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Abstract

We provide a model that links a security’s market liquidity — i.e., the ease
of trading it — and traders’ funding liquidity — i.e., their availability of funds.
Traders provide market liquidity and their ability to do so depends on their fund-
ing, that is, their capital and the margins charged by their financiers. In times
of crisis, reductions in market liquidity and funding liquidity are mutually rein-
forcing, leading to a liquidity spiral. The model provides a natural explanation
for the empirically documented features that market liquidity (i) can suddenly
dry up (i.e. is fragile), (ii) has commonality across securities, (iii) is related
to volatility, (iv) experiences “flight to liquidity” events, and (v) comoves with
the market. Finally, the model shows how the Fed can improve current market
liquidity by committing to improve funding in a potential future crisis.
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1 Introduction

Trading requires capital. When a trader — e.g. a dealer, hedge fund, or investment
bank — buys a security, he can use the security as collateral and borrow against it,
but he cannot borrow the entire price. The difference between the security’s price
and collateral value, denoted the margin, must be financed with the trader’s own
capital. Similarly, shortselling requires capital in the form of a margin; it does not free
up capital. Hence, at any time the total margins on all positions cannot exceed the
trader’s capital.

Our model shows that the funding of trades affects, and is affected by, market
liquidity in a profound way. When funding liquidity is tight, traders become reluctant
to take on positions, especially “capital-intensive” positions in high-margin securities.
This lowers market liquidity. Further, low future market liquidity increases the risk of
financing a trade, thus increasing the margins.

Based on the links between funding and market liquidity, we provide a unified
explanation for the main empirical features of market liquidity. In particular, the
model implies that market liquidity (i) can suddenly dry up, (ii) has commonality
across securities, (iii) is related to volatility, (iv) experiences “flight to liquidity” events,
and (v) comoves with the market.

Our model is similar in spirit to Grossman and Miller (1988) with the new feature
that dealers face the real-world funding constraint discussed above. In our model,
a group of “initial customers” face a supply shock at time one, which affects their
willingness to hold shares. A group of “complementary customers” face the opposing
shock, but these agents arrive in the market only at a later time. A group of dealers
bridge the gap between the initial and complementary customers by smoothing the
price and thus providing market liquidity.

We derive the competitive equilibrium of the model and explore its liquidity impli-
cations. We define market liquidity as the difference between the transaction price and
the fundamental value, and funding liquidity as a dealer’s scarcity (or shadow cost)
of capital. Naturally, as long as dealer capital is abundant, market liquidity is at its
highest level and insensitive to marginal changes in capital and margins. However,
when dealers hit their capital constraints — or risk hitting their capital constraints
over the life of a trade — then they are forced to reduce their positions and market
liquidity is reduced.

We show that, under a certain condition, there are multiple equilibria. In one
equilibrium markets are liquid leading to favorable margin requirements for dealers,
which in turn helps dealers make markets liquid. In another equilibrium markets
are illiquid, resulting in larger margin requirements (or dealer losses), thus restricting
dealers from providing market liquidity. The necessary and sufficient condition for such
a multiplicity is, loosely said, that increased market illiquidity leads to either higher
margin requirements or losses on dealers’ existing positions.
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Importantly, in case of multiple equilibria, any equilibrium selection has the prop-
erty that there must be a risk of sudden market liquidity dry-ups. In particular, for any
equilibrium selection there exists a level of dealer funding such that market liquidity
drops off discontinuously for any infinitesimal drop in funding. This sudden dry-up (or
fragility) of market liquidity is due to the fact that with high dealer capital, markets
must be in the liquid equilibrium, and, if dealer capital in reduced enough, the market
must eventually switch to the low-liquidity/high-margin equilibrium.

Further, when markets are illiquid, market liquidity is highly sensitive to further
changes in funding conditions. This is due to two liquidity spirals: first, a “margin
spiral” emerges if margins are increasing in market illiquidity because a reduction in
dealer wealth lowers market liquidity, leading to higher margins, tightening dealers’
funding constraint further, and so on. Second, a “loss spiral” arises if dealers hold a
large initial position that is negatively correlated with customers demand shock. In
this case, a funding shock increases market illiquidity, leading to dealer losses on their
initial position, forcing dealers to sell more, causing a further price drop, and so on.
The liquidity spirals imply, paradoxically, that a shock to the customers’ demand for
immediacy leads to a reduction in the provision of immediacy in such stress times.

Our model also provides a natural explanation for the commonality of liquidity
across assets since shocks to the funding constraint of the dealer sector affect all securi-
ties. This may help explain why market liquidity is correlated across stocks (Chordia,
Roll, and Subrahmanyam (2000), Hasbrouck and Seppi (2001) and Huberman and
Halka (2001)), and across stocks and bonds (Chordia, Sarkar, and Subrahmanyam
(2005)).

Next, our model predicts that market liquidity declines as fundamental volatility
increases, which is consistent with the empirical findings of Benston and Hagerman
(1974) and Amihud and Mendelson (1989). To see the intuition for this result, note
first that fundamental volatility trivially leads to price volatility, which leads to higher
margins. Consequently, it is more capital intensive for dealers to trade in volatile se-
curities, therefore dealers provide less market liquidity in such securities. The reduced
market liquidity further increases the risk of financing such trades, thus further in-
creasing margins, and so on. This reasoning applies both when comparing the market
liquidity across securities in the cross section, and when explaining changes in market
liquidity in the time series.

The model implies that the liquidity differential between high-volatility and low-
volatility securities increases as dealer capital deteriorates — a phenomenon often re-
ferred to as “flight to quality”or “flight to liquidity.”According to our model, this hap-
pens because a reduction in dealer capital induces traders to provide liquidity mostly
in securities that do not use much capital (low volatility stocks since they have lower
margins). Acharya and Pedersen (2005) document empirical evidence consistent with
flight to liquidity.

Since market making firms are often long the market, capital constraints are more
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likely to be hit during market downturns. Under this premise, our model explains why
sudden liquidity dry-ups occur more often when markets decline.

Next, we analyze how margins are set and describe circumstances under which mar-
gins are destabilizing. The objective of margins is to almost perfectly shield financiers
from default risk. Margin are typically set equal to asset’s value at risk (VaR) which
corresponds to the largest possible price drop within a certain confidence interval. We
show that margins stabilize the price and decrease with market illiquidity, if financiers
know that prices diverge due to temporary market illiquidity and know that liquidity
will be improved shortly as complementary customers arrive. This is because a larger
price discount due to current illiquidity reduces the size of future price declines. In
other words, current price discounts provide a “cushion” against further price drops,
which reduces the margin. This cushioning effect disappears, however, if financiers do
not know when the trade will converge (i.e. when complementary customers arrive),
leading to a constant margin. If the financier cannot distinguish price movements due
to fundamental and liquidity reasons and if fundamentals have time-varying volatil-
ity, then margins can increase in volatility. This can lead to the destabilizing effects
discussed above. Hence, we predict that dealers face more destabilizing margins in
specialized markets in which financiers cannot easily distinguish fundamental shock
from liquidity shocks or cannot predict when a trade converges.

Our analysis also has implications for central bank policy. Central banks can miti-
gate market liquidity problems in several ways. If a central bank is better than typical
financiers of dealers at distinguishing liquidity shocks from fundamental shocks, then
the central bank can convey this information and urge financiers to relax their funding
requirements — as the Federal Reserve Bank of New York did during the 1987 stock
market crash. Central banks can also directly improve market liquidity by boosting
dealer’s funding conditions during a liquidity crisis, or by simply stating the intention
to provide extra funding during times of crisis which will loosen margin requirements
immediately.

In summary, our model provides insights on the interaction of funding liquidity and
market liquidity, and can help explain the major empirical features of liquidity. Fur-
thermore, the model suggests a novel line of empirical work, namely to link empirically
measures of dealer’s funding to measures of market liquidity.

The remainder of the paper proceeds as follows. Section 2 describes the institutional
features associated with the financing of trading activity for market makers, banks, and
hedge funds, and discusses funding liquidity risk. Section 3 lays out our basic model
and shows how the link between funding and market liquidity leads to fragility and liq-
uidity spirals. Section 4 derives the model’s cross-sectional implications, in particular,
commonality of liquidity and flight to quality. Section 5 shows under which circum-
stances margin requirements are stabilizing or destabilizing. Section 6 shows how our
framework relates to the liquidity concepts discussed within the literatures on market
microstructure, corporate finance, banking, limits of arbitrage, macroeconomics, and
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general equilibrium. Section 7 concludes and discusses the liquidity implications of
central bank policy in light of the endogenous margins

The appendix contains proofs.

2 The Funding Liquidity of Traders

There are several types of providers of market liquidity, that is, traders that act as
intermediaries by buying or selling. The main types of such traders are market makers,
proprietary traders, and hedge funds. These traders are subject to funding constraints
on their trading activity, and we refer to the risk of a binding funding constraint as
funding liquidity risk. To set the stage for our model, we review the main real-world
funding constraints for securities firms.

2.1 Margins and Capital Constraints: The Case of Hedge
Funds

We first consider the funding issues faced by hedge funds since they have relatively
simple balance sheets and face little regulation. Below, we discuss the funding issues
(including regulation) for banks, and market makers.

A hedge fund must finance its activities using its capital. A hedge fund’s capital
Wt at time t consists of its equity capital supplied by the partners and of possible
long-term debt financing that can be relied upon during a potential funding crisis.
Since a hedge fund is a partnership, the equity is not locked into the firm indefinitely
as in a corporation. The investors (that is, the partners) can withdraw their capital
at certain times, but — to ensure funding — the withdrawal is subject to so-called
lock-up periods (typically at least a month, often several months or even years). A
hedge fund usually cannot issue long-term unsecured bonds, but some (large) hedge
funds manage to obtain debt financing in the form of medium term bank loans or in the
form of a guaranteed line of credit.1 Hedge funds lever their capital using collateralized
borrowing financed by the hedge fund’s prime broker(s). The prime brokerage business
is opaque since the terms of the financing are subject to negotiation and are secret to
outsiders. We describe stylized financing terms and, later, we discuss caveats.

If a hedge fund buys at time t a long position of xj
t > 0 shares of a security j

with price pj
t , then this requires the hedge fund to come up with xj

tp
j
t dollars. The

security can, however, be used as collateral for a new loan of, say, ljt dollars. The
difference between the price of the security and the collateral value is denoted the
margin requirement mj+

t = pj
t − ljt . Hence, this position uses xj

tm
j+
t dollars of the

1A line of credit may have a “material adverse change” clause or other covenants subject to dis-
cretionary interpretation of the lender. Such covenants imply that the line of credit may not be a
reliable source of funding during a crisis.
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fund’s capital. We note that the collateralized funding implies that the capital use
depends on margins, not notional amounts.

