unclear the origin of the gains that the rational arbitrageurs would make
at their expense.5 For these reasons, we prefer to model our irrational traders as being intertemporal
optimizers, even if they are non-Bayesian in their learning.

We aim to derive and then analyze the optimal dynamic trading strategy of the rational investors
in this model. There are two aspects to the portfolio strategy adopted by rational investors. First, these
investors may not agree today with the market about its current estimate of the growth rate of dividends;
when the rational investors are more optimistic than the market, they increase their investment in equity
while decreasing their investment in bonds, because equity and bonds are positively correlated. Second,

1A controversy about excess volatility has been going on since the publication of Shiller (1981) and the matter is not
fully settled today. The empirical method of Shiller has been criticized. Flavin (1983) and Kleidon (1986) have pointed
out that stock prices and dividends could not be detrended by a deterministic trend based on realized returns, as Shiller
had done. Furthermore, if the process for prices and/or dividends is not stationary, the ergodic theorem does not apply
and volatility, defined originally across the possible sample paths, cannot be measured over time. Even in the case of
stationarity, a near-unit root may exist in the behavior of these two variables, causing the statistic to reject Shiller’s
variance inequality in finite samples when it should not be rejected. Good methodological evaluations are provided by
West (1988a,b) and Cochrane (1991). Generally speaking, as had been pointed out by LeRoy and Porter, variance-bound
tests should not be implemented on the basis of the historical sequence of dividends taken at face value. The sequence must
first be used to estimate the stochastic process of dividends. Stock prices must then be calculated from an extrapolation
of the process to infinity before a variance bound can be placed on them. Even after Mankiw, Romer, and Shapiro (1985,
1991) improve upon the methodology used in Shiller’s tests, they reach the same conclusion as he had. Their method is
applied to non U.S. markets by De Long and Becht (1998) and De Long and Grossman (1998) and they also reach similar
conclusions.

2The question being answered in our paper is the same as the one raised by Williams (1977) and Ziegler (2000) in a
simpler setting in which the expected growth rate of dividends is constant (although unobserved) and in which there are
fewer securities. In these two papers, the investor whose strategy one is studying is assumed to be of negligible weight in
the market, in contrast to our model. For a comprehensive review of the literature on models with incomplete information,
see Feldman (2005).

3In contrast to the model in Scheinkman and Xiong (2003), our model is of a general equilibrium economy, and rather
than modeling agents as being risk neutral and then introducing short-sale constraints to limit the size of positions that
agents take, we allow for short sales and agents who are risk averse, so that in our model it is risk aversion that induces
agents to limit the size of their short positions.

4This definition of excessive volatility is not identical to that of Shiller (1981). The difference arises mostly from Shiller’s
use of constant discount factors and unconditional expected values to price equity. Here, we use the equilibrium discount
factors that derive from intertemporal optimization with learning.

5Other limitations of these models are discussed in Loewenstein and Willard (2005).
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even when the two groups of investors happen to agree today, rational investors are aware that irrational
investors will revise their estimate differently from the way their own estimate is revised. This second
effect makes the rational investor hold fewer shares of equity than would be optimal in a market without
excess volatility and take a negative position in bonds (which would be zero in the absence of excess
volatility). Overall, a rational risk-arbitrageur finds it beneficial to trade on his/her belief that the market
is being foolish but when doing so, he/she must hedge future fluctuations in the market’s foolishness.
Thus, our analysis illustrates that “risk arbitrage” cannot be based on just a current price divergence;
it must also be based on a model of irrational behavior and a prediction concerning the dynamics of
this divergence. Further, it illustrates that the risk arbitrage must include a protection in case there
is a deviation from that prediction. Our model should be of use to hedge funds who play the price
convergence game. They often have at their disposal perfect-market pricing models which allow them to
spot pricing anomalies. But, that is not sufficient information to be able to put in place a “risk arbitrage”
strategy, including the optimal timing of trades into the strategy, of trades out of the strategy, plus the
accompanying hedges. For that purpose, hedge funds also need a model of the equilibrium stochastic
process of price spreads. We provide one such model.

The profitability of the rational “risk arbitrage” strategy and the survival time of irrational investors
are two sides of the same coin. We also derive the speed of impoverishment of the irrational traders, or
the speed of enrichment of the rational ones. Previous work (Kogan, Ross, Wang, and Westerfield (2003);
Yan (2004)) has examined the survival of traders who are permanently overoptimistic or overpessimistic.
Here, we study the survival of traders who are sometimes overoptimistic and sometimes overpessimistic,
depending on the sequence of signals they have received. We find that, in contrast to what is typically
assumed in standard models of asset pricing in frictionless markets, in our model the presence of a few
rational traders is not sufficient to eliminate the effect of overconfident investors on excess volatility, and
that even a moderate-sized group of overconfident investors can do a lot of damage and may survive for
a long time before being driven out of the market by rational investors.6

We now relate our model to models of excessive volatility in the existing literature. Some headway
into the design of a portfolio strategy has already been made in past research which dealt with the
logical link that exists between the phenomenon of excessive volatility and the predictability of stock
returns.7 Campbell and Shiller (1988a,b) and Cochrane (2001, page 394 ff ), have pointed out that the
dividend-price ratio would be constant over time if dividends were unpredictable (specifically, if they
followed a geometric Brownian walk) and expected returns were constant. Since the dividend-price
ratio is changing, its changes must be predicting either future changes in dividends or future changes
in expected returns. This statement is true in any economic model, unless there are violations of the
transversality conditions.8 Empirically, the dividend-price ratio hardly predicts subsequent dividends.

6Alchian (1950) and Friedman (1953) are given credit for articulating the doctrine according to which agents who do
not predict as accurately as others are driven out of the market. De Long, Shleifer, Summers, and Waldmann (1990a, 1991)
have indicated that the doctrine may not be correct, but their approach has recently been criticized by Loewenstein and
Willard (2005). Sandroni (2000) shows that agents whose beliefs are most accurate (in the entropy sense), with probability
one are the only ones in the long run who survive (when all utility discount rates are equal to each other) in a complete
financial market. In contrast to much of this literature, our definition of “survival” will be based on consumption shares
not wealth shares.

7That relation is analogous to the relation established by Froot and Frankel (1989) between variance-bounds tests à la
Shiller and regression tests of predictability.

8There may be some violations of the terminal condition for stock prices, causing stock prices to deviate from the
present discounted value of future dividends. A violation of the terminal condition means that investors pay a price today
that reflects an expectation of a price at some distant date in the future that will not reflect the present discounted value of
dividends. Such a deviation is a called a “bubble”. Recently, the theory of bubbles has endeavored to explain the process
by which bubbles burst. Fluctuations in the probability of a bubble bursting can potentially generate excessive volatility.
But, it is not clear whether a theory of bubbles can ever be developed without assuming the presence of some irrational
investors.
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It must, therefore, predict returns. But, if it predicts returns, it can serve as valuable information for a
rational trader, or arbitrageur, entering the market. That aspect is present in our model below.

In the literature on excess volatility, there are at least two kinds of models not based on differences
in beliefs that have been considered.9 One class of models shows that Bayesian, rational learning alone
can serve to develop theoretical models with volatility that matches the data, by assuming that investors
do not know the true stochastic process of dividends. For instance, Barsky and De Long (1993) write
that: “Major long-run swings in the U.S. stock market over the past century are broadly consistent with
a model driven by changes in current and expected future dividends in which investors must estimate
the time-varying long-run dividend growth rate” [our emphasis]. As investors do not know the expected
growth rate of dividends, prices are revised when they receive information about it. These price revisions
go beyond the change in the current dividend because the current dividend also contains information
about future dividends. A similar argument has been made by Timmermann (1993, 1996) and Bullard
and Duffy (1998). Brennan and Xia (2001) calibrate a model in which a single type of investors populate
the financial market and learn about the expected growth rate of dividends and, separately, about the
expected growth rate of output. In that model, as in ours, the expected growth rate of dividends is
unobservable and needs to be filtered out, which then contributes positively to the volatility of the stock
price. They find that they can match all moments of stock returns. However, their model is not really
“closed” since aggregate consumption is not set equal to aggregate dividends plus endowments.10

A second class of models studying excess volatility focuses on the discount rate. Recall that in
deriving their bounds, Shiller (1981) and LeRoy and Porter (1981) had made the assumption that
discount rates, by which future dividends are discounted to obtain the current price, were constant into
the future. The literature on the equity-premium puzzle has developed a number of models, such as
habit formation models (see Constantinides (1990); Abel (1990); Campbell and Cochrane (1999)), in
which the effective discount rate is strongly time varying even though the consumption stream remains
very smooth. Using models of that kind, Menzly, Santos, and Veronesi (2004) have recently calibrated a
model of the U.S. stock market in which the volatility of stock returns was larger than the one observed
in the data.11

The balance of this paper covers the following material. In Section 2, we discuss our modeling choices
against the background of the literature that we have just surveyed. In Section 3, we determine the
equilibrium. In Section 4, we discuss the impact of irrational traders on asset prices, return volatilities
and risk premia and we analyze how many rational investors are needed to reduce the excessive volatility.
In Section 5, we identify the main factors driving the portfolio strategy of the rational trader. In Section
6, we discuss the survival of irrational traders over time and the profits made at their expense by the
rational ones. Section 7 contains the conclusion. All the mathematical derivations are collected in
appendixes.

9In a third line of investigation, Bansal and Yaron (2004) and Hansen, Heaton, and Li (2005) find that allowing for a
small long-run predictable component in dividend growth rates can generate several observed asset-pricing phenomenon,
including volatility of the market return.

10Needless to say, in the real world, consumption is not equal to just dividends. There is also labor income and, in any
case, the real world is not a pure-exchange economy, since physical investment takes place. Another way to close the model
would be to allow for labor income and physical investment.

11Besides time-varying discount factors and learning about the dividend process, there exists at least one other theoretical
reason for which stock prices may exhibit high volatility. Financial markets are vastly incomplete. The private valuation
of nontraded risks may “rock the boat” of prices of traded securities, as in Citanna and Schmedders (2002) or Bhamra and
Uppal (2005). However, it is not clear that market incompleteness could generate the magnitude of excessive volatility
that one observes in the stock market.

3



2 Modeling choices and information structure

In our model below, we allow for the presence of irrational traders.12 It is well known that rationality
entails two dimensions, which may not be completely independent of each other: rationality in informa-
tion processing or learning (that is, application of Bayes’ law) and rationality of decision making (that
is, intertemporal optimality). While our irrational traders suffer from some learning disability, we want
them to remain full-fledged intertemporal optimizers, so that welfare analysis and the analysis of gains
and losses of the two categories of traders remain meaningful.

One way to achieve that goal has recently been proposed by Scheinkman and Xiong (2003). In
their model of a “tree” economy, a stream of dividends is paid. Some aspect of the stochastic process
of dividends is not observable by anyone. Risk neutral investors receive information in the form of
the current dividend and some public signals. Rational agents are people who either know the true
correlation between innovations in the signal and innovations in the unobserved variables or rationally
learn about it from the information they receive. Irrational (they call them “overconfident”) agents are
people who steadfastly refuse to learn the value of this correlation. For instance, they insist on this
correlation being a positive number when, in fact, it is zero. This causes them to give too much weight
to the signals. Thus, when they receive a signal, they overreact to it, which then generates excessive
stock price movements.13

Here, we consider a setting similar to that in Scheinkman and Xiong (2003) except that investors are
risk averse (and are allowed to sell short) and only one group of agents is overconfident. More specifically,
there are two groups of investors: Group A, who are overconfident and Group B, who are rational. Both
groups are risk averse and have the same level of constant relative risk aversion. The risk aversion does
not prevent investors from short selling but it induces them not to sell infinite amounts.

We now describe the key features of our model. We adopt notation that is similar to the one used
in the paper by Scheinkman and Xiong (2003).

2.1 Process for aggregate output

The dividend (output) paid by the aggregate economy at time t is equal to δtdt.14 The stochastic process
for δ is:

dδt
δt

= ftdt+ σδdZ
δ
t , (1)

where Zδ is a Wiener under the effective probability measure, which governs empirical realizations of
the process, and σδ is the volatility of the growth rate of dividends. The conditional expected growth

12A recent paper by David (2004), developed concurrently with ours, uses differences of opinion in the financial market
and non-Bayesian learning. It contains a full-fledged calibration of securities price moments. However, like in Brennan and
Xia (2001), his model is not closed. Also, in order to properly fit the rate of interest, David assumes that risk aversion is
smaller than 1.

