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1 Proof of Proposition 4

As in the main text, we denote  = ({ } ). We also denote  () as the average surplus
in coalition  when  is the formateur, that is  () =

1
2

h
 ()− (P∈ +1 )

i
. We have two

cases to consider: when   ≥ 0 and when    0.

1.1 Case 1:   ≥ 0
We first prove that, in the limit equilibrium, if 2 forms a coalition with 1, then 1 forms a coalition

with 3 and 3 with 2, thus we are in a clockwise equilibrium.

Lemma A.4.1. If in the limit equilibrium as ∆→ 0 party 2 forms a coalition {1 2}, then 1 forms
{1 3} and 3 forms {3 2}.

Proof. Without loss of generality, we can assume that the same selections of coalitions as in the

limit are made on the sequence of equilibria as ∆→ 0 (otherwise we can select a subsequence with

this property). Assume that in the limit equilibrium formateur 2 forms a coalition {2 1} and, by
contradiction, 1 forms a coalition {1 2}. Then, on the sequence, we have 23 = 0 and 21  0,

22  0. By (6) in the paper, this implies that:

11 = 21 + (− − 21 − 22)  21 + (− − 21)

≤ 21 + (+ − 21) = b11
where  = ()  [1− (1− )] and  = [1− (1− )] 

h
1− ((1− ))

2
i
. Note that b11 is the

payoff that 1 would obtain by forming a coalition with 3, a contradiction with the assumption

that 1 chooses to form a coalition with 2. Assume that 2 forms with 1, and 1 does not form

a coalition. Then 1 obtains 21 that is strictly lower than what s/he would obtain forming a

coalition with 2: 21 + (− − 21 − 22) = 21 + (1− ) (− )  21. It must therefore be

that 2 forms a coalition with 1, and 1 with 3. There are 2 possible cases to rule out: 3 is unable

to form a coalition (Case 1); and that 3 forms a coalition with 1 (Case 2).

Case 1. In this case, 3 obtains 13 that is strictly lower than what s/he would obtain forming a

coalition with 1, 13 + (1− ) (+ ), a contradiction.

Case 2. In this case, as ∆→ 0, we have:

11 =
+ 

2
+

21
2
, 12 = 0, 

1
3 =

+ 

2
− 21
2

21 =
− 

2
+

31
2
, 22 =

− 

2
− 31
2
, 23 = 0

31 =
+ 

2
+

11 − 13
2

, 32 = 0, 
3
3 =

+ 

2
− 11 − 13

2
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We have that 11 − 13 = 21, so: 31 =  + (2− ) 3 32 = 0 33 = (+ ) 3, and 21 =  +

(− 2) 3 22 = − (+ ) 3 23 = 0. This implies 
2
2 = − (+ ) 3 ≤ 0. If either   0 or   0,

we have a contradiction. If  =  = 0, then 2({2 3}) =   2({1 2}) = 0, so we cannot have a
limit equilibrium as ∆→ 0 in which 2 forms {1 2}. ¥

We now characterize the equilibria in the case in which 2 forms a coalition {2 3}.

Lemma A.4.2. If, in the limit equilibrium as ∆ → 0, 2 forms a coalition {2 3}, then 3 forms
{1 3} and 1 forms {1 2}.

Proof. We proceed in 4 steps.

Step 1. Again, without loss of generality, we can assume that the same selections of coalitions as

in the limit are made on the sequence of equilibria as∆→ 0 (otherwise we can select a subsequence

with this property). We first show that if {2 3} is formed when 2 is formateur, then {3 2} can not
form a coalition in equilibrium when 3 is formateur. Assume not. Assume first that 1 is unable

to form a coalition. Consider a deviation in which 1 forms with 3. Since 21 = 0, 1’s payoff would

be b11 = ( +  − 
¡
23
¢
) ≥ ( +  − )  0 = 21 = 11, where  = ()  [1− (1− )] and

 = [1− (1− )] 
h
1− [(1− )]

2
i
and, in the first inequality, we use the fact that 22+23 ≤ ,

so a fortiori 23 ≤ . This implies that 1 has a strictly profitable deviation, a contradiction. Assume

then that 1 forms a coalition with 3. In this case, as ∆→ 0:

11 =
+ 

2
− 23
2
, 12 = 0, 

1
3 =

+ 

2
+

23
2

21 = 0, 22 =


2
+

32 − 33
2

, 23 =


2
− 32 − 33

2

31 = 0, 32 =


2
− 13
2
, 33 =



2
+

13
2


This implies that 23 =  + 
3
. If   0, we have a contradiction since we must have 23 ≤ . If

 = 0, then 22 = 0, so 1(1 2) = − −22 = −   1(1 3) = 0. In both cases, we cannot have

a sequence of equilibria converging to an outcome in which 2 forms with 3, 3 with 2 and 1 with 3

as ∆→ 0. Finally, assume that 1 forms a coalition with 2. In this case, as ∆→ 0, we have:

11 =
− 

2
− 22
2
, 12 =

− 

2
+

22
2
, 13 = 0

21 = 0, 22 =


2
+

32 − 33
2

, 23 =


2
− 32 − 33

2

31 = 0, 32 =


2
+

12
2
, 33 =



2
− 12
2


In this case we have 22 =  − 3, 23 = 3, thus 1({1 2}) = −12(23), 1({1 3}) =
1
2
[+ − 3]  1({1 2}). This implies that we cannot have a sequence of equilibria that

converges as ∆→ 0 to an equilibrium in which 2 forms with 3, 3 with 2 and 1 with 2.
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Step 2. We now show that if {2 3} is formed when 2 is formateur, then 3 must be able to form
a coalition. Assume, by contradiction, that this is not the case and that either 1 is unable to

form a coalition, or 1 forms a coalition with 3. In these case, by the same argument as in Lemma

A.4.1, it must be that 3 finds it strictly optimal to form a coalition with, respectively, either 2 or

1. Assume then that 1 forms a coalition with 2. It follows that 3, by forming a coalition with 1,

can obtain b33 = 
£
+ − 

¡
11 + 13

¢¤ ≥  [+ −  (− )]  0  13 = 33, a contradiction.

Step 3. It must be that if 2 forms {2 3}, then 3 forms {1 3}. We now show that if {2 3} is formed
when 2 is formateur and {1 3} is formed by 3, then 1 must be able to form a coalition. If this

were not the case, then, as ∆→ 0, we would have: 21 = 0, 
2
2 = 2− 332, 

2
3 = 2+332 and

31 = (+ ) 2− 232, 
3
2 = 0, 

3
3 = (+ ) 2+ 232. These equations imply: 

3
3 = (3+ 2) 3,

31 = 3. Consider now the net surplus when 2 is the formateur: 2({1 2}) = (− − 3) 2  0

and 2({2 3}) = −(13) ≤ 0. This implies that 2 would strictly prefer {1 2} to {2 3} in the limit
as ∆→ 0. This implies that we cannot have a sequence of equilibria with ∆  0 that converge to

an equilibrium in which 2 forms with 3, 3 with 1 and 1 is unable or unwilling to form a coalition.

Step 4. We finally show that if 2 forms {2 3} and 3 forms {3 1}, then 1 cannot form {1 3}.
Assume not, then as ∆→ 0, we would have:

11 =
+ 

2
− 23
2
, 12 = 0, 

1
3 =

+ 

2
+

23
2

21 = 0, 22 =


2
− 33
2
, 23 =



2
+

33
2

31 =
+ 

2
+

11 − 13
2

, 32 = 0, 
3
3 =

+ 

2
− 11 − 13

2


The first and last equation in the first line imply 11 − 13 = −23. The last equation in the third
line and the third in the second line imply: 23 = + 3. If   0, we have a contradiction since

23 ≤ . If  = 0 we have 2({1 2}) = −   2({2 3}) = 0, again this implies we cannot have a
limit equilibrium in which 2 forms {2 3}, a contradiction.

Steps 1-4 imply that if {2 3} is formed when 2 is formateur, then 3 must form {1 3} and 1 must
form {1 2}, so we have a clockwise equilibrium. ¥

We conclude the proof showing that if 2 is unable to form a coalition, then no other party will

choose to form a coalition with 2. This implies that the equilibrium must be strongly efficient.

Lemma A.4.3. If, in the limit equilibrium as ∆→ 0, 2 is unable or unwilling to form a coalition,

then no other party chooses to form a coalition with 2.

Proof. Note first that a coalition must form in equilibrium. If this were not the case, then the

reservation utilities would all be equal to 0, leading to a contradiction. Assume that 3 forms with
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2, but 2 is unwilling or unable to form a coalition with any party. Formateur 2’s expected payoff

when formateur is [ (1− (1− ))]32. Assume instead that 2 instead forms a government with

3. Party 2’s payoff would be: b22 = 32 + ( − 
¡
32 + 33

¢
) = 32 + (1 − )  32, where

 = ()  [1− (1− )] and  = [1− (1− )] 
h
1− ((1− ))

2
i
and in the equality we use the

fact that 32 + 33 = . So we have a contradiction. Assume then that 1 forms a government with

2. There are two other possible sub-cases. First, the case in which 3 is unable or unwilling to

form a coalition. In this case 2’s payoff is 12 which, by a similar argument as above, is strictly

lower than the payoff that 2 can obtain by forming a government with 1, a contradiction. Second,

the case in which 3 forms a government with 1. Since offering to 2 instead of 3 must be optimal

for 1, we must have: 11 = 31 + ( −  − 
¡
31 + 32

¢
) ≥ 31 + ( +  − 

¡
31 + 33

¢
) = b11,

where b11 is the payoff 1 would obtain by forming a government with 3. So − − 
¡
31 + 32

¢ ≥
 +  − 

¡
31 + 33

¢
= (1 − ) (+ )  0. But then 2 can form a coalition with 1 and obtain

32 + (− − 
¡
31 + 32

¢
), which is strictly more than the payoff in case of failure of forming a

coalition, 32, a contradiction. ¥

1.2 Case 2:    0

As for Case 1, we proceed in three steps. First, we show that the clockwise equilibrium is the

only possible limit equilibrium when 3 forms a government with 2; we then show that the only

type of limit equilibrium in which 3 forms a government with 1 is a counter-clockwise equilibrium.