The margins on fixed income securities and over-the-counter (OTC) derivatives are
set through a negotiation between the hedge fund and the broker that finances the
trade, often the hedge funds’ prime broker. The margins are typically set such as to
make the market almost risk free for the broker. Hence, the collateral value of a long
position ljt for borrowing between time t and t + 1 is the smallest possible value that
the security might have to be sold for at time t + 1 with a certain confidence in case
the borrower defaulted on the loan. Hence, the margin is essentially the positions’
value-at-risk (VaR).2

In the U.S., margins on equities are subject to Regulation T, which stipulates
that all non-broker/dealers must have an initial margin of 50% of the market value of
the underlying stock, both for long and short positions. Hedge funds can circumvent
Regulation T for instance by organizing the transaction as a total return swap, which
is a derivative that is functionally equivalent to buying the stock.

The margin on exchange traded futures (or options) is set by the exchange. The
principle for setting the margin for futures or options is the same as that described
above. The margin is set such as to make the exchange almost immune to default risk
of the counterparty, and hence riskier contracts have larger margins.

At the end of the financing period, time t + 1, the position is “marked-to-market,”
which means that the hedge fund receives any gains (or pays any losses) that have
occurred between t and t + 1, that is, the fund receives xj

t(p
j
t+1 − pj

t), and the fund

pays interest on the loan, rtx
j
t l

j
t , where rt is the funding rate. If the trade is kept

on, the broker keeps the margin to protect against losses going forward from time
t + 1. The margin can be adjusted if the risk of the collateral has changed unless the
counterparties have contractually fixed the margin for a certain period.

If the hedge fund wants to sell short a security, then the fund asks one of its brokers
to locate a security that can be borrowed, and then the trader sells the borrowed
security. Duffie, Gârleanu, and Pedersen (2002) describes in detail the institutional
arrangements of shorting. The broker requires a collateral that we denote by cj

t . The
collateral value of a short position cj

t is the highest possible value that the security might
have to be bought back for at time t + 1 with a certain confidence. As with a long
position, this makes the transaction almost risk free for the broker. This collateral
requirement implies that the short sale uses xj

t(c
j
t − pj

t) of the hedge fund’s capital.
The margin on a short position — i.e. the per share capital use — is denoted by
mj−

t = cj
t − pj

t . We note that a short sale does not raise capital for a hedge fund; it

2The value at risk is the largest loss with a certain statistical confidence, e.g. 1 percent. This is
also sometimes referred to as the broker’s “potential future exposure” (PFE). Often brokers also take
into account the time it takes between a fail by the hedge fund is noticed and the security is actually
sold. Hence, the margin of a one-day collateralized loan depends on the estimated risk of holding the
asset over a time period that is often set to be five to ten days.
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uses capital.
A hedge fund must be able to finance all its security positions at any point of time.

This means that the total capital use must be smaller than the available net capital
plus available long-term debt funding. That is, at any time t,

∑

j

(

xj+
t mj+

t + xj−
t mj−

t

)

≤ Wt (1)

where xj+
t ≥ 0 and xj−

t ≥ 0 are the positive and negative parts of xj = xj+
t − xj−

t ,
respectively.

So far, we focussed on situations in which margins are covered using risk-free assets
(cash). A dealer can also post risky assets to cover margins, provided that they have not
been used as collateral otherwise. However, the dealer has to post a higher security
value if he uses risky assets, since a so-called haircut is subtracted. For example, a
dealer who bought xj shares of stock j and has to come up of with margins of xj

tm
j
t ,

can cover it with xj′

t of his uncollateralized bonds j′. Since the bond is risky a haircut

hj′

t is subtracted and his funding constraint becomes xj
tm

j
t ≤ Wt − xj′

t hj′

t . Moving
the haircut term to the left hand side reveals that the haircut behaves like a margin.
Hence, the dealer essentially still faces funding constraint (1). Indeed, the dealer could
have alternatively used the bonds j′ to raise cash and then use this cash to cover the
margins for asset j. We therefore use the terms margins and haircuts interchangeably.

Our description of the determination of margins was described as if margins are
set separately for each security position. It is, however, sometimes possible to “cross-
margin”, i.e. to jointly finance several trades that are part of the same strategy. This
leads to a lower total margin if the risks of the various positions are partially offsetting.
For instance, much of the interest rate risk is eliminated in a “spread trade” with a long
position in one bond and a short position in a similar bond. Hence, the margin/haircut
of a jointly financed spread trade is smaller than the sum of the margins of the long
and short bonds. For a strategy that is financed jointly, we can reinterpret security
j as such a strategy. Prime brokers compete by, among other things, offering low
margins and haircuts — a key consideration for hedge funds — which means that it is
becoming increasingly easy to finance more and more strategies jointly. In the extreme,
one can imagine a joint financing of a hedge fund’s total position such that the funding
constraint becomes

Mt

(

x1
t , . . . , x

J
t

)

≤ Wt (2)

where M is the margin requirement of the portfolio x, that is, the most the portfolio
can lose over the next funding period with a certain confidence (the portfolio’s value-
at-risk). Currently, it is often not practical to jointly finance a large portfolio. This
is because a large hedge fund finances its trades using several brokers, both a hedge
fund and a broker can consist of several legal entities (possibly located in different
jurisdictions), certain trades need separate margins paid to exchanges (e.g. futures and
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options) or to other counterparties of the prime broker (e.g. securities lenders), prime
brokers may not have sufficiently sophisticated models to evaluate the diversification
benefits (e.g. because they don’t have enough data on the historical performance of
newer products such as CDOs), and because of other practical difficulties in providing
joint financing. Further, if the margin requirement m relies on assumed stress scenarios
in which the securities are perfectly correlated (e.g. due to predatory trading), then
(2) coincides with (1).

2.2 Funding Requirements for Banks

A bank’s capital W consists of equity capital plus its long-term borrowings (includ-
ing credit lines secured from individual or syndicates of commercial banks), reduced
by assets that cannot be readily employed (e.g. goodwill, intangible assets, property,
equipment, and capital needed for daily operations), and further reduced by uncollat-
eralized loans extended by the bank to others (see e.g. Goldman Sachs 2003 Annual
Report). Banks also raise money using short-term uncollateralized loans such as com-
mercial papers and promissory notes, and, in the case of commercial banks, demand
deposits. These sources of financing cannot, however, be relied on in times of funding
crises since lenders may be unwilling to continue lending, and therefore this short term
funding is not included in W .

The financing of a bank’s trading activity is largely based on collateralized bor-
rowing. Banks can borrow securities to short from mutual funds and pension funds,
for instance, and can finance long positions using collateralized borrowing from corpo-
rations with excess cash, other banks, insurance companies, and the Federal Reserve
Bank. These transactions typically require margins which must be financed by the
bank’s capital W as captured by the funding constraint (1).

The financing of a bank’s proprietary trading is more complicated than that of a
hedge fund, however. For instance, banks may negotiate zero margins with certain
counterparties, banks can often sell short shares held in house, that is, held in a cus-
tomers margin account (i.e. held in “street name”) such that the bank does not need
to borrow the share externally. Further, a bank receives margins when financing hedge
funds (i.e. the margin is negative from the point of view of the bank). However, often
the bank wants to pass on the trade to an exchange or another counterparty and hence
has to pay a margin to the exchange. In spite of these caveats, we believe that in times
of stress, banks face margins and are ultimately subject to a funding constraint in the
spirit of (1) (see, e.g., Goldman Sachs, 2003 Annual Report, page 62).

In addition, banks have to satisfy certain regulatory requirements. Commercial
banks are subject to the Basel accord, supervised by the Federal Reserve system for
US banks. In short, the Basel accord of 1988 requires that a bank’s “eligible capital”
exceeds 8% of the “risk-weighted asset holdings,” which is the sum of each asset holding
multiplied by its risk weight. The risk weight is 0% for cash and government securities,
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50% for mortgage-backed loans, and 100% for all other assets. The requirement posed
by the 1988 Basel accord corresponds to Equation (1) with margins of 0%, 4%, 8%,
respectively. In 1996, the accord was amended, allowing banks to measure market risk
using an internal model similar to (2) rather than using standardized risk weights.

U.S. broker-dealers, including banks acting as such, are subject to the Securities
and Exchange Commission’s (SEC’s) “net capital rule” (SEC Rule 15c3-1). This rule
stipulates, among other things, that a broker must have a minimum “net capital,”
which is defined as equity capital plus approved subordinate liabilities minus “secu-
rities haircuts” and operational charges. The haircuts are set as security-dependent
percentages of the market value. The standard rule requires that the net capital ex-
ceeds at least 62

3
% (15:1 leverage) of aggregate indebtedness (broker’s total money

liabilities) or alternatively 2% of aggregate debit items arising from customer transac-
tions. This constraint is similar in spirit to (1).3 As of August 20, 2004, SEC amended
(SEC Release No. 34-49830) the net capital rule for Consolidated Supervised Entities
(CSE) such that CSE’s may, under certain circumstances, use their internal risk models
similar to (2) to determine whether they fulfill their capital requirement.

2.3 Funding Requirements for Market Makers

There are various types of market-making firms. Some are small partnerships, whereas
others are parts of large investment banks. The small firms are financed in a similar
way to hedge funds in that they rely primarily on collateralized financing; the funding
of banks was described in Section 2.2.

Certain market makers, such as NYSE specialists, have an obligation to make a
market and a binding funding constraint means that they cannot fulfill this require-
ment. Hence, avoiding the funding constraint is especially crucial for such market
makers.

Market makers are in principle subject to the SEC’s net capital rule (described in
Section 2.2), but the rule has special exceptions for market makers. Hence, market
makers’ main regulatory requirements are those imposed by the exchange on which
they operate. These constraints are often similar in spirit to (1).

2.4 Funding Liquidity Risk

Funding liquidity risk is the risk that a trader’s funding constraint is binding. As
discussed in Sections 2.1–2.3, the real-world funding constraint is captured by Equa-
tion (1), Equation (2), or something in between. In the remainder of this paper, we
focus on (1) since it is more realistic in several interesting cases as discussed above.

3Let L be the lower of 6 2

3
% of total indebtedness or 2% of debit items and hj the haircut for

security j; then the rule requires that L ≤ W −
∑

j hjxj , that is,
∑

j hjxj ≤ W − L.
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Funding risk stems from the risks that net capital decreases, short term borrowing
availability is reduced, and margins increase. Net capital decreases if the institution
experiences trading losses or otherwise incurs losses. Short term borrowing can dry
up for a bank if it cannot sell commercial paper or, in the case of a commercial bank,
because of deposit withdrawals — a bank run. Margins and haircuts increase if the
collateral becomes more risky, which happens if fundamental uncertainty increases (e.g.
after the crash in 1987 and after September 11, 2001) or if market liquidity is reduced
such that liquidation of the collateral is more difficult. For instance, Long Term Capital
Management (LTCM) estimated that in times of severe stress, haircuts on AAA-rated
commercial mortgages would increase from 2% to 10%, and similar haircut increases
for other securities (HBS Case N9-200-007(A)).

Naturally, financial institutions try to manage their funding liquidity risk. For
instance, Goldman Sachs (2003 Annual Report, page 62) states that it seeks to maintain
net capital in excess of total margins and haircuts that it would face in periods of market
stress plus the total draws on unfunded commitments at such times. Hence, Goldman
Sachs recognizes that it may not have access to short-term borrowing during a crisis,
that margins and haircuts may increase during such a crisis, and that counterparties
may withdraw funds at such times.