13There exist basically three ways to sustain heterogeneity of beliefs between agents. Differences in the basic model agents
believe in, or in some fixed model parameter as proposed in Harris and Raviv (1993), Kandel and Pearson (1995), and
Cecchetti, Lam, and Mark (2000) and used more recently by David (2004); under this approach, agents are non-Bayesian.
Another modeling possibility is differences in priors, while agents remain Bayesian, as in Biais and Bossaerts (1998),
Detemple and Murthy (1994), Basak (2004), Duffie, Garleanu, and Pedersen (2002), and Buraschi and Jiltsov (2002). A
third, more sophisticated possibility that, however, includes noise traders, is to let agents receive private signals as in the
vast “Noisy-Rational Expectations” literature originating from the work of Grossman and Stiglitz (1980), Hellwig (1980),
and Wang (1993). In the case of private signals, agents also learn from price, a channel that is not present here.

14In Scheinkman and Xiong (2003), the dividend is a stochastic flow dD. That, however, cannot be an equilibrium
formulation in a pure-exchange economy, in which total dividend must be equal to total consumption c dt.
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rate of dividends, ft, is also stochastic:

dft = −ζ
(
ft − f

)
dt+ σfdZ

f
t ; ζ > 0, (2)

where Zf is also a Wiener under the effective probability measure, σf is the volatility of the change in
ft, f is the long-run mean, and ζ is the parameter driving the reversion of ft to the long run mean.

2.2 Information structure and filtering

The conditional expected growth rate of dividends, f , is not observed by any agent. Both classes of
investors must estimate, or filter out, the current value of f and its future behavior. They do that from
the observation of the current dividend and the observation of a public signal, s, which has the following
process:

dst = ftdt+ σsdZ
s
t , (3)

where Zs is a Wiener under the effective probability measure as well, σs is the volatility of changes in
st. All three Wieners, {Zδ, Zf , Zs}, are uncorrelated with each other (under the effective probability
measure and any measure equivalent to it) so that, instantaneously, innovations in the signal, dZs,
convey no information about innovations dZf in the unobserved variable. Everyone, however, knows
that the drift of s at time t is equal to ft, the drift of the dividend process. So, the signal provides some
long-run information about the drift of the dividend process, as does the dividend itself. That is the
only true reason for which the signal is informative.

Group A investors perform their filtering under the delusion that the signal s has correlation φ ∈ ]0, 1[
with f when, in fact, it is has zero correlation.15 The “model” Group A investors have in mind is:

dst = ftdt+ σsφdZ
f
t + σs

√
1− φ2dZs

t , (4)

while Group B is rational (and so knows or learns that φ = 0). Now, there are two informative roles
played by the signal s: from the point of view of all people, the signal provides some information about
the drift of the dividend process. But because of the assumed non-zero correlation in the eyes of the
irrational investors, it also provides them with short-run, incorrect information about the current shock
to the dividend growth rate. We can amplify or turn down the second role relative to the first one by
varying the parameter σs.

From filtering theory (see Lipster and Shiryaev (2001, Theorem 12.7, page 36)), the conditional

expected values, f̂A and f̂B , of f according to individuals of Group A (deluded; φ 6= 0) and Group B

(rational; φ = 0) are respectively:16,17

df̂A
t = −ζ

(
f̂A

t − f
)
dt+

γA

σ2
δ

(
dδ

δ
− f̂A

t dt

)
+
φσsσf + γA

σ2
s

(
ds− f̂A

t dt
)
, (5)

df̂B
t = −ζ

(
f̂B

t − f
)
dt+

γB

σ2
δ

(
dδ

δ
− f̂B

t dt

)
+
γB

σ2
s

(
ds− f̂B

t dt
)
, (6)

15This is not just a prior, or it is an infinitely precise prior. They refuse to learn the true correlation.
16Observe once again that output δ serves as a signal, which causes an update of the rate of growth of output, just as

the signal s does.
17Under the effective probability measure, under which Zs and Zδ are Brownian motions, the stochastic differential

equations for δ and s are given by Equations (1) and (4). These could be substituted into (5) and (6) to get a complete

Markovian description of the process for
n

δ, f, s, bfA, bfB
o

.
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The number γA (γB) is the steady-state variance of f as estimated by Group A (B).18 These variances
would normally be deterministic functions of time. But for simplicity we assume, as did Scheinkman
and Xiong (2003), that there has been a sufficiently long period of learning for people of both groups
to converge to their level of variance, irrespective of their prior, while, at the same time, A types have
refused to use the same information to infer the correlation number, which is the exact degree to which
they are being irrational. For the purpose of obtaining a martingale, “static” formulation (as done in
Cox and Huang (1989) and Karatzas, Lehoczky, and Shreve (1987)), we now rewrite these stochastic
differential equations in terms of processes that are Brownian motions under subjective probability
measures. Consider a two-dimensional process WB =

(
WB

δ ,W
B
s

)
that is Brownian under the probability

measure that reflects the expectations of Group B. By the definition of f̂B , we can then write:

dδt
δt

= f̂B
t dt+ σδdW

B
δ,t, (7)

dst = f̂B
t dt+ σsdW

B
s,t. (8)

A similar two-dimensional processWA =
(
WA

δ ,W
A
s

)
that is Brownian under A’s probability measure

could be defined and a similar substitution could be made to represent A’s expectations. The relation
between them is:

dWB
δ,t = dWA

δ,t −
f̂B

t − f̂A
t

σδ
dt, (9)

dWB
s,t = dWA

s,t −
f̂B

t − f̂A
t

σs
dt. (10)

Because the effective measure is not defined on either agent’s σ-algebra, we can ignore it for the
purpose of calculating the equilibrium. Instead, we use B’s probability measure as the reference measure.
From Equations (9) and (10), we can determine that the change from B’s measure to A’s measure is
given by:

ηt = exp
(
−1

2

∫ t

0

‖ν‖2 dt−
∫ t

0

νᵀ
t dW

B
t

)
, (11)

or
dηt

ηt
= −νᵀ

t dW
B
t , (12)

where
18The steady-state variances of f as estimated by Group A and Group B are, respectively:

γA ,

s“
ζ +

φσf

σs

”2
+ (1− φ2) σ2

f

„
1

σ2
s

+ 1
σ2

δ

«
−

“
ζ +

φσf

σs

”
1

σ2
s

+ 1
σ2

δ

,

γB ,

s
ζ2 + σ2

f

„
1

σ2
s

+ 1
σ2

δ

«
− ζ

1
σ2

s
+ 1

σ2
δ

.

As has been pointed out by Scheinkman and Xiong (2003), γA decreases as φ rises, which is the reason that Group B is
called overconfident. γA starts at the value γB when φ = 0 and would reach γA = 0 when φ → 1. The signal can lead

Group A ultimately to complete (and foolish) unconditional certainty. The numerator of the diffusion of bfA with respect
to s, φσsσf + γA, however, also starts from γB at φ = 0 but then would rise to the value σsσf > γB as φ → 1. Thus, the
signal increases the conditional uncertainty that Group A faces because of their own learning, compared to that faced by
B.
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νt =
(
f̂B

t − f̂A
t

)[ 1
σδ

1
σs

]
. (13)

This is a simple application of Girsanov’s theorem. It tells us how current disagreement f̂B − f̂A gets
reflected into probability beliefs about future events.

Substituting (9) and (10) into (5) and (6) gives:19

df̂A
t =

[
−ζ
(
f̂A − f

)
+
(
γA

σ2
δ

+
φσsσf + γA

σ2
s

)(
f̂B

t − f̂A
)]
dt (14)

+
γA

σ2
δ

σδdW
B
δ,t +

φσsσf + γA

σ2
s

σsdW
B
s,t

df̂B
t = −ζ

(
f̂B − f

)
dt+

γB

σδ
dWB

δ,t +
γB

σs
dWB

s,t. (15)

The Markovian system made of (7), (8), (14) and (15) completely characterizes the evolution of the
economy in the eyes of population B. The viewpoint of population A will be handled by means of
the change of measure η. For later reference, we also write the process for the difference of opinion
ĝ , f̂B − f̂A :

dĝt = −
(
ζ +

γA

σ2
δ

+
φσsσf + γA

σ2
s

)
ĝtdt+

γB − γA

σδ
dWB

δ,t +
γB −

(
φσsσf + γA

)
σs

dWB
s,t. (16)

When ĝ > 0, Group B of investors is comparatively optimistic or Group A comparatively pessimistic.
Also, ĝ (or its absolute value) can be viewed as a measure of the dispersion of beliefs or opinions.
Because γB −

(
φσsσf + γA

)
< 0, a positive realization of the signal increment dWB

s,t causes Population
A to become more optimistic relative to where it was before.

The joint dynamics of the four state variables
{
δ, η, f̂B , ĝ , f̂B − f̂A

}
are provided by Equations

(7), (12), (15) and (16). They are driven by only two Brownians, WB
δ and WB

s . This is because variable
f is unobserved by anyone and is only a latent variable. It is important to keep in mind that the four
variables are not independent of each other. Since there are only two Brownians, the diffusion matrix of{
δ, η, f̂B , ĝ

}
is a 4× 2 matrix:


δσδ > 0 0
−η bg

σδ
−η bg

σs

γB

σδ
> 0 γB

σs
> 0

γB−γA

σδ
> 0

γB−(φσsσf +γA)
σs

< 0

 . (17)

From the first and third row of the diffusion matrix, we see that δ and f̂B are always positively correlated
with each other.20 The second row of the diffusion matrix shows that the diffusion vector of η has the

19The conditional variance of bfA is equal to:»
φσsσf +

γA

σs

–2

+

»
γA

σδ

–2

= −2ζγA + σ2
f ,

which is a monotonically increasing function of φ, rising from : −2ζγB + σ2
f at φ = 0 to σ2

f at φ = 1. The irrational

Group A changes its mind in a more volatile way than does Group B.

20 bg is positively correlated with δ and bfB if
˛̨̨

γB−γA

σδ

˛̨̨
>

˛̨̨̨
γB−(φσsσf +γA)

σs

˛̨̨̨
.

7



sign of ĝ. The covariance of variables δ and η will play a central role in what follows. From the first and
the second rows of the diffusion matrix, we see that, instantaneously, this covariance is equal to −δηĝ.
These two variables covary positively when ĝ < 0 and negatively in the opposite case.21

When Group B is currently comparatively pessimistic (f̂B − f̂A < 0), Group A views positive
innovations in δ as more probable than Group B does, which is coded as positive innovations in the
change of measure η for those states of nature in which δ has positive innovations.

In the special case of pure Bayesian learning, in which everyone is rational (φ = 0) and differences in
beliefs can arise only from differences in priors, ĝ has zero diffusion and reverts to zero deterministically
(see Equation (16)). Even in that case, as long as ĝ has not reached the value 0, η fluctuates randomly
as public signals (δ, s) are realized.

Of the four state variables, two will have a direct effect on the economy. They are δ and η. We
propose to call δ “the fundamental” and η “sentiment”. The fundamental moves on its own but sentiment
is correlated with the fundamental because realizations of the dividend provide information. It will soon
become apparent that changes in η are equivalent to changes in the relative weights, or consumption
shares, of the two subpopulations. The other two variables, f̂B and ĝ, have an indirect effect in that
they act only on the first two and serve to keep the system in the Markovian form: f̂B is the current
estimate of the drift of δ and ĝ determines the diffusion of η. ĝ will be called “disagreement” and later
“dispersion of beliefs”.

To summarize:

Proposition 1 There are two distinct effects of imperfect learning:

• Effect #1: ĝ has nonzero diffusion. Even if the two groups of investors happened to agree today
(ĝ = 0), all investors still know that they will revise their future estimates of the growth rate. In
particular, the rational investors are conscious of the fact that irrational investors will revise their
estimate in a manner that differs from theirs, so that they know that they will not agree tomorrow.
This effect is instantaneous. It acts indirectly on the economy.

• Effect #2 is cumulative and direct: ĝ conditions the diffusion of η. The rational group of investors
may not agree today with the irrational ones about its estimate of the current rate of growth of
dividend: ĝ 6= 0. This effect is cumulative: ĝ is stochastic and conditions the diffusion of η, which
implies that η has a diffusion that can take large positive or negative values. We can say that
disagreement drives sentiment. This effects acts directly on the economy.

3 Individual optimization and equilibrium

In this section, we first describe the optimization problem faced by each investor and then, assuming
complete financial markets, the equilibrium in this economy, which includes a characterization of the
instantaneously riskless interest rate and the market price of risk. We conclude this section by explaining
how the complete-markets equilibrium can be implemented via dynamic trading in long-lived securities.

21We shall have occasion to verify that the same remains true at every maturity.
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3.1 Preferences of agents and their optimization problems

In this paper, we are interested in the interaction between two groups one of which is rational and the
other one not. Differences in risk aversion and differences in the rate of impatience are not our main
focus. So, we restrict our analysis to a situation in which both groups have power utility with the same
risk aversion, 1− α, and rate of impatience, ρ.

