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Abstract

In 1910 the average American city was a small and densely populated place and less

than one percent of Americans owned a car. By 1970, almost every family in the US

owned at least one automobile. Not only did city size grow between 1910 and 1970, but

city population became more evenly spread around the city center: suburbanization.

A model of a linear city is developed in which agents choose both whether or not to

own a car, and where to live. With declining automobile prices and rising incomes, the

model is able to match the data on car ownership and decentralization for the period

1910 to 1970.
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1 Introduction

Suburbanization has been observed in cities throughout the US since the 1870’s when street railways

were first implemented. But technological progress in transportation made its biggest contributions

during the twentieth century with the invention of the automobile and later the modern highway

system. The adoption of the car as the dominant form of transportation in the US, combined

with rising real income levels, encouraged movement to less dense areas where housing was more

affordable. The goal here is to assess, quantitatively, the relationship between the invention and

diffusion of the automobile and suburbanization.

1.1 Suburbanization

Suburbanization is defined as the increased dispersion of urban population over land area1.

Measuring Suburbanization: To measure the extent of suburbanization, researchers have suc-

cessfully adopted the following functional form to relate population density, d to distance from the

city center, x:

d = ae−bx. (1)

The parameter, a is an estimate of the density (people/square mile) at the city center. The density

gradient, b measures the rate of change of the density as the distance from the city center increases.

The results from estimating equation (1) for two different cities, Chicago and Atlanta, are provided

in Tables 1 and 2, respectively. Observe that Chicago is more densely populated than Atlanta, this

can be seen by comparing the values of a across the two cities. The density gradient for Atlanta is

much steeper than for Chicago in 1900. This can also be seen in Figure 1 which shows the population

density functions for Atlanta in 1900, 1950, and 1970 and Chicago in 1900 and 1950. The amount

of suburbanization that occurred over a period of time is measured by the percent decline in the

population density gradient. In Chicago, the density gradient fell by 48% over the period 1900-50.

In Atlanta, it decreased by 39% during the same period and 77% over the period 1900-70.

Facts: Suburbanization has been a widely observed phenomenon both in the US and in countries

across the world. Decentralization of American cities was first observed in the second half of the

nineteenth century.2 During the period from 1910 to 1970, declining population density gradients

have been observed for almost all US cities. It is during this period that suburbanization in the

US occurred most intensively. This includes both cities with rising populations and those whose

populations have been declining over the period. Estimates of the population density gradient b

are shown in Table 3 for four US cities: Baltimore, Milwaukee, Philadelphia, and Rochester, and
1Hereafter, the terms ‘suburbanization,’ ‘urban decentralization,’ and ‘urban sprawl’ refer to the same phenomenon.
2See Mieszkowski and Mills (1993) for a survey of suburbanization.
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in Table 4 for forty-one US cities, which were defined as metropolitan districts in 1900. The tables

show the density gradients and the percentage change in the density gradients over the period 1900

to 1970. The density gradients have been declining for the sample as a whole from 1910 to 1970

with the largest decline occurring in the decade 1940-50. In the four city sub-sample the density

gradients are declining throughout the entire period3. The density gradients declined by 77% over

the period 1900 to 1970 for the forty-one US cities.

Theories of Suburbanization: A variety of explanations of decentralization have been proposed.

One popular theory is that the rich move to suburbs in order to avoid the disamenities of the inner

cities, such as high crime rates and poor schools4. While another theory argues that government

policies increase the attractiveness of suburban residential locations. For instance, Voith (1999)

discusses how housing-related tax incentives, such as mortgage and property tax deduction, might

induce people to demand more housing and hence move to suburban communities. These theories

may be useful for explaining suburbanization observed in particular cities during particular time

periods, but they cannot explain the more general trend of decentralization observed in the US since

1870 and in other countries.

A second theory of suburbanization focuses on the impact of technological progress in transporta-

tion which has reduced the costs of commuting over time. As the cost of commuting falls, higher

income groups move further from the city center to enjoy more modern housing, more space, and/or

more attractive communities. Beginning in the 1830’s, several innovations in mass transportation,

including omnibus, commuter railroads and streetcars were introduced into American cities. These

improvements enhanced the mobility of city dwellers and helped to expand large cities like New

York, Boston and Philadelphia5. Historians such as Warner (1962) and Ward (1971) take the view

that the introduction of the streetcar in the 1850’s and 1860’s caused the first major movement, by

wealthy individuals, to the suburbs. Yet, by far the biggest breakthrough in transportation came

with the invention of the automobile. The extensive suburbanization observed during the twentieth

century occurred simultaneously with the adoption of the automobile by Americans. Included in

this adoption was the adaption of American cities to private vehicle commuting. This theory of sub-

urbanization as occurring concurrently with technological progress in transportation, is developed

and analyzed in the work of LeRoy and Sonstelie (1983). More recent discussions of the theory are

included in Glaeser, Kahn and Rappaport (2000), and Glaeser and Kahn (2003).

3Balitmore, Milwaukee, Philadelphia, and Rochester are older than average US cities. Older cities tended to spread

out earlier than younger cities. See Edmonston (1975) for a discussion of variations in density gradients across US

cities.
4See for instance, Cullen and Levitt (1999), Mills and Lubuele (1999) and the references therein.
5See Taylor (1966) for a detailed historical account on these innovations.
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1.2 Automobiles

The structure of automobile ownership in the United States changed immensely throughout the

twentieth century. In 1906 approximately one tenth of Americans owned a car. In fact, automobiles

were thought of more as a toy for the rich than as a realistic mode of transportation. By 1940,

however, more than 44% of US families owned a car. By 1995, 92% of American families owned at

least one car and 59% owned two or more.6 The increase in car use and ownership can be seen in

Figure 2, which shows the number of registered automobiles per capita in the United States from

1900 to 1993 and in Table 5 which presents the number of registered vehicles per person age twenty

to sixty-four for the decennial years from 1900 to 1970. Figure 3 shows how car ownership evolved

over the second half of the century.

What caused the rise in car ownership? Both ownership and number of cars owned are increasing

with household income. As shown in Figure 4(a), car ownership ranges from less than 50% for the

poorest income groups to over 90% for the richest, over the period 1952 - 65. Overall ownership

increased from 65% to 74% during this period, largely due to the increase in the second and third

quintiles.

There is a negative correlation between car ownership and prices. The quality-adjusted price of

a new car decreased by 85% since 1906. Figure ?? shows the average price of a new automobile from

1906 to 2000. Figure 5(a) is a plot of the log average price. The price of a new automobile decreased

at an average annual rate of approximately 2% throughout the period. The fastest rate of decrease

occurred during the period 1906-40 with an average rate of 5.5%. The time cost of purchasing

a new car fell by approximately 98% during the 1906-2000 period. In 1906 a worker earning the

average wage would have to work approximately 453 weeks or more than 8 years to acquire enough

earnings to afford to buy a new car. By 1920 the average wage earner could purchase a new car with

approximately 1.6 years of earnings. In 2000 the worker could afford a new car with only 16 weeks

of earnings. The ln time cost can be seen in Figure 6(a).7 The figures depict the time cost for an

individual earning the average wage.

As prices fall not only are families at lower and lower income levels able to afford automobiles

but the purchasing of two and eventually more than two vehicles becomes a reasonable expenditure.

Owning two cars then gives a two-headed household more freedom to move further away from central
6Sources: 1934-1936: Bureau of Labor Statistics, U.S. Monthly Labor Review, March 1940, 1995: Federal Highway

Administration, National Personal Transportation Survey, Summary of Travel Trends.
7 The time cost of purchasing a car is obtained by dividing the price of automobiles by labor income. The value

for 1906 is then normalized to one. Data on automobile prices are collected from various sources: For the period

1906 - 1940, data reported by Raff and Trajtenberg (1995) are used; for 1947 - 1983, data are obtained from Gordon

(1990); and for 1967 - 2000, the data is taken from Ward (2002). The Raff and Trajtenberg (1995) and Gordon (1990)

price series are of quality-adjusted prices. The series from Ward (2002) is the price for a comparable car. Labor

income is the average hourly wages of workers. This is computed with the help of the US real wage indices reported

in Williamson (1995). Here it is assumed that agents work 40 hours a week.
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locations. This argument is supported by Figure 7 which depicts the positive relationship between

car ownership and distance from the city center. The same figure also shows that families living

further away from the city center are more likely to own more than one car, than families living

closer to the center. Another piece of evidence is Figure 8, which shows car ownership by city versus

suburban location. When compared to those living in the central cities, residents in suburban areas

have a higher rate of ownership and own more cars. This phenomenon becomes more predominant

over time. By 1961, only 6% of those living in the central cities of the 12 largest SMSA’s have two

or more cars, as compared to 17% in the suburbs. Ten years later, the two figures rise to 15% and

41%, respectively.

1.3 The Goal

The goal is to develop a model that can be used to explain the relationship between automobile

use versus other modes of transportation, and the changes in the density gradients of cities over

time. By explicitly modelling individuals’ car choice, the impact of decreasing automobile prices on

suburbanization and car-ownership can be assessed quantitatively.

2 The Model

Begin with a simple model of car ownership and location choice. In the model an agent can choose

his mode of transportation and residential site. An agent can either take a bus, which is publicly

owned and operated, or purchase and use a car. The bus in the model serves as a proxy for all forms

of public transportation that are relatively cheaper and slower than the automobile. When agents

make their location choices, they take into consideration two factors: the cost of commuting and the

cost of housing. The desire to save on commuting costs pulls them closer to the employment center.

This in turns generates a large demand for housing around the center and bids up rents. Optimal

location choice thus involves a balance between the two. By owning a car, one can spend less time

commuting from a given location. This induces agents to spread to neighboring suburbs and enjoy

larger living spaces. But not every one will choose to own a car. The price of a car serves as a

fixed cost that screens out those with lower incomes. As income rises, car prices decline, and the

cost of commuting by car relative to taking the bus rises, automobiles become more affordable and

attractive, and this promotes suburbanization.

2.1 The Environment

Consider a linear city located on the positive half of the real line. The city is of unit width so that

the density of land at each location is equal to one. The upper boundary of the city is determined
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endogenously. Land beyond this boundary is used for agriculture.8 All production activities take

place at the origin, or the city center.9 The city is inhabited by a continuum of agents. The size of

the total population is normalized to unity. Each agent is characterized by an ability, λ, drawn from

a distribution F (λ) defined on a finite support [λmin, λmax] . The mean of the ability distribution is

normalized to unity.

There are three types of goods in the economy: final goods, automobiles, and land.10 Land in the

city is owned by a landowner who collects all the rent and spends it on consumption. During each

period, the agents must commute from their residential location to their workplace at the origin.

There are two modes of transportation in the city: car and bus.

2.2 Bus-user’s Problem

If an agent with ability λ chooses to commute by bus, then he chooses consumption in goods, c,

consumption in land services, l, and location, x, to solve the static problem (P1), taking the rent

function q (·) as given.