The risk of a funding crisis is not purely academic. For instance, in the 1987 stock
market crash numerous market makers hit (or violated) their funding constraint (1):

“By the end of trading on October 19, [1987] thirteen [NYSE specialist]
units had no buying power”
— SEC (1988), page 4-58

Several of these firms managed to reduce their positions and continue their opera-
tions. Others did not. For instance, Tompane was so illiquid that it was taken over by
Merrill Lynch Specialists and Beauchamp was taken over by Spear, Leeds & Kellogg
(Beauchamp’s clearing broker).

Also, market makers outside the NYSE experienced funding troubles: the Amex
market makers Damm Frank and Santangelo were taken over; at least 12 over-the-
counter (OTC) market makers ceased operations; and several trading firms went bankrupt.

These funding problems were due to (i) reductions in capital arising from trading
losses and default on unsecured customer debt, and (ii) an increased funding need
stemming from increased inventory and increased margins. Margins were increased
since agents financing the trading perceived that the collateral had an increased risk
and a reduced market liquidity. One New York City bank, for instance, increased
margins/haircuts from 20% to 25% for certain borrowers, and another bank increased
margins/haircuts from 25% to 30% for all specialists (SEC (1988) page 5-27 and 5-
28). Other banks reduced the funding period by making intra-day margin calls, and at
least two banks made intra-day margin calls based on assumed 15% and 25% losses,
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thus effectively increasing the haircut by 15% and 25%. Also, some broker-dealers
experienced a reduction in their line of credit.

Another stark example of funding liquidity risk is LTCM, which — in spite of their
numerous measures to control funding risk — ultimately could not fund its positions
and was taken over by 14 banks in September 1998.

The goal of this paper is to study market liquidity provision by dealer who face
funding liquidity risk and consider the equilibrium implications for market liquidity.
We turn next to our model.

3 Fragility of Liquidity and Liquidity Spirals

We start by considering a simple model with trade in one security. There are three
groups of agents: initial customers, complementary customers, and dealers. At time
1, the initial customers arrive in the market with a need to trade, and, at time 2, the
complementary customers arrive with the opposite trading need. The dealers provide
immediacy by always being available to trade in the market. At time 3, the security
pays off v, a random variable defined on a probability space (Ω,F ,P). Later, we
generalize the model in various directions. 4

At any time t = 1, 2 the initial customers want to sell S(z, Et[v] − pt) shares of
the security, where pt is the price and time t, and the C1 function S(z, L) : [0,∞)2 →
R is increasing in the size of the “demand shock” z, and strictly decreasing in the
second argument Et [v] − pt with S(z, 0) > 0 and S(z, Λ̄(z)) = 0 for some Λ̄(z) ∈ R.
Said differently, customers naturally sell less if the price is lower and refrain from
selling altogether if the price is too low. The initial customers supply function with
these properties can be easily derived from, for instance, a risk averse utility function
combined with a hedging need or a specification of holding costs.

At time 2, the complementary customers arrive with a need to buy S(z, E2[v]− p2)
shares. Hence, at time 2, the equilibrium price is naturally p2 = E2[v]. Hence, we focus
on the price at time 1, and we use the simplified notation p = p1.

The market liquidity of the security at time 1 is denoted Λ, defined as

Λ := |E1 [v] − p|. (3)

Since the initial customers are sellers, the time-1 equilibrium price must satisfy p ≤
E1[v], that is, Λ = E1[v] − p. Of course, the model would be identical if buying
customers arrived before selling ones. In that case, everything would be the same
except that Λ = p − E1(v).

There is a unit mass of identical dealers. A dealer is risk neutral, has an initial
endowment of x0 shares and B dollars, and chooses his security positions at times 1

4In Section 4 we introduce multiple assets and in Section 5.2 we consider an infinite horizon setting
in which complementary customers arrive at a random point in time.
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and 2. Since the price at time 2 is equal to the fundamental in our baseline setting,
the dealer only trades between time 1 and 2. The dealer solves:

max
x

x(E1 [p2] − p) = x(E1 [v] − p) = xΛ (4)

subject to his capital constraint

xm(σ, Λ) ≤ W (Λ) := max{0, B + x0(E1 [v] − Λ)} (5)

where the margin m : [0,∞)2 → (0,∞) is a C2 function, which depends on fundamental
volatility σ and the market liquidity Λ, W is the dealer’s wealth, and x0 is his initial
holding. The margin is increasing in fundamental volatility ∂m/∂σ > 0.

We consider competitive equilibria of the economy:

Definition 1
(i) An equilibrium is a market illiquidity Λ such that a market-clearing position of
x = S(z, Λ) is a solution to the dealer’s problem.
(ii) An equilibrium with Λ > 0 is unstable if a small increase in the dealer’s position
improves market liquidity enough to relax the dealer’s capital constraint, that is, ∃δ > 0
such that ∀ε ∈ (0, δ) : S(z, Λ − ε)m(σ, Λ − ε) < W (Λ − ε); otherwise an equilibrium is
stable.

Perfect market liquidity, i.e. Λ = 0, can occur in equilibrium if dealers have enough
capital, that is, if

S(z, 0)m(σ, 0) ≤ B + x0E1 [v] . (6)

If the dealer’s capital constraint is binding in equilibrium then the market is illiquid,
Λ > 0. The following proposition provides a more extensive characterization of the
set of equilibria and gives a necessary and sufficient condition for fragility, that is, the
property that a small change in fundamentals can lead to a large jump in liquidity:

Proposition 1
(i) If Λ → S(z, Λ)m(σ, Λ)+x0Λ is decreasing, there exists a unique stable equilibrium
for each level of dealer wealth B. The equilibrium market illiquidity Λ∗(B) is continu-
ously decreasing in dealer wealth B.
(ii) (Fragility) Otherwise, there exists equilibrium selections Λ∗(B) such that mar-
ket illiquidity Λ∗(B) is decreasing in dealer wealth B, but all equilibrium selections
are discontinuous. In particular, there must be a wealth level B′ such that illiquid-
ity jumps discontinuously if wealth drops by any amount, that is, ∃L > 0 such that
∀ε > 0 : Λ∗(B) > Λ∗(B − ε) + L. Further, there are multiple stable equilibria for an
open set of wealth levels unless ∃Λ′ ∈ [0, Λ̄(z)) such that Λ → S(z, Λ)m(σ, Λ) + x0Λ is
decreasing on [0, Λ′] and increasing on [Λ′, Λ̄(z)].
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The condition for fragility — that Λ → S(z, Λ)m(σ, Λ) + x0Λ is not decreasing
— is intuitive once we decipher it. It basically means that either the margin m is
sufficiently increasing in market illiquidity or the dealer’s initial position x0 is suffi-
ciently positive. An increasing margin leads to fragility because dealer losses can lead
to self-perpetuating reductions in market liquidity and associated increases in margins.
Similarly, a large x0 leads to fragility because dealer losses leads to self-perpetuating
reductions in market liquidity and associated further losses on the dealer’s initial po-
sition.

Once the economy enters into the illiquid equilibrium, market liquidity becomes
highly sensitive to shocks because of natural amplification mechanisms. We distinguish
two different amplification mechanisms, the “margin spiral” and the “loss spiral.”

Proposition 2
(i) If Λ = 0 then, generically, Λ is insensitive to local changes in dealer wealth,
fundamental value, customer demand, and fundamental volatility.
(ii) (Liquidity Spirals) If Λ > 0 in a stable equilibrium then the local sensitivity of Λ
with respect to dealer wealth, fundamental value, customer demand, and fundamental
volatility are:

dΛ

dB
=

−1

−∂S
∂Λ

m − ∂m
∂Λ

S − x0

dΛ

dE1[v]
=

−x0

−∂S
∂Λ

m − ∂m
∂Λ

S − x0

dΛ

dz
=

∂S
∂z

m

−∂S
∂Λ

m − ∂m
∂Λ

S − x0

dΛ

dσ
=

∂m
∂σ

S

−∂S
∂Λ

m − ∂m
∂Λ

S − x0

where −∂S
∂Λ

m−∂m
∂Λ

S − x0 > 0. Multiplier effects arise if margin increase in illiquidity
∂m
∂Λ

> 0 (“margin spiral”) or if dealers have existing positions x0 > 0 (“loss spiral”).

Figure 1 illustrates both “liquidity spirals.” A decline in funding B forces dealers
to provide less market liquidity. If margins increase in illiquidity Λ, then this initial
decline tightens dealers’ funding constraint further. This in turn forces them to cut
down on their trading and so on, leading to a “margin spiral.” In addition, there is a
“loss spiral” if dealers hold a positive initial position x0 > 0 because funding problems
lead to attempts to sell, which lowers market liquidity, leading to dealer losses, and so
on. Note that if market making firms are net long the market — which is often the
case — then the model implies that market liquidity is low when the market is down,
consistent with empirical evidence.
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Figure 1: Liquidity Spirals

To illustrate mathematically how these derivatives can be interpreted as multipliers,
we note that −∂S

∂Λ
m > 0 (since the initial customers supply is decreasing in illiquidity),

and that, for any a > 0 and z with |z| < a, it holds that

1

a − z
=

1

a
+

z

a2
+

z2

a3
+ ...

Each term in this infinite series corresponds to one loop around the circle in Figure 1.
The total effect of the margin and the dealer’s position is a multiplier if and only if
∂m
∂Λ

S + x0 > 0. Of course, a multiplier can arise even if one spiral is at work and the
other is working in opposite direction to mitigate shocks (i.e. if x0 < 0 or if ∂m

∂Λ
< 0)

as long as the former effect is stronger.
Interestingly, Proposition 2 also reveals that the margin spiral and loss spiral am-

plify one another if they are both at work. Hence, the total effect of a margin spiral
and a loss spiral is greater than the sum of their separate effects. Mathematically this
can be seen by using simple convexity arguments, and it can be seen intuitively from
the flow diagram of Figure 1.

The result that market liquidity can suddenly dry up discontinuously — i.e. liquid-
ity is fragile — is consistent with anecdotal evidence. Similarly, the finding that the
volatility of market liquidity is particularly high during illiquid times is in line with
casual observation. It is illustrative to see how fragility and the liquidity spirals arise
in the subsequent simple numerical example.

Numerical Example
The initial customers’ supply is linear, S (z, Λ) = z − 2Λ with an endowment shock

of z = 20. This supply is, for instance, the optimal supply of initial customers with
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quadratic holding costs or with constant absolute risk aversion combined with normal
returns. A linear supply function guarantees that fragility is not simply the consequence
of a non-linear supply schedule; fragility and spirals must be due to the provision of
market liquidity.

The demand curve of the dealers depends on their funding. As soon as the price is
lower than the fundamental value, i.e. Λ > 0, the risk-neutral dealers take on their max-
imum position in a one-period model.5 They exploit maximum leverage by making use
of secured collateralized borrowing, thus demanding {B + x0 (E1 [v] − Λ)} /m (σ, Λ)
shares.

Funding effects depend on the specification of the margin function m (σ, Λ) and
profits and losses depends on the initial position x0. To separate these effects, we
first consider two specifications of the margin function in the context of zero initial
positions, and then we consider the effect of the initial position in the context of a
constant margin.