Assuming a complete financial market,22 the problem of population B is to maximize the expected
utility from lifetime consumption:

sup
c

EB

∫ ∞

0

e−ρt 1
α

(
cBt
)α
dt;α < 1 (18)

subject to the static budget constraint:

EB

∫ ∞

0

ξB
t c

B
t dt = θ

BEB

∫ ∞

0

ξB
t δtdt, (19)

where ξB is the change of measure from agents B’s probability measure to the risk neutralized measure

and θ
B

is the share of equity with which B is initially endowed. The first-order condition for consumption
equates marginal utility to λBξB

t , where λB is the Lagrange multiplier of the budget constraint (19):

e−ρt
(
cBt
)α−1

= λBξB
t . (20)

Group A is assumed to have the same utility function (with risk aversion 1 − α and rate of time

preference ρ) and an initial share θ
A

= 1 − θ
B

of the equity, and thus, an analogous optimization
problem. The only difference is that Population A uses a probability measure that is different from that
of Population B. The problem of Group A is to maximize the expected utility from lifetime consumption:

sup
c

EA

∫ ∞

0

e−ρt 1
α

(
cAt
)α
dt, (21)

subject to the static budget constraint:

EA

∫ ∞

0

ξA
t c

A
t dt = θ

AEA

∫ ∞

0

ξA
t δtdt, (22)

where ξA is the change of measure from agents A’s probability measure to the risk neutralized measure.23

Using B’s probability measure as the reference measure, the problem of A can be restated as:

sup
c

EB

∫ ∞

0

ηt × e−ρt 1
α

(
cAt
)α
dt, (23)

subject to the static budget constraint:

EB

∫ ∞

0

ξB
t c

A
t dt = θ

AEB

∫ ∞

0

ξB
t δtdt. (24)

22Details on the menu of securities are given in Section 3.4 below. David (2004) says that the fluctuating difference of
measure η between the two groups makes the market “effectively incomplete”. That is a matter of semantics. Analytically,
the equilibrium can be obtained by complete-market methods. It would probably be more descriptive of the analytical
structure that is reflected in Equation (23) below, to say that the fluctuating η causes the utility function of agents A to
become “effectively state dependent” (i.e. non von Neuman-Morgentsern) relative to the probability measure of Group B.

23ξA is the density that makes prices martingales under A’s probability measure. ξB is the density that makes prices
martingales under B’s probability measure. For any event E : EA

ˆ
ξA1E

˜
= EB

ˆ
η ξA1E

˜
= EB

ˆ
ξB1E

˜
which implies:

ξB = ηξA. The martingale pricing density is defined relative to each agent’s probability measure. But the risk neutral
measure is the same in the end.
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The first-order condition for consumption in this case is

ηt × e−ρt
(
cAt
)α−1

= λAξB
t , (25)

where λA is the Lagrange multiplier of the budget constraint (24).

3.2 Complete-market equilibrium

An equilibrium is a price system and a pair of consumption-portfolio processes such that: (i) investors
choose their optimal consumption-portfolio strategies, given their perceived price processes; (ii) the
perceived security price processes are consistent across investors; and (iii) commodity and securities
markets clear.

The aggregate resource constraint (clearing of the commodity market), from Equations (20) and
(25), is: (

λAξB
t e

ρt

ηt

) 1
α−1

+
(
λBξB

t e
ρt
) 1

α−1 = δt. (26)

Solving this equation:

ξB
t e

ρt =

( ηt

λA

) 1
1−α +

(
1

λB

) 1
1−α

δt

1−α

, (27)

and, therefore:

cAt = δt ×
(

ηt

λA

) 1
1−α(

ηt

λA

) 1
1−α +

(
1

λB

) 1
1−α

, (28)

cBt = δt ×
(

1
λB

) 1
1−α(

ηt

λA

) 1
1−α +

(
1

λB

) 1
1−α

. (29)

The consumption-sharing rule is linear in δ because both groups have the same risk aversion. But the
slope of the linear relation (the share of consumption allocated to each group) is stochastic and driven
by η because of the improper use of the signal by Group A.

The equilibrium value of ξB – the martingale pricing density under B′s probability – depends on η,
the probability density of A relative to B. In addition to reflecting the abundance or scarcity of goods, as
is usual in the absence of state preference or heterogeneous beliefs, the state prices also incorporates an
harmonic average of the probability beliefs of the two populations. As η fluctuates, average probability
belief or “sentiment” fluctuates with it. In writing his/her budget constraint based on ξB , B anticipates
A’s beliefs. This reflects “higher-order expectations.”

We highlight the fact that:

Proposition 2 The second derivative of the function ξB(δ, η) given by Equation (27) with respect to η
has the same sign as α.24 When α < 0 (risk aversion greater than 1), fluctuations in the expectations
of Group A reduce the average values of all the stochastic discount factors written with respect to B’s
measure. The cross derivative of the function ξB (δ, η) is unambiguously negative, which will depress
state prices in those states of nature in which the two variables δ and η are positively correlated (which
is when ĝ < 0 and Group B is relatively pessimistic).

24The first logarithmic derivative η
ξB × ∂ξB

∂η
(δ, η) is equal to the consumption share of Group A, cA

δ
.
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Had we, instead, used A’s measure as reference measure, we would also have found that fluctuations
in the expectations of Group B reduces the values of all the stochastic discount factors. The risk created
by the fluctuations in the expectations of others (and, in fact, one’s own as well) depresses financial
prices. The effect is reciprocal.

Given the constant multipliers λA and λB , and given the exogenous process for δ, and η, we have now
characterized the complete-market equilibrium. It would only remain to relate the Lagrange multipliers
λA and λB to the initial endowments. This requires the calculation of the wealth of each group, as will
be done in Equation (36).

Since Equations (27), (28), and (29) give the pricing measure and each group’s consumption as a
function of the current value of the dividend, δt and the current value of the change of measure between
the two groups, ηt, we need to carry along four state variables in the Markovian recursive formulation:{
δ, η, f̂B , ĝ , f̂B − f̂A

}
.25

3.3 Rate of interest and prices of risk

The rate of interest and the price of risk in this equilibrium are implied in the value (27) of the pricing
measure. Let r denote the rate of interest on an instantaneous maturity deposit and the vector κi as the
market prices of risk in the eyes of Group i = {A,B}. Then, as shown by Cox and Huang (1989), r and
κi are given by the drift and the diffusion, respectively, of the risk-neutralized measure for Population
i, ξi

t:

ξi
t = δα−1

0 exp
(
−
∫ t

0

rdt− 1
2

∫ t

0

∥∥κi
∥∥2
dt−

∫ t

0

(
κi
)ᵀ
dW i

)
. (30)

The interest rate and the market prices of risk can be obtained by applying Itô’s lemma to (27) and are
given in the next proposition.

Proposition 3 In equilibrium, the instantaneous interest rate is

r
(
η, f̂B , ĝ

)
= ρ+ (1− α) f̂B − 1

2
(1− α) (2− α)σ2

δ − (1− α) ĝ ×
(

η
λA

) 1
1−α(

1
λB

) 1
1−α +

(
η

λA

) 1
1−α

−1
2

(
α

1− α

)(
1
σ2

δ

+
1
σ2

s

)
ĝ2 ×

(
1

λB

) 1
1−α

(
η

λA

) 1
1−α[(

1
λB

) 1
1−α +

(
η

λA

) 1
1−α

]2 , (31)

and the market prices of risk in the eyes of Population B and A are:26

κA (η, ĝ) =

[
(1− α)σδ

0

]
− ĝ ×

(
1

λB

) 1
1−α(

1
λB

) 1
1−α +

(
η

λA

) 1
1−α

[ 1
σδ

1
σs

]
, (32)

κB (η, ĝ) =

[
(1− α)σδ

0

]
+ ĝ ×

(
η

λA

) 1
1−α(

1
λB

) 1
1−α +

(
η

λA

) 1
1−α

[ 1
σδ

1
σs

]
. (33)

25Notice that the current signals sA and sB are not state variables. This is because the instantaneous information they

provide about the growth rate of dividends is negligible next to the cumulative information already coded into bfA and bfB .
26The risk-neutral measures for Populations A and B differ only in the market prices of risk. That is, the instantaneously

riskless interest rate perceived by all agents is the same, and so the difference in the risk neutral measures is purely a
difference in the market prices of risk perceived by the two populations.
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The rate of interest, from Equation (31) is an increasing function of Population B’s expected rate

of growth of the dividend, f̂B . In fact, expectation of future growth is impounded only in the rate of
interest and not in the prices of risk.

From Equation (31), we also see that the rate of interest is influenced in a nonmonotonic and
asymmetric way by the difference in beliefs ĝ, as it is in David (2004). There are two ways to understand
this phenomenon. One is to say, at the intuitive level, that this happens because ĝ contributes both to
the averages of f̂A and f̂B , and also to the difference between them. The second form of explanation
is more analytical. It is based on the observation that, in Equation (31), the fourth term arises from
the cross derivative of ξB with respect to η and δ, which is always of the same sign, multiplied by
the covariance between these two variables, which changes sign with ĝ. When ĝ > 0 (Group A is
comparatively pessimistic), the rate of interest is lower. Group A views positive innovations in δ as less
probable than Group B does, which is coded as negative innovations in the change of measure η for
those states of nature in which δ has positive innovations. Group A views this configuration as a reason
to invest in the riskless asset because, for them, that is equivalent subjectively to positive innovations
in marginal utility in those states of nature in which δ has positive innovations.

From Equation (31) for the interest rate, we also see that the fifth term containing ĝ2 arises from the
second derivative of ξB with respect to η, which, as we saw, is negative whenever risk aversion is greater
than 1 (α < 0). When that is true, disagreement increases the equilibrium rate of interest because it
depresses all the stochastic discount factors.

We now study the expressions for the market price of risk in Equations (32) and (33). Under
agreement (ĝ = 0), the prices of risk κi include a reward for output risk Wδ, and this reward is (1−α)σδ,
but zero reward for signal riskWs. As soon as there is disagreement (ĝ 6= 0), both populations of investors
realize that “sentiment”, i.e., the probability measure of the other population, will fluctuate randomly.
Hence, they start charging a premium for the risk arising from the vagaries of others.

It is noteworthy that neither the rate of interest nor the prices of risk depend directly on the
parameter φ measuring irrationality. They depend on it indirectly via the current value of the probability
difference, η, and the current value of the difference of opinion, ĝ.

3.4 Securities-market implementation of the complete-market equilibrium

There are three Brownians in the economy, that is, the Brownians driving δ, f , and s. However, since
the growth rate f is not observed, only two of the three variables that they drive, {δ, f, s}, are observable
and can be used to define “states of nature” or as a basis for writing the terms of a security’s contract.
Correspondingly, there are only two Wieners of consequence: WB

δ and WB
s . Therefore, three linearly

independent securities are required to implement the equilibrium.

The choice of menu is largely arbitrary. Let there be a riskless, instantaneous bank deposit with a
rate of interest r. “Equity” or total wealth pays the aggregate dividend δ. We introduce also a consol
bond with infinite maturity paying a coupon 1× dt in each time period of length dt. That makes three
securities, two of which are instantaneously risky.

Consider then the price F of equity whose flow payoff at time t is δt. The price of this security
is also the total financial wealth of the economy. Its equilibrium price, using as reference measure the
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measure of Group B, can be obtained directly from the pricing measure (27):

F
(
δ, η, f̂B , ĝ, t

)
,

1
ξB
t

EB
δ,η, bfB ,bg

∫ ∞

t

ξB
u δudu (34)

= δ1−αEB
δ,η, bfB ,bg

∫ ∞

t

e−ρ(u−t)

( ηu

λA

) 1
1−α +

(
1

λB

) 1
1−α(

ηt

λA

) 1
1−α +

(
1

λB

) 1
1−α

1−α

δα
udu.

Similarly, the price of the consol bond is:

P
(
η, f̂B , ĝ, t

)
,

1
ξB
t

EB
δ,η, bfB ,bg

∫ ∞

t

ξB
u du (35)

= δ1−αEB
δ,η, bfB ,bg

∫ ∞

t

e−ρ(u−t)

( ηu

λA

) 1
1−α +

(
1

λB

) 1
1−α(

η
λA

) 1
1−α +

(
1

λB

) 1
1−α

1−α

δα−1
u du.

Using the same approach, we can compute the wealth of Group B investors as being the price of a
“security” whose flow payoff at time t is their consumption. From Equation (29), B’s wealth is:

FB
(
δ, η, f̂B , ĝ, t

)
,

1
ξB
t

EB
δ,η,f̂B ,bg

∫ ∞

t

ξB
u c

B
u du (36)

=

(
1

λB

) 1
1−α[

( η

λA )
1

1−α +( 1
λB )

1
1−α

δ

]1−α EB
δ,η,f̂B ,bg

∫ ∞

t

e−ρ(u−t)

( ηu

λA

) 1
1−α +

(
1

λB

) 1
1−α

δu

−α

du.