Finally, we show that if 3 is unable or unwilling to form a government, then no other party forms

a government with 3, thus we have a strongly efficient equilibrium.

Step 1. As above, we can assume without loss of generality that the same selections of coalitions

as in the limit are made on the sequence of equilibria converging to the limit equilibrium as ∆→ 0

(otherwise we can select a subsequence with this property). Assume that 3 forms a coalition with

2. We show that it can not be that 2 forms a government with 3. In this case we have 2 obtains

a payoff 22 = 32 + (− 
¡
32 + 33

¢
)  32 + (−  − 32) = b22, where b22 is the payoff that

would be obtained by 2 deviating and forming {1 2}, a contradiction. By a similar argument as
the arguments used in the previous subsection, it must be that 2 forms a coalition with some other

party, so if 3 forms with 2, then 2 must form a coalition with 1. We now show that if 3 forms

with 2 and 2 forms with 1, then 1 can must form a coalition with 3. Again, it must be that if 3

forms with 2 and 2 forms with 1, then 1 must be able to form a coalition (since by failing to form

a coalition, 1 would receive less than by forming a coalition with 2). So we only need to show that

it cannot be that 1 forms {1 2}. Assume by contradiction that this is not the case, then in the
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limit as ∆→ 0:

11 =
− 

2
+

21 − 22
2

, 12 =
− 

2
− 21 − 22

2
, 13 = 0

21 =
− 

2
− 32
2
, 22 =

− 

2
+

32
2
, 23 = 0

31 = 0, 32 =


2
+

12
2
, 33 =



2
− 12
2


These equations imply that: 11 = −3, 12 = (3− 2) 3, 13 = 0, 21 = −3, 22 = − (23),
23 = 0, and 31 = 0, 32 =  − 3, 33 = 3. Note that 32 =  − 3   and 33 = 3  0.

But then 32  , which is impossible. We conclude we cannot have a limit equilibrium in which

3 forms with 2, 2 forms with 1, and 1 forms with 2. It must be that if 3 forms a coalition with 2,

then 2 forms a coalition with 1 and 1 forms a coalition with 3.

Step 2. Assume now that 3 forms a coalition with 1. Assume first that 1 forms with 3. In

this case we have: 33 = 13 + ( +  − 
¡
11 + 13

¢
)  13 + ( − 13) = b33, where b33 is

the payoff that would be obtained by 3 deviating and forming {2 3}, a contradiction. We now
show that 1 must form a government with 2. Assume by contradiction, first, that neither 1 nor

2 forms a coalition, then 2 would obtain 32 = 0, but s/he would be able to obtain (− 33) 

( −  (+ ))  (1 − )  0 by forming a coalition with 3, a contradiction. Assume now

that 1 is unable to form a coalition and 2 forms a coalition with 3. As ∆ → 0, we must have:

21 = 0, 22 =

2
− 33

2
, 23 =


2
+

33
2
and 31 = (+ ) 2 − 232, 

3
2 = 0, 33 = (+ ) 2 + 232.

This gives us 33 = + (23)  + , a contradiction. Finally, assume that 1 is unable to form

a coalition and 2 forms a coalition with 1. In this case, as ∆ → 0, we have: 21 =
−
2
+

31
2
,

22 =
−
2
− 31

2
, 23 = 0 and 31 = (+ ) 2 + 212, 

3
2 = 0, 33 = (+ ) 2 − 212. This

gives us 21 = (3− 2+ ) 3, 31 = (3+ 2− ) 3 and 33 = (+ ) 3  0, a contradiction.

We conclude that if 3 forms a coalition with 1, then 1 forms a coalition with 2. Assume now

that 2 is unable to form a coalition. In this case, as ∆ → 0, we have: 11 = (− ) 2 + 312,

12 = (− ) 2 − 312, 
1
3 = 0 and 31 = (+ ) 2 + 112, 

3
2 = 0, 33 = (+ ) 2 − 112. So

11 = + (− 2) 3 and 33 = (+ ) 2− 2− (− 2) 6 = (2+ 2) 6  0, a contradiction.

Finally assume that 3 forms a coalition with 1, 1 forms a coalition with 2 and 2 forms a coalition

with 1. As ∆→ 0, we have:

11 =
− 

2
+

21 − 22
2

, 12 =
− 

2
− 21 − 22

2
, 13 = 0

21 =
− 

2
+

31
2
, 22 =

− 

2
− 31
2
, 23 = 0

31 =
+ 

2
+

11
2
, 32 = 0, 

3
3 =

+ 

2
− 11
2

so 11 =  + −2
3

and 33 =
1
3
( + )  0, a contradiction. We conclude that if in the limit
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equilibrium 3 forms {1 3}, then the equilibrium is a counter-clockwise.

Step 3. We now show that if in the limit equilibrium 3 is unable or unwilling to form a government,

then no other party forms a government with 3, thus a coalition {1 2} is formed. We have 2 cases
to rule out:

Case 1. Assume that in the limit equilibrium 3 is unable to form a government and 1 forms

{1 3}. Then, on the sequence of equilibria as ∆ → 0, 33 = 13, but by forming a coalition with

1, 3 obtains 13 + (1− ) (+ )  13, a contradiction.