Fragility. We first consider the case in which dealers have no initial position
x0 = 0 and the margin is increasing in market illiquidity m(σ, Λ) = 4 + Λ. Figure 2
depict the initial customers’ supply curve S = 20 − 2Λ and the dealers’ demand curve
for different levels of funding B. Dealers’ demand is given by x = B

m(σ,Λ)
= B

4+Λ
for any

Λ > 0.
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Figure 2: Fragility and Margin Spiral. The figure plots the initial customers’
supply S and the dealers’ demand x as functions of market illiquidity Λ when the
margin is m(σ,Λ) = 4 + Λ and the dealers’ initial position is x0 = 0.

5This outcome is not necessarily true in a dynamic model since dealers are worried that funding
might be even more scarce in some future state of the world.
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When the dealer is well funded B = 120, the dealers’ demand curve is given by
top solid curve in Figure 2. At this level of funding, the dealer would have a larger
demand than the initial customers’ supply for any Λ > 0. Hence, perfect liquidity
provision Λ = 0 is the unique equilibrium. The dealers fully absorb initial customers’
total selling pressure of z = 20 and market illiquidity is zero.

As funding declines to B = 90, the perfect liquidity equilibrium remains because, at
Λ = 0 the dealer can still fund a position of x = 20 which fully absorbs the customers’
demand shock. However, a second stable equilibrium with less liquidity provision Λ = 5
also emerges. In this funding-constrained illiquid equilibrium, the dealer’s funding con-
straint is binding because margins are higher. The higher margin prevents the dealers
from providing full market liquidity, and the low market liquidity in turn justifies the
higher margins. Hence, funding and market liquidity reinforce each another. Low mar-
ket liquidity (high Λ), leads to higher margins m which tightens dealers’ funding and
reduces dealers’ market liquidity provision.

We note that with B = 90 there is also a third equilibrium in which Λ = 1. This
equilibrium is not stable, however. Indeed, if Λ dropped slightly below 1 then dealers
could trade more, pushing Λ further down, a process that would stop only when Λ = 0.
Alternatively, if Λ increased above 1 then dealers would violate their funding constraint,
thus need to reduce their position, pushing Λ further up until Λ = 5. Naturally, we
are only interested in the properties of stable equilibria.

If funding is as low as B = 60 then perfect liquidity Λ = 0 is no longer an equi-
librium and only a funding-constrained illiquid equilibrium remains. In summary, for
sufficiently high B, the perfect-liquidity equilibrium is the unique outcome. For B in
an intermediate range there are two stable equilibria; the perfect-liquidity equilibrium
and a funding-constrained illiquid equilibrium. For low B the unique equilibrium is
funding constrained.

Figure 2 highlights the “disconnect” between the perfect-liquidity equilibrium and
the funding-constrained illiquid equilibria. Hence, a marginal reduction in B cannot
always lead to a smooth reduction in market liquidity. There must be a level of funding
such that an infinitesimal drop in funding leads to a large drop in market liquidity. This
discontinuity can help explain the sudden market liquidity dry ups, that is, the fragility
of liquidity.

Margin Spiral. Continuing with the example of Figure 2, we consider the effect
on market liquidity of a marginal drop in wealth. Of course, a reduction of B does not
affect the market illiquidity Λ as long as the market remains in the perfect-liquidity
equilibrium with Λ = 0.

More interestingly, after a wealth shock that leads to a sudden discontinuous drop
in market liquidity as the equilibrium switches to the funding-constrained illiquid equi-
librium, market liquidity becomes very sensitive to further changes in wealth B. This
is because a further reduction in B is amplified by a “liquidity spiral.” This is seen
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in Figure 2 where wealth drops from 90 to 60, which leads to a violation of dealers’
funding constraint. Therefore, dealers have to cut back on their positions even if prices
(i.e. Λ) were to stay the same. This leads to an excess supply so the price declines
(Λ increases), which in turn leads to higher margins, further tightening the dealers’
funding constraint, and so on. The new equilibrium is only reached at Λ = 7.3 with a
position of x = S = 5.2.

Similarly, a change in supply shock z (not illustrated) would also set off a liquidity
spiral: as the supply curve shifts outwards, the excess supply leads to larger Λ, which
tightens the funding constraint and lowers dealers’ demand, which in turn leads to an
increase in Λ, and so on.

Unique Equilibrium and No Spiral. Figure 3 depicts the case in which mar-
gins decline as the market becomes less liquid. More specifically, the margin is m (σ, Λ) =
max {4 − Λ, 0} and we keep the assumption for now that x0 = 0.
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Figure 3: No Fragility. The figure plots the initial customers’ supply S and
the dealers’ demand x as functions of market illiquidity Λ when the margin is
m(σ,Λ) = max{4 − Λ, 0} and the dealers’ initial position is x0 = 0.

The upward sloping curves are the dealers’ demand curves for different levels of
funding B. Clearly, there is a unique equilibrium — shown as a circle — for each level
of funding. Further, the equilibrium market liquidity is a continuous function of wealth
B.

Finally, there is no liquidity spiral; on the contrary the margin function mitigates a
wealth shock. To see this, consider a reduction in funding B. This downward shift in
the dealer’s demand curve would, for fixed Λ, lead to excess supply. Hence, Λ increases,
which reduces the margin, thus relaxing the dealers’ funding constraint.
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Hence, in this case, sudden liquidity dry-ups (fragility), and liquidity spirals do not
emerge.

Note that one should not conclude from our numerical example that fragility occurs
if and only if m is increasing in Λ; Proposition 1 provides precise conditions for fragility.

Loss Spiral. In the previous examples, the dealers’ initial position, x0, is zero, so
that their wealth is independent of current prices. This allowed us to abstract from the
effects of endogenous dealer profits and losses. In this example, we let x0 = 5. To focus
exclusively on the effect of this initial position, we let the margin be constant, m = 4,
i.e. independent of Λ. Hence, dealers’ demand, B+x0(E1[v]−Λ)

m
, is linearly decreasing in

Λ with a slope −x0

m
.

Figure 4 depicts the initial customers’ supply schedule S (20, Λ) = 20− 2Λ and the
dealers’ demand schedule for different wealth levels. The solid line plots the case of
dealer wealth B + x0E1 [v] = 70. In equilibrium the dealers absorb 40

3
shares of the

initial customers’ selling pressure at an illiquidity level of Λ = 10
3
.
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Figure 4: Loss Spiral. The figure plots the initial customers’ supply S and
the dealers’ demand x as functions of market illiquidity Λ when the margin is
m(σ,Λ) = 4 and the dealers’ initial position is x0 = 5.

The dashed line in Figure 4 reflects the dealers’ demand function after reduction
in their cash holding B by 10 units. This tightens their constraints and they are no
longer able to purchase 40

3
shares. Even if prices were to stay the same, i.e. illiquidity

were fixed at Λ = 10
3
, dealers’ absorption capacity is reduced by ∆B

m
= 10

4
shares.

This initial reduction is already significant due to the leverage effect. Prices adjust
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in addition, triggering the loss-spiral. To see this, note that the excess supply by the
initial customers leads to more illiquidity (lower prices) which erodes dealers’ current
wealth B + x0 (E1 [v] − Λ) further. This forces dealers to reduce their position even
further, which in turn increases illiquidity and so on. Figure 4 illustrates this loss spiral
which arises because the slopes of demand curve and of supply curve have the same
sign. In our numerical example, a reduction of B by 10 units doubles illiquidity from
10
3

to 20
3
.

A similar loss spiral arises in case of a drop in the fundamental value of the stock
E1 [v]. This is because the associated wealth loss is x0 times the drop in fundamental
value. Hence, dΛ

dE1[v]
= x0

dΛ
dB

. The larger is x0, the larger is the initial wealth loss, and,

further, the more pronounced is the multiplier dΛ
dB

because the initial position amplifies
any price drops.

An increase in the supply shock z also leads to a multiplier effect spiral. A higher z
(parallel shift of the supply curve) results in an increase in Λ (reduction in price), which
leads to dealer losses on the existing positions x0, leading to a further increases in Λ,
forcing the constrained dealer to reduce his position x0 even further. Interestingly, an
increased supply z leads to a reduction in the provision of immediacy.

Also, an increase in fundamental volatility σ translates into a higher margin m,
which flattens the demand curve x (Λ,W ) by rotating it around the intercept with the
horizontal axes. Holding illiquidity fixed, dealers’ demand is depressed after increasing
σ. This increases Λ, which depresses dealers’ demand and so on.

4 Commonality and Flight to Quality

In order to consider cross-sectional variation in liquidity, we now generalize the model
to have multiple securities, indexed j = 1, . . . , J . Security j has a final payoff of
vj and a fundamental volatility σj. The initial customers have a demand shock zj

for asset j and thus want to sell S(zj, Λj) securities, where S is defined above. The
complementary customers have the reverse shock, and, therefore, the price of security
j is equal to E2 [vj] at time 2.

The dealer maximizes expected profit

max
(xj)

E1

[

∑

j

xj(vj − pj)

]

=
∑

j

xjΛj

subject to the capital constraint

∑

j

m(σj, Λj)xj ≤ max{0, B +
∑

j

xj
0(E1

[

vj
]

− Λj)} (7)

xj ≥ 0 (8)
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where m is the margin as a function of fundamental volatility σ and market liquidity
Λ. We assume as before that m is increasing in fundamental volatility σ and, further,
that the margin elasticity with respect to Λ is less than one, ∂m

∂Λ
Λ
m

< 1, because the
margin is in part due to fundamental volatility.

Since both the dealer’s objective function and constraint are linear, he optimally
invests all his capital in securities that have the greatest expected profit Λj per capital
use mj. We define the shadow cost of capital φ as the maximum attainable profit per
used capital

φ = max
j

Λj

mj
(9)

Hence, the dealer invests positive amounts, xj > 0, only in securities with

Λj

mj
= φ (10)

and he does not invest in securities with Λj

mj < φ.
The dealer’s shadow cost of capital φ captures well the notion of funding liquidity.

Indeed, a high φ means that the available funding — from capital W and from col-
lateralized financing with margins mj — is low relative to the needed funding, which
depends on the investment opportunities deriving from demand shocks zj.

Consider the equilibrium market liquidity for a given cost of capital φ for the dealer.
If the dealer does not invest in security j, then market illiquidity is the smallest value
such that in equilibrium S(zj, Λ) = 0. We denote this value by Λ̄(zj). The dealer will
refrain from investing in this asset if his expected profit per capital use in this security
is less than his shadow cost of capital φ, that is, if

Λ̄(zj)

m(σj, Λ̄(zj))
< φ. (11)

Otherwise, the dealer invests in this security, thus improving market liquidity until the
point at which Λj solves6

Λj

m(σj, Λj)
= φ (12)

The market liquidity corresponding to φ is denoted by Λj(φ). That is, Λj(φ) is the
minimum of Λ̄(zj) and the solution to (12).

We can also express the price pj as a function of funding liquidity φ, expected value
of fundamentals E1 [vj] and the margin:

pj = E1

[

vj
]

− φmj(σj, Λj(φ)). (13)

6It can be shown that there is a unique solution to (12).
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Intuitively, the prices are closer to fundamentals if funding is less tight (φ small), or if
the margin mj is small.