V b (λ) = max
c,l,x

{α ln c + (1− α) ln l} (P1)

subject to

c + q (x) l = wλ− t(wλ, x),

x ≥ 0,

where q (x) is the rent at location x, w is the market wage for an efficiency unit of labor, and t(wλ, x)

is the cost for an agent with ability λ to travel distance x by bus. The last inequality restricts the

location choice of bus-users to the positive half of the real line. The transportation cost function,

t(·), is assumed to be (i) twice continuously differentiable, (ii) increasing in both arguments, and

(iii) satisfying t(wλ, 0) > 0 for all wλ ≥ 0. The second assumption implies that the time cost of

commuting is increasing in income. Since agents spend all their non-commuting time at work, those

with higher wages have a higher opportunity cost of commuting. The third assumption implies that

the cost function includes a fixed cost that is independent of distance.

Conditional on any given location x ≥ 0, expenditures on goods and land by a bus-user with

ability λ are given by

cb (λ, x) = α [wλ− t(wλ, x)] (2)

and

q (x) lb (λ, x) = (1− α) [wλ− t(wλ, x)] . (3)

8Note that the agricultural sector is not modeled here nor do agents have any demand for agricultural goods. The

agricultural sector exists only to serve as an alternative-user of land. As discussed below, this helps to pin down the

boundary of the city.
9Firms do not use land for production.

10‘Land’ and ‘housing’ are not differentiated in this paper.
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Let xb (λ) denote the agent’s optimal location choice. This location choice is characterized by the

first-order condition

−t2(wλ, x) = q′ (x) lb (λ, x) .11 (4)

By moving closer to the origin, the agent can reduce his transportation costs but this gain must

be balanced by an increase in rent. This implies that the equilibrium rent function is decreasing.

Combining (3) and (4) gives
q′ (x)
q (x)

=
−t2(wλ, x)

(1− α) [wλ− t(wλ, x)]
. (5)

By the Implicit Function Theorem, if q (·) is twice continuously differentiable, then xb (λ) exists and

is continuously differentiable. The following lemma states the condition under which xb (λ) is strictly

increasing.

Lemma 1. Given any twice continuously differentiable function q (·) , the optimal location choice

function xb (λ) is strictly increasing in λ if and only if the income elasticity of housing demand

exceeds the income elasticity of marginal commuting cost, or

wλt12 (wλ, x)
t2 (wλ, x)

<
wλ [1− t1 (wλ, x)]

wλ− t (wλ, x)
. (6)

Proof. See Appendix.

Since the rich (those with high ability) have a higher land demand than the poor (those with

low ability) at any location, the former benefit by living further away from the city center where the

rent is lower. However, the rich also have a higher time cost than the poor. This induces them to

live closer to the city center. The location choice function is monotonically increasing if and only

if the first effect dominates. Given the log utility function, the two elasticities are determined by

the transportation costs functions alone. For instance, if t (wλ, x) is multiplicatively separable in w

and x, then the slope of the location choice function is solely determined by the income elasticity of

t (wλ, x) .

Lemma 2. If t (wλ, x) = δ (x)κ (wλ) + η, where η is a nonnegative constant, then xb (λ) is strictly

increasing if and only if

(wλ− η)κ′ (wλ) < κ (wλ) . (7)

Proof. See Appendix.

Notice that condition (7) is satisfied if κ (w) is linear and passes through the origin. If xb (λ) is

strictly monotonic, then any location x = xb (λ) will be inhabited by bus-users with ability λ alone.

Positive consumption requires that

wλ ≥ t(wλ, xb(λ)).
11The nonnegativity constraint on location is binding for a measure 0 of agents since each location x ≥ 0 has a

measure 0 of land. Hence only interior solutions exist.
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2.3 Car-owner’s Problem

If an agent with ability, λ, chooses to own a car, then he solves the static problem (P2), taking as

given the rent function q (·) .

V c (λ) = max
c,l,x

{α ln c + (1− α) ln l} (P2)

subject to

c + q (x) l = wλ− τ (wλ, x)− pc,

x ≥ 0,

where pc denotes the price of a car, τ (wλ, x) is the cost of traveling distance x by car. The transporta-

tion cost function τ (wλ, x) is assumed to share the same properties as t (wλ, x). When comparing

to the bus, a car takes less time to travel the same distance, i.e. τ2 < t2, for all (wλ, x) , but costs

more to use, so that

τ (wλ, 0) + pc > t (wλ, 0) (8)

holds for all wλ.

Given (8), bus-users will always reside closer to the origin than car-owners. To see this consider

an agent with ability λ who lives at the origin. If he owns a car, his transportation expenses are

τ(wλ, 0) + pc, which are higher than t(wλ, 0), the cost of taking a bus. This means the agent would

have a higher net income (net of transportation expenses) by switching to take a bus. Since it is

never optimal to locate at the origin and to own a car, car-owners will location at locations x > 0.

Conditional on any given location x > 0, expenditures on goods and land are given by

cc (λ, x) = α [wλ− τ (wλ, x)− pc] , (9)

q (x) lc (λ, x) = (1− α) [wλ− τ (wλ, x)− pc] . (10)

The first-order condition for location choice is

q′ (x)
q (x)

=
−τ2 (wλ, x)

(1− α) [wλ− τ (wλ, x)− pc]
. (11)

Given any rental function q (·) , (11) determines the optimal location choice of a car-owner with

ability λ, xc (λ) . Similar to xb (λ) , if q (·) is twice continuously differentiable, then xc (λ) exists and

is continuously differentiable. If we define t̃ (wλ, x) ≡ τ (wλ, x) + pc, the function t̃ (wλ, x) would

share the same properties as t (wλ, x) , and the car-owners’ problem would then be isomorphic to the

bus-users’ problem (P1). This implies that the previous two lemmas still hold for the car-owners’

problem.

If xc (λ) is the optimal location choice for car-owners, then it must yield positive values for

consumption and land services, or

wλ− τ (wλ, xc(λ)) > pc.
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2.4 Car-ownership Decision

An agent with ability λ will choose to own a car if and only if V c (λ) > V b (λ) . The car-ownership

decision can be characterized by the function Ω (λ) where

Ω (λ) =





1 if V c (λ) > V b (λ)

0 if V c (λ) ≤ V b (λ) ,
(12)

for λ ∈ [λmin, λmax] .

Substituting (9) and (10) into the utility function gives the value function of a car-owner,

V c (λ) = α̃ + ln {wλ− τ [wλ, xc (λ)]− pc} − (1− α) ln q [xc (λ)] , (13)

where α̃ ≡ ln αα (1− α)1−α
. Similarly, the value function of a bus-user is

V b (λ) = α̃ + ln {w − t [wλ, xb (λ)]} − (1− α) ln q [xb (λ)] . (14)

Define a critical ability level λ such that V c
(
λ
)

= V b
(
λ
)
. Then λ must satisfy

wλ− τ
[
wλ, xc

(
λ
)]− pc

wλ− t
[
wλ, xb

(
λ
)] =

{
q
[
xc

(
λ
)]

q
[
xb

(
λ
)]

}1−α

. (15)

This equation shows how location choices and car-ownership decisions are interdependent. If there

does not exist any λ in [λmin, λmax] that satisfies (15), then the economy is said to have no car-owner.

Suppose condition (6) is satisfied for both t(wλ, x) and τ(wλ, x), then xb (λ) and xc (λ) are both

monotonically increasing. This implies that no bus-user will live further from the origin than xb

(
λ
)

and no car-owner will live closer to the origin than xc

(
λ
)
. In equilibrium, xc

(
λ
) ≤ xb

(
λ
)

since,

as discussed below, land rent will adjust so that agents are distributed continuously over the city.

xc

(
λ
)

< xb

(
λ
)

implies that the location choices of car-owners overlap with those of bus-users. The

following lemma shows that this is not possible.

Lemma 3. In equilibrium, no car-owner and bus-user will live at the same point. Hence, xc

(
λ
)

=

xb

(
λ
) ≡ x holds.

Proof. See Appendix.

2.5 Production

The aggregate output of final goods, Y, and automobiles, A, are produced using labor alone,

Y = ηLY , (16)

and

A = zLA, (17)

9



where LY and LA denote the aggregate labor inputs devoted to the goods sector and the automobile

sector, respectively12. The variables η and z capture the TFP in the production of final goods and

automobiles.

All markets are assumed to be competitive. Agents can choose to work in any one of the sectors.

The market wage for an efficiency unit of labor is given by

w = η = pcz. (18)

3 Competitive Equilibrium

In this section an equilibrium is defined. To simplify the analysis, the transportation costs functions

are specified as

t (wλ, x) = τ bwλx + γb, (19)

and

τ (wλ, x) = τ cwλx + γc, (20)

where τ b > τ c > 0 and γc + pc > γb > 0. Under this specification, the critical ability, λ, and the

corresponding location, xc(λ) = xb(λ) ≡ x, must satisfy

x =
γc + pc − γb

(τ b − τ c)wλ
. (21)

The critical ability level, if it exists, is unique, with V c (λ) > V b (λ) if and only if λ > λ. Moreover,

condition (6) stated in Lemma 1 is satisfied under this specification. Hence, xb (λ) and xc (λ) are

both strictly increasing. The optimal location choice function for any agent is then given by

x (λ) = xc (λ)Ω (λ) + xb (λ) [1− Ω(λ)] , (22)

where xb (λ) is implicitly defined by (5) and xc(λ) is determined by (11). The function is continuous

by continuity of xb(λ) and xc(λ) and Lemma 3. Strict monotonicity of xb (λ) and xc (λ) implies

that x (λ) is also strictly monotonic. Thus, no one will reside beyond xc (λmax), where λmax is the

maximum ability in the ability distribution (assumed to be finite). Define x̃ ≡ xc (λmax) , then the

size of the city is given by

C = [0, x̃] .

In equilibrium, every point in C must be occupied. Otherwise, any rational land-owner would lower

the rent at the empty point so as to induce someone to move in. Hence, x (λ) should be continuous

over the range of abilities, [λmin,λmax] .
12Alternatively, the production function for automobiles could be specified as

A = zMεL1−ε
A ,

where M is the total quantity of intermediate inputs, and ε ∈ (0, 1). Here, one unit of final goods would be transformed

costlessly into one unit of intermediate goods. Both specifications would yield the same set of major results.
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Land beyond the boundary of the city is used for agriculture. Let qA denote the agricultural rent.

If q (x̃) < qA, then any rational land-owner would choose to rent out the land at x̃ to agricultural

users. If q (x̃) > qA, then households at the boundary would be strictly better off by moving

slightly further away from the city center. The reason is, if the movement is sufficiently small,

then transportation costs would only go up marginally but would be compensated by a significant

reduction in rent, [q (x̃)− qA] . Thus, in equilibrium,

q (x̃) = qA. (23)

3.1 Population Density

Let f (λ) be the density function governing the ability distribution. To derive the population density

function, consider an ability, λ, and a small neighborhood of length dλ around it. The fraction of

population within this neighborhood is f (λ) dλ. Since x (λ) is strictly monotonic and hence one-to-

one, one can find a neighborhood dx around x = x(λ) such that all agents with ability λ ∈ dλ are

located in this interval. Population density at x is, hence, given by

µ (x) =
f (λ) dλ

dx

or

µ [x(λ)] x′ (λ) = f (λ) , (24)

for any λ ∈ [λmin,λmax] . Alternatively, (24) can be derived using the transformation of variable

technique. The equilibrium population density function over C is then defined as

µ(x) =





µ [xb(λ)] if x = xb (λ) ∈ [0, x̄] ,

µ [xc(λ)] if x = xc (λ) > x̄.
(25)

3.2 Market Clearing

In equilibrium, the land demand function for any type-λ agent is given by

l̃ (λ) =





lb [xb (λ) , λ] for λ ≤ λ

lc [xc (λ) , λ] for λ > λ.
(26)

Consider any subinterval [λ1, λ2] ⊆ [λmin,λmax] . Since x (λ) is strictly increasing, there exists a

unique interval C′ = [x (λ1) , x (λ2)] in C that contains all the agents in [λ1, λ2] . Land markets in C′

clear when the total demand for land equals the total supply

∫ λ2

λ1

l̃ (λ) f (λ) dλ =
∫ x(λ2)

x(λ1)

dx

=
∫ λ2

λ1

x′ (λ) dλ. (27)

11



Since (27) has to hold for all [λ1, λ2] , the land market clearing condition at any x = x (λ) can be

restated as

l̃ (λ) f (λ) = x′ (λ) , (28)

for λ ∈ [λmin,λmax] .