Case 2. Assume that 3 is unable to form a government and 2 forms {2 3}. If 1 is unable to
form a government too, then we have 33 = 223, but by forming a coalition with 2, 3 obtains

223+
¡
− 223 − 222

¢
= 223+

¡
1− 2

¢
  223, a contradiction. If 1 forms a government

with 2, as ∆ → 0, we have: 11 = (− ) 2 − 222, 
1
2 = (− ) 2 + 222, 

1
3 = 0, and 21 = 0,

22 = 2 + 122, 
2
3 = 2− 122. Solving the system, we obtain: 

1
1 = −3, 12 = (3− 2) 3,

13 = 0 and 21 = 0, 
2
2 = (3− ) 3, 23 = 3 But then 23 = 3  0, a contradiction. ¥

From the Steps presented above, we conclude that either 3 is able to form a coalition, in which

case the equilibrium is clockwise or counterclockwise; or 3 is unable to form a coalition, in which

case the only coalition that can be formed in equilibrium is {1 2}, so we have a strongly efficient
equilibrium. ¥

2 Proof of Proposition 5

We complete the proof of Proposition 5 by proving Lemma A.5.2.

Lemma A.5.2. A counter-clockwise equilibrium exists as ∆ → 0 only if  ≤ 3
7
 − 5

7
 when

   0, and if  ≥ −3
5
 − 1

5
 and  ≤ 3 + 7 when   ≤ 0; and it exists and is the limit of

equilibria as ∆→ 0 if these conditions are strict inequalities.

Proof. As in the previous lemma, we proceed in three steps.

Step 1. We first construct the value functions associated to a counterclockwise equilibrium. From

(6) in the paper, if counterclockwise equilibrium exists, we must have:

11 = 21 + 
¡
− − 21 − 22

¢
, 12 = 22 + 

¡
− − 21 − 22

¢
, 13 = 0, (1)

21 = 0, 22 = 32 + 
¡
− 32 − 33

¢
, 23 = 33 + 

¡
− 32 − 33

¢
,

31 = 11 + 
¡
+ − 11 − 13

¢
, 32 = 0, 

3
3 = 13 + 

¡
+ − 11 − 13

¢
,
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where  =  [1− (1− )] and  = [1− (1− )] 
h
1− ((1− ))

2
i
. The equations in (1) give

us a system of 9 equations in 9 unknowns, admitting a unique solution that, as ∆→ 0, converges

to:

11 =
3− 4+ 

9
, 12 =

6− 5− 

9
, 13 = 0 (2)

21 = 0, 22 =
3− − 2

9
, 23 =

6+ + 2

9

31 =
6− 2+ 5

9
, 32 = 0, 

3
3 =

3+ 2+ 4

9


A necessary condition for the counterclockwise strategies to be an equilibrium as ∆ → 0 is that

no party has a profitable deviation in the limit given (2). A sufficient condition for the counter-

clockwise strategies to be the limit of equilibria as ∆→ 0 is that they are a strict equilibrium in

the limit.

Step 2. We now characterize the conditions under which no party has a profitable devia-

tion in the limit as ∆ → 0 when   ≥ 0. Consider first the case in which 1 is the forma-

teur. We have: 1({1 2}) =
¡
− − 21 − 22

¢
2 = (6+ 2− 8) 18  0 and 1({1 3}) =¡

+ − 21 − 23
¢
2 = (3+ 7− ) 18. It follows that 1({1 2}) ≥ 1({1 3}) if and only

if  ≤ (37)  − (57) , and the first inequality is strict if the second is strict. Moreover,

1({1 2}) ≥ 0 if  ≤ (34)  + 4, which is implied by  ≤ (37)  − (57)  for  ≥ 0. Con-
sider now formateur 2. We have: 2({1 2}) =

¡
− − 31

¢
2 = (3− 7− 5) 18 ≥ 0 and

2({2 3}) =
¡
− 33

¢
2 = (6− 2− 4) 18, so 2({2 3})  2({1 2}) is always true. Finally,

consider now formateur 3’s decision: 3({1 3}) =
¡
+ − 11 − 13

¢
2 = (6+ 8+ 4) 18  0

and 3({2 3}) =
¡
− 12 − 13

¢
2 = (3+ 5+ ) 18, so 3({1 3}) ≥ 3({2 3}) is true if

 ≤ 3 + 7, which holds whenever  ≤ (37) − (57). We conclude that a counter-clockwise
equilibrium exists only if  ≤ (37)− (57) and it exists and is the limit of equilibria as ∆→ 0

if   (37)− (57).