We can characterize the equilibrium funding liquidity as follows. We insert the
Λj(φ) and the equilibrium condition xj = S(zj, Λj) into the dealer’s funding constraint
to obtain the following inequality in φ:

∑

j

m(σj, Λj(φ))S(zj, Λj(φ)) ≤ max{0, B +
∑

j

xj
0(E1

[

vj
]

− Λj(φ))} (14)

Hence, the equilibrium shadow cost of capital φ is characterized as follows: either
(i) φ = 0, Λj = 0, and

∑

j

m(σj, 0)S(zj, 0) ≤ B +
∑

j

xj
0E1

[

vj
]

, (15)

(ii) φ ∈ (0, φ̄), where φ̄ := maxj
Λ̄(zj)

m(σj ,Λ̄(zj)
and

∑

j

m(σj, Λj(φ))S(zj, Λj(φ)) = B +
∑

j

xj
0(E1

[

vj
]

− Λj(φ)), or (16)

(iii) φ = φ̄ and

0 ≥ B +
∑

j

xj
0(E1

[

vj
]

− Λj(φ)). (17)

As in the case of one security, there can be one or more equilibria, that is, one
or more solutions φ exits to these equations. Also, fragility generalizes to the case
of multiple securities. Rather than repeating these results, we focus on the model’s
implications for cross-sectional variation in market liquidity. Interestingly, the model
implies that market liquidity is common across securities:

Proposition 3 (Commonality of market liquidity)
If B,E0 [v1] , . . . , E0

[

vJ
]

are random, the market liquidity of any two securities j and
k comove,

Cov
(

Λj, Λk
)

≥ 0,

and market liquidity comoves with funding liquidity,

Cov
(

Λj, φ
)

≥ 0.

This commonality arises in a straightforward way from the fact that any securities
market liquidity depends on the funding condition of the dealer sector.

The model further links market illiquidity to fundamental volatility. To see this,
note that if an asset has higher fundamental volatility σj it also has higher margins,
everything else equal. This, in turn, implies a higher equilibrium market illiquidity.
Further, the market illiquidity of securities with higher fundamental volatility has a
disproportionally stronger response to a capital shock. The next proposition demon-
strates these volatility implications for market liquidity.
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Proposition 4 Suppose that asset k has lower fundamental volatility than asset j,
σk < σj. Then
(i) (Quality=Liquidity) Assets with lower fundamental volatility have better market
liquidity. Specifically,

Λj ≥ Λk

if xj, xk > 0, or if these securities have the same demand shock zj = zk.
(ii) (Flight to Quality) The market liquidity differential between high and low fun-
damental volatility securities is bigger when dealer funding is tight if m is not too
nonlinear. Specifically,

∣

∣

∣

∣

∂Λj

∂B

∣

∣

∣

∣

>

∣

∣

∣

∣

∂Λk

∂B

∣

∣

∣

∣

if xj, xk > 0 and if ∂2m/∂Λ2 and ∂2m/∂σ∂Λ are small.

Hence, not only are more volatile securities on average more illiquid (part (i)),
they are also more sensitive to changes in dealers’ funding condition (part (ii)). The
excess sensitivity of “risky” securities to the funding of dealers captures the notion
of flight to quality/flight to liquidity. In our model, this phenomenon arises because
dealers need a higher compensation for providing liquidity in high-margins securities
when capital is tight. Empirically, a relation between market liquidity and volatility
has been documented by Benston and Hagerman (1974) and Amihud and Mendelson
(1989), and flight to liquidity has been documented by Acharya and Pedersen (2005).

Numerical Example
To see the intuition for commonality in liquidity and flight to quality, we extend our

numerical example of Section 3 to a case with two assets that differ in their fundamental
volatility. The fundamental volatility of asset 1 is σ1 = 1, while asset 2 has fundamental
volatility σ2 = 2.

To focus on commonality and flight to quality while abstracting from fragility and
liquidity spirals, we assume that the the dealers’ initial position is x1

0 = x2
0 = 0 and that

the margin is solely governed by fundamental volatility m(σ, Λ) = σ. This ensures that
the equilibrium is unique in our example. The initial customers’ have a supply curve
for each asset j of S (zj, Λ) = zj − 2Λ, where the endowment shocks are z1 = z2 = 20.

Figure 5 depicts the assets’ market illiquidity for different funding levels B. For any
given funding level, Λ2 is always above Λ1. That is, the high-fundamental-volatility
asset 2 is always less liquid than the low-fundamental-volatility asset 1. This observa-
tion corresponds to our result that relates fundamental volatility to market liquidity
(“Quality=Liquidity.”).

The graph also illustrates our result on “Flight to Quality.” To see this, let us look
at the relative sensitivity of Λ with respect to changes in B: For funding levels above
60, market liquidity is perfect for both assets, i.e. Λ1 = Λ2 = 0. In this high range
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Figure 5: Commonality in Liquidity and Flight to Liquidity. The
figure plots that market illiquidity Λj of assets 1 and 2 as functions
of dealer wealth B. Asset 1 has lower fundamental risk than asset 2,
σ1 = 1 < 2 = σ2.

of B, market liquidity is insensitive to marginal changes in funding. As funding falls
below 60, market illiquidity of both asset increases since dealers must take smaller
stakes in both asset. Importantly, as B decreases, Λ2 (B) increases more steeply than
Λ1 (B), that is, asset 2 is more sensitive to funding declines than asset 1. This is
because dealers cut back more on the “funding intensive” asset 2 with high margin
requirement. The dealers want to maximize their profit per dollar margin, Λj/mj and
therefore Λ2 must be twice as high as Λ1 to compensate dealers for using twice as much
capital for margin.

As funding B declines below 10, dealers put all their funds only into asset 1 and
initial customers cannot sell any of their supply shock of z2 = 20. Hence, the market
illiquidity of asset 2 is at its worst Λ2 = Λ̄ = 10. As funding drops further below 10,
the market illiquidity of asset 1 naturally increases further. Hence, in this range the
assets’ liquidity differential narrows, but this effect is, of course, solely driven by the
fact that asset 1 is maximally illiquid.

Figure 5 also depicts our funding liquidity measure φ, the marginal value of an extra
dollar of funding. Recall that, as long as dealers are the marginal investors in asset j,
the shadow cost of funding is equal to the expected profit per capital usage, φ = Λj

mj .
Since dealers are marginal in asset 1 for any B and m1 = 1, funding illiquidity in this
case coincide with the market illiquidity of asset 1, φ (B) = Λ1 (B) for all B ≥ 0.

This graph makes clear that funding B (or, equivalently, the shadow cost of funding
φ) is a common factor that drives the market illiquidity of both assets. This naturally
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implies a commonality of market liquidity across asset 1 and asset 2 as well as a positive
covariance between funding illiquidity and market illiquidity for random B.

5 On Margin Setting

Our analysis so far shows how phenomena such as fragility of market liquidity and
liquidity spirals depend on the nature of the margin requirements m (σ, Λ). Hence, it
is important to determine the circumstances under which margin rules fuel liquidity
crisis by requiring more capital as prices diverge, and the circumstances under which
margin requirements are stabilizing.

As discussed in Section 2, margins are set using a value-at-risk approach.7 Hence,
at any time t, a financier will loan an amount lt to a dealer financing a security with
price pt, where lt is determined using a value-at-risk with a confidence of π ∈ [0, 1]:

Pr(pt+1 < lt) = π (18)

Since the margin for a long position is mt = pt − lt, the margin requirement is deter-
mined equivalently by

Pr (−(pt+1 − pt) > mt) = π (19)

Using that the price can be decomposed as pt = vt −Λt (where vt = Et[v]), we can also
write

Pr (−(vt+1 − vt) + (Λt+1 − Λt) > mt) = π (20)

An extreme case is risk-free financing, that is, a loan value equal to the lowest
possible value of E2[v]. This is captured by (19) with π = 0. In this case, the margin
is determined by

mt = pt − min pt+1

= (vt − min vt+1) + (max Λt+1 − Λt) (21)

Intuitively, (20) and (21) show that the margin is the sum of the fundamental risk (i.e.
changes in vt) and the market liquidity risk (i.e. changes in Λt).

While this general result on margin setting provides insight, it does not alone de-
termine whether margins are stabilizing or destabilizing. Interestingly, the margin can
have either property depending on the risks in the economy and on the financier’s
information set as we illustrate in the following sections.

7The value at risk approach can be seen as the outcome of credit rationing due to adverse selection
and moral hazard in the lending market as described by Stiglitz and Weiss (1981). Also, Geanakoplos
(2003) considers endogenous contracts in a general-equilibrium framework.
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5.1 Stabilizing Margins: the Cushioning Effect

We first show that the margin m can be decreasing in market illiquidity if the financiers
can perfectly distinguish between a permanent fundamental shock and temporary sell-
ing pressure and can perfectly anticipate future market liquidity.

To make this point we consider the 3-period model of Section 3 and assume that
the financier knows the expected fundamental value E1[v] at time 1 when the dealer
puts on his trade. Hence, the financier knows that the price is depressed because of a
temporary demand shock and that the market will become perfectly liquid at time 2
such that price at time 2 will be the fundamental value p2 = E2[v].

Under these assumptions, at time 1, the financier will loan a dealer an amount l
that depends on the time-2 conditional distribution of the fundamental. In particular,
since the dealer uses a value-at-risk with a confidence level of π, the loan value l is
given by

Pr(E2[v] < l) = π. (22)

Importantly, this loan value does not depend on current market liquidity Λ. The
margin of the dealer is the difference between his purchase price p = E1(v) − Λ and
the loan value l, that is,

m = E1[v] − l − Λ. (23)

Hence, we have

Proposition 5 If the financier knows the fundamental value and knows that next pe-
riod’s market liquidity is perfect, Λt+1 = 0, then the current margin mt is linearly
decreasing in current market illiquidity Λt.

The proof follows directly from equation (23). The intuition for this simple result
is clear: current market illiquidity pushes the price away from its fundamental which
makes the trade more profitable for the dealer and, importantly, less risky since the
price is known to “bounce back” to its fundamental value. Said differently, the current
illiquidity discount in the price provides a “cushion” against future fundamental risk.

Obviously, this result relies on the strong assumptions that the financier can per-
fectly distinguish between permanent and transitory price movements and that the
financier knows that the market becomes liquid next period. Next, we relax these
assumptions.

5.2 Constant Margins

In the real world, dealers and financiers do not know exactly when a trade will converge,
that is, when the complementary customers will arrive. This uncertainty implies that
a depressed price does not necessarily imply that the financier’s losses are cushioned
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since the price could be even more depressed in the future. This risk can offset the
cushioning effect and imply a constant margin requirement.

To capture this effect, we extend our model to an infinite horizon economy. The
initial customers arrive at time 1 as before, but the complementary customers now
arrive randomly. Specifically, if the complementary customers has not arrived prior to
time t, then they arrive at time t with constant probability α, where α ∈ (0, 1).8 After
complementary customers arrive, the market becomes liquid, that is, Λt = 0.