Agents supply their non-commuting hours to market work so labor supply depends on their

transportation mode and location choices. The labor market clears if the following holds:

LA + LY =
∫ λmax

λmin

{1− τ bxb (λ) [1− Ω(λ)]− τ cxc (λ)Ω (λ)}λdF (λ) . (29)

Aggregate demand for automobiles is given by the fraction of population that choose to own a

car. Hence, the auto market clears when

A =
∫ λmax

λ̄

dF (λ). (30)

Final goods produced in this economy, net of those dissipated in commuting, are available for

consumption. Aggregate demand for consumption is the sum of the demand by agents and that by

the landowner. Since all the rents collected by the landowner are spent on consumption, the demand

for consumption by the landowner is

Q =
∫ λmax

λmin

{q [xb (λ)] lb (λ) [1− Ω(λ)] + q [xc (λ)] lc (λ) Ω (λ)} dF (λ) . (31)

Total demand for consumption goods by the agents is

C =
∫ λmax

λmin

{cb(λ) [1− Ω(λ)] + cc(λ)Ω (λ)} dF (λ). (32)

The final goods market clear when

Y −
[
γb

∫ λ

λmin

dF (λ) + γc

∫ λmax

λ̄

dF (λ)

]
= Q + C. (33)

3.3 Definition

Define the equilibrium of this economy as follows:

Definition 1. Given a distribution of abilities, F (λ) , an equilibrium of this economy consists of

a set of decision rules for car-owners, {cc (λ) , lc (λ) , xc (λ)} , a set of decision rules for bus-users,

{cb(λ), lb(λ), xb(λ)} , labor inputs, {LA, LY } , a car-ownership decision rule, Ω(λ) , a population

density function, µ (x), a critical ability level, λ̄, a rental function, q (·), and prices, {pc, w} such

that

1. Given q(·), pc, and w, {cb(w), lb(w), xb(λ)} solves (P1).

2. Given q (·) , pc, and w, {cc (w) , lc (w) , xc (w)} solves (P2).

12



3. The prices, pc and w, satisfy (18).

4. The car-ownership decision rule, Ω(λ), is given by (12).

5. The population density function, µ (x) , defined by (25), satisfies
∫

C
µ (x) dx = 1. (34)

6. The rent at the boundary of the city equals the agricultural rent, or (23) holds.

7. All markets clear:

(a) The land market at every x clears, or (28) hold.

(b) The auto market clears or (30) holds.

(c) The final good market clears or (33) holds.

3.4 Equilibrium Rent

In equilibrium, the rent function must be continuous over the range of the city. Given a continuous

distribution of abilities and a continuous transportation cost function, it is immediate to see that

q (x) is continuous over the region where there are bus-users (or car-owners) alone. Hence q (x) is

continuous over C\ {x} . Suppose it was discontinuous at x, and

q(x̄) > lim
x→x̄+

q (x) .

Consider an agent with the critical ability, λ̄. This agent lives at x̄. Given the gap in rent at x, he

can benefit by moving slightly further out to a location x̄+ ε. Since ε can be made arbitrarily small,

a new location can always be found such that the agent’s additional transportation costs are less

than his discrete gain from savings in rent. This creates an incentive to move and hence cannot be

an equilibrium. By a similar argument, one can rule out the case with lim
x→x̄−

q (x) > q(x̄). Hence,

q (x) is continuous over C.

3.5 Characterization of Equilibrium

Since it is possible that no car-owner exists in equilibrium, it is important to determine the conditions

under which this will occur. First, consider the case in which car-owners exist. Then an equilibrium,

as defined above, is made up of three parts: the bus-user’s problem, the car-owner’s problem and a

critical ability level λ that connects the two. The bus-user’s problem is characterized by

q′ [xb (λ)]
q [xb (λ)]

=
−wλτ b

(1− α) {wλ [1− τ bxb (λ)]− γb}
, (35)

x′b (λ) =
(1− α) {wλ [1− τ bxb (λ)]− γb} f (λ)

q [xb (λ)]
, (36)
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for λ ∈ [
λmin, λ

]
, and the boundary conditions:

xb(λmin) = 0,

xb(λ̄) = x̄.
(37)

The car-owner’s problem is characterized by

q′ [xc (λ)]
q [xc (λ)]

=
−wλτ c

(1− α) {wλ [1− τ cxc (λ)]− (γc + pc)} , (38)

x′c (λ) =
(1− α) {wλ [1− τ cxc (λ)]− (γc + pc)} f (λ)

q [xc (λ)]
, (39)

for λ ∈ (
λ, λmax

]
, and by Lemma 3 and equation (23) the boundary conditions:

xc(λ̄) = x̄

q [xc (λmax)] = qA,
(40)

In equilibrium the critical ability level is determined by (15). Since the equilibrium rent function

is continuous at x̄, it follows that

q(x̄) = q
[
xb(λ̄)

]
= q

[
xc(λ̄)

]
(41)

and (15) becomes

x̄ =
γc + pc − γb

(τ b − τ c)wλ̄
. (42)

Define the composite functions qb(λ) ≡ q [xb(λ)] and µb(λ) = µ [xb(λ)] . Combining (35) and (36)

gives

x′b(λ) =
(1− α) {wλ [1− τ bxb(λ)]− γb} f(λ)

qb(λ)
, (43)

q′b(λ) = −wλτ bf(λ). (44)

Similarly for the equations corresponding to the car-owner’s problem, combining (38) and (39) yields

x′c(λ) =
(1− α) {wλ [1− τ cxc(λ)]− (γc + pc)} f(λ)

qc(λ)
, (45)

q′c(λ) = −wλτ cf(λ). (46)

Notice that q′b(λ) and q′c(λ) are independent of q(λ) and x(λ). This occurs in this particular

setting because (i) land supply is fixed and constant at each location and (ii) given wλ, the costs of

commuting one more unit of distance [i.e. t2 (wλ, x) and τ2 (wλ, x)] are identical for all locations.

Integrating both sides of (44) and (46), and using the boundary conditions give

qb(λ) = ψ − τ bw

∫ λ

λmin

uf(u)du, (47)

for λ ∈ [
λmin, λ

]
, where ψ is the integration constant, and

qc(λ) = qA + τ cw

∫ λmax

λ

uf(u)du, (48)
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for λ ∈ [
λ, λmax

]
.

If there is no car-owner in equilibrium, then the equilibrium is characterized by (35) and (36)

with λ replaced by λmax, and the boundary conditions

xb(λmin) = 0,

qb(λmax) = qA.
(49)

The following theorem states the necessary and sufficient condition under which an equilibrium with

car-owners exists.

Theorem 4. There exists a unique q∗ > 0 such that an equilibrium with car-owners exists if and

only if

λmax >
τ b (pc + γc)− τ cγb

(τ b − τ c)w
and qA ∈ (0, q∗) .

Proof. See Appendix.

The intuition of the theorem is as follows. Since V c (λ) and V b (λ) are strictly increasing in λ, it

follows that if the highest ability agents do not want to own a car then neither does any other agent.

The highest ability agents cannot afford a car if their ability, and hence income, is below a certain

level. Holding other things constant, the barrier, τb(pc+γc)−τcγb

(τb−τc)w
, is lowered when (i) the fixed costs

of owning a car declines; or (ii) the fixed costs of taking the bus rises. By the monotonicity of x (λ),

the highest ability agents will live at the right endpoint of the city and pay rent qA. When qA rises,

the agents face a higher rent. To compensate for this, they will reduce their commuting costs by

living closer to the origin. This reduces the need for a car. Hence, no car-owners will exist if qA is

“too” high.

3.6 Computation of Equilibrium

The equilibrium is completely characterized by the optimal location choice function, x(λ), the equi-

librium rent function, q(λ), and the critical ability level, λ̄. The equilibrium can be computed

numerically by utilizing (41), (42) and the initial value problems arising from plugging (47) and (48)

into (43) and (45) along with initial conditions equal to the former boundary conditions for xb(λ)

and xc(λ). The algorithm employed here is outlined in the Appendix.

4 Calibration and Estimation

Can the model account for the decreasing population density gradients and rising level of car own-

ership? To see how well the model can do at explaining suburbanization and car ownership consider

the following experiment. Compute the model for a series of steady states. The steady states repre-

sent an average U.S. city during the decennial years from 1910 to 1970. Then, compare the model’s
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prediction for the density gradients and car ownership with the mean density gradients of forty-one

US cities, presented in Table 4, and the percentages of car-owners in the U.S., approximated by the

number of registered vehicles per person age twenty to sixty-four, given in Table 5. Before the steady

states can be computed, a parametrization must be imposed on the model. This is done through a

combination of calibration and estimation.13

4.1 Parameters to Set

Parameters that can be pinned-down from the U.S. data will be calibrated accordingly. Some pa-

rameters cannot be pinned-down, and will be chosen in order to minimize the “distance” between

the model’s outcome and the data. Let one period of the model equal five years, approximately the

average median age of passenger cars during the period 1950-70.14 The parameters which need to

be set are:

Preferences: The parameter, α measures the relative weight on consumption in the utility func-

tion. Set α to 0.89 using data on consumer expenditures from Lebergott (1996).

Technology: The parameters, ηt and zt, which capture the TFP in production of final goods and

automobiles, are chosen such that wt equals the mean income level for each steady state, and pc,t

at each steady state matches the data on the price of a new car.15 The mean income level and

automobile prices are based on the data on wages and car prices presented in Section 1.2.

Abilities: The distribution of abilities is approximated by a doubly-truncated lognormal. The

standard deviation is calibrated so that the distribution of income (wλ) matches the distribution

of income in the U.S16. Given the mean and standard deviation, the truncation points, λmin and

λmax, are chosen so as to encompass 95% of the area of the underlying non-truncated distribution,

omitting 2.5% from each side.