Step 3. Assume now    0 and consider first the case in which 2 is the formateur. We

have: 2({1 2}) =
¡
− − 31

¢
2 = (3− 7− 5) 18  0 and 2({2 3}) =

¡
− 33

¢
2 =

(6− 2− 4) 18: so 2({2 3}) ≥ 2({1 2}) if  ≥ −(35) − (15), with the first inequality
strict if the second is strict. Consider now formateur 1. We have: 1({1 2}) =

¡
− − 22

¢
2 =

(6− 8+ 2) 18  0 and 1({1 3}) =
¡
+ − 23

¢
2 = (3+ 7− ) 18. It follows that

1({1 2}) ≥ 1({1 3}) if and only if 3− 7− 5 ≥ 0, where again the first inequality is strict if
the second is strict. Finally, consider now Formateur 3’s decision: 3({1 3}) =

¡
+ − 11

¢
2 =

(6+ 4+ 8) 18 and 3({2 3}) =
¡
− 12

¢
2 = (3+ 5+ ) 18. It follows that 3({1 3}) ≥

3({2 3}) if 3+ 7 −  ≥ 0, where the first inequality is strict if the second is strict. Note that
3− 7+ 5  3+ 7−  for   0, thus the condition on formateur 3 implies the condition on
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formateur 1. We conclude that a counterclockwise equilibrium exists only if  ≥ −(35)− (15)
and  ≤ 3+ 7, and it exists and is the limit of equilibria as ∆→ 0 if these two inequalities are

strict. ¥

3 The mixed strategy equilibrium presented in Section 4

We construct here a mixed strategy equilibrium for the region defined by   − 3
2
 − 2 and

  −( + ) with    0 in which, as discussed in Section 4 of the paper, a pure strategy

equilibrium does not exist. For this region we construct an equilibrium in which 1 chooses 2

with probability , and 3 with probability 1 − ; 2 chooses 1 with probability 1; and 3 chooses

2 with probability 1 (see lower right panel in Figure 2). We must have: 13 = (+ ) 2 − 212

and 12 = (− ) 2 +
¡
22 − 21

¢
2. The indifference condition for 1 is: (+ ) 2 + 212 =

(− ) 2− ¡22 − 21
¢
2, implying 22 = −(+ ), 21 = − − 22 = + , 23 = 0.

We also must have 13 = 0, 
1
1 = (+ ) 2 + 212 =  +  and 12 =  −  − 11 = −( + ).

Moreover, 31 = 0, 
3
2 = 2+

¡
12 − (1− )13

¢
2 = 2− (2)12 = (2)− (2) (+). And

we have: 22 = (− ) 2 +
¡
32 − 31

¢
2 = (− ) 2 + 322. Thus we have (− ) 2 + 322 =

−(+ ), implying 32 = −(+ 2+ ). Substituting in the formula above we have:

 =
3+ 2+ 4

+ 

Note that since  +   0,  ≥ 0 for  ≤ −3
2
 − 2. Moreover  ≤ 1 for 3 + 2 + 4 ≤  + ,

that is if  ≥ −3(+ ). It can be verified tat these conditions are always satisfied in the region

of interest.

Obviously the strategy is optimal for formateur 1 by construction. For formateur 2, it is

optimal if 2(1 2) ≥ 2(2 3). We have: 2(1 2) = ( −  − 31 − 32)2 = 2( + ) ≥ 0 and

2(2 3) = (− 32 − 33)2 = 0. The condition is therefore verified.

For formateur 3 we need 3(2 3) ≥ 3(1 3). We have 3(1 3) = (+ −11−13)2 = 0 and:

3(2 3) =
1

2
(−12 −13) = − (+ )

=
1

2

∙
+

3+ 2+ 4

+ 
(+ )

¸
= 2+ + 2

Thus the condition is verified if  ≥ −2(+ ). Note that in the relevant region we need to have:

 ≥ −3
2
− 2  −2(+ ), thus this condition is always satisfied. ¥
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4 Proof of Proposition 6

The fact that a clockwise equilibrium exists as a limit equilibrium follows from the argument in

Section 6.1. We now prove that when the core is empty, no other pure strategy equilibrium exists

as ∆ → 0. Lemma A.6.2 deals with the case with   ≥ 0, Lemma A.6.3 with the case with

   0.

Lemma A.6.2. Assume   ≥ 0, TIOLI offers and an empty core. In a limit equilibrium in pure

strategies, party 1 forms a coalition {1 3}, party 2 forms {1 2} and party 3 forms {3 2}.

Proof. We proceed in five steps.

Step 1. We first show that if   ||+||, then it cannot be that any party fails to form a coalition
and is then excluded by the first coalition that is formed in equilibrium after its turn. If 2 fails to

form a coalition and is excluded by the first coalition that is formed in equilibrium after its turn,

then we must have 31 ≥ −  and 33 ≥  (else 2 would be be able to make a profitable offer

that would be accepted by some coalition). It follows that 
¡
31 + 33

¢ ≥ 2 − . We however

must have that:  (+ ) ≥ 
¡
31 + 33

¢ ≥ 2− , implying, as ∆→ 0,  ≤ + , a contradiction.

If 1 fails to form a coalition and it is subsequently excluded, we must have 22 ≥  −  and

23 ≥  + , so:  ≥ 
¡
22 + 23

¢ ≥  + , which is impossible for any   1. Finally, if 3 fails

to form a coalition and it is subsequently excluded, we must have 11 ≥  +  and 12 ≥ , so:

 (− ) ≥ 
¡
11 + 12

¢
 + , again impossible for   1.