We assume that dealers can hedge the fundamental risk away. More specifically,
there are two “mirror” assets with perfectly negatively correlated fundamentals, ∆v1

t =
−∆v2

t . The fundamental of security i = 1, 2 evolves as a random walk with i.i.d.
increments, that is, the distribution of ∆vi

t is constant over time.9

The initial customers have a supply of security i = 1, 2 of S̄(zi, Λi
t,L(Λi

t+1)) de-
pending on their identical supply shock z1 = z2 = z, the current market illiquidity
Λi

t and the distribution of the future market illiquidity L(Λi
t+1). Since in a stationary

equilibrium Λi
t = Λi for all t before the complementary customers arrive, we can write

the supply simply as a function of the constant market illiquidity Λi, S̄ = S(zi, Λi),
where S has the natural properties given in Section 3. When complementary customers
arrive, the supply and demand of both groups of customers cancel such that the price
is pt = vt.

In the stationary equilibrium of this economy, the dealers hold the same long po-
sition in both securities, and the illiquidity either vanishes (i.e. Λt+1 = 0) in the next
period or the dealers face the same situation as in the current period (i.e. Λt+1 = Λt).
The margin mt at any time t prior to the arrival of the complementary customers is
set based on the following condition:

π = Pr(−∆pt+1 > mt) (24)

= Pr(−∆pt+1 > mt |Λt+1 = 0)α + Pr(−∆pt+1 > mt |Λt+1 > 0)(1 − α) (25)

= Pr(−∆vt+1 > mt + Λt)α + Pr(−∆vt+1 > mt)(1 − α) (26)

In other words, the financier’s value at risk is the mixture of the risk if the comple-
mentary customers arrive next period or not. Clearly, the riskier scenario in the one in
which the complementary customers do not arrive. Indeed, Pr(−∆vt+1 > mt + Λt ) is
small relative to Pr(−∆vt+1 > mt) for large Λt. Therefore the margin largely depends
on the fundamental risk of the security. This is because the risk that the complemen-
tary customers do not arrive next period “switches off” the cushioning effect described
in Section 5.1. We can make this statement precise, for instance, in the case of the
risk-free financing π = 0 (which makes most sense in the case of a bounded support of
the fundamental risk) as described in the following proposition:

8The model with known arrival of the complementary customers is a special case of this model
with α = 1.

9Gromb and Vayanos (2002) consider a similar model with two perfectly negatively correlated
securities. Their model is a finite horizon one and the cushioning effect partially remains.
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Proposition 6 If the fundamental values of securities 1 and 2 have bounded support
∆v1

t = −∆v2
t ∈ [−σ, σ], z1 = z2, and the financier uses a VaR with π = 0, then there is

a stationary equilibrium with a margin m = σ that does not depend on market liquidity.
In this equilibrium, market illiquidity is decreasing in dealer wealth, and the dealer’s
marginal value of a dollar is 1 + Λ

σ
.

These results are intuitive: The margin is constant because complementary cus-
tomers might not arrive next period, implying an equally distorted price, and because
fundamental risk vart(∆vt+1) is constant over time.

Further, the dealer’s marginal value of a dollar before the complementary customers
arrive is the value of the dollar itself, namely 1, plus the expected profit of Λ times the
maximum leverage ratio of 1/σ. Since Λ is higher if wealth is lower, so is the marginal
value of a dollar. This marginal value can be seen as the funding liquidity.

This dynamic model can be solved in closed form if we parameterize the supply
function as S̄ = z − 1

γ
Et [Λt − Λt+1], where the constant γ > 0 can be thought off as

the holding cost of customers. In a stationary equilibrium we have S = z − α
γ
Λ, which

implies

Λ =
γ

α

(

z −
W0

2σ

)

. (27)

Hence, in equilibrium the dealer’s marginal value of a dollar is

1 +
γ

ασ

(

z −
W0

2σ

)

. (28)

In the setting of Proposition 6 liquidity is constant. One way to make margins
dependent on the risk that future market liquidity might worsen is to relax the as-
sumption that both assets are perfectly negative correlated. We can do so by assuming
that the perfect hedge of both assets breaks at random points in time.10 Such “hedge-
breaks” can lead to an erosion of dealers’ wealth which affects their future liquidity
provision. This additional risk induces financiers to set initially higher margins com-
pared to a setting without hedge breaks. The model with hedge-breaks is outlined in
the appendix.

Aside: Constant Proportional Margins. In the real world, the margin is some-
times a constant proportion of market value (rather than a constant dollar amount
per share), that is, mt = fpt for some constant f ∈ (0, 1). For instance, f = 0.5 for
stocks because of Regulation T as discussed in Section 2. This margin requirement can
arise because of regulation or because the fundamental risk is proportional to value as
in a geometric Brownian motion. Interestingly, a constant proportional margin has a

10Alternatively, one could also introduce additional supply shocks by customers.
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stabilizing effect for long positions and a destabilizing effect for short positions. To see
that, note that for a long position, a constant proportional margin implies that

mt = fpt = fEt[v] − fΛt (29)

which decreases in Λt, that is, a depression of the price lowers the margin, which enables
dealers to buy more shares and stabilize the price.

When initial customers want to buy — not sell as we usually consider for ease of
exposition — then the price is temporarily increased, pt = Et(v) + Λt, and the dealers
will take short positions. With constant proportional margins on a short position, we
have

mt = fpt = fE[t](v) + fΛt (30)

which increases in the market illiquidity Λt. Hence, an increase of the price raises the
margin, thus making it harder for dealers shortsell and stabilize the price.

Further, with constant proportional margin, the dollar margin on a long position
goes down when the position loses, while the dollar margin on a short position goes
up when the position loses. This asymmetry between the implications of constant
proportional margin for, respectively, long and short position implies that dealers (and
other traders) will be more reluctant to take short positions than long ones.

5.3 Destabilizing Margins

In the real world, the financier of a trader often has less information about the trade
than the trader does. Hence, the financier may worry, for example, that a price drop
is due to a fundamental shock rather than a temporary demand effect. This informa-
tion disadvantage of the financier is worst in markets in which the trading activity is
very specialized. Indeed, if the financier fully understood the dealer’s trade, then the
financier could do the trade himself rather than just finance it.

To capture this real-world problem, we consider the benchmark 3-period model
with the twist that initial customers may or may not arrive at time 1, and only dealers
know whether these customers arrive. The ex-ante price at time zero is equal to the
fundamental p0 = v0. At time 1, if initial customers arrive, the price is p = v1 − Λ;
otherwise, the price is simply the fundamental p = v1. While the dealers know whether
the initial customers arrived, their financiers do not.

We further assume that fundamental volatility has an autoregressive conditional
heteroskedasticity (ARCH) structure. Specifically, the conditional expected value of
the final payoff vt = Et [v] evolves according to

vt+1 = vt + ut+1 = vt + σt+1εt+1 (31)

where εt is i.i.d. standard normal and the volatility σt has dynamics

σ2
t+1 = (1 − θ)σ̄2 + θu2

t (32)
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where σ̄2 = E [σ2
t ] is the mean variance and θ ∈ (0, 1). A positive θ means that shocks

to fundamentals also increase future volatility.
The financier sets the margin based on a value-at-risk calculation conditional on

his information, which is the observed prices at times 0 and 1, p0 and p1 = p. The
financier does not know whether to attribute a price change p − p0 to a fundamental
shock u1 alone, or to a combination of u1 and a liquidity shock Λ. A fundamental
shock is a permanent reduction in the value and leads to an increase in fundamental
risk; a liquidity shock, on the other hand, is temporary in that the price will bounce
back and has no effect on fundamental risk:

π = Pr(p2 − p < −m | p)

= Pr(p2 − p < −m | p, z = 0)Pr(z = 0 | p)

+Pr(p2 − p < −m | p, z 6= 0)Pr(z 6= 0 | p)

= Pr(v2 − v1 < −m | v1 = p)Pr(z = 0 | p)

+Pr(v2 − v1 < −m − Λ | v1 = p + Λ)Pr(z 6= 0 | p)

The financier’s value at risk largely derives from the risk that a price change was due
to a u shock if Pr(z = 0 | p) is not too small:

π ∼= Pr(v2 − v1 < −m | v1 = p)Pr(z = 0 | p) (33)

= Φ

(

−
m

E (σ2|u1 = p − p0)

)

Pr(z = 0 | p) (34)

where Φ is the normal cumulative distribution function. Hence,

m ∼= E (σ2|u1 = p − p0) Φ−1

(

1 −
π

Pr(z = 0 | p)

)

If liquidity shock occurs such that p = v1 − Λ then

E (σ2|u1 = p − p0) =
√

(1 − θ)σ̄2 + θ(p − p0)2 (35)

=
√

(1 − θ)σ̄2 + θ(v1 − Λ − v0)2 (36)

=
√

(1 − θ)σ̄2 + θ(Λ − u1)2 (37)

Hence, the financiers’ expected fundamental volatility is increasing in market illiquidity
Λ if Λ − u1 > 0. Therefore, the margin

m ∼=
√

(1 − θ)σ̄2 + θ(Λ − u1)2 Φ−1

(

1 −
π

Pr(z = 0 | p)

)

is increasing in Λ if Pr(z = 0 | p) is relatively insensitive to p − p0.
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Proposition 7 If the financier does not know whether a demand shock has occurred,
fundamental volatility is time-varying θ > 0, and Pr(z = 0) is close to 1, then the
margin is increasing in market illiquidity Λ for a nontrivial set of fundamental shocks
u1.

Intuitively, market illiquidity Λ combined with a negative fundamental shock u1 < 0
leads to a price drop which worsens the financier’s VaR scenario and hence increases
the margin. This is because the financier fear that the price drop could be due to a
fundamental shock, implying that the price will not bounce back and volatility will
increase.

We note that increasing margins can arise simply because financiers compute the
value at risk using a volatility estimate based on recent returns. In this case, a liq-
uidity shock associated with a large price movement will lead to an increase of margin
requirements. Indeed, some brokers and futures exchanges (e.g. EUREX) set margins
based on value at risk calculated using past data and typically use forward looking
information (e.g. like option-implied volatility) only to further increase margin re-
quirements.11 In light of our asymmetric information framework, one can view this
behavior as a rule-of-thumb that protect a financier who cannot determine whether
shocks were due to fundamental shocks or liquidity shock and cannot perform the full
Bayesian updating in real time.

6 Related Literature

In this section, we review how our paper links the various literatures that touches on
market liquidity and funding liquidity.