Agricultural Rent: The rental rate of agricultural land, qA,t, is set to the rent that would have

to be paid for an average single-family-sized lot of farmland at each date17.
13Note that the ‘estimation’ procedure done here is not based on any statistical model and hence is not the basis

for any inference.
14The average median age of passenger cars in the U.S. during the period 1950-70 is 5.1 years. Source: Ward’s

Motor Vehicle Facts & Figures (1999).
15Subscript ‘t’ implies that the parameter is not assumed to be constant across the steady states.
16According to Gottschalk and Smeeding (1997), Table 3, the adjusted disposable personal income of a household

at the 80th percentile is 2.7 times higher than one at the 20th percentile. This implies that, if the ln of income is

normally distributed, then the standard deviation is 0.59.
17The rental rate for an average single-family-sized lot of farmland is computed by dividing the gross rent paid for

an acre of farmland, taken from the United States Department of Agriculture Economic Research Service and is based

on various sources including the Census of Agriculture, the Farm Costs and Returns Survey, and the Farm Finance
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Transportation Costs: The parameters related to transportation costs, namely, the fixed and

time costs for taking a bus, γb,t and τ b,t, and those for commuting by car, γc,t and τ c,t, are the most

difficult to pin down. These parameters must capture all the costs associated with commuting. For

car-owners this includes all costs associated with operating a car, plus the time costs of commuting.

For bus-users, it includes bus fares and time costs. The time cost of taking the bus, as opposed

to commuting by car, includes not only the time spent on the bus but also all the inconveniences

associated with using public transportation. Since it is difficult to measure all of these costs and their

changes over time, a combination of calibration and estimation is used to pin down these parameters.

Automobile: The time cost of commuting by car depends on, among other things, the quan-

tity and quality of roads and highways. Throughout the period from 1910 to 1970 the U.S.

government consistently invested in roads and highways. The stock of U.S. highways and roads

per capita rose at an average rate of 2% during the period from 1925 to 1994, and at an average

rate of 2.3% over the period 1925-70. Figure 9 plots the stock per capita over the period from

1925 to 1994. Assume that the time cost of commuting is inversely related to the highway and

road stock per capita. Then τ c,t can be approximated by the following:

τ c,t = Φh−κ
t ,

where ht is the capital stock of highways and streets per capita at time t. The parameters Φ

and κ are chosen through the estimation procedure discussed in Section 4.2. The value for the

highway and street stock for the periods 1910 and 1920 is obtained by extending the trend line

out to these dates.

The fixed cost, γc,t is calibrated using data on consumer car-related expenditures from Leber-

gott (1996). The data includes expenditures on tires, gas, oil, automobile repairs, automobile

insurance, and tolls. The expenditure per registered vehicle is computed. Then γc,t is set to

30% of period t’s value. 30% is the percentage of total miles that are driven to or from work.

Since this percentage was 26.8 for the period 1951-58 and 33.7 in 1969, 30% is a reasonable

value.18

Bus: The parameters τ b,t and γb,t are difficult to calibrate since they must capture the costs

associated with the inconveniences of using public transportation. Hence these parameters are

derived through an estimation procedure.

Similarly to the time cost of commuting by car, it is intuitive that the time cost of travelling by

bus is inversely related to the quantity and quality of public transit equipment and structures

Survey, by the number of average-sized lots in an acre. To compute the number of average-sized lots in an acre, data

on the average lot size for a single-family home is taken from the National Association of Realtors, available on the

web at http://www.realtor.org/SG3.nsf/files/landuse.pdf/$FILE/landuse.pdf.
18Source: For 1951-58, MVMA Motor Vehicle Facts & Figures (1978). For 1969, U.S. Census Bureau, Statistical

Abstract of the United States (2001).
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per capita. Figure 10 shows the gross and net capital stock per capita of equipment and

structures for intercity and local passenger transit for the period 1947-89. Both the gross and

net stock have been steadily declining since 1947 at an annual rate of approximately 6% over

the period 1947-70. Figure 11 shows the trend in transit ridership per capita over the period

1910-70. According to the graph, transit ridership rates peaked sometime during the 1920’s.

Table 8 shows the trend in net capital expenditures on transit equipment and structures for

the period 1890-1950. The table shows that disinvestment in public transportation started

during the 1920’s. It appears that the capital stock in public transit has been declining since,

at least, 1930. As the rate of transit ridership and the stock of transit capital declines, the

cost associated with using public transportation should increase. With less riders it is logical

to assume that buses, subways, etc. ran less frequently and that their routes covered less

portions of cities. The declining capital stock implies that the number of buses, etc. actually

declined. Together these factors indicate that the cost of commuting by public transit should

be rising since, at least, 1930 due to the increasing inconvenience and unavailability costs bus-

users faced. As for the time cost of commuting by car, the time cost of commuting by bus

is assumed to be inversely related to this capital stock, but there is no data on this stock for

years preceding 1947. So, instead, consider the following formulation:

τ b,t =





τ b,0(gτb
)(

t−1910
10 ), for 1910 ≤ t ≤ 1930,

Ωp−ρ
t , for t ≥ 1930.

(50)

Here, τ b,t is a function of the capital stock, pt, for the years 1930 to 1970 and is assumed to

grow at a constant rate for the years 1910 to 1930. For the years 1930-47, the capital stock

is computed by extending the trend line out to these dates. The trend is not extended to the

years 1910-30 because it is questionable whether the capital stock was declining during these

early years. Hence τ b,t at each time t will be determined by choosing Ω, ρ, τ b,0, and gτb
through

the estimation procedure described below subject to the constraint:

τ b,0(gτb
)(

1930−1910
10 ) = Ωp−ρ

1930,

or, in the year 1930, the time cost implied by assuming a constant growth rate of τ b,t must be

equal to the one implied by assuming that τ b,t is inversely related to the public transit stock

per capita.

The fixed cost of commuting by bus, γb,t, should capture costs such as bus fares and the

inconvenience cost of taking the bus relative to commuting with a car, but data on average bus

fares and other costs of taking the bus in the U.S. for this time period are unavailable. Hence

this parameter is derived through the estimation procedure. To enforce some structure on this

cost, it is assumed to grow at some constant rate over the period from 1910 to 1970. If gγb
is
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γb’s growth factor, and γb,0 is the initial 1910 value then

γb,t = γb,0g
( t−1910

10 )
γb

.

γb,0 and gγb
are chosen through the estimation procedure described below.

4.2 Estimation

Denote by vt the percentage of car-owners in the U.S. at date t. vt can be approximated by the

number of registered vehicles per person age twenty to sixty-four, given in Table 5. Likewise, let dt

be the average density gradient for an American city. dt is given by the density gradients in Table 4.

Define the following vector of unknown parameters:

θ =
(
Φ, κ, τ b,0, gτb

, Ω, ρ, γb,0, gγb

)
.

Given θ, a mean wage w̄t, and a price for cars, pc,t, the model’s prediction for the percentage of

car-owners at date t is denoted by

Vt(θ; w̄t, pc,t).

Likewise, the model’s predicted density gradient is

Dt(θ; w̄t, pc,t).

To compute Dt(θ; w̄t, pc,t), the density is calculated at 1000 points from zero to the end of the city.

The density gradients are then computed by regressing the sample on an exponential function. In

all the experiments below, the R-squared’s are always above 0.80.

The exercise, now, consists of two steps: First, θ, is chosen to minimize the sum of the distances

between the model’s output and the U.S. economy at a particular set of steady states corresponding

to the decennial years from 1910 to 1970. Formally:

θ̂ = arg min
θ

1970∑
t=1910

{
1
2

(vt − Vt(θ; w̄t, pc,t))
2 +

1
2

(dt −Dt(θ; w̄t, pc,t))
2

}
.

Second, the model’s predictions,Vt(θ̂; w̄t, pc,t) and Dt(θ̂; w̄t, pc,t), for t = 1910, . . . , 1970, is computed

using θ̂.

5 The Baseline Economy

The baseline parametrization is presented in Table 6. The table also displays statistics on the costs

of commuting, implied by the parameters. The statistics given are the fixed, variable, and total costs

of commuting for a bus-user at the average distance from the center and a car-owner at the average

distance from the center. These will be discussed in Section 5.1.
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The results are presented in Table 7. The table shows the model’s predictions for the percentage

of car-owners, the population density gradient, and the change in the population density gradient

over the period from 1910 to 1970. In addition, the table provides the distance at which the furthest

bus-user lives (End of Bus-Users) and that at which the furthest car-owner lives (Boundary of City)

in each steady state.

5.1 Analysis

In this section the baseline model and its ability to match the data is assessed. To begin consider the

transportation costs, specifically, consider those associated with taking public transit, or “riding the

bus.” The fixed and time cost of riding the bus are rising over the period from 1910 to 1970. Since

bus-users move closer and closer to the origin and bus-users who switch to car ownership are always

those with the highest incomes, the average variable cost of travelling by bus does not rise over the

period, it declines from 1910-40, then rises between 1940-50 and then declines from 1950-70. The

average total cost declines at an annual rate of 3.7% from 1910-30 and then rises at an annual rate

of 2.9% between 1930-70. The minimization procedure generated results that are consistent with the

assumption that the cost of commuting by public transit is inversely related to the capital stock of

public transit equipment and structures.

The fixed costs of commuting by car was already calibrated to match the data. The time cost

is declining, as was expected given the rising capital stock of highways and roads. Since the model

predicts zero car-owners in 1910, it is not possible to compute the variable and fixed costs for this

year. The average variable cost falls between 1920 and 1930 but rises from 1930 to 1960 then falls

slightly in 1970. The average total cost follows a similar trend to the variable cost. This is because

average variable and total costs depend on both the income levels and distance from the center. For

the car-owners both of these variables are rising over the period. Taken into account the rising fixed

costs, the fact that average total costs for car-owners are increasing does not seem unreasonable.

Now, let’s approach these costs at a different, more quantitative angle. There is significantly more

data available for later years. Therefore, for the moment, consider comparing the transportation costs

associated with commuting by public transit and by automobile in the steady state corresponding to

the year 1970 with the data. The goal is to determine if the magnitude of these costs are reasonable.

Focus on the average total costs. In 1970 this cost for a bus-user is $9.25 per day. Based on the

1975 Census, the mean travel time to work in 1975 by those who take public transportation is 40.1

minutes. This implies a total daily travel time of 80.2 minutes a day. The average wage of a bus-user

in 1970 is $6.15 an hour.19 This implies the dollar cost of time spent commuting is $8.22 a day.

Hence, considering the additional cost of bus-fare, $9.25 a day is a very reasonable value. For the
19This is the wage of the average bus-user and is not the same as the wage of the bus-user who is at the average

distance which is given in Table 6.
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average car-owner the total cost of commuting in 1970 is $29.88. Again from the 1980 Census, the

mean travel time to work in 1980 of people who commute by car is 21.6 minutes. This implies that

the total commute time is 43.2 minutes. The average wage of a car-owner in 1970 is $23.22 an hour.

Hence the value of time spent commuting by car is $16.72 a day. The distance from the center of this

average car-owner is 7.77 miles.20 The total cost of operating a vehicle in 1975 was approximately

58.59 cents/mile21. Thus, the total ‘car-related’ cost for the average car-owner in the model is $4.55

a day. Summing the car-owner’s costs suggests that his total costs of commuting by car are $21.27

a day. So a total cost of $23.22 a day resulting from the minimization is very reasonable.