Step 2. We now show that party 1 can not fail to form a coalition. By Step 1 it can not be that

1 fails and 2 forms a coalition with 3. It also can not be that 1 fails to form a coalition and 2

forms a coalition with to 1: since in this case 23 = 0, so 1 would be able to form a coalition with

3 and obtain  +  ≥  −   21 = 11, a contradiction. And it can not be that all parties fail,

since in this case 23 = 0, so 
1
1 ≥ +   0, a contradiction. So it must be that 2 also fails and,

by Step 1, 3 forms a coalition with 1. But this is impossible by Step 1 again, since it would imply

that 2 fails and is not included in the subsequent equilibrium coalition.

Step 3. We now show that there is only one limit equilibrium in pure strategies in which 1 forms

a coalition with 3. In this equilibrium, 1 forms a coalition with 3, 3 forms a coalition with 2 and 2

with 1 (i.e. it is a clockwise equilibrium). In this equilibrium, moreover, the formateurs extracts

all the surplus. In the following sub-steps, assume that 1 forms a coalition with 3.

Step 3.1. Assume first that 3 fails to form a coalition. In this case, 3 could form a coalition with

1 and get 13 +
1
2
(1− )(+ )  13, a contradiction.

Step 3.2. Assume by contradiction that 3 forms a coalition with 1. By Step 1, it can not be that

2 is unable to form a coalition: so, either 2 forms a coalition with 3 or with 1. Consider the case

9



in which 2 forms with 3. As  → 1, we must have: 11 =  +  − 23, 
1
2 = 0, 13 = 23, 

2
1 = 0,

22 =  − 33, 
2
3 = 33, and 31 = 11, 

3
2 = 0, 33 =  +  − 11. This implies: 

1
1 + 33 =  + .

Moreover, we must have 33 ≥ , else 3 would deviate and form a coalition with 2; and 11 ≥
−−22 ⇔ 11 ≥ (+ − ) 2 else 1 would prefer to form a coalition with 2. We therefore must

have: 11 + 33 ≥ (3+ − ) 2. These inequalities are feasible only if (3+ − ) 2 ≤  + ,

that is  ≤ + , a contradiction. Assume, again by contradiction, that 1 offers to 3, 3 to 1 and

2 to 1. As  → 1, we have: 11 = + − 23, 
1
2 = 0, 

1
3 = 23, 

2
1 = 31, 

2
2 = − − 31, 

2
3 = 0,

and 31 = 11, 
3
2 = 0, 

3
3 = +  − 11. This implies: 

1
1 + 33 = +  and 11 ≥ + . Moreover,

we must have: 33 ≥ , else 3 would deviate and form coalition with 2. This is feasible only if

2+  ≤ + , i.e.  ≤ 0, impossible.

Step 3.3. It therefore must be that if 1 forms a coalition with 3, then 3 forms a coalition with 2.

It cannot be that 2 is unable to form a coalition: in this case 22 = 32, but 2 can form a coalition

with 3 and obtain − 33  
¡
− 33

¢
= 32. Assume first that 2 forms a coalition with 3. In

the limit as  → 1, we have:

11 = + − 23, 
1
2 = 0, 

1
3 = 23

21 = 0, 22 = − 33, 
2
3 = 33

31 = 0, 32 = 12, 
3
3 = − 12

We have: 11 = + − + 12 = , 22 = 0, 
3
3 =  and 31 = 0. But then 2 could offer offer 0 to 1

and forms {1 2}, making −   0, a contradiction. We conclude that the only possibility is that

1 forms with 3, 3 with 2 and 2 with 1. In this case, as  → 1, we have: 11 = + − 23, 
1
2 = 0,

13 = 23, 
2
1 = 31, 

2
2 =  −  − 31, 

2
3 = 0, and 31 = 0, 

3
2 = 12, 

3
3 =  − 12. This system has

a unique solution with value 11 =  + , 22 =  − , 33 = . It is easy to verify that this is an

equilibrium for any   ≥ 0.

Step 4. We now show that, if   || + ||, then there is no equilibrium in which 1 forms a

coalition with 2. Assume by contradiction that 1 forms a coalition with 2. Clearly we cannot have

that 2 forms with 1: if this were the case, then 23 = 0, and 1 would like to form with 3 since

+    −  − 12. It also can not be that 2 fails to form a coalition. To see this note that, by

Step 1, it can not be that 3 offers to 1; or that both 2 and 3 fail to form a coalition (since in this

case 3 would fail and excluded by 1). So it must be that 3 offers to 2. But then we must have

33 + 32 ≤  so, by offering to 3, 2 obtains b22 = − 33  32 = 22, a contradiction. So we must

have that 1 offers to 2 and 2 to 3. By Step 1 is impossible that 1 offers to 2, 2 offers to 3 and 3

10



fails to form a coalition. Assume that 3 forms a coalition with 2. In this case, as  → 1, we have:

11 = − − 22, 
1
2 = 22, 

1
3 = 0

21 = 0, 22 = − 33, 
2
3 = 33

31 = 0, 32 = 12, 
3
3 = − 12

We must have that 22 + 33 = . Moreover 22 ≥  − , else 2 may deviate and form a coalition

with 1; and 33 ≥  +  − 11, else 3 could form a coalition with 1. This last inequality implies

that 33 ≥  +  −  +  + 22 =  +  + 22 ≥  +  +  −  =  + . It follows that we have

 = 22 + 23 ≥ 2+ −   , a contradiction.