The market liquidity literature shows that a security can be costly to trade — that
is, has less than perfect market liquidity — because of exogenous order processing costs,
private information (Kyle (1985) and Glosten and Milgrom (1985)), inventory risk of
market makers (e.g. Stoll (1978), Ho and Stoll (1981,1983) Ho and Stoll (1981) and
Grossman and Miller (1988)), search frictions (Duffie, Gârleanu, and Pedersen (2003,
2003a)), or predatory trading (Brunnermeier and Pedersen (2005)). This literature as-
sumes that intermediaries have no funding constraints, with a few exceptions. Attari,
Mello, and Ruckes (2005) and Brunnermeier and Pedersen (2005) consider the strategic
interactions of large traders who may face funding problems and market-liquidity re-
ducing predation. Weill (2004) considers a capital limit for market makers. Grossman
and Vila (1992) study the optimal trading with leverage constraints. Our fragility re-
sults are related to Gennotte and Leland (1990) which focusses on portfolio-insurance
traders and asymmetric information. Our result on multiplicity due to dealer losses is

11We thank Markus Konz from the futures exchange EUREX for describing how margin require-
ments are set.
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similar to Chowdhry and Nanda (1998). None of these papers consider margin-induced
multiplicity and multiplier effects, nor do they explain the differential market liquidity
changes during “flight to liquidity” events.12 Our model of market liquidity is similar
to Grossman and Miller (1988) with the additional funding constraint. We complement
this literature by endogenizing the funding of intermediaries, including the determina-
tion of margins, and linking this funding problem to a unified explanation for the time
variation and cross-sectional variation of market liquidity.

Empirically, Chordia, Roll, and Subrahmanyam (2000), Hasbrouck and Seppi (2001)
and Huberman and Halka (2001) document that there is commonality of stocks’ market
liquidity, that is, market liquidity is correlated across stocks.13 Our model shows that
this commonality in market liquidity can be driven by the underlying funding liquidity
of the market making sector. Acharya and Pedersen (2005) find that when aggregate
market liquidity falls, it falls primarily for illiquid assets — a notion often termed
“flight to liquidity.” In our model, flight to liquidity arises when dealers have funding
problems. This is because dealers prefer to invest their limited capital in liquid markets
with small margins/haircuts. Chordia, Sarkar, and Subrahmanyam (2005) show that
increases in volatility lead to reductions in market liquidity of bonds and stocks.

The second liquidity concept, funding liquidity, is studied in the corporate finance
literature. This literature explains how funding liquidity problems arise because of
agency problems combined with contract and market incompleteness (see e.g. Hart
(1995) and references therein). Similarly, in our model, agents can only collateralize
part of the value of an asset, that is, there are positive haircuts.

The banking literature emphasizes funding liquidity shocks of banks due to early
withdrawals by their customers. The role of banks is to insure across customers’ time
preference shocks by investing in projects and assets with the right maturity structure.
However, as Bryant (1980) and Diamond and Dybvig (1983) show, banks are subject to
bank-runs if they offer demand deposit contracts (and markets are incomplete). In the
case of a bank-run, they are forced to liquidate long-run investment projects at a low
liquidation value. Most of the banking literature follows Diamond and Dybvig (1983)
in assuming an exogenous liquidation technology — that is, market liquidity is not en-
dogenized. In recent work, however, Allen and Gale consider a banking model in which
the sell-off of the bank’s long-run asset may depress its liquidation value, and analyze
the implications for bank runs (Allen and Gale (1998)), fragility of equilibria (Allen
and Gale (2005)), and constrained Pareto efficiency (Allen and Gale (2004)). Similarly,

12In Vayanos (2004) liquidity premia are time varying because costly withdrawal of funds are more
likely during volatile times. Liquidity is defined as a constant trading cost so liquidity does not change
during volatile times in that model.

13Market liquidity also affects the overall price level. Amihud and Mendelson (1986) show that
assets with a low level of liquidity have on average a higher return. Pastor and Stambaugh (2003) and
Acharya and Pedersen (2005) document that aggregate time variation in market liquidity appears to
be priced.
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Shleifer and Vishny (1992) show, within a corporate finance context, that a funding cri-
sis can lead to “fire sales” of machines since potential buyers of these industry-specific
machines also face similar funding problems at the same time. Our model applies the
corporate finance insights of Shleifer and Vishny (1992) and Allen and Gale to study
endogenous market liquidity when the market making sector faces margins constraints
of different forms. In addition to highlighting the effect of destabilizing margin re-
quirements, we consider a multi-asset economy and derive cross-sectional asset-pricing
implications. Holmström and Tirole’s (1998, 2001) research focuses primarily on fund-
ing liquidity. They show that corporations with agency problems have a preference for
government bonds because they provide a cushion for future funding liquidity problems.
Hence, government bonds trade at a premium.

Our paper is also related to parts of the literature on the “limits to arbitrage.”14

Shleifer and Vishny (1997) show, among other things, that a demand shock can be
amplified if losses lead to withdrawal of capital from fund managers. We show that a
similar effect can arise due to leverage and document how the multiplier is exacerbated
by the degree of leverage (Proposition 2) and that this funding effect can lead to
fragility (Proposition 1). Liu and Longstaff (2004) derive the optimal dynamic arbitrage
strategy under funding constraints in a setting with exogenous price process. Gromb
and Vayanos (2002) derive welfare results in a model in which arbitrageurs face margin
constraints similar to those in our model. Unlike in our paper, they focus on welfare,
while we focus on fragility, liquidity spirals and flight to quality. Our commonality
results can also be related to certain work on contagion (see e.g. Allen and Gale
(2000), Kyle and Xiong (2001), and Brunnermeier and Pedersen (2005)).

Our paper also touches on the literature that studies the amplification mechanism
over the business cycle due to agency costs. This literature was initiated by Bernanke
and Gertler (1989) who show that higher net wealth during booms reduces agency
costs, while the lower net wealth during recessions leads to higher agency costs and
tighter collateral constraints (see also Eisfeldt (2004)). Kiyotaki and Moore (1997) show
in a deterministic model how a temporary productivity shock can lead to a dynamic
multiplier. This happens because the shock lowers the net worth of “farmers,” thus
constraining their production, which reduces their future net worth, and so on. This
reduction in the farmers’ current and future demand for the asset reduces its price.
Krishnamurthy (2003) points out that incomplete hedging possibilities are crucial for
this amplification result. We consider a model with uncertainty and multiple assets,
which enables us to study the interaction between risk and credit constraints, and
cross-sectional implications such as flight to quality.

Finally, Geanakoplos (1997) derives endogenous contracts due to collateral require-
ments in a model of general-equilibrium with incomplete markets (GEI ). Lustig (2004)
considers the collateral effect on the equity premium, and Lustig and Nieuwerburgh

14See also DeLong, Shleifer, Summers, and Waldmann (1990) and Abreu and Brunnermeier (2002).
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(2005) perform an empirical study using housing as the collateral asset. Geanakoplos
(2003) relates liquidity to the GEI literature using an illustrative example. In his paper
agents trade because of differences of opinions and margins are set using an endogenous
contract. This contract turns out to be similar to our risk free VaR constraint. Since
he has a finite horizon model in which all agents are perfectly informed, margins are
decreasing in illiquidity due to the cushioning effect described in our Section 5.1.15 Our
paper extends these ideas by showing how fragility and liquidity spirals can arise due
to destabilizing margin requirements, by considering how such margin requirements
can arise due to asymmetric information between the financiers and the dealers, by
modeling market liquidity explicitly, and by showing how flight to quality can arise
endogenously.

7 Conclusion and Central Bank Policy

One central message of this paper is that dealers’ funding drives many empirically
observed market liquidity phenomena. Dealers’ funding, in turn, depend on their
capital and the terms of their financing, that is, the margin that they face. Fragility
and liquidity spirals arise if margin requirements are destabilizing or if dealers’ existing
positions are correlated with customers’ demand shock as described in Section 3.

Margin requirements can be destabilizing if financiers do not have the information
to judge whether a price move is due to fundamental news or temporary price pres-
sure (Section 5.3). Hence, a central bank concerned about market liquidity during a
temporary market displacement can try to signal to financiers that a price drop is a
liquidity event, not a permanent reduction of fundamentals. If this signal is credible,
margins will be reduced and market liquidity will recover.

More generally, our analysis shows how a central bank can indirectly affect market
liquidity by boosting the funding of dealers. In the US, the Fed only lends to commercial
banks, but sometimes the Fed “asks” commercial banks to extend credit to securities
firms. Hence, the Fed can improve the dealers’ funding by ensuring that they get loans
(i.e. increase W ) or by ensuring that they get reduced margins and haircuts.

The Federal Reserve Bank of New York (FRBNY) did just that during the 1987
crash:

“calls were placed by high ranking officials of the FRBNY to senior
management of the major NYC banks, indicating that ... they should
encourage their Wall Street lending groups to use additional liquidity being

15The “crash” derived in his three period example relies on the assumption that default is impossible
during the first period, but possible in the second period. Hence, the margin increases from first to
second period since fundamental volatility increases substantially. This is different from a setting in
which margin increase with market illiquidity.
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supplied by the FRBNY to support the securities community”
— SEC (1988), page 5-25

Moreover, the central bank can improve current liquidity by stating an intention
to fund dealers if needed in the future, without actually taking immediate action. The
Federal Reserve also used this implicit channel to further improve liquidity in 1987.

“the statement issued by the Chairman of FRB indicating that the FRB
would be ready ‘to serve as a source of liquidity to support the economy
and financial system’ was considered significant.”
— SEC (1988), page 5-27

Note that margins and haircuts depend on the feared future liquidity meltdowns.
Hence, if the central bank can credibly signal that it will improve funding in a crisis,
then the market expects reduced liquidity shortage. This, in turn, reduces current
margins and haircuts, thereby boosting current funding and market liquidity.

A Proofs

Proof of Proposition 1. We consider the dealer’s funding constraint with the equilib-
rium demand x = S(z, Λ)

S(z, Λ)m(σ, Λ) + x0Λ ≤ B + x0E1[v]. (A1)

Inequality (A1) can be written as
f(Λ) ≤ b, (A2)

where b := B + x0E1[v] and

f(Λ) := S(z, Λ)m(σ, Λ) + x0Λ. (A3)

A stable equilibrium is either (1) Λ = 0 if f(0) ≤ b; (2) a Λ > 0 with f(Λ) = b and
f ′(Λ) < 0; or (3) Λ = Λ̄(z) if f(Λ̄(z)) ≥ b.

(i) For dealer wealth levels b with b > f(0) = S(z, 0)m(σ, 0) − x0E1(v) it is a stable
equilibrium that Λ = 0. For b ∈ [f(Λ̄(z)), f(0)), the dealer’s funding constraint is binding
and Λ is the unique solution to

f(Λ) = b (A4)

in the interval [0, Λ̄(z)]. For b smaller than f(Λ̄(z)), the dealer is in default and the unique
equilibrium is Λ = Λ̄(z).

Clearly, Λ∗(b) is continuously decreasing (e.g. using the implicit function theorem).
(ii) Suppose first that ∃Λ′ such that f is decreasing on [0, Λ′] and increasing on [Λ′, Λ̄(z)].

Then, as above, for b > f(0), Λ = 0 is a stable equilibrium and for b ∈ [f(Λ′), f(0)], the
dealer’s funding constraint is binding and Λ is the unique solution to equation (A4) in the
interval [0, Λ′]. Solutions in [Λ′, Λ̄(z)] are instable since f ′ is positive. For b < f(Λ′), the
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dealer is in default and Λ = Λ̄(z). Hence, there is a unique stable equilibrium for all values
of b and the equilibrium is fragile around b = f(Λ′) because market liquidity jumps from Λ′

to Λ̄(z).
Suppose next that f is increasing for Λ ∈ [0, Λ1] and decreasing for Λ ∈ [Λ1, Λ2], where

0 < Λ1 < Λ2 ≤ Λ̄(z). Then, for b ∈ (max{f(0), f(Λ2)}, f(Λ1)) there are at least two stable
equilibria: First, Λ = 0 is an equilibrium because b > f(0). Second, since b ∈ (f(Λ2), f(Λ1))
there exists Λ such that f(Λ) = b and f ′(Λ) < 0.