How are the results? Qualitatively, the model is able to predict a persistent increase in car-

ownership accompanied by increased suburbanization. The latter is evident from the decline in

the population density gradient and the expansion of the city as shown in Table 7. The model is

able to match the data on car-ownership for earlier years but has some difficulty reaching the level

of car-ownership in later years. One reason for this is that the model abstracts from other uses

of cars. In 1969, about 32% of personal trips by car involved work travel, this number decreases

to 23.8% by 199522. Meanwhile, vehicle trips that involve shopping and, social and recreational

activities experience an opposite trend. By 1995, about 40% of personal trips by car are for these

purposes. By including additional uses of car into the model, the demand for automobiles could

be raised. In terms of the population density gradient, the model is able to match the trend but

underestimates the density gradient for later years. The model has an especially difficult time

matching the suburbanization trend from 1940-50. Figure 12 displays the density functions predicted

by the model for the years 1910, 1940, and 1970. The graph shows how the agents spread out over

time.

The average distance between home and work in the US in 1955 was 6.4 miles.23 The average

distance in 1969 was 9.4 miles.24 In the model the average distance of a car-owner in 1950 is 6.19

miles, in 1960 it is 6.95 miles, and in 1970 it is 8.13 miles. It seems that the distances in the model

are within a reasonable magnitude.

5.2 Counterfactual Experiments

Table 9 provides the results of a series of counterfactual experiments. Each experiment consists

in shutting down one or some combination of the factors that lead to suburbanization and car

ownership: rising real wages, falling prices of cars, declining cost of commuting by car, and rising
20Again, this is not the same average as in Table 6.
21Source: American Automobile Association. (1993) “Your Driving Costs.” the total cost includes fixed costs–

depreciation, insurance, finance charge, and license fee, and variable costs–gas, oil, maintenance, and tires.
22Source: U.S. Federal Highway Administration, Summary of Travel Trends, 1995 National Personal Transportation

Survey.
23Source: MVMA Motor Vehicles Facts & Figures (1978).
24Source: U.S. Census Bureau, Statistical Abstract of the United States (2001).
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costs of commuting via public transportation. The counterfactual experiments can be used to assess

the role that various factors play in generating the increasing trend in car-ownership and decreasing

density gradient.

The baseline model is able to account for 86% of the car-ownership in 1970 and 77% of the

difference between the density gradient in 1910 and that in 1970. When both prices and wages remain

fixed at their 1910 values (Experiment 3a), the model accounts for less than 1% of car-ownership.

The density gradient in this case actually increases. This is because agents face a high unchanging

price for cars and bus-users face rising costs. Hence the agents move towards the origin instead of

away from it. Removing the rising costs of public transit (Experiment 3b) reduces the amount of

centralization. If only the car price remains at the 1910 value (Experiment 4a) then the model can

account for 51% of car-ownership in 1970, and 60% of the change in the density gradient. Without

rising costs of public transit (Experiment 4b), the model only accounts for 13% of car-ownership

and 65% of suburbanization. When the wage distribution remains as in 1910 (Experiment 5a), then

21% of car-ownership in 1970 is accounted for and the density gradient rises, but removing the rising

time costs of public transit (Experiment 5b) reduces the incentive to switch to car, resulting in no

car-owners and again less centralization.

Experiment 6 in the table shows how the results change when the highway and street stock per

capita is kept fixed at its 1910 value. Since the stock is not rising in this experiment, the time cost

of commuting by car remains constant and the cost to car-owners of spreading out is high. The

percentage of car-owners still rises over time but only reaches 74% of the percentage in the baseline

model. Despite the significant percentage of car-owners, 54% in 1970, there is no suburbanization

trend, in fact agents become more concentrated around the city center. This result occurs because

the cost of commuting by bus is rising, pushing bus-users closer to the center, while the cost of

commuting by car remains constant, removing the incentive for car-owners to spread further out. In

experiment 7 the time and fixed costs of commuting by bus are kept constant at their 1910 values.

Notice that, without a rising cost associated with taking the bus, the percentage of agents who

switch to car ownership is much lower than in the baseline results. Under the parametrization of

experiment 7 only 31% of car-ownership can be explained, but the suburbanization trend, while

not matching the overall trend in the data better, is actually stronger than the trend predicted by

the baseline model. These results occur because without rising costs of traveling by public transit,

bus-users are less concentrated around the center and, with falling cost of commuting by automobile,

the car-owners (which are 26% of the population) spread out, as they do in the baseline.

What do these results imply about the relationship between car-ownership and suburbanization?

Consider the following question: Can we observe a suburbanization trend without simultaneously

observing a rising percentage of car-owners? In experiment 8, the time cost of travelling by car is

kept at its 1910 value and, in addition, the time and fixed cost of commuting by bus are kept at
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their 1910 values. Under this parametrization the bus is as attractive as possible, relative to the car,

without violating the assumption that the car is a form of transportation which has a lower time

cost than the bus.25 Here no agent becomes a car-owner and, in addition, despite the agents rising

real wages, we do not observe any suburbanization trend. Hence the experiments suggest that:

(1) The suburbanization trend is caused by a combination of rising real wages and the diffusion

of a transportation technology that, both, becomes more affordable and improves in efficiency

over time. In other words, rising real wages and falling prices of automobiles alone are not

enough to generate a suburbanization trend (Experiments 6 and 8), nor is a declining time cost

associated with automobiles alone able to generate a suburbanization trend (Experiment 3).

(2) Without any car-owners, and assuming no rising costs of using public transit, there is no

suburbanization trend (Experiments 3b, 5b, and 8). Yet, there can be a suburbanization trend

with a much smaller percentage of car-owners than what is observed in the data (Experiment

7).

(3) A high percentage of car-owners can exist without a suburbanization trend if public transporta-

tion becomes increasingly unattractive due to rising time costs but there is no technological

progress in automobile use. (Experiment 6).

What does this say about the relationship between car-ownership and suburbanization? The

results suggest that if the adoption of the automobile (i.e. a fall in transit ridership per capita)

and investment in highways and streets as opposed to public transportation equipment had no

impact on the costs of using public transportation, then only about 30% of car-ownership is linked

to suburbanization (Experiment 7). But if increasing use of automobiles for commuting combined

with consistent investment in automobile use impacted or is interrelated with rising costs of using

public transit, a relationship which is supported by the data, then the link between car-ownership

and suburbanization is much stronger (Baseline Model).

6 Conclusion

A general equilibrium model of car-ownership and location choice is constructed. An agent, in the

model, can choose his residential location and decide whether or not to own a car. Under the given

specification, it is shown that wealthy agents (those with high abilities) tend to own a car and live

further away from the city center, while poor agents tend to travel by bus and stay close to the city

center. The model is then calibrated using U.S. data. It is able to predict the rising trends in both

car-ownership and suburbanization. Despite the fact that a highly stylized framework is used, the
25In this model, decreasing the time cost of commuting by bus over time starting from the 1910 value would violate

the definition of the bus as a form of transportation which has a higher time cost relative to the car.
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model is able to explain 86% of car-ownership in 1970 and roughly 77% of suburbanization between

1910 and 1970 as reported in the data.

There are some important features of car-ownership that are not addressed by the model. The

model abstracts from other uses of cars. By including additional uses of cars into the model, the

demand for automobiles could be raised. This might help to improve the model’s prediction on

car-ownership. In the U.S., multiple car-ownership increases significantly during the latter half of

the twentieth century. For instance, less than 10% of American households owned more than one

car in the early 1950s, yet by 1995, 60% of them did. The same period also recorded a rapid

increase in female labor-force participation rate. Data suggest that female participation and car-

ownership decisions might be closely related. Two-income households are more likely to own a car

than households in which only the man works. Moreover, the proportion of families with more than

one car is rising with the wife’s earnings. To account for these facts, the model can be extended to

include female workers. By having an additional worker in the household, there is an extra source

of income accompanied by an additional demand for a faster mode of transportation. This creates

the need for a second car.

Given the static nature of the model, car-ownership decision is based solely on current prices

and income level. In the presence of declining car price and rising income, agents might delay their

car-ownership decisions. To explore the consequences of this type of forward-looking behavior, a

dynamic framework is needed.

Future versions of the model would also benefit from modeling the development of roads and

highways more explicitly. Clearly, the role that declining transportation costs for car-owners and

rising transportation costs for bus-users play is a significant one in determining the relationship

between car-ownership and suburbanization. Potentially adding an urban developer or a government

to the model who creates roads and/or public transportation would be helpful.
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Table 1: Coefficients for the Negative Exponential function, d = ae−bx for Chicago, 1900-1950.

Year a b % Change

1900 87400 0.386

1910 92900 0.344 -10.9

1920 90400 0.297 -13.7

1930 84700 0.256 -13.8

1940 78850 0.233 -9.0

1950 69700 0.201 -13.7

Source: Edmonston (1975) p. 51.

Table 2: Coefficients for the Negative Exponential function, d = ae−bx for Atlanta, 1900-1970.

Year a b % Change

1900 14000 0.79

1910 29000 0.94 19.0

1920 35000 0.89 -5.3

1930 33000 0.73 -18.0

1940 32000 0.64 -12.3

1950 25000 0.48 -25.0

1960 10000 0.25 -47.9

1970 8000 0.18 -28.0

Source: Edmonston (1975) p. 50.
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Figure 1: Population density distributions for Atlanta and Chicago.



Table 3: Average Density Gradients for Four Metropolitan Areas–Baltimore, Milwaukee, Philadel-

phia, and Rochester–for the Decennial years from 1900 through 1970.

Year b % Change

1900 1.0

1910 0.96 -4.0

1920 0.86 -10.4

1930 0.62 -27.9

1940 0.57 -8.1

1950 0.45 -21.1

1960 0.34 -24.4

1970 0.28 -17.6

Source: Edmonston (1975) p. 67.

Table 4: Mean Gradients for Forty-One Cities That Were Metropolitan Districts in 1900.

Year b % Change

1900 0.82

1910 0.83 1.2

1920 0.79 -4.8

1930 0.66 -16.5

1940 0.61 -7.6

1950 0.39 -36.1

1960 0.31 -20.5

1970 0.23 -25.8

Source: Edmonston (1975) p. 68.
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Figure 2: Number of Registered Automobiles per Capita : 1900-1993. Source: Highway Statistics,

Annual., U.S. Federal Highway Administration.

Table 5: Number of Registered Vehicles Per Person 20-64 Years of Age, 1900-1970.

Year Vehicle Per 100 Persons

1900 0.02

1910 0.93

1920 14.12

1930 33.57

1940 35.39

1950 46.02

1960 65.66

1970 84.11

Source: Registered Vehicles: U.S. Fed-

eral Highway Administration. Popula-

tion: U.S. Census.
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Figure 3: Percent of Families who Own a Car by Number of Cars Owned : 1950 - 1995. Source: 1950-

70 Survey of Consumer Finances, University of Michigan, 1983-95 National Personal Transportation

Survey, Summary of Travel Trends, Federal Highway Administration.

Figure 4: Car Ownership by Income Quintile : 1952 - 1965. Source: Survey of Consumer Finances,

University of Michigan.
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Figure 5: Ln Price of New Automobiles: 1906 - 2000. Source: 1906-40 from Raff( 1995), 1947-83

from Gordon (1990), and 1967-2000 from Ward(2002).
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Figure 6: Ln Time Cost for New Automobiles : 1906 - 2000. (See footnote 7 for details.)



Figure 7: Car Ownership in 1962 by Distance from Center of Central City. Source: Survey of

Consumer Finances, University of Michigan.