To compute the expected values in (34), (35) and (36), we need the joint conditional distribution

of ηu and δu, given δt, ηt, f̂
B
t , ĝt at t. That joint distribution is not easy to obtain but its characteristic

function, EB
δ,η, bfB ,bg [(δu)ε (ηu)χ], where ε, χ ∈ C can be obtained in closed form. Guided by the functional

form of the coefficients of the associated partial differential equation and following Heston (1993) and
Kim and Omberg (1996) and undoubtedly others, we show in Appendix B that:

H
(
δ, η, f̂B , ĝ, t;u, ε, χ

)
, EB

δ,η, bfB ,bg [(δu)ε (ηu)χ] = δεηχ ×Hf

(
f̂B , t, u; ε

)
×Hg (ĝ, t, u; ε, χ) , (37)

where functions Hf

(
f̂B , t, u; ε

)
, EBbfB

[(δu)ε] and Hg are defined explicitly by (B2) and (B5).27 Then,

Appendix C provides two alternative methods to write the functions F , P and FB explicitly as well as
“growth conditions” sufficient to guarantee that the time integrals in (34) and (35) converge.28

4 Effect of irrationality on asset prices and return volatilities

In this section, we study the effect of disagreement and irrationality on asset prices and their volatilities.
These are easily obtained by straightforward applications of Itô’s lemma to the explicit expressions for

27Appendix B also contains technical conditions for the function Hg to be well defined.
28As far as pricing is concerned, the limiting case in which θA → 1 and θB → 0 or vice versa (so that one population

dominates the market), exhibits some similarities with the model of a homogeneous-agent economy in Brennan and Xia
(2001). The closeness of the Brennan and Xia model to these limiting cases means that their model serves as a useful
pricing benchmark.
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the value of the stock market F and the value of bonds P and their derivatives. Generally, the diffusion
vector of a security price is equal to the gradient of the price function premultiplying the diffusion matrix
of state variables (Equation (17)).

In order to illustrate the effect of irrationality on securities prices, we specify numerical values for
the parameters of the model. Even though our objective is not to match the magnitude of particular
moments in the data, we would like to work with parameter values that are reasonable. The parameter
values that we specify are based on the estimation of models similar to ours undertaken in Brennan and
Xia (2001). In addition, we have set the volatility of the signal σs equal to 0.1. The particular values
chosen for the parameters are listed in Table 1.29

The dynamics of equilibrium prices are evidently driven by the state variables δ, η, f̂B , ĝ, t. Among
them, δ is only a scale variable multiplying the total value of the stock market and the wealth of each
population and not affecting at all the price of a bond. The state variable η always appears in the ratio
λBη
λA , incorporating Lagrange multipliers and the current probability measure difference between the two

populations. It captures the relative Negishi weights of the two populations, with λB

λA representing the
initial (time-0) weights and the initial distribution of wealth and η representing the changes in the weights
that have occurred as a result of the gains and losses accumulated by the irrational group because of
its learning mistakes. When we do not vary that ratio, we set it equal to 1 to represent the situation in
which the two groups currently have roughly similar sizes.30 But we also vary the relative weights of
the two populations because we wish to know how many rational investors are needed for the market to
behave almost as it would under full rationality.

We present our results from the analysis of the model in plots. Each plot in the figures has two
curves on it, with the dotted line representing the case where φ = 0 and all agents are rational, and the
dashed line representing the case where Population A is irrational, which corresponds to φ = 0.95.

4.1 Average belief vs. dispersion of beliefs

In addition to δ and η, the two other state variables are the beliefs of Population B, f̂B , and the difference
in beliefs, ĝ. However, as we have seen, ĝ contributes both to the average of f̂A and f̂B and also to the
difference between them. For purposes of interpretation and exposition, it is clearer to define f̂M , the
population average belief about the expected rate of growth (where the weights are each population’s
share of consumption):

f̂M ,
f̂B ×

(
1

λB

) 1
1−α + f̂A ×

(
η

λA

) 1
1−α(

1
λB

) 1
1−α +

(
η

λA

) 1
1−α

= f̂B − ĝ ×
(

η
λA

) 1
1−α(

1
λB

) 1
1−α +

(
η

λA

) 1
1−α

. (38)

29Observe that the range of parameter values that can be considered is restricted by the need to satisfy the growth
conditions for the prices of equity and bonds to be well defined (Equations (C15) and (C17)). This limits, in particular,
the range of values for the discount rate or for risk aversion that can be considered. Because of this constraint, the risk
aversion we consider is somewhat too low by itself to account for the equity premium. The presence of irrational traders,
however, will suffice to bring the equity premium up to realistic levels.

30If we vary the parameter φ, we adjust this ratio in such a way that the time-0 lifetime budget constraints of the two
populations still hold, with unchanged time-0 endowments of securities.
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The rate of interest can then be written:

r
(
η, f̂B , ĝ

)
= ρ+ (1− α) f̂M − 1

2
(1− α) (2− α)σ2

δ

−1
2

(
α

1− α

)(
1
σ2

δ

+
1
σ2

s

)
ĝ2 ×

(
1

λA

) 1
1−α

(
η

λA

) 1
1−α[(

1
λB

) 1
1−α +

(
η

λA

) 1
1−α

]2 , (39)

and the effect of ĝ, which appears in the last term is now purely quadratic and symmetric. In this
way, ĝ represents the effect of pure dispersion of beliefs in the population. For reasons we have already
explained à propos Equation (31), if risk aversion is greater than 1, α < 0, dispersion of beliefs increases
the rate of interest above what it would be under homogeneous beliefs.31 From the analytical point of
view, once f̂M has been introduced as a variable, the second derivative of ξB with respect to η is the
sole cause of the influence of ĝ, which drives the variance of η. The effect of the cross derivative of ξB

with respect to η and δ and of the covariance between these two variables has now been absorbed into
f̂M .

It is also conceivable to recognize average beliefs, f̂M , and dispersion of beliefs, ĝ, as two drivers for
the prices of other securities. It is unfortunately not possible to define a concept of “average belief” in
a manner that would be valid for all assets, specifically for assets of all maturities. The way in which
beliefs compound over time and get discounted into prices via marginal utility, when η is stochastic (and
generally correlated with δ), would imply a different concept of average beliefs for different maturities.32

The average belief f̂M that we have defined in (38) applies only to the rate of interest, which is an
instantaneous-maturity asset. Nonetheless, we use that concept below as a convenient, albeit only an
approximate, interpretation device.33

For these reasons, we wish to introduce a change of state variables from
{
δ, η, f̂B , ĝ

}
to
{
δ, η, f̂M , ĝ

}
and new pricing functions for the price of equity, the price of the consol bond, and the wealth of B:

F̃
(
δ, η, f̂M , ĝ, t

)
, F

(
δ, η, f̂B , ĝ, t

)
, (40)

P̃
(
δ, η, f̂M , ĝ, t

)
, P

(
η, f̂B , ĝ, t

)
, (41)

F̃B
(
δ, η, f̂M , ĝ, t

)
, FB

(
δ, η, f̂B , ĝ, t

)
. (42)

In the simpler case in which α is an integer (which can obtain only when α ≤ 0; i.e., risk aversion is
greater than 1), the solutions (C4, C5, C6) given in the appendix but rewritten in terms of the new

31David (2004) assumed a risk aversion lower than 1, precisely in order to bring down the rate of interest. See our
numerical illustrations below. Had we assumed a lifetime utility of the recursive, Epstein and Zin (1989) type, we could
have distinguished risk aversion from elasticity of intertemporal substitution. It is likely that the condition for the rate of
interest to be reduced (increased) by dispersion of beliefs would have hinged on the elasticity of substitution being higher
(lower) than 1, not on the level of risk aversion.

32This is related to the observation made by Allen, Morris, and Shin (2004) that, under risk aversion, market-average

beliefs do not satisfy the law of iterated expectations. Note that bfM is the drift of δ under an average probability
belief/measure M , defined by the change of measure (from B’s measure to M):»“

ηt

λA

” 1
1−α

+
“

1
λB

” 1
1−α

–1−α

»“
1

λA

” 1
1−α

+
“

1
λB

” 1
1−α

–1−α
.

Notice that this process does not have zero drift. It generates probability densities that do not sum to 1 and do not satisfy
the law of iterated expectations.

33Keeping bfM fixed is not sufficient to keep the average measure M fixed.
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variables can be interpreted as follows:

eF “
δ, η, bfM , bg, t

”
= δ

1»
1 +

“
λB

λA η
” 1

1−α

–1−α

Z ∞

t

e−ρ(u−t)×

8<:
1−αX
j=0

Cj
1−α

„
λB

λA
η

« j
1−α

EB
δ,η, bfM ,bg

"„
δu

δ

«α „
ηu

η

« j
1−α

#9=; du,

(43)

eP “
η, bfM , bg, t

”
,

1»
1 +

“
λB

λA η
” 1

1−α

–1−α

Z ∞

t

e−ρ(u−t)×

8<:
1−αX
j=0

Cj
1−α

„
λB

λA
η

« j
1−α

EB
δ,η, bfM ,bg
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In the next two sections, we analyze the prices of securities, the volatility of their returns and the
correlations of these returns.

4.2 Prices

We start by analyzing the effect of irrationality on the level of asset prices. Figure 1 plots the interest
rate, r, the price of equity, F , and the consol bond price, P , against three of the four state variables.34

Comparing the levels of dashed curves, which are for the case where Group A investors exhibit irra-
tionality (φ = 0.95), to those of the dotted curves, which are for the case where both groups of investors
are rational (φ− 0), illustrates that:

Proposition 4 In all cases, price levels are reduced by the presence of irrational traders (compare levels
of dashed curves to those of dotted curves) provided α < 0 (risk aversion is greater than 1).

This is because irrational traders add “noise” for which all traders require a risk premium.

Consider now the variations of the price functions. We first vary average belief f̂M , holding all other
variables at their benchmark values (including ĝ = −1%) (see the second column of Figure 1). In this
economy, the rate of interest increases linearly and the price of bonds decreases with an increase in the
expectation of future growth of either population (see the graph in the third row and second column of
Figure 1). In other words, the yields of bonds increase with the increase in the short rate, which arises
from higher expected growth. This is because higher growth of dividends implies lower marginal utility
of future consumption. In the case of equity (see the graph in the second row and the second column
of Figure 1), the same effect is present and, when risk aversion is greater than 1, that effect dominates
the effect of increased future dividends. The ratio of the price of equity to current dividends drops, as
did the price of the bond, with an increase in average belief of future growth. That is one way in which
our model differs from that of Brennan and Xia (2001). When Brennan and Xia increase their investors’
estimate of expected dividend growth, they keep constant their investors’ estimate of expected aggregate
consumption growth. The ratio of the price of equity to current dividend rises. When increasing their
investors’ estimate of expected aggregate consumption while keeping expected dividend growth constant,
the price of equity drops. In our model, consumption equals dividend. When investors become more

34No plots are shown against the variable δ, which is only a scale variable for equity and has no effect on bonds.
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optimistic about future dividend growth, the price-dividend ratio drops – the second effect dominates –
if risk aversion is greater than 1.

Varying now the dispersion of beliefs ĝ (third column of Figure 1) keeping other variables at their
benchmark values, we verify that the rate of interest, by design, is a quadratic function of ĝ, symmetric
around ĝ = 0. Almost as a mirror image of the rate of interest, the prices of the bond and of equity
decline as the square of ĝ increases. All three variations are due to the fact disagreement drives sentiment.
Disagreement translates into a larger diffusion of the sentiment variable η, which is a genuine source
of risk in the marketplace, as was indicated in Proposition 1. It appears that the price functions for
equity and the bond are symmetric under rational, that is, pure Bayesian, learning (dotted line), where
disagreement can arise only from differences in priors. However, they are no longer symmetric when
Group A is irrational. As mentioned earlier, this is because our concepts of average belief and dispersion
of beliefs ĝ is not uniformly applicable to all maturities.

Next, we vary the relative weight of the two populations, keeping ĝ and f̂M at their benchmark
values (ĝ = −1%; f̂M = f). The result is shown in the first column of Figure 1, where we have not

placed on the x-axis the variable ηλA

λB itself but cA

δ , the consumption share of Population A.35 The rate of

interest exhibits symmetric, concave variations around the point cA

δ = .5, as is apparent from Equation
(39). This feature obtains irrespective of the sign of ĝ as long as ĝ 6= 0.

When the share of the irrational Population A is very low, the prices of all securities are at their
highest level, which is, of course, equal to the level reached when both populations are rational. For
instance, for the bond (1/λA → 0):

P
(
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)
= δ1−αEB
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t
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u du.

When, in contrast, the share of the irrational population is very high, prices of all securities are lower
than in the rational case:
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)
= δ1−αEB

δ,η, bfB ,bg
∫ ∞

t

e−ρ(u−t) ηu

η
δα−1
u du = δ1−αEA

δ, bfA

∫ ∞

t

e−ρ(u−t)δα−1
u du.