Step 5. The only remaining possibility is that the limit equilibrium is a counterclockwise equi-

librium. Consider a sequence   0 with  → 1 and associated equilibria. Without loss of

generality, along the sequence of equilibria 1 selects 2, 2 selects 3 and 3 selects 1 (if this is not

the case, we can select a subsequence with this property). The equilibrium conditions on this

sequence are:

11 () = − − 
2
2 () , 

1
2 () = 

2
2 () , 

1
3 () = 0 (3)

21 () = 0, 22 = − 
3
3 () , 

2
3 = 

3
3 ()

31 () = 
1
1 () , 

3
2 () = 0, 

3
3 () = + − 

1
1 ()

We therefore have:

11 () =
(1−  + 2)− + 2

1 + 3
, 33 () =

+ (1−  (1− ))+ 

1 + 3
,

23 () =
2+ ( − 2 (1− ))+ 

1 + 3

Consider a deviation for party 1. If 1 deviates and forms a coalition with 3, s/he obtains:

b11 () = + − 
2
3 () =

(1− 2 + 2
3
 − 4)+

¡
1− 2 + 3

¢
− 3

1 + 3

The deviation is profitable if for a sufficiently high   1:

b11 ()  11 () =
£
(1−  + 2)− + 2

¤
(1 + 3)

Note that we can write:

b11 () = 11 () +

¡
1− 3

¢
1 + 3

∙

1− 2 + 22 − 3

1− 3
+

1− 22 + 3
1− 3

+ 

¸
It follows that, as  → 1, 1 has a strictly optimal deviation if and only if the sign of limit of the

square parenthesis is positive. Applying l’Hospital rule, we have:
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1− 2 + 22 − 3

1− 3
+

1− 22 + 3
1− 3

+ → 1

3
(+ ) + 

When  ≥ 0,  ≥ 0 this term is always strictly positive, so 1 has a strictly positive deviation along
any sequence of  → 1. ¥

We now turn to the case with    0.

Lemma A.6.3. Assume    0, TIOLI offers and an empty core. In a limit equilibrium in pure

strategies, party 1 forms a coalition {1 3}, party 2 forms {1 2} and party 3 forms {3 2}.

Proof. As above, we proceed in 5 steps.

Step 1. We first show that if   || + ||, it cannot be that any party fails to form a coalition

and is then excluded by the first coalition that is formed in equilibrium after his turn. If    0,

then this condition can be written as   − (+ ). If 2 fails to form a coalition and it is

subsequently excluded, we must have 31 ≥  −  and 33 ≥ , so we must have  (+ ) ≥

¡
31 + 33

¢ ≥ 2 − , implying that, as  → 1,  ≤  +   0, a contradiction. If 1 fails to

form a coalition and it is subsequently excluded, we must have 22 ≥  −  and 23 ≥  + ,

so: 
¡
22 + 23

¢ ≥ 2 −  +    − , impossible. Finally, if 3 fails to form a coalition and it is

subsequently excluded, we must have 11 ≥ + and 12 ≥ , so: 
¡
11 + 12

¢ ≥ 2+. We must

therefore have  (− ) ≥ 
¡
11 + 12

¢ ≥ 2+ , implying as  → 1,  ≤ ||+ ||, a contradiction.

Step 2. We now show that party 1 can not fail to form a coalition. By Step 1 it can not be

that 1 fails and 2 offers to 3. It also can not be that all parties fail, since in this case 22 = 0, so

11 ≥  −   0, a contradiction. Assume that 1 fails and 2 forms a coalition with to 1. Then 1

would have a strict deviation by forming a coalition with 2. So it must be that 2 also fails and,

by Step 1, 3 forms a coalition with 1. But this is impossible by Step 1 again since it would imply

that 2 fails and is not included in the subsequent equilibrium coalition.

Step 3. We now show that there is only one limit equilibrium in pure strategies in which 1 forms

a coalition with 3. In this equilibrium, 1 forms a coalition with 3, 3 forms with 2 and 2 with 1

(i.e. it is a clockwise equilibrium). In this equilibrium, moreover, the formateurs extracts all the

surplus. In the following sub-steps, assume that 1 forms a coalition with 3.

Step 3.1. Assume first, by contradiction, that 3 fails to form a coalition. Then we have 33 = 13;

but, by making a TIOLI to 1, 3 can obtain b33 =  +  − 11  13, a contradiction. Assume

therefore that 3 forms a coalition with 1. By Step 1, it can not be that 2 is unable to form a

coalition: so, either 2 forms with 1 or with 3. Consider the case in which 2 forms with 3. As

 → 1, we have: 11 =  +  − 23, 
1
2 = 0, 13 = 23, 

2
1 = 0, 22 =  − 33, 

2
3 = 33, and
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31 = 11, 
3
2 = 0, 33 =  +  − 11. This implies 

1
1 + 13 = 31 + 33 =  + . We must have:

11 ≥ −−22 = −−+33 ⇔ 11 ≥ (+ −)2, else 1 would prefer to form a coalition with

2. Moreover, we must have 13 = 33 ≥ −12 = , else 3 would forma coalition with 2. We therefore

must have: 11+13 ≥ (3+ − )2. These inequalities are feasible only if (3+ − )2 ≤ + ,

i.e.  ≤ + , impossible. Assume now that 2 forms a coalition with 1. We have:

11 = + − 23, 
1
2 = 0, 

1
3 = 23

21 = 31, 
2
2 = − − 31, 

2
3 = 0

31 = 11, 
3
2 = 0, 

3
3 = + − 11

Implying 11 = + , 13 = 23 = 0. We must have 
3
3 ≥ − 12 = , else 3 forms a coalition with

2, so 11 ≤   0, a contradiction.