Figure 8: Car Ownership in 12 Largest SMSA’s by Place of Residence. Source: Survey of Consumer

Finances, University of Michigan.
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Figure 9: Highway and Street Stock per Capita. Source: Fixed Reproducible Tangible Wealth in

the United States, 1925-94.
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Table 6: Baseline Parametrization
Parameter 1910 1920 1930 1940 1950 1960 1970

Income Distribution

Mean ($/year) 7,134.40 9,214.40 10,004.80 15,225.60 19,468.80 24,835.20 28,246.40

Standard Deviation ($) 3,719.57 4,804.76 5,216.39 7,938.31 10,151.28 12,948.80 14,725.80

Minimum Income Level ($/year) 1,970.58 2,545.50 2,763.60 4,205.63 5,378.07 6,860.15 7,801.59

Maximum Income Level ($/year) 19,907.24 25,715.27 27,918.36 42,486.43 54,330.39 69,302.74 78,813.51

Price of Car ($) pc,t 32,880.00 14,934.00 9,412.00 9,664.00 14,253.00 15,399.00 12,271.00

Agricultural Land Rent ($/Lota) qA,t 7.29 4.86 3.21 5.23 13.89 11.23 19.55

Transportation Costs

Bus

Fixed Cost ($/day) γb,t 0.05 0.11 0.25 0.58 1.33 3.05 6.97

Time Cost (hours/mile) τ b,t 0.46 0.77 1.30 1.53 1.86 2.91 4.08

Average Distance (miles) 2.32 1.01 0.45 0.31 0.26 0.15 0.08

Wage at Average Distance ($/hour) 5.61 5.61 4.56 5.55 7.15 7.59 6.70

Average Variable Cost ($/day) 5.97 4.35 2.64 2.62 3.47 3.25 2.28

Average Total Cost ($/day) 6.02 4.46 2.90 3.20 4.81 6.30 9.25

Car

Fixed Cost ($/day) γc,t 5.88 2.44 4.06 4.87 6.69 7.19 8.11

Time Cost (hours/mile) τ c,t 0.46 0.25 0.20 0.16 0.15 0.14 0.11

Average Distance (miles) – 5.02 5.46 6.86 6.19 6.95 8.13

Wage at Average Distance ($/hour) – 10.84 10.43 14.64 18.48 22.53 23.79

Average Variable Cost ($/day) – 13.44 11.51 15.77 17.66 22.52 21.76

Average Total Cost ($/day) – 15.88 15.57 20.64 24.35 29.71 29.88

aOne lot is 12,910 square feet. (See footnote 17 for details.)
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Table 7: Baseline Model Results
1910 1920 1930 1940 1950 1960 1970

Car ownership (%)

Data 0.93 14.12 33.57 35.39 46.02 65.66 84.11

Model 0 5.36 19.09 35.52 35.22 51.27 72.47

Population density gradient

Data 0.83 0.79 0.66 0.61 0.39 0.31 0.23

Model 0.86 0.83 0.63 0.46 0.51 0.46 0.37

(0.9829)a (0.9219) (0.8617) (0.8644) (0.8476) (0.8492) (0.8605)

% change in gradient

Data -4.8 -16.5 -7.6 -36.1 -20.5 -25.8

Model -3.97 -24.16 -25.83 10.73 -11.46 -19.07

End of Bus Users (miles) 6.25 2.91 1.47 1.08 0.94 0.56 0.31

Boundary of City (miles) 6.25 7.98 11.69 15.34 12.70 15.83 17.90

aR-squared in parenthesis.
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Figure 10: Capital Stock per Capita of Equipment and Structures for Intercity and Local Passenger

Transit, 1947-1989. Source: Fixed Reproducible Tangible Wealth in the United States, 1925-89.
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Figure 11: Public Transit Ridership per Capita, 1902-1970. Source: Jones (1985).
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Table 8: Net Capital Expenditures of Urban Transit Properties, 1890-1950.

Net Expenditures

Year (millions in 1929 dollars)

1890 74.0

1895 176.2

1900 170.9

1905 229.8

1910 66.1

1915 15.2

1920 -128.5

1925 -105.4

1930 -85.3

1935 -60.7

1940 -10.4

1945 -58.4

1950 -53.5

Source: M. J. Ulmer, Capital in Trans-

portation, Communications, and Pub-

lic Utilities. Princeton, N.J.: Princeton

University Press, 1960.
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Table 9: Counterfactual Experiments

1910 1920 1930 1940 1950 1960 1970

1. Data

Car-Owners 0.93 14.12 33.57 35.39 46.02 65.66 84.11

Density Gradient 0.83 0.79 0.66 0.61 0.39 0.31 0.23

2. Baseline Model

Car-Owners 0 5.36 19.09 35.52 35.22 51.27 72.47

Density Gradient 0.86 0.83 0.63 0.46 0.51 0.46 0.37

3. Prices and Wages Remain at 1910 Values

a) With rising cost of public transportation

Car-Owners 0 0 0.20 0.27 0 0.34 0.52

Density Gradient 0.86 1.42 2.05 2.38 3.58 4.62 6.79

b) Without rising cost of public transportation

Car-Owners 0 0 0 0 0 0 0

Density Gradient 0.86 0.85 0.84 0.85 0.88 0.87 0.90

4. Price of Car Remains at 1910 Value

a) With rising cost of public transportation

Car-Owners 0 0.19 2.43 9.93 15.88 29.65 43.09

Density Gradient 0.86 1.29 1.13 0.68 0.67 0.55 0.47

b) Without rising cost of public transportation

Car-Owners 0 0 0 2.22 3.57 7.23 11.20

Density Gradient 0.86 0.85 0.84 0.60 0.59 0.47 0.40

5. Wage Distribution Remains as in 1910

a) With rising cost of public transportation

Car-Owners 0 2.65 11.20 12.92 6.21 8.51 17.30

Density Gradient 0.86 0.97 0.74 0.70 1.27 1.23 1.18

b) Without rising cost of public transportation

Car-Owners 0 0 0 0 0 0 0

Density Gradient 0.86 0.85 0.65 0.61 0.88 0.87 0.90

6. Stock of Highways and Roads per Capita Remains as in 1910

Car-Owners 0 0.65 8.63 17.80 18.86 33.34 53.62

Density Gradient 0.86 1.26 1.26 1.18 1.27 1.23 1.22

7. Time and Fixed Cost of Public Transit Remains at 1910 Value

Car-Owners 0 1.10 5.52 14.44 12.06 16.92 26.19

Density Gradient 0.86 0.73 0.56 0.42 0.46 0.39 0.32

8. Stock of Highways and Roads per Capita,

and Cost of Using Public Transportation at 1910 Values

Car-Owners 0 0 0 0 0 0 0

Density Gradient 0.86 0.85 0.84 0.84 0.85 0.84 0.85
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Figure 12: Estimated Population Density functions for the years 1910, 1940, and 1970 as predicted

by the model.
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7 Appendix

7.1 Proofs of Lemma 1 - 3

Proof of Lemma 1. To derive the slope of xb (λ) , first totally differentiate equation (5)

q′ (x)
q (x)

=
−t2 (wλ, x)

(1− α) [wλ− t (wλ, x)]

with respect to x and λ. This gives
[

q′′

q
−

(
q′

q

)2
]

dx =
− [t22dx + t12wdλ]

(1− α) [wλ− t (wλ, x)]
− (−t2) (1− t1)wdλ + (−t2)

2
dx

(1− α) [wλ− t (wλ, x)]2
. (51)

Consider the LHS of the above expression,

LHS =

{
−t22

(1− α) [wλ− t (wλ, x)]
− (−t2)

2

(1− α) [wλ− t (wλ, x)]2

}
dx

+
[
wt12
t2

− w (1− t1)
wλ− t (wλ, x)

]
(−t2) dλ

(1− α) [wλ− t (wλ, x)]

=

[
t22
t2

q′

q
− (1− α)

(
q′

q

)2
]

dx +
[
wt12
t2

− w (1− t1)
wλ− t (wλ, x)

](
q′

q

)
dλ.

The second equality is obtained by using (5). Equality (51) can then be simplified as
[

q′′

q
− α

(
q′

q

)2

− t22
t2

q′

q

]
dx =

[
wλt12

t2
− wλ (1− t1)

wλ− t (wλ, x)

](
q′

q

)
dλ

λ
.

The desirable results can be obtained if the following inequality holds
[

q′′

q
− α

(
q′

q

)2

− t22
t2

q′

q

]
> 0. (52)

The reason is, since q (x) is decreasing, xb (λ) is monotonically increasing if and only if

wλt12
t2

<
wλ (1− t1)

wλ− t (wλ, x)

for all positive wλ and x. The RHS of the above inequality is the percentage increase in net income

when labor income, wλ, increase by one percentage. Given the log utility, this coincides with the

income elasticity of housing demand. Hence, what remains is to show that condition (52) holds.

It turns out that (52) is a sufficient condition to ensure that xb (λ) is an interior solution for the

maximization problem.

Given (2) and (3), the optimization problem (P1) is equivalent to

max
x

{U (x) = ln [wλ− t (wλ, x)]− (1− α) ln q (x)} .

The first-order and second-order derivatives are given by

Ux =
−t2

wλ− t (wλ, x)
− (1− α)

q′ (x)
q (x)

,
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Uxx =
−t22

wλ− t (wλ, x)
− (−t2)

2

[wλ− t (wλ, x)]2
− (1− α)

[
q′′

q
−

(
q′

q

)2
]

.

Given that Ux = 0, Uxx < 0 if and only if

(1− α)

[
q′′

q
−

(
q′

q

)2
]

>
−t22

wλ− t (wλ, x)
− (−t2)

2

[wλ− t (wλ, x)]2

⇔ (1− α)

[
q′′

q
−

(
q′

q

)2
]

>
−t22

wλ− t (wλ, x)
− (1− α)2

(
q′

q

)2

⇔
[

q′′

q
− α

(
q′

q

)2
]

>
−t22

(1− α) [wλ− t (wλ, x)]
.

Proof of Lemma 2. Given that t (wλ, x) = δ (x)κ (wλ) + η,

(1− t1)
wλ− t (wλ, x)

− t12
t2

=
1− δ (x)κ′ (wλ)

wλ− δ (x)κ (wλ)− η
− κ′ (wλ)

κ (wλ)

=
κ (wλ)− κ′ (wλ) (wλ− η)

[wλ− δ (x)κ (wλ)− η] κ (wλ)
.

The above expression is positive if and only if κ (wλ) > κ′ (wλ) (wλ− η) .

Proof of Lemma 3. Let W c (x; λ) denote the value function of a car-owner with ability λ who locates

at x. By definition,

V c (λ) ≡ W c [xc (λ) ;λ] ≥ W c (x; λ) for all x ≥ 0.

Similarly, define W b (x; λ) for bus-users. Then,

V b (λ) ≡ W b [xb (λ) ; λ] ≥ W b (x; λ) for all x ≥ 0.