The replacement of B’s measure with A’s measure is the only difference between these two security
price levels. It amounts to replacing f̂B with f̂A, as the two populations have different beliefs about
future growth, and simultaneously to replacing γA with γB > γA, as the two populations do not treat
the signal the same way and Group A is overconfident about their conditional estimate of growth (see
Footnote 18). The first effect is neutralized in our figure by the fact that we are keeping the average

belief f̂M at a given level.36 So, the second effect, the difference between γB and γA is the reason for
the price gap between the rational solution (dotted line) and the irrational solution (dashed line) in the
neighborhood of cA/δ = 1. By being overconfident conditionally, Group A creates noise, in the form of
additional unconditional or long-run ĝ risk, which in turn increases η risk, which itself is priced in the
market.

Between the two extremes, for intermediate value of the share of consumption of the two groups,
prices are even lower than they are at the two extremes.37 To understand this phenomenon, we can break

35Note that

“
η

λA

” 1
1−α“

η

λA

” 1
1−α +

“
1

λB

” 1
1−α

= cA

δ
. This is just a change of scale to ease the display of the graph. The relation

between η and cA/δ is monotonically increasing.
36When Group B is alone, bfB = bfM . When Group A is alone, bfA = bfM , the same number again.
37The statement is made under the assumption that α < 0 or risk aversion is greater than 1.
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up the prices of securities given by (43) and (44) into two components corresponding to the analysis of

the expected values of products such as EB
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product of expected values plus a covariance. The first component reflects the effect of the randomness of
η; the second captures the covariation between η and δ. This decomposition is represented in the graphs of
the first column of Figure 1 by means of the solid line: below the solid line is the effect of the randomness
of η alone resulting from the irrational behavior of Group B and above the line is the effect of the covaria-

tion. Because 0 ≤ j
1−α ≤ 1, Jensen’s inequality implies that EB
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(η being a martingale). Hence, the effect of the randomness of η alone is unambiguously negative.38 The
effect of the covariation is also negative, irrespective of the sign of ĝ but that is much harder to prove.

We emphasize this result in the following:

Proposition 5 Their exist weights of the irrational investor group in the market such that above those
weights the prices of equity and the bond are lower than they would have been had either population been
alone in the stock exchange. The reason for prices being depressed is that investors charge a premium
for the randomness of the sentiment variable. They speculate on the behavior of others and require a
reward for the risk taken.

Harrison and Kreps provide an example of a speculative-behavior equilibrium in which investors are
risk neutral and are subject to a no-short-sale constraint. In such a setting, when an investor views the
stock as being overvalued, they cannot sell it short. They go along with the overvaluation and hold the
stock positively because there is a chance that a category of investors will grow to be very optimistic in
the future and will want to buy the stock. Scheinkman and Xiong (2003) is an example of a dynamic
equilibrium of that type. The “option to resell” adds value to the stock over and above the value it has
in the eyes of the current owners.

In our setting, investors are not risk neutral and we do not constrain them from selling short.
Instead, investors limit the portfolio positions they take naturally as a consequence of being risk averse.
In fact, in the setting we consider, no investor would pay for the option to sell at a future market price
because they could simply sell short without cost. Moreover, in our model, both categories of investors
generally hold the stock simultaneously. So, in our model, it is possible for today’s valuation to be either
above or below what it would be if each category of investors had to value the anticipated dividend
stream based on its own expectations process. If risk aversion is less than 1, prices can only be below
the private valuation of the rational investors. They are also below the private valuation of irrational
investors provided the weight of the rational group is not too large. A relatively small group of irrational
investors can do a lot of damage to the level of prices in the financial markets.

A similar phenomenon is described in Cao and Ou-Yang (2005). Their setting is less restricted than
ours so that the conditions they find for the phenomenon to arise are more complex. Furthermore,
they mostly develop conditions applicable under near risk neutrality. But the intuition in both papers

38It is not difficult to show that:
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is the same.39 Each investor faces the prospect of the other investor becoming more or less optimistic
than he/she is today and incorporates that prospect in the price he/she is willing to pay today. Our
conclusion is that the prospect of the other investor becoming less optimistic dominates whenever risk
aversion is less than 1.40

4.3 Return volatility and correlation

As we saw, the levels of security prices are reduced when the “irrationality parameter” φ is increased
from φ = 0 to φ = 0.95. However, the main effect of irrationality of Group A on the volatility of asset
prices arises from the greatly increased volatility of state variable ĝ and, because of it, also from the
volatility of η. The diffusion of the securities’ prices is, of course, equal to the gradient of each price
function premultiplying the diffusion of state variables.

Figure 2 plots the volatility of stock returns, the volatility of bond returns, and the correlation
between stock and bond returns. As before, each quantity is plotted against three variables:41 the share
of aggregate endowment consumed by Group A, cA/δ, which indicates the relative weight of the two

populations, average beliefs, f̂M , and dispersion of beliefs, ĝ.

From Figure 2, we see that irrational investors create “noise” that increases the volatility of both risky
assets—the stock and the bond. The volatility increases without bounds when there is disagreement
(ĝ 6= 0). The volatility of bond returns increases also under the effect of irrationality and then also
without bounds. The values produced by the model for the volatility of bond returns (and interest
rates) are regrettably too high to fit real-world data.42

The plots in the last row of Figure 2 show that the presence of overconfident investors, as well
as the disagreement between investor groups, increase the correlation between stock and bond returns
because, as we pointed out, the prices of the two assets move in the same direction when expectations
fluctuate. The correlation increases under irrationality but agreement (ĝ = 0) and it approaches 1 as
disagreement is introduced (ĝ 6= 0). In fact, under rationality, including the case of rationality and
agreement, the correlation between stocks and bonds is negative for our choice of parameter values. The
reason for this phenomenon is the impact of the dividend received. In the absence of a signal apart from
the current dividend, the correlation between stocks and bonds is negative because the ex post stock
return is increased by a higher-than-expected dividend whereas the ex post bond return is reduced by
the prospect of increased growth it induces. If, however, a favorable public signal arrives, the enhanced
growth prospects bring down both securities prices simultaneously. For sufficiently small values of σs,
i.e., sufficiently high signal precisions, the rational case correlation becomes positive. And, in the case
of irrationality, the overconfident response of irrational traders to the public signal is large enough to
cause the latter effect to dominate.

To determine how the level of volatility in the market varies with the relative weight of Groups A
and B, we plot in the first column of Figure 2 the volatility of the stock market return, the bond return
and their correlation as a function of Population B’s consumption. This shows that the excess volatility
in the market increases with an increase in the relative weight of Population A. The plot also shows that

39It would appear that the results of Cao and Ou-Yang (2005) are mostly based on the effect of the covariance between
η and δ (in our notation).

40Our statement is limited to the case of isoelastic utility with equal risk aversions for both groups of investors.
41The level of aggregate endowment (dividend) δ, which is only a scale variable for the equity price, has no impact on

the moments of the rates of return.
42With a risk aversion smaller than 1, David (2004) was able to match the volatility of interest rates much better.

Alternatively, if one wanted to match interest-rate volatility, one could introduce habit formation.
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it is not enough to have just a few rational investors to get the volatility down to the level warranted by
fundamentals.

5 The optimal portfolio of a rational investor B

In this section, we first study the wealth of the investor and then analyze the portfolio strategy of the
rational investor.

5.1 The wealth of Group B

Figure 3 illustrates the variations of the wealth of Group B relative to three of the four state variables.
As was the case for total wealth, or equity, the effect of a rise in average anticipated growth (f̂M ) on the
wealth of Group B is to decrease it. That is illustrated in the second plot of Figure 3. To prepare for the
forthcoming subsection on portfolio choice, let us note that this means that a positive random shock in
f̂M is “good news” for Group B (as well as for Group A).43 In states of nature in which average growth
expectation is high, they have arranged to have less accumulated savings to finance future consumption.
Equivalently, when making up its portfolio, Group B seeks to own securities with high unexpected
returns in state of nature that have negative shocks to f̂M . Bonds will have this property.

Not surprisingly given that we have defined ĝ , f̂B− f̂A, implying that ĝ > 0 represents a situation
in which Group B is more optimistic than the average about future growth, there is a directional effect
on the wealth of Group B. The wealth of Group B is a decreasing function of ĝ. A positive random
shock in ĝ is also “good news” for Group B (but not for Group A). In states of nature in which they
are optimistic about the future, they have arranged to have less accumulated savings to finance future
consumption. Consequently, when making up its portfolio, Group B will seek to protect itself against
future negative shocks to ĝ.

As ĝ is reduced to sufficiently negative values, however, the wealth of B starts dropping. As we saw
‘a propos total wealth, the disagreement translates into a larger diffusion of the sentiment variable η,
which is a genuine source of risk in the marketplace (Effect #2 in Proposition 1). That almost symmetric,
non-directional effect is superimposed on the directional effect resulting in the nonmonotonic curve we
see in Figure 3.

The first plot of Figure 3 shows that varying η, and with it the relative weight of the two populations,
the wealth of Group B, not surprisingly, drops monotonically with the share of consumption of Group A,
cA/δ.

43Denote by J(F B , Y ) the value function of the investor’s lifetime utility under a Merton-like dynamic-programming
formulation of the investor’s optimization problem, where F B denotes the investor’s wealth and Y any state variable. Then
one can show, by applying the Cox-Huang transformation, that

F B
Y = −

JF BY

JF BF B

. (46)

From the concavity of the utility function, we know that JF BF B < 0 so that F B
Y has the same sign as JF BY . Merton

(1971) defines as “good news” a positive shock to a state variable Y such that JF BY < 0, because that implies that a
positive shock to Y induces a decrease in marginal utility and a rise in current consumption. Lower current financial wealth
is associated with higher current consumption.
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5.2 The portfolio composition of Population B

To solve the portfolio-choice problem of Agent B, we apply the risk-sensitivity method of Cox and Huang
(1989) to the expression for the wealth of Investor B, which is given in (36).44 All that is needed for

this purpose are the price functions F̃ , P̃ , F̃B and the 4× 2 diffusion matrix of the state variables:
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In this way, we can obtain directly the total portfolio
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]
of investor B. These are

the fractions of the outstanding total supply of securities held by Investor B.45 The signs of the terms
of the gradient of Population B’s wealth with respect to the four state variables have been revealed to
us by Figure 3.

Figure 4 gives Population B’s portfolio holding (expressed as a percentage of wealth). In all the
plots of this figure, the variable on the x-axis is the dispersion in beliefs, ĝ (the benchmark value of
which is 1%). There are two columns of plots, with the one on the left giving the position in equity and
the one on the right giving the position in bonds. There are three rows of plots in each column: the first
row gives the overall investment in stocks and in bonds, while the other two rows decompose this total
holding into two components. The second row gives the static (mean-variance or myopic) investment in
stocks and in bonds;46 and, the third row gives the investment in stocks and bonds in order to hedge
intertemporally against changes in all the state variables.47

Let us start with the case of rationality (dotted line) of Group A and agreement (ĝ = 0). There is
then nothing to distinguish the two populations. The top row of Figure 4 shows that both groups are
100% invested in equity and 0% in bonds.

Continuing with the case of rationality but introducing some current disagreement (ĝ 6= 0), we see
that Population B continues to be 100% invested in equity irrespective of the disagreement but it engages
in speculation in the bond market. The demand curve for bonds is symmetric around the benchmark
value of ĝ and is nonmonotonic. As we have had occasion to point out, the reason for the prevalence of
this nonmonotonicity is that the variable ĝ has two impacts, one of which is directional, the other one
non-directional.

Decomposing the rational demand for the bond into static and hedging components (Figure 4, second
column, rows two and three), we discover that the zero demand for the bond at the point ĝ = 0 is the
sum of a negative static component and a positive hedging component. The static component reflects
beliefs about returns. When Group B is, for instance, optimistic about future growth (ĝ > 0), it shorts
the bond and invests the proceeds in the short-term deposit. This is because it expects the short rate
to rise relative to the current value of long rates. Equity would be an inferior way to speculate about
future expected growth, or about future spot interest rates, because the realized one-period output flow

44That method is based on the “martingale representation theorem”.
45Over the two populations, these fractions sum to 1 for equity and to 0 for the bond so that the equilibrium holdings

of Population A follow immediately from those of B.
46The static portfolio component is obtained by rewriting the wealth function eF B as a function of

“
δ, ξB , bfM , bg, t

”
instead of

“
δ, η, bfM , bg, t

”
. The gradient with respect to ξB gives the hedge portfolio protecting against ξB . But we know

from Cox and Huang (1989) that that is precisely the static (Markowitz) component. That is because the diffusion vector
of ξB is equal to the vector of expected returns premultiplied by the diffusion matrix of securities returns.

47The intertemporal hedge itself could be broken down into three hedges against the three state variables: η, bfM , andbg.
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δ would introduce noise in ex post returns that is absent with bonds. Indeed, the static demand for
equity is not very different from the number 1.