Finally, the remaining case is that f is decreasing for Λ ∈ [0, Λ1], increasing for Λ ∈
[Λ1, Λ2], and decreasing for Λ ∈ [Λ2, Λ3], where 0 < Λ1 < Λ2 < Λ3 ≤ Λ̄(z). There are two
sub-cases:

(a) f(Λ3) > f(0): then there are at least two stable equilibria for b ∈ (f(Λ3), f(Λ2)):
Λ = 0 (because b > f(0)) and Λ ∈ [Λ2, Λ3] with f(Λ) = b.

(b) f(Λ3) < f(0): then there are at least two stable equilibria for

b ∈ (max{f(Λ1), f(Λ3)} , min{f(0), f(Λ2)} )

namely the solutions to f(Λ) = b in each of the intervals [0, Λ1] and [Λ2, Λ3].
We need to show that Λ∗(b) can be chosen decreasing and cannot be chosen continuous.

For the former, let Λ∗(b) = 0 for b > f(0) and, Λ∗(b) = min{Λ : f(Λ) = b, f ′(Λ) ≤ 0}
for b ≤ f(0). If the minimum is over the empty set then let Λ∗ = Λ̄. To see that Λ∗(b) is
decreasing, consider b1 < b2 < f(0). Then, since f is continuous there must be Λ ∈ (0, Λ∗(b1) )
such that f(Λ) = b2 and f ′(Λ) ≤ 0 and, since Λ∗ is the smallest such value, Λ∗(b2) < Λ∗(b1).

To see that Λ∗ cannot be chosen continuous, note that there must be discontinuities when
f turns from decreasing to increasing.

Proof of Proposition 2. When the funding constraint binds, we use the implicit
function theorem to compute the derivatives. For this, we totally differentiate the funding
constraint

∂m

∂σ
Sdσ +

{

∂S

∂Λ
m +

∂m

∂Λ
S + x0

}

dΛ +
∂S

∂z
mdz = x0dE1[v] + dB. (A5)

We have that −∂S
∂Λm − ∂m

∂Λ S − x0 > 0 because f ′ < 0 in a stable equilibrium, where f is
defined in (A3).

Proof of Proposition 3. Since B, z1, . . . , zJ , E0[v
1], . . . , E0[v

J ] are random, the equi-
librium shadow cost of capital φ is random. Further, for each i = j, k, Λi(φ) is increasing in
φ since, when the dealer is marginal, Λi/m(σi, Λi) = φ implies that

dΛi

dφ
=

mi

1 − φ∂mi/∂Λi
> 0 (A6)

and, when the dealer is not investing in asset i, ∂Λi

∂φ = 0.
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Therefore, Cov
[

Λj(φ), Λk(φ)
]

≥ 0 since any two functions which are both increasing in
the same random variable are positively correlated.

Proof of Proposition 4. (i) If zj = zk, then it can be seen that if xk = 0 then xj = 0
and hence each security is equally illiquid. If xj = 0 and xk > 0 then clearly Λj ≥ Λk. Finally,
if xj > 0, then xk > 0. When xj , xk > 0 then — whether or not zj = zk — we can view Λm,
m = j, k, as an implicit function of σm using Λm/m(σm, Λm) = φ for fixed φ. This yields
that

∂Λm

∂σm

∣

∣

∣

∣

fixed φ

=
φ∂m/∂σ

1 − φ∂m/∂Λ
> 0. (A7)

Hence, Λj ≥ Λk.
(ii) For m = j, k we have

∣

∣

∣

∣

∂Λm

∂B

∣

∣

∣

∣

=
∂Λm

∂φ

∣

∣

∣

∣

∂φ

∂B

∣

∣

∣

∣

, (A8)

=
mm

1 − φ∂mm/∂Λm

∣

∣

∣

∣

∂φ

∂B

∣

∣

∣

∣

. (A9)

The result
∣

∣

∣

∂Λj

∂B

∣

∣

∣
>

∣

∣

∣

∂Λk

∂B

∣

∣

∣
now follows from the fact that the derivative of mm

1−φ∂mm/∂Λ with

respect to σ, for fixed φ, is

dm
dσ

(

1 − φ∂m
∂Λ

)

+ mφ
(

∂2m
∂Λ2

∂Λ
∂σ + ∂2m

∂σ∂Λ

)

(1 − φ∂m
∂Λ )2

, (A10)

which is positive for small ∂2m/∂Λ2 and ∂2m/∂σ∂Λ because dm
dσ

(

1 − φ∂m
∂Λ

)

> 0.

Proof of Proposition 6. In a stationary equilibrium, market illiquidity Λt = Λ is
constant until the complementary customers arrive. Hence, the margin mt = σ+max Λt+1−Λt

is simply equal to σ since market liquidity either collapses to zero or stays constant.
To solve the dealer’s problem, we use dynamic programming and introduce his value

function U . The dealers solves

U(Wt, At) = max
xt

Et [U(Wt+1, At+1)] (A11)

s.t. x′

tmt ≤ Wt, (A12)

where At+1 is the indicator that the complementary customers have arrived before time t+1,
Wt+1 = Wt +x′

t (pt+1 − pt), and we use vector notation for xt = (x1
t , x

2
t )

′, Λ, p, and m. When
the complementary customers arrive, the dealer’s value function is simply his wealth, that
is, U(w, 1) = w is a boundary condition. Further, since the problem is linear in wealth, the
value function before complementary customers arrive is U(w, 1) = uw, where u > 1 is a
constant.
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Using this, the dealer’s problem before the complementary customers arrive, At = 0, can
be written

uWt = U(Wt, 0)

= max
xt

αEt[Wt + x′

t (vt+1 − vt + Λ)] + (1 − α)Etu[Wt + x′

t (vt+1 − vt)]

= max
xt

(α + (1 − α)u)Wt + αx′

tΛ,

subject to

(x1
t + x2

t )σ ≤ Wt. (A13)

We see that dealers can optimally choose

x1
t = x2

t = Wt/(2σ). (A14)

(Other positions with the same value of x1
t + x2

t give the same expected utility, but are not
consistent with this equilibrium.)

Further, the dealer’s value function coefficient u can be solved as

u = 1 +
Λ

σ
. (A15)

Equilibrium is characterized by market clearing xt = St. That is, equilibrium market illiq-
uidity Λ solves W0/(2σ) = S̄(z, Λt,L(Λt+1)) = S(z, Λ). Further, using the implicit function
theorem, we get

∂Λ

∂W0
=

1

2σ ∂S
∂Λ

< 0, (A16)

since ∂S
∂Λ < 0 by assumption.

If S = z − 1
γ Et [Λt − Λt+1] then in a stationary equilibrium we have S = z − α

γ Λ, which
implies

Λ =
γ

α

(

z −
W0

2σ

)

. (A17)

Hence, the equilibrium dealer value function coefficient is

u = 1 +
γ

ασ

(

z −
W0

2σ

)

. (A18)

Model with “hedge-break”. In Proposition 6 we assumed that the two securities are
perfectly negatively correlated, i.e. ∆v1

t = −∆v2
t . We now assume that this is only the

case with probability 1 − ε, while with probability ε, they are distributed such that ∆vj +
∆v−j ∈ (−2fσ, 2fσ), where f is some constant in [0, 1]. After the securities move apart no
further hedge breaks can occur, and, therefore, we are in the model with no liquidity risk
characterized by Proposition 6. We denote all variables after the worst possible hedge break
with a hat. We focus on the case in which ε goes to zero and supply and customers have a
linear supply/demand S = z − 1

γ Et [Λt − Λt+1].
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Proposition 8 If ε = 0 and π = 0, then the margin is

(i) m = 1
2

(

σ +
√

σ2 + 2γfW/α
)

, Λ > 0, and, Λ̂ > 0 for W/2 < zσ + z2γf/α;

(ii) m = ασ2+γzfσ−γW/2
ασ−γz , Λ = 0 and Λ̂ > 0 for zσ + z2γf/α ≤ W/2 ≤ zσ (1 + f);

(iii) m = m̂ = σ, Λ = 0 and Λ̂ = 0 for W/2 ≥ zσ (1 + f).
After the hedge-break the equilibrium is described by Proposition 6. In particular, the margin
m̂ = σ.

Proof. The maximum loss is given by two components: First there is the fundamental

loss of xfσ, but there is an additional loss x
(

Λ̂ − Λ
)

, since the decline in illiquidity erodes

the marked to market value of the position. Formally, the minimum wealth after the worst
hedge break Ŵ is given by

Ŵ

2
=

W

2
− x

(

fσ + Λ̂ − Λ
)

(A19)

=
W

2
− xm + (1 − f) σx. (A20)

Linear supply S = z − 1
γ Et [Λt − Λt+1] by initial customers and stationarity imply that

Λ = γ
α (z − x) and Λ̂ = γ

α (z − x̂).
Range (i): W/2 < zσ + z2γf/α

In this range funding is constrained before and after hedge-break. Hence, Λ > 0, Λ̂ > 0 and
W/2 = xm and Ŵ/2 = xm̂, where m̂ = σ from Proposition 6.

Equation (A20) implies in this case that x̂ = (1 − f) x.

W

2
= x

(

σ + Λ̂ − Λ
)

. (A21)

Substituting in for Λ and Λ̂ and solving for x yields

x =
−σ +

√

σ2 + 2γfW/α

2γf/α
and (A22)

m =
1

2

(

σ +
√

σ2 + 2γfW/α
)

. (A23)

It follows directly that

∂x

∂W
> 0,

∂x

∂σ
≤ 0,

∂x

∂α
> 0, and

∂x

∂f
< 0. (A24)

Range (ii): zσ + z2γf/α ≤ W/2 ≤ zσ (1 + f)
In this range, funding is only constrained after hedge-break. Prior to hedge break there is full
liquidity provision, i.e. x = z and Λ = 0. Replacing Ŵ/2 using equation (A20) in Ŵ/2 = σx̂,
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we obtain an equation for x̂ as a function of m. Replacing m with σ + Λ̂ and substituting
the obtained equation of x̂ into, Λ̂ = γ

α (z − x̂) leads to

Λ̂ =
γ

ασ

[

−
W

2
+ z (m + fσ)

]

, (A25)

and

m = σ +
γ

ασ

[

−
W

2
+ z (m + fσ)

]

(A26)

=
ασ2 + γzfσ − γW/2

ασ − γz
. (A27)

Range (iii): W/2 ≥ zσ (1 + f)
Funding is never constrained in this range of W . Hence Λ = 0, Λ̂ = 0 and m = m̂ = σ. In

addition, Ŵ
2 = W

2 − σfz and Ŵ
2 ≥ zσ. Consequently, W/2 ≥ zσ (1 + f).

After putting all three ranges together one sees that m is a continuous function in wealth
W .
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