Suppose λ exists so that V c
(
λ
)

= V b
(
λ
)
. This implies

V b
(
λ
) ≥ W c

[
xb

(
λ
)
; λ

]
and V c

(
λ
) ≥ W b

[
xc

(
λ
)
; λ

]
. (53)

The first inequality states that conditional on living in xb

(
λ
)
, the agent with ability λ has no

incentive to switch to own a car. Since both car-owners and bus-users pay the same rent at xb

(
λ
)
,

the inequality implies

wλ− t
[
wλ, xb

(
λ
)] ≥ wλ− τ

[
wλ, xb

(
λ
)]− pc,

or

0 ≥ t
[
wλ, xb

(
λ
)]− τ

[
wλ, xb

(
λ
)]− pc. (54)

The second inequality in (53) can be interpreted similarly and implies

t
[
wλ, xc

(
λ
)]− τ

[
wλ, xc

(
λ
)]− pc ≥ 0. (55)
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Define a function g : R+ → R by

g (x) = t
(
wλ, x

)− τ
(
wλ, x

)− pc.

Following the assumptions on t (wλ, x) and τ (wλ, x) , the function g (·) is differentiable with first-

order derivative given by

g′ (x) = t2
(
wλ, x

)− τ2

(
wλ, x

)
> 0 (56)

for all x ≥ 0. This, together with (54) and (55), implies xc

(
λ
) ≥ xb

(
λ
)
. For reasons stated in the

text, xc

(
λ
)

> xb

(
λ
)

cannot hold in equilibrium. Hence, xc

(
λ
)

= xb

(
λ
)
.

7.2 Existence of Equilibrium

The objective of this section is to state the proof of Theorem 4. This involves a detailed characteri-

zation of the solution of the bus-user’s initial value problem.

7.2.1 Bus-user’s Initial Value Problem

For any ψ0 > 0, form a candidate rent function for bus-users

qb (λ; ψ0) = ψ0 − τ bw

∫ λ

λmin

uf (u) du, (57)

for λ ≥ λmin. The candidate rent function has to be strictly positive over its domain S. If ψ0 >

ψ̃ ≡ τ bw
∫ λmax

λmin
uf (u) du, then obviously S = [λmin, λmax] . If ψ0 ≤ ψ̃, then there exists a unique

λ̃ (ψ0) ∈ (λmin, λmax] such that qb

[
λ̃ (ψ0) ; ψ0

]
= 0. This follows from the fact that qb (λ;ψ0) is

continuous and strictly decreasing in λ, qb (λmin; ψ0) = ψ0 > 0 and qb (λmax; ψ0) ≤ 0. In this case,

S =
[
λmin, λ̃ (ψ0)

)
. Also, qb (λ; ψ0) is strictly increasing in ψ0 for λ ∈ S.

Given the candidate rent function, one can form the initial value problem for bus-users

x′b (λ) = (1− α) {wλ [1− τ bxb (λ)]− γb}
f (λ)

qb (λ; ψ0)
(IVP1)

and

xb (λmin) = 0.

In equilibrium, positive consumption requires that

wλ [1− τ bxb (λ)] > γb. (58)

Given the form of x′b (λ), condition (58) holds if and only if xb (λ) is strictly increasing. To show

that a unique solution of (IVP1) exists, the following results in ordinary differential equations are

needed.

Theorem 5. Let f (x, y) and ∂f(x,y)
∂y be defined and continuous on the rectangle

R = {(x, y) | |x− x0| ≤ a, |y − y0| ≤ b} ,
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where a and b are constants. Let |f (x, y)| ≤ M , for (x, y) ∈ R, and α = min
{
a, b

M

}
. Then the

initial value problem

y′ = f (x, y) , y (x0) = y0, (59)

has a unique solution y (x) defined on [x0 − α, x0 + α] .

Theorem 6. Let f (x, y) be continuous on an open (x, y)-set E and let y (x) be a solution of (59)

on some interval. Then there exists ϕ > 0 such that y (x) can be extended as a solution for x ∈
[x0, x0 + ϕ) but not for x ≥ x0 + ϕ. Moreover, y (x) tends to the boundary ∂E of E as x → x0 + ϕ.

The boundary ∂E of E is defined as ∂E = E ∼ E, where E is the closure of E. The interval

defined in Theorem 6 is called a right maximal interval of existence for y. Readers are referred to

Hartman (1964, Ch.I) for the proof of these theorems. One immediate result of Theorem 6 is the

following.

Corollary 7. Let f (x, y) be continuous on a strip x0 ≤ x ≤ x0 + a, y ∈ R arbitrary. Let y = y (x)

be a solution of (59) on a right maximal interval J. Then either J = [x0, x0 + a] or J = [x0, δ) ,

δ ≤ x0 + a and |y (x)| → ∞ as x → δ.

With these results, the solution of (IVP1) is characterized in the next theorem.

Theorem 8. For any ψ0 > 0, the initial value problem (IVP1) has a unique solution xb (λ;ψ0)

defined on S. Moreover, the solution xb (λ;ψ0) satisfies condition (58).

Proof. Existence Fix ψ0 > 0. Define a region D = S×R+ ⊂ R2
+ and a function h (λ, x;ψ0) over D,

h (λ, x; ψ0) = (1− α) [wλ (1− τ bx)− γb]
f (λ)

qb (λ;ψ0)
.

Both h and ∂h
∂x are defined and continuous in D. Since 1

τb

(
1− γb

wλmin

)
> 0, a closed rectangle

R = {(λ, x) |λ ∈ [λmin, λmin + a] , x ∈ [0, b]} , contained in D, can be drawn for some a, b. It follows

from Theorem 5 that (IVP1) has a solution xb (λ; ψ0) defined on some neighborhood of λmin. Theorem

6 then guarantees the existence of a right maximal interval J = [λmin, ϕ) on which x (λ; ψ0) is defined.

Boundedness Condition (58) is equivalent to having xb (λ; ψ0) bounded above by the function

g (λ) = 1
τb

(
1− γb

wλ

)
. Suppose the contrary that there exists λ1 ∈ [λmin, ϕ) such that

xb (λ1; ψ0) >
1
τ b

(
1− γb

wλ1

)
. (60)

Since wλmin > γb and xb (λmin; ψ0) = 0, condition (58) is satisfied at λ = λmin. By the Interme-

diate Value Theorem, there exists λ2 ∈ (λmin, λ1) such that xb (λ2; ψ0) = 1
τb

(
1− γb

wλ2

)
. But for

λ ∈ (λ2, λ1] , x′b (λ; ψ0) < 0 so that xb (λ; ψ0) < xb (λ2; ψ0) = 1
τb

(
1− γb

wλ2

)
< 1

τb

(
1− γb

wλ

)
. This

contradicts (60).

Next, it will be shown that J = S. First consider the case when S = [λmin, λmax] . By Corrollary 7,

either J = [λmin, λmax] or J = [λmin, δ) , δ < λmin and xb (λ;ψ0) →∞ as λ → δ. But the boundedness
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result is violated in the second case, hence J = [λmin, λmax] . Similarly, when S =
[
λmin, λ̂ (ψ0)

)
,

Theorem 6 guarantees that xb (λ;ψ0) → ∂D as λ approaches ϕ from the left. If ϕ < λ̂ (ψ0) , then

xb (λ;ψ0) →∞ and contradicts the boundedness result.

Uniqueness Let xb (λ; ψ0) and zb (λ;ψ0) be solutions of (IVP1) on S. Define δ (λ) = [xb (λ;ψ0)− zb (λ;ψ0)]
2

on S. Then δ (λmin) = 0 and δ (λ) ≥ 0. The derivative of δ (λ) is given by

δ′ (λ) = 2 (xb − zb) (x′b − z′b)

= −2 (1− α) τ b (xb − zb)
2 λf (λ)

qb (λ; ψ0)
.

If xb (λ; ψ0) 6= zb (λ;ψ0) for λ > λmin, then δ′ (λ) < 0 and δ (λ) < 0 for λ > λmin. This gives rise to

a contradiction and hence, xb (λ; ψ0) ≡ zb (λ; ψ0) on S.

The next proposition establishes two useful properties of xb (λ; ψ0) as a function of ψ0, namely

continuity and strict monotonicity.

Proposition 9. For ψ′0, ψ′′0 > 0, let J be an interval over which both xb

(
λ; ψ′0

)
and xb

(
λ; ψ′′0

)
are

defined. Then for any ε > 0, there exists an δ > 0 such that

∣∣xb

(
λ;ψ′0

)− xb

(
λ; ψ′′0

)∣∣ ≤ ε

for all λ ∈ J, whenever
∣∣ψ′0 − ψ′′0

∣∣ ≤ δ. Moreover, if ψ′0 < ψ′′0 , then xb

(
λ;ψ′0

)
> xb

(
λ; ψ′′0

)
for all

λ ∈ J.

Proof. Define φ (λ) ≡ xb

(
λ; ψ′0

)
and µ (λ) ≡ xb

(
λ; ψ′′0

)
. Then, for λ ∈ J,

φ (λ) ≡
∫ λ

λmin

h
[
u, φ (u) ; ψ′0

]
du (61)

and

µ (λ) ≡
∫ λ

λmin

h
[
u, µ (u) ; ψ′′0

]
du. (62)

Pick any ε̃ > 0. Without loss of generality, assume ψ′0 < ψ′′0 . For λ ∈ J, the difference between

(61) and (62) can be written as

φ (λ)− µ (λ) =
∫ λ

λmin

{
h

[
u, φ (u) ; ψ′0

]− h
[
u, µ (u) ;ψ′0

]}
du

+
∫ λ

λmin

{
h

[
u, µ (u) ; ψ′0

]− h
[
u, µ (u) ; ψ′′0

]}
du.

Applying the triangular inequality gives

|φ (λ)− µ (λ)| ≤
∫ λ

λmin

∣∣h [
u, φ (u) ; ψ′0

]− h
[
u, µ (u) ; ψ′0

]∣∣ du

+
∫ λ

λmin

∣∣h [
u, µ (u) ; ψ′0

]− h
[
u, µ (u) ;ψ′′0

]∣∣ du. (63)
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Let L be the bound of
∣∣∂h
∂x

∣∣ in D. Then

∣∣h [
u, φ (u) ; ψ′0

]− h
[
u, µ (u) ;ψ′0

]∣∣ ≤ L |φ (u)− µ (u)| .

Hence, the first term in inequality (63) must satisfy
∫ λ

λmin

∣∣h [
u, φ (u) ; ψ′0

]− h
[
u, µ (u) ; ψ′0

]∣∣ du ≤
∫ λ

λmin

L |φ (u)− µ (u)| du.

Since h
(
λ, x; ψ′′0

)
is continuous in ψ′′0 , there exists δ > 0 such that

∣∣h [
u, µ (u) ;ψ′0

]− h
[
u, µ (u) ; ψ′′0

]∣∣ ≤ ε̃,

whenever
∣∣ψ′0 − ψ′′0

∣∣ ≤ δ. The second term thus satisfies

∫ λ

λmin

∣∣h [
u, µ (u) ; ψ′0

]− h
[
u, µ (u) ;ψ′′0

]∣∣ du ≤ ε̃ (λ− λmin)

for ψ′0 and ψ′′0 close enough. Then for any ψ′0 < ψ′′0 such that
∣∣ψ′0 − ψ′′0

∣∣ ≤ δ,

|φ (λ)− µ (λ)| ≤ ε̃ (λ− λmin) +
∫ λ

λmin

L |φ (u)− µ (u)| du.