The bond is a hedge, even in the absence of disagreement, for a reason which is the mirror image of
the reason for which it is a speculative instrument in the presence of disagreement. Even when investors
today happen to agree about expected future growth, they know that tomorrow both of their opinions
will have evolved. The hedge operates as follows. If, tomorrow, the average belief f̂M rises to a higher
level than today, bond prices are reduced so that a person holding a long position in the bond collects an
offsetting return. The protection operates also in the case of a reduced belief of growth. Investors also use
the bond as a hedge against future disagreement ĝ = f̂B − f̂A. Both hedges work in the same direction
because we are currently looking at the demand of Group B. Because beliefs are mean reverting, hedging
demand slopes upward. Given the high volatility of interest rates in our model, the hedging demand is
also quite sizable. It represents around half of the wealth of Group B in our numerical example.48

The strong hedging pressure brings down the expected excess return on bond, which explains why
the static demand is strongly negative.

The major difference between the two cases of irrationality and rationality is found in the equity
column of Figure 4 (compare dashed and dotted lines). In the case of irrationality (dashed line) and
agreement, the rational investor B invests into equity (and to a smaller extent into bonds) a smaller
fraction of his/her wealth than in a rational market. The reason is that rational, risk averse investors
are deterred by the presence of the irrational traders which are a source of risk in their eyes. They prefer
to take refuge in the riskless short-term asset unless they are extremely optimistic about future growth.
The reduced equity position is a way to hedge fluctuations in the beliefs (see bottom row, first column).

If, however, the rational investors are currently more optimistic than the irrational ones (ĝ > 0),
they overcome their fear and invest in equities. The opposite is, of course, true when they are pessimistic.
This demand behavior is mostly due to static demand (see first column, second row), which exploits
predictability in stock returns. However, because investors may change their minds in subsequent periods,
the increased static demand in case of optimism is tempered by an accompanying increased hedging
demand for stocks (first column, third row).

Predictability has not been documented so far. It is present because the stock price is a decreasing
function and the conditionally expected stock return an increasing function, of the average estimate of
expected growth. These two relations induce a negative statistical relation between current stock price
and future expected return. Predictability of stock returns has two components: predictability of future
dividends and predictability of future expected returns. And predictability of future expected returns
has two components; predictability of future interest rates and predictability of future risk premia on
equity. We have seen that Group B investors exploit predictability of interest rates (and risk premia on
bonds) by means of bonds: they short them when they are optimistic. They now exploit the other two
components by means of an equity investment: they go long into the equity when they are optimistic.
Their main purpose in doing that is to exploit predictability of the nearby dividends. The difference of
motivation (nearby dividend rather than price movement) explains that for equity they go long at the
same time that they short the bond whose only predictable return will come from a movement in price.

For bonds, there is not a clear difference between the demands for them in the cases of rationality
and irrationality. The motives behind the demand for bonds remain what they were. The static de-
mand reflects a desire to take a bet on future growth by means of term structure bets. The hedging

48We should also mention that equity serves as a hedge against η risk.
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demand remains strong at a level equal to about half the size of the investor’s wealth for our parameter
configuration (second column, bottom line).

Proposition 6 In the case of irrationality as in the case of rationality, the bond serves both to take a
view on future expected growth rates and to hedge against their revisions that will be reflected in future
bond prices, whereas in the case of irrationality, equity is used by rational investors mostly to exploit
their disagreement with the irrational investors about the value of the nearby dividends.

In a sense, from the point of view of rational investors, the distribution of the roles between the two
risky instruments that are available is as follows. Equity is the short-term risky investment in that its
holdings by rational investors are motivated by the prospect of good cash flows. The bond, on the other
hand, is the long-term investment in that its holdings are motivated by future asset price movements.

We have demonstrated that a rational risk-arbitrageur finds it beneficial to trade on his/her belief
that the market is being foolish. When doing so, however, he/she must hedge future fluctuations in
the market’s foolishness. This illustrates the general idea that risk arbitrage cannot just be based on
a current price divergence. It must also be based on a model of irrational behavior and a prediction
concerning the speed of convergence. The risk arbitrage must include a protection in case there is a
deviation from that prediction, a form of risk that David (2004) has called “trading risk” and that we
called “sentiment risk”. We have found that, for the current form of heterogeneous beliefs, bonds are
an essential accompaniment of equity investment, in order to hedge the trading or sentiment risk that
is present in the financial market.

6 Vindication: Profits of rational investors vs. survival of over-
confident agents

We now return to the question we asked originally concerning the potential for gains that the excessive
volatility creates for the rational investors who follow the portfolio strategy that we described. By asking
whether rational risk arbitrageurs can take advantage of overconfident investors, we simultaneously
ask whether rational investors eliminate the overconfident investors from the economy very quickly, or
whether overconfident investors can survive for some time. Survival of irrational traders is an issue that
is the focus of recent papers by Berrada (2004), Kogan, Ross, Wang, and Westerfield (2003) and Yan
(2004). Here, however, we consider a different kind of irrational agents, who change their mind too
frequently.

One way to measure the survival of irrational agents in the economy is to study the evolution of
the expected value of the share of total dividend that will be consumed by them under the objective
probability measure.

The expected value of Population A’s consumption-dividend ratio under the objective probability
measure is:
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To compute this expectation, we need conditional distribution of ηu, given ηt, ft, f̂
A
t , f̂

B
t at t. As in the

previous section, we first obtain its characteristic function:
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where ĝA , f̂A − f , ĝB , f̂B − f , and
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for certain functions of time AP , C
A, CB , and CAB that are given in Appendix C.

Then, by Fourier inversion, survival denoted by S
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Figure 5 illustrates the case where irrational agents (φ = 0.95) start out having 50% of the total
wealth. We plot against future dates the expected percentage of the total dividends consumed by
Group A. The first conclusion is that, ultimately, irrational agents become extinct. But, the more
interesting observation is that, in contrast to what is typically assumed in models of rational asset pricing,
irrational agents do not lose their wealth right away. For instance, if the initial share of consumption
of the overconfident investors was 50%, then even after 200 years they consume 25% of the aggregate
dividends.

7 Conclusion

Assuming that there is excess volatility in capital markets, our objective was to analyze the trading
strategy that would allow an investor to take advantage of this excess volatility. To achieve our goal,
we first constructed a general equilibrium model where stock prices are excessively volatile using the
same device as in Scheinkman and Xiong (2003). That is, there are two classes of agents, and one class
(irrational or overconfident) believes that the magnitude of the correlation between the innovations in
the signal and innovations in the unobserved variable, the growth rate of dividends, is larger than it
is actually. Consequently, when a signal is received, this class of agents overreacts to it, which then
generates excessive stock price movements. We then analyzed the trading strategy of the rational
investors who knows that the true magnitude of this correlation is zero.

Our analysis shows that the portfolio of rational investors consists of two components: a static (i.e.,
Markowitz) portfolio based only on current expected stock returns and risk (this is also a hedge against
changes in the pricing measure), and a portfolio that hedges the investor against the future changes in
output that are not impounded in the change of the pricing measure. The second component of the
portfolio hedges the investor against future revisions in the market’s expected dividend growth, and a
portfolio that hedges against future disagreement in revisions of expected dividend growth. There are
two aspects to the portfolio strategy of rational investors: First, these investors may not agree today
with the market about its current estimate of the growth rate of dividends: when the rational investors
are more optimistic than the market, they increases their investment in equity. Second, even when the
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two groups of investors happen to agree today, rational investors are aware that irrational investors will
revise their estimate in a manner that differs from theirs. This second effect makes rational investors
hold fewer shares of equity than would be optimal in a market without excess volatility and causes them
to take a negative position in bonds (which would be zero in the absence of excess volatility).

In short, we find that rational risk-arbitrageurs finds it beneficial to trade on their belief that the
market is being foolish but when doing so, they must hedge future fluctuations in the market’s foolishness.
Thus, our analysis illustrates that risk arbitrage cannot be based just on a current price divergence; it
must also be based on a model of irrational behavior and a prediction concerning the speed of price
convergence, and that the risk arbitrage must include a protection in case there is a deviation from that
prediction.

We also find that, in contrast to what is typically assumed in standard models of asset pricing in
frictionless markets, the presence of a few rational traders is not sufficient to eliminate the effect of
overconfident investors on excess volatility and that overconfident investors may survive for a long time
before being driven out of the market by rational investors.
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A Proofs for propositions

Proof of Proposition 3

Taking into account (7) and (12) and applying Itô’s lemma, we get:

dδα−1
t

δα−1
t

= − (1− α)
(
f̂B

t dt+ σδdW
B
δ,t

)
+

1
2

(1− α) (2− α)σ2
δdt, (A1)

d
(

ηt

λB

) 1
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) 1
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=
1
2
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t , (A2)

d
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(
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A
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Then, from (27):

dξB
t

ξB
t

= −ρdt− (1− α)
(
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t dt+ σδdW
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)
+

1
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[
1
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Collecting drift and diffusion terms in dξA
t

ξA
t

and taking into account (30), we obtain (31) and (33).

As η is a change from A’s measure to B’s measure, ξB = ξA× η. Consequently, κB = κA + ν, which
leads to (32).

B The characteristic function

We want to compute

H
(
δ, η, f̂B , ĝ, t, u; ε, χ

)
, EB

δ,η, bfB ,bg [(δu)ε (ηu)χ] .

This function satisfies the linear PDE:

0 ≡ DH
(
δ, η, f̂B , ĝ, t, u; ε, χ

)
+
∂H

∂t

(
δ, η, f̂B , ĝ, t, u; ε, χ

)
, (B1)

with the initial condition H
(
δ, η, f̂B , ĝ, t, t; ε, χ

)
= δεηχ, and where D is the differential generator of(

δt, ηt, f̂
B
t , ĝt, t

)
under the probability measure of Group B. In doing that, we shall use the following
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function:

Hf

(
f̂B , t;u, ε

)
, EB

δ, bfB [(δu)ε] = exp
{
ε

[
f (u− t) +

1
ζ

(
f̂B − f

) [
1− e−ζ(u−t)

]]
+

1
2
ε (ε− 1)σ2

δ (u− t)

+
ε2γB

2ζ2

[
1− e−ζ(u−t)

]2
+
ε2σ2

f

4ζ3

[
2ζ (u− t)− 2

[
1− e−ζ(u−t)

]
−
[
1− e−ζ(u−t)

]2]}
.

(B2)

Spelling out (B1) we have:

0 ≡ ∂H
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)

+
1
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+
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∂
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(
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s

)
γB
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(
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+
∂H
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with terminal condition:
H
(
δ, η, f̂B , ĝ, u, u; ε, χ

)
= δε × ηχ.

The solution of this PDE is:

H
(
δ, η, f̂B , ĝ, t, u; ε, χ

)
, δεηχH̃

(
f̂B , ĝ, t, u; ε, χ

)
,

where:
H̃
(
f̂B , ĝ, t, u; ε, χ

)
= Hf

(
f̂B , t, u; ε

)
×Hg (ĝ, t, u; ε, χ) , (B4)

Hg (ĝ, t, u; ε, χ) = exp
{
A0 (u− t) +B0 (u− t)× ĝ + C (u− t)× ĝ2

}
, (B5)

and where:

C (χ;u− t) =
2a
(
1− e−q(u−t)

)
q − b+ (q + b) e−q(u−t)

, (B6)
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a =
1
2
χ (χ− 1)
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1
σ2

δ

+
1
σ2

s

)
(B7)

b = −2
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σ2
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δ
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δ
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c = 2×

(γB − γA

σδ

)2

+

(
γB −

(
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δ
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n = −γ
B

ζ
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γB − γA

σ2
δ

+
γB −

(
φσsσf + γA

)
σ2

s

)
(B13)

q =
√
b2 − 4ac. (B14)

B0 (ε, χ;u− t) = εB (χ;u− t) (B15)

where49

B (χ;u− t) =
2
[
ϑ1 + ϑ2e

− 1
2 q(u−t) + ϑ3e

−q(u−t) + ϑ4e
−ζ(u−t) + ϑ5e

(−q−ζ)(u−t)
]

q − b+ (q + b) e−q(u−t)
, (B16)

and

ϑ1 =
4am+ k (q − b)

q
, (B17)

ϑ2 = −2
(

4am− bk

q
+ q

4an− bl + 2lζ
q2 − 4ζ2

)
, (B18)

ϑ3 =
4am− k (q + b)

q
, (B19)

ϑ4 =
4an+ l (q − b)

q − 2ζ
, (B20)

ϑ5 =
4an− l (q + b)

q + 2ζ
. (B21)

whereas:
A0 (ε, χ;u− t) = A1 (χ;u− t) + ε2A2 (χ;u− t) ,
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”
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where

A1 (χ;u− t) =
1
4

[
2 ln (2q)− 2 ln

(
q − b+ (q + b) e−q(u−t)

)
− (b+ q) (u− t)

]
, (B22)
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(
3q
2

;u− t

)
+2ϑ2ϑ4D2
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2
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)

+ 2ϑ2ϑ5D2

(
3q
2

+ ζ;u− t

)
+ 2ϑ3ϑ4D2 (q + ζ;u− t)

+2ϑ3ϑ5D2 (2q + ζ;u− t) + 2ϑ4ϑ5D2 (q + 2ζ;u− t)] , (B23)

and denoting by H the Hypergeometric function:

D1 (p;u− t) =
∫ u

t

e−p(τ−t)

q − b+ (q + b) e−q(τ−t)
dτ (B24)

=


q(u−t)−ln(2q)+ln(q−b+(q+b)e−q(u−t))

q(q−b) , p = 0,

1
p(q−b)

[
H
(
1, p

q , 1 + p
q ,−

q+b
q−b

)
− e−p(u−t)H

(
1, p

q , 1 + p
q ,−

q+b
q−be

−q(u−t)
)]
, p > 0,

D2 (p;u− t) =
1

q (q − b)

[
1
2q
− e−p(u−t)

q − b+ (q + b) e−q(u−t)
+ (q − p)D1 (p;u− t)

]
.