Applying Gronwall’s inequality, this becomes

|φ (λ)− µ (λ)| ≤ ε̃ (λ− λmin) eL(λ−λmin) < ε̃ (λmax − λmin) eL(λmax−λmin),

for λ ∈ J. Set ε = ε̃ (λmax − λmin) eL(λmax−λmin). Since ε̃ is arbitrary, this establishes continuity.

Strictly Decreasing in ψ0 For any ψ′0, ψ′′0 > 0, ψ′0 < ψ′′0 , define φ (λ) , µ (λ) and J as before. Since

φ (λmin) = µ (λmin) = 0 and h
(
λmin, 0;ψ′0

)
> h

(
λmin, 0;ψ′′0

)
, it follows that φ (λ) > µ (λ) for λ close

to λmin. Suppose the contrary that there exists λ1 ∈ J, λ1 6= λmin, such that φ (λ1) = µ (λ1) = x1,

and µ (λ) > φ (λ) for λ > λ1. Then µ (λ) must cut φ (λ) from below at λ1, or µ′ (λ1) > φ′ (λ1) . Since

qb

(
λ1; ψ′0

)
< qb

(
λ1;ψ′′0

)
,

φ′ (λ1) = h
(
λ1, x1;ψ′0

)
> h

(
λ1, x1; ψ′′0

)
= µ′ (λ1) . (64)

This gives rise to a contradiction. Hence, φ (λ) > µ (λ) for λ ∈ J.

Proposition 10. For any K, 0 < K < 1
τb

(
1− γb

wλmax

)
, there exists a unique ψ0 > 0 such that

xb (λmax; ψ0) = K.

Proof. For ψ0 > ψ̃ ≡ τ bw
∫ λmax

λmin
uf (u) du, S = [λmin, λmax] and hence xb (λmax; ψ0) is defined. It

follows immediately from Proposition 9 that, xb (λmax;ψ0) as a function in ψ0 defined over
(
ψ̃,∞

)
,

is continuous and strictly decreasing. Moreover, the range of xb (λmax; ψ0) is contained in the interval[
0, 1

τb

(
1− γb

wλmax

)]
.

To prove the proposition, it suffices to show that xb (λmax; ψ0) tends to 0 as ψ0 approaches infinity,

and xb (λmax; ψ0) tends to 1
τb

(
1− γb

wλmax

)
as ψ0 approaches ψ̃ from the left. With these limiting
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conditions and continuity of xb (λmax;ψ0) in ψ0, existence of ψ0 > 0 that solves xb (λmax; ψ0) = K

is guaranteed by the Intermediate Value Theorem. Uniqueness is ensured by the strict monotonicity

of xb (λmax;ψ0) in ψ0.

As ψ0 → ∞, qb (λ; ψ0) → ∞ for λ ∈ S. Hence, h (λ, x;ψ0) → 0 for all (λ, x) ∈ D. Thus

xb (λ;ψ0) → 0 for λ ∈ S.

Next consider ψ0 = ψ̃, then S = [λmin, λmax) . Let L be the limit of xb

(
λ; ψ̃

)
as λ approaches

λmax from the left. Since xb

(
λ; ψ̃

)
is strictly increasing in λ, this means xb

(
λ; ψ̃

)
is bounded above

by L. Suppose L > 1
τb

(
1− γb

wλmax

)
, then for any λ sufficiently close to λmax, we have xb

(
λ; ψ̃

)
>

1
τb

(
1− γb

wλmax

)
. This contradicts condition (60). Suppose L < 1

τb

(
1− γb

wλmax

)
. For any λ ∈ S,

wλ
[
1− τ bxb

(
λ; ψ̃

)]
> wλ (1− τ bL) ,

which implies

h
[
λ, xb

(
λ; ψ̃

)
; ψ̃

]
> (1− α) [wλ (1− τ bL)− γb]

f (λ)

qb

(
λ; ψ̃

) . (65)

Since the RHS of (65) tends to infinity as λ tends to λmax, the same is true for x′b
(
λ; ψ̃

)
=

h
[
λ, xb

(
λ; ψ̃

)
; ψ̃

]
. This means for every M > 0, there exists δ > 0 such that x′b

(
λ; ψ̃

)
> M

whenever λ ∈ S ∩ (δ, λmax) . Construct sequences of {Mn} and {λn} as follows: Set λ0 = λmin and

define Mn+1 =
L−xb(λn;eψ)

λmax−λn
> 0, for n = 0, 1, .... Then for each Mn+1, there exists δn+1 > 0 such

that λ ∈ S ∩ (δn+1, λmax) implies x′b
(
λ; ψ̃

)
> Mn+1. Set λn+1 = λmax − 1

n [λmax −max (δn+1, λn)] ,

then for λ ∈ (λn+1, λmax) ,

L > xb

(
λ; ψ̃

)
> xb

(
λn+1; ψ̃

)
+ Mn+1 (λ− λn+1) . (66)

This yields a sequence of λn that converges to λmax and a sequence of Mn that approaches infinity.

In the limit, (66) becomes

L > L + lim
n→∞

Mn (λmax − λn) . (67)

Since lim
n→∞

Mn (λmax − λn) ≥ 0, a contradiction arises. Hence, L = 1
τb

(
1− γb

wλmax

)
.

7.2.2 Proof of Theorem 4

From (42), if car-owners exist, then the location of the agent with λ is given by xc

(
λ
)

= xb

(
λ
)

=
γc+pc−γb

(τb−τc)wλ
. This means λ is determined by the point where xb (λ; ψ0) intersects the curve

ρ (λ) =
γc + pc − γb

(τ b − τ c)wλ

in the interior of D. Let W b (x; λ) be the value function of a bus-user with ability λ who locates at

x. Similarly, define W c (x;λ) . Then ρ (λ) is the location where W b [ρ (λ) ; λ] = W c [ρ (λ) ; λ] . Since

xb (λ;ψ0) is strictly increasing in λ, there can be at most one intersection. If intersection does not

occur, or xb (λ; ψ0) ≤ γc+pc−γb

(τb−τc)wλ , for λ ∈ S, then there will be no car-owner.
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Proof of Theorem 4. The proof consists of three main steps. First, it is shown that no car-owner

exist if λmax ≤ κ. Second, the critical value q∗ is specified and it is shown that, given λmax > κ and

qA ∈ (0, q∗) , a unique equilibrium with car-owners can be constructed. Finally, it is proved that no

car-owner exists for any economy with qA > q∗.

Since ρ (λ) lies in the interior of D only for λ ∈ (κ, λmax) , all possible values for λ must lie within

this interval. But this interval is nonempty only if λmax > κ holds. Hence, no car-owner exists if

λmax ≤ κ.

Suppose λmax > κ, this is equivalent to

1
τ b

(
1− γb

wλmax

)
>

γc + pc − γb

(τ b − τ c) wλmax
.

By Proposition 10, there exists a unique ψ∗0 > ψ̃ such that

xb (λmax; ψ∗0) =
γc + pc − γb

(τ b − τ c)wλmax
. (68)

This corresponds to the case where λ (ψ∗0) = λmax. Before an equilibrium is constructed, first consider

the following mapping,

Ψ (ψ0) = ψ0 − ψ̃ + (τ b − τ c)w

∫ λmax

λ(λ0)

uf (u) du.

For ψ0 > ψ∗0, xb (λmax;ψ0) < xb (λmax; ψ∗0) so that λ (λ0) is not defined. Hence Ψ (ψ0) is defined only

for ψ0 ≤ ψ∗0. Moreover, the function Ψ (ψ0) is continuous with Ψ (ψ∗0) > 0. λ (ψ0) ∈ (λmin, λmax]

implies

ψ0 − τ bw

∫ λmax

λmin

uf (u) du ≤ Ψ (ψ0) < ψ0 − τ cw

∫ λmax

λmin

uf (u) du. (69)

This means there exists ψ∗∗0 , τ cw
∫ λmax

λmin
uf (u) du < ψ∗∗0 ≤ ψ∗0, such that Ψ (ψ∗∗0 ) = 0. ψ∗∗0 need

not be unique in general. Let ψ∗∗0 denotes the smallest value that solves Ψ (ψ0) = 0. Define q∗ =

max
[ψ∗∗0 ,ψ∗0]

{Ψ (ψ0)} . Such a value exists by the contuity of Ψ (ψ0) . It follows that, for any qA ∈ (0, q∗) ,

there exists ψ0 ∈ (ψ∗∗0 , ψ∗0) such that Ψ (ψ0) = qA.

Now we are ready to construct an equilibrium. For any qA ∈ (0, q∗) , pick a ψ0 such that

Ψ (ψ0) = qA. qA < q∗ implies ψ0 > ψ∗0. Using ψ0, construct a candidate rent function qb (λ;ψ0)

as in (57) and solves the initial-value problem (IVP1). With the resulting solution, xb (λ; ψ0) , the

corresponding critical ability level, λ (ψ0) , can be computed as described above. Such a value exists

as ψ0 < ψ∗0. Then form the candidate rent function for car-owners,

qc (λ; ψ0) = qA + τ cw

∫ λmax

λ

uf (u) du,

defined over the interval
[
λ (ψ0) , λmax

]
. Car-owners’ location choice function can be obtained by

solving

x′c (λ) = (1− α) {wλ [1− τ cxc (λ)]− (γc + pc)} f (λ)
qc (λ;ψ0)

(IVP3)

46



and

xc

[
λ (ψ0)

]
=

γc + pc − γb

(τ b − τ c)wλ (ψ0)
.

By the same argument as in Theorem 8, (IVP3) has a unique solution xc (λ;ψ0) defined on
[
λ (ψ0) , λmax

]
. Moreover, xc (λ; ψ0) satisfies the positive consumption condition for car-owners.

The candidate rent functions qb (λ;ψ0), qc (λ;ψ0) ; the resulting location choice functions xb (λ; ψ0) ,

xc (λ; ψ0) ; and the critical value, λ (ψ0) , can be supported as equilibrium if the rent function defined

for all ability level is continuous at λ (ψ0) , i.e. qb

[
λ (ψ0) ; ψ0

]
= qc

[
λ (ψ0) ; ψ0

]
, or

ψ0 − τ bw

∫ λ(ψ0)

λmin

uf (u) du = qA + τ cw

∫ λmax

λ(ψ0)

uf (u) du. (70)

This is equivalent to Ψ (ψ0) = qA which is ensured by the choice of ψ0. This completes the construc-

tion of an equilibrium. Since Ψ (ψ0) is bounded above by q∗, there does not exist any ψ0 > 0 such

that Ψ (ψ0) = qA holds for qA > q∗. This means given qA > q∗, (70) would not be satisfied for any

ψ0 > 0. Hence, an equilibrium with car-owners does not exist for qA > q∗.

7.3 Numerical Algorithm

The model’s equilibrium is computed numerically using the algorithm outlined below. This particular

algorithm is chosen for it’s speed and stability.

1. Guess on a value of λ̄. Compute q(λmin) using (41), (47), and (48).

2. Solve the bus-user’s initial value problem for xb(λ) and qb(λ).

3. Compute x̄ using (42).

4. Update guess on λ̄ and iterate until |x̄− xb(λ̄)| is less than desired tolerance.

5. To check the solution, solve the car owner’s initial value problem with initial conditions:

xc(λ̄) = x̄,

qc(λ̄) = qb(λ̄),

for xc(λ) and qc(λ). Verify that qc(λmax) ‘equals’ qA.
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