Proposition B1 The function Hg (ĝ, t, u; ε, χ) is well-defined for χ ∈ [0, 1] and u ≥ t.

Proof. The radicand in Equation (B14) for q can be written as a quadratic trinomial of χ:

b2 − 4ac = q2χ
2 + q1χ+ q0, (B25)

where

q2 = −
4σ2

fφ
2

σ2
δ

, (B26)

q1 = 8φσf
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As q2 ≤ 0, q0 > 0, and

q2 + q1 + q0 = 4

(
ζ2 +

σ2
f

σ2
δ

+
σ2

f

σ2
s

)
> 0, (B29)
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then, when χ ∈ [0, 1], b2 − 4ac > 0, and q =
√
b2 − 4ac is real and strictly positive.

Taking into account that c ≥ 0, and for χ ∈ [0, 1], a ≤ 0 and

b = −2

χ
√
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σ2
f

σ2
δ

+
σ2

f

σ2
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+ (1− χ)
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σ2

f

σ2
s

+
σ2

f

σ2
δ

)  < 0, (B30)

we obtain that q + b ≥ 0 and
q − b+ (q + b) e−q(u−t) ≥ q − b > 0. (B31)

Consequently, when χ ∈ [0, 1] and u ≥ t, functions C (χ;u− t), and B (χ;u− t) are well-defined,
integrals A1 (χ;u− t) and A2 (χ;u− t) are convergent and their closed-form expressions (B22) and (B23)
are obtained correctly.

Note that we consider only χ ∈ [0, 1], because in Appendix C, we consider only the values: χ = j
1−α ,

j = 0, ..., 1− α, when α ∈ Z.

C The wealth and price functions

Knowing the characteristic function (37) from Appendix B, the securities market prices (34), (35) and
(36) can be obtained by one of two methods. One is general. It is the inverse Fourier transform, for
which the formulae are given below and that can be computed by means of the Fast Fourier Transform,
but for which we have no proof of convergence.50 By Fourier inversion, the stock price is:

F
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∫ ∞
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∫ ∞
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]
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Similarly, the price of the consol bond is:
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The wealth of Group B investors is:
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50In fact, we do not know whether Hg is well defined for χ ∈ ]−i∞, +i∞[ .
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The second method is applicable in the special case in which 1−α ∈ N and α < 0. Then the bracket[(
ηu

λA

) 1
1−α +

(
1

λB

) 1
1−α

]1−α

can be expanded into an exact finite series by virtue of the binomial formula.

The overall calculation is then greatly simplified. The equity price is equal to:51
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Similarly, the price of a consol bond is:

P
(
η, f̂B , ĝ, t

)
,

1[
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(
λB

λA η
) 1

1−α

]1−α

∫ ∞

t

e−ρ(u−t) ×Hf

(
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)

×
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Hg
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j
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and the wealth of Group B is:
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(
δ, η, f̂B , ĝ, t

)
= δ

1[
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(
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λA η
) 1

1−α

]1−α
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Analogously, we can derive all other functions: gradients, second moments, portfolio holdings.

Proposition C1 When α is an integer, the growth condition for the function F to be well-defined is:

αf +
1
2
α(α− 1)σ2

δ +
α2σ2

f

2ζ2
< ρ. (C7)

Proof. For u ≥ t, and χ ∈ [0, 1], b (χ) < 0, q − b > 0 and

0 ≤ q + b

q − b
e−q(u−t) < 1, (C8)

we can obtain the Taylor series below

1
q − b+ (q + b) e−q(u−t)

=
1

(q − b)
(
1− q+b

b−q e
−q(u−t)

) =
1

q − b

∞∑
j=0

[
q + b

b− q
e−q(u−t)

]j

, (C9)

51The χ argument belongs to [0, 1] allowing us to apply Proposition B1 to conclude that Hg is well defined.
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and the series is uniformly convergent. So, we can interchange summation and integral operator in the
expression for A1 (χ;u− t) and obtain:

A1 (χ;u− t) =
c

2

∫ u

t

C (τ − t) dτ

=
c

2

∫ u

t

2a
(
1− e−q(τ−t)
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∞∑
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[
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]j

dτ

= %1 × (u− t) +
∞∑
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%1j × e−jq(u−t), (C10)

where
%1 =

ac

q − b
≤ 0. (C11)

Similarly,

A2 (χ;u− t) =
∫ u

t

B (τ − t)
[
B (τ − t)× c

4
+m+ ne−ζ(τ−t)

]
dτ
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∞∑
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[
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1
2 jq(u−t) + %̃2j × e−( 1

2 jq+ζ)(u−t)
]
, (C12)

where

%2 =
cϑ2

1

(q − b)2
+

2mϑ1

q − b
=

4am2 − 2bmk + ck2

q2

= −
2φ2σ2

fχ (1− χ)
q2

(
1 +

σ2
f

ζ2σ2
δ

)
≤ 0. (C13)

So, the function Hg (ĝ, t, u; ε, χ) can be represented as:

Hg (ĝ, t, u; ε, χ) = exp
{[
%1 (χ) + ε2%2 (χ)

]
× (u− t)

+
∞∑

j=0

[
h1j (ĝ; ε, χ) e−

1
2 jq(χ)(u−t) + h2j (ĝ; ε, χ) e−( 1

2 jq(χ)+ζ)(u−t)
] . (C14)

Similarly to the approach in Brennan and Xia (2001, Theorem 6),52 we can prove that, when α ∈ Z,
the growth condition for the general economy is:

αf +
1
2
α(α− 1)σ2

δ +
α2σ2

f

2ζ2
+ max

χ∈{ j
1−α}1−α

j=0

[
%1 (χ) + α2%2 (χ)

]
< ρ. (C15)

Finally, from (C11) and (C13)

max
χ∈[0,1]

[
%1 (χ) + α2%2 (χ)

]
= %1 (0) + α2%2 (0) = 0, (C16)

and the growth condition (C15) turns into (C7).

Proposition C2 When α is integer, the growth conditions for the price of the consol bond, P , to be
well defined is:

(α− 1) f +
1
2

(α− 1) (α− 2)σ2
δ +

(α− 1)2 σ2
f

2ζ2
< ρ. (C17)

52In addition, using standard ”epsilon-delta” reasoning, we should consider only the finite sum in (C14).
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D The expected value of A’s consumption share

In this appendix, we wish to compute the following expected value:53

H
(
η, ĝA, ĝB , t;u, χ

)
, EP

η,bgA,bgB [ηu]χ .

Note that the expectation above is computed with respect to the true probability measure rather than
the measure of B, as was done in the previous appendix, where we computed EB

δ,η, bfB ,bg [(δu)ε (ηu)χ].

We know that

dĝA
t = −ĝA

t

(
ζ +

γA

σ2
δ

+
φσsσf + γA

σ2
s

)
dt+

γA

σδ
dZδ

t +
φσsσf + γA

σs
dZs

t − σfdZ
f
t

= −ψAĝA
t dt+

γA

σδ
dZδ

t +
φσsσf + γA

σs
dZs

t − σfdZ
f
t (D1)

dĝB
t = −ĝB

t

(
ζ +

γB

σ2
δ

+
γB

σ2
s

)
dt+

γB

σδ
dZδ

t +
γB

σs
dZs

t − σfdZ
f
t

= −ψB ĝB
t dt+

γB

σδ
dZδ

t +
γB

σs
dZs

t − σfdZ
f
t (D2)

dηt

ηt
=

(
ĝB

t − ĝA
t

)
ĝB

t

(
1
σ2

δ

+
1
σ2

s

)
dt−

(
ĝB

t − ĝA
t

)( 1
σδ
dZδ

t +
1
σs
dZs

t

)
. (D3)

The function H
(
η, ĝA, ĝB , t;u, χ

)
satisfies the linear PDE:

0 ≡ DH
(
η, ĝA, ĝB , t;u, χ

)
+
∂H

∂t

(
η, ĝA, ĝB , t;u, χ

)
, (D4)

with the initial condition H
(
η, ĝA, ĝB , t;χ

)
= ηχ, where D is the differential generator of

(
η, ĝA, ĝB , t

)
under the true probability measure. Spelling out (D4) we have:

0 ≡ ∂H

∂η
η
(
ĝB

t − ĝA
t

)
ĝB

t

(
1
σ2

δ

+
1
σ2

s

)
− ∂H

∂ĝA
ψAĝA − ∂H

∂ĝB
ψB ĝB

+
1
2
∂2H

∂η2

[
η
(
ĝB

t − ĝA
t

)]2( 1
σ2

δ

+
1
σ2

s

)

+
1
2

∂2H

∂ (ĝA)2

((
γA
)2

σ2
δ

+

(
φσsσf + γA

)2
σ2

s

+ σ2
f

)

+
1
2

∂2H

∂ (ĝB)2

((
γB
)2

σ2
δ

+

(
γB
)2

σ2
s

+ σ2
f

)

− ∂2H

∂η∂ĝA
η
(
ĝB

t − ĝA
t

)(γA

σ2
δ

+
φσsσf + γA

σ2
s

)
− ∂2H

∂η∂ĝB
η
(
ĝB

t − ĝA
t

)(γB

σ2
δ

+
γB

σ2
s

)

+
∂2H

∂ĝA∂ĝB

(
γAγB

σ2
δ

+

(
φσsσf + γA

)
γB

σ2
s

+ σ2
f

)
+
∂H

∂t
. (D5)

53In this appendix, H(·) should not be confused with the H function used in Appendix B; that is, we use the same
character, but they denote different functions.
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The appropriate solution of this PDE is

H
(
η, ĝA, ĝB , t;u, χ

)
, ηχHP

(
ĝA, ĝB , t;u, χ

)
where:

HP

(
ĝA, ĝB , t;χ;u

)
=

exp
{
AP (u− t) + CA (u− t)×

(
ĝA
)2

+ CB (u− t)×
(
ĝB
)2

+ 2CAB (u− t)× ĝA × ĝB
}
, (D6)

and:

AP (u− t) =
∫ u

t

[
CA (τ − t)

((
γA
)2

σ2
δ

+

(
φσsσf + γA

)2
σ2

s

+ σ2
f

)
+ CB (τ − t)

((
γB
)2

σ2
δ

+

(
γB
)2

σ2
s

+ σ2
f

)

+2CAB (τ − t)

(
γAγB

σ2
δ

+

(
φσsσf + γA

)
γB

σ2
s

+ σ2
f

)]
dτ. (D7)

The functions of time CA, CAB and CB are defined as the elements of the matrix Z :

Z =
(

CA CAB

CAB CB

)
,

itself defined as follows. Let matrices X (u− t) and Y (u− t) be the unique solution of the linear Cauchy
problem { .

X = Q11X +Q12Y, X (0) = I,
.

Y = Q21X +Q22Y, Y (0) = 0,
(D8)

where I is the identity 2× 2 matrix. Let:

Z (u− t) = Y (u− t) [X (u− t)]−1
. (D9)

The coefficients are:

Q21 =

 1
2χ (χ− 1)

(
1

σ2
δ

+ 1
σ2

s

)
− 1

2χ
2
(

1
σ2

δ
+ 1

σ2
s

)
− 1

2χ
2
(

1
σ2

δ
+ 1

σ2
s

)
1
2χ (χ+ 1)

(
1

σ2
δ

+ 1
σ2

s

)  , (D10)

Q11 = −
(
Q22

)>
=

 ψA − χ
(

γA

σ2
δ

+ φσsσf +γA

σ2
s

)
χ
(

γA

σ2
δ

+ φσsσf +γA

σ2
s

)
−χ
(

γB

σ2
δ

+ γB

σ2
s

)
ψB + χ

(
γB

σ2
δ

+ γB

σ2
s

)  , (D11)

Q12 =

 −2
(

(γA)2

σ2
δ

+ (φσsσf +γA)2

σ2
s

+ σ2
f

)
−2
(

γAγB

σ2
δ

+ (φσsσf +γA)γB

σ2
s

+ σ2
f

)
−2
(

γAγB

σ2
δ

+ (φσsσf +γA)γB

σ2
s

+ σ2
f

)
−2
(

(γB)2

σ2
δ

+ (γB)2

σ2
s

+ σ2
f

)
 . (D12)
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Table 1: Choice of parameter values and benchmark values of the state variables

This table lists the particular choice of parameter values used for all the figures in the paper. These
values are similar to the estimation results reported in Brennan and Xia (2001). The table also
indicates the benchmark values of state variables, which are the reference values taken by all state
variables except for the one being varied in a given graph.

Name Symbol Value
Parameters for aggregate endowment and the signal
Long-term average growth rate of aggregate endowment f̄ 0.015
Volatility of expected growth rate of endowment σf 0.015
Volatility of aggregate endowment σδ 0.13
Mean reversion parameter ζ 0.2
Volatility of the signal σs 0.1

Parameters for the agents
Agent A’s correlation between signal and mean growth rate φ 0.95
Agent B’s correlation between signal and mean growth rate — 0
Agent A’s initial share of aggregate endowment λB/λA 1
Time-preference parameter for both agents ρ 0.11
Relative risk aversion for both agents 1− α 3

Benchmark values of the state variables
The level of aggregate dividends δ 1
The coupon rate on the consol bond δ 0.07
The change from B’s measure to A’s measure η 1
The population average belief about the expected rate of growth f̂M f

The difference in opinions: f̂B − f̂A ĝ -0.01
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Figure 4: Portfolio Weights for Rational Investors (Population B)

This figure gives Population B’s portfolio holding (expressed as a percentage of B’s wealth). In all the plots, the variable
on the x-axis is the dispersion in beliefs, bg. There are two columns of plots, with the one on the left giving the position
in equity and the one on the right giving the position in bonds. The first row gives the overall investment in equity
and in bonds. The second row gives the static (mean-variance or myopic) investment. The third row gives the dynamic
(intertemporal) hedging component of the portfolio. The dotted line in each plot represents the case where φ = 0 and all
agents are rational, while the dashed line represents the case where φ = 0.95 implying that Population A is irrational. For
parameter values and benchmark values of the state variables, see Table 1.
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Figure 5: Survival of Population A

This figure shows the expected value of Population A’s consumption share (percentage of the total dividends consumed
by Group A) as a function of time measured in years, where current time is assumed to be 0 and the future time is
denoted on the x-axis by u. The dotted line represents the case where φ = 0 and all agents are rational, while the
dashed line represents the case where φ = 0.95 implying that Population A is irrational. For parameter values and
benchmark values of the state variables, see Table 1.

200 400 600 800 1000
U

10

20

30

40

50

EP
cAU
���������
∆U

, %

40



References

Abel, A. B., 1990, “Asset Prices under Habit Formation and Catching Up with the Joneses,” American

Economic Review, 80, 38–42.

Alchian, A., 1950, “Uncertainty, Evolution and Economic Theory,” The Journal of Political Economy,

58, 211–221.

Allen, F., S. Morris, and H. S. Shin, 2004, “Beauty Contests and Iterated Expectations in Asset Markets,”

Working paper, University of Pennsylvania.

Bansal, R., and A. Yaron, 2004, “Risks for the Long Run: A Potential Resolution of Asset Pricing

Puzzles,” Journal of Finance, 59, 1481–151.

Barsky, R. B., and J. B. De Long, 1993, “Why Does the Stock Market Fluctuate?,” Quarterly Journal

of Economics, 108, 291–311.

Basak, S., 2004, “Asset Pricing with Heterogeneous Beliefs,” forthcoming in Journal of Banking and

Finance.
Berrada, T., 2004, “Bounded Rationality and Asset Pricing,” Working paper, HEC Montreal.

Bhamra, H. S., and R. Uppal, 2005, “The Effect of Improved Risk Sharing on Stock Market Volatility,”

Working paper, London Business School.

Biais, B., and P. Bossaerts, 1998, “Asset Prices and Trading Volume in a Beauty Contest,” Review of

Economic Studies, 65, 307–40.

Brennan, M. J., and Y. Xia, 2001, “Stock Price Volatility and Equity Premium,” Journal of Monetary

Economics, 47, 249–83.

Bullard, J., and J. Duffy, 1998, “Learning and Excess Volatility,” Working paper, Federal Reserve Bank

of Saint-Louis.
Buraschi, A., and A. Jiltsov, 2002, “Option volume and difference in beliefs,” Working paper, London

Business School.
Campbell, J. Y., and J. H. Cochrane, 1999, “By Force of Habit: A Consumption-Based Explanation of

Aggregate Stock Market Behavior,” Journal of Political Economy, 107, 205–51.

Campbell, J. Y., and R. J. Shiller, 1988a, “The Dividend-Price Ratio and Expectations of Future Divi-

dends and Discount Factors,” Review of Financial Studies, 1, 195–227.

Campbell, J. Y., and R. J. Shiller, 1988b, “Stock Prices, Earnings, and Expected Dividends,” Journal

of Finance, 43, 661–76.

Cao, H. H., and H. Ou-Yang, 2005, “Bubbles and Panics in a Frictionless Market with Heterogeneous

Expectations,” Working paper, Cheung Kong Graduate School of Business.

Cecchetti, S. G., P.-s. Lam, and N. C. Mark, 2000, “Asset Pricing with Distorted Beliefs: Are Equity

Returns Too Good to Be True?,” American Economic Review, 90, 787–805.

Citanna, A., and K. Schmedders, 2002, “Controlling Price Volatility through Financial Innovation,”

Working paper, Northwestern University.

Cochrane, J. H., 1991, “Volatility Tests and Efficient Markets: Review Essay,” Journal of Monetary

Economics, 27, 463–85.

Cochrane, J. H., 2001, Asset Pricing, Princeton University Press.

Constantinides, G. M., 1990, “Habit Formation: A Resolution of the Equity Premium Puzzle,” Journal

of Political Economy, 98, 519–43.

41



Cox, J. C., and C.-f. Huang, 1989, “Optimal Consumption and Portfolio Policies When Asset Prices

Follow a Diffusion Process,” Journal of Economic Theory, 49, 33–83.

David, A., 2004, “Heterogeneous Beliefs, Trading Risk, and the Equity Risk Premium,” Working paper,

Washington University.

De Long, J. B., and M. Becht, 1998, ““Excess Volatility” in the German Stock Market, 1876-1990,”

Working paper, Department of Economics, Harvard University.

De Long, J. B., and R. Grossman, 1998, ““Excess Volatility” in the London Stock Market, 1870-1990,”

Working paper, Department of Economics, Harvard University.

De Long, J. B., A. Shleifer, L. H. Summers, and R. J. Waldmann, 1990a, “Noise Trader Risk in Financial

Markets,” Journal of Political Economy, 98, 703–38.

De Long, J. B., A. Shleifer, L. H. Summers, and R. J. Waldmann, 1990b, “Positive Feedback Investment

Strategies and Destabilizing Rational Speculation,” Journal of Finance, 45, 379–95.

De Long, J. B., A. Shleifer, L. H. Summers, and R. J. Waldmann, 1991, “The Survival of Noise Traders

in Financial Markets,” Journal of Business, 64, 1–20.

Detemple, J., and S. Murthy, 1994, “Intertemporal Asset Pricing with Heterogenous Beliefs,” Journal

of Economic Theory, 62, 294–320.

Duffie, D., N. Garleanu, and L. H. Pedersen, 2002, “Securities Lending, Shorting, and Pricing,” Journal

of Financial Economics, 66, 307–39.

Epstein, L., and S. Zin, 1989, “Substitution, Risk Aversion and the Temporal Behavior of Consumption

and Asset Returns: A Theoretical Framework,” Econometrica, 57, 937–969.

Feldman, D., 2005, “Incomplete Information Equilibria: Separation Theorems and Other Myths,” Work-

ing paper, The University of New South Wales.

Flavin, M. A., 1983, “Excess Volatility in the Financial Markets: A Reassessment of the Empirical

Evidence,” Journal of Political Economy, 91, 929–56.

Friedman, M., 1953, Essays in Positive Economics, University of Chicago Press, Chicago, IL.

Froot, K. A., and J. Frankel, 1989, “Forward Discount Bias: Is it an Exchange Risk Premium?,” Quar-

terly Journal of Economics, 104, 139–161.

Grossman, S. J., and J. E. Stiglitz, 1980, “On the Impossibility of Informationally Efficient Markets,”

American Economic Review, 70, 393–408.

Hansen, L. P., J. C. Heaton, and N. Li, 2005, “Consumption Strikes Back? Measuring Long Run Risk,”

Working paper, University of Chicago.

Harris, M., and A. Raviv, 1993, “Differences of Opinion Make a Horse Race,” Review of Financial

Studies, 6, 473–506.

Hellwig, M. F., 1980, “On the Aggregation of Information in Complete Markets,” Journal of Economic

Theory, 26, 279–312.

Heston, S. L., 1993, “A Closed-Form Solution for Options with Stochastic Volatility with Applications

to Bond and Currency Options,” Review of Financial Studies, 6, 327–43.

Kandel, E., and N. D. Pearson, 1995, “Differential Interpretation of Public Signals and Trade in Specu-

lative Markets,” The Journal of Political Economy, 103, 831–872.

Karatzas, I., J. Lehoczky, and S. Shreve, 1987, “Optimal portfolio and consumption decisions for a ‘small

investor’ on a finite horizon,” SIAM Journal of Control and Optimization, 25, 1157–1186.

42



Kim, T. S., and E. Omberg, 1996, “Dynamic Nonmyopic Portfolio Behavior,” Review of Financial

Studies, 9, 141–61.

Kleidon, A. W., 1986, “Variance Bounds Tests and Stock Price Valuation Models,” Journal of Political

Economy, 94, 953–1001.

Kogan, L., S. Ross, J. Wang, and M. Westerfield, 2003, “The Price Impact and Survival of Irrational

Traders,” Working paper, MIT.

LeRoy, S. F., and R. D. Porter, 1981, “The Present-Value Relation: Tests Based on Implied Variance

Bounds,” Econometrica, 49, 555–74.

Lipster, R. S., and A. N. Shiryaev, 2001, Statistics of Random Processes II, Applications, Springer

Verlag, second edn.

Loewenstein, M., and G. A. Willard, 2005, “The Limits of Investor Behavior,” Working paper, University

of Maryland.

Mankiw, N. G., D. Romer, and M. D. Shapiro, 1985, “An Unbiased Reexamination of Stock Market

Volatility,” Journal of Finance, 40, 677–87.

Mankiw, N. G., D. Romer, and M. D. Shapiro, 1991, “Stock Market Forecastability and Volatility: A

Statistical Appraisal,” Review of Economic Studies, 58, 455–77.

Menzly, L., T. Santos, and P. Veronesi, 2004, “Understanding Predictability,” Journal of Political Econ-

omy, 112, 1–47.

Merton, R. C., 1971, “Optimum consumption and portfolio rules in a continuous time model,” Journal

of Economic Theory, 3, 373–413.

Sandroni, A., 2000, “Do Markets Favor Agents Able to Make Accurate Predictions?,” Econometrica, 68,

1303–1341.
Scheinkman, J. A., and W. Xiong, 2003, “Overconfidence and Speculative Bubbles,” Journal of Political

Economy, 111, 1183–1219.

Shiller, R. J., 1981, “Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Divi-

dends?,” American Economic Review, 71, 421–36.

Timmermann, A., 1996, “Excess Volatility and Predictability of Stock Prices in Autoregressive Dividend

Models with Learning,” Review of Economic Studies, 63, 523–57.

Timmermann, A. G., 1993, “How Learning in Financial Markets Generates Excess Volatility and Pre-

dictability in Stock Prices,” Quarterly Journal of Economics, 108, 1135–45.

Wang, J., 1993, “A Model of Intertemporal Asset Prices under Asymmetric Information,” Review of

Economic Studies, 60, 249–82.

West, K. D., 1988a, “Bubbles, Fads and Stock Price Volatility Tests: A Partial Evaluation,” Journal of

Finance, 43, 639–56.

West, K. D., 1988b, “Dividend Innovations and Stock Price Volatility,” Econometrica, 56, 37–61.

Williams, J. T., 1977, “Capital Asset Prices with Heterogeneous Beliefs,” Journal of Financial Eco-

nomics, 5, 219–39.

Yan, H., 2004, “Natural Selection in Financial Markets: Does It Work?,” Working paper, London

Business School.
Ziegler, A., 2000, “Optimal Portfolio Choice under Heterogeneous Beliefs,” European Finance Review,

4, 1–19.

43