Step 3.2. It must therefore be that 1 forms a coalition with 3 and 3 forms a coalition with

2. It cannot be that 2 is unable to form a coalition: 2 can forma coalition with 3 and get

32+ (12)(1− )  32, a contradiction. Assume first that 2 forms a coalition with 3. As  → 1,

we have: 11 =  +  − 23, 
1
2 = 0, 

1
3 = 23, 

2
1 = 0, 

2
2 = − 33, 

2
3 = 33, and 31 = 0, 

3
2 = 12,

33 = − 12. We have: 
1
1 = + − + 12 =  and 22 = 0 and 33 = , 31 = 0. But then 2 could

offer offer 0 to 1 and forms {1 2}, making −   0, a contradiction. We conclude that the only

possibility is that 1 forms with 3, 3 with 2 and 2 with 1. In this case we have:

11 = + − 23, 
1
2 = 0, 

1
3 = 23

21 = 31, 
2
2 = − − 31, 

2
3 = 0

31 = 0, 32 = 12, 
3
3 = − 12

This system has a unique solution with value 11 = + , 22 = − , 33 = . It is easy to verify

that this is an equilibrium.

Step 4. We now show that, if   || + ||, then there no limit equilibrium in which 1 forms

a coalition with 2. Assume first that 2 fails to form a coalition. By Step 1 it can not be that

3 forms with 1. Also by Step 1 it can not be that both 2 and 3 fail, since in this case 3 fails

and is excluded by 3 and 1. So it must be that 3 forms with 2. But then we have 22 = 32 ≤

¡
− 33

¢
 − 33 = b32, where b32 is what 2 can obtain by making an offer to 3. Assume then

that 2 forms a coalition with 1. By Step 1, it can not be that 3 is unable to form a coalition:

so, either 3 forms with 2 or with 1. Consider the case in which 3 forms with 2. As  → 1, we

have: 11 = −  − 22, 
1
2 = 22, 

1
3 = 0, 

2
1 = 31, 

2
2 = − − 31, 

2
3 = 0, and 31 = 0, 

3
2 = 12,

33 = − 12. This implies: 
1
1 + 22 = − . Moreover, we must have 22 ≥ , else 2 would deviate

and form a coalition with 3; and 11 ≥ + − 23 = + , else 1 would prefer to form a coalition
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with 3. We therefore must have: −  = 11 + 22 ≥ 2+ . These inequalities are feasible only if

 ≤ ||+ ||, a contradiction. Assume now that 3 forms a coalition with 1. As  → 1, we have:

11 = − − 22, 
1
2 = 22, 

1
3 = 0

21 = 31, 
2
2 = − − 31, 

2
3 = 0

31 = 11, 
3
2 = 0, 

3
3 = + − 11

Implying 11 + 22 = − . We must have 11 ≥ + , else 1 deviates and forms a coalition with 3.

We must have: 22 ≥ − 33 = −+ 11 ≥ , else 2 would deviate and forma coalition with 3. This

is feasible only if 11 + 22 = −  ≥ 2+ , i.e.  ≤ ||+ ||, a contradiction. We must therefore
have that if 1 forms a coalition with 2, then 2 forms a coalition with 3. By Step 1, it cannot be

that 3 is unable to form a coalition. Assume first that 3 forms a coalition with 2. As  → 1 we

have: 11 =  −  − 22, 
1
2 = 22, 

1
3 = 0, 21 = 0, 22 =  − 33, 

2
3 = 33, and 31 = 0, 32 = 12,

33 = − 12. We have: 
2
2 = − 33 ≤ . But then 2 could form a coalition with 1 offering 31 = 0

and obtaining −   .

Step 5. The only remaining possibility is that the limit equilibrium is a counterclockwise equi-

librium. Consider a sequence   0 with  → 1 and the associated sequence of equilibria.

Without loss of generality, we can assume that along the sequence 1 selects 2, 2 selects 3 and 3

selects 1 (if this is not the case, we can select a subsequence with this property). The equilibrium

conditions on this sequence are given by (3) from the proof of Lemma A.6.2, Step 5. Consider

now a deviation for party 3. First note that:

22 () = − 
3
3 () =

(1−  + 2)− 2− 

1 + 3
,

12 () =
( − 2 + 3)− 3− 2

1 + 3

If 3 deviates and forms a coalition with 2, s/he obtains:

b33 () = − 
1
2 =

(1− 2 + 2
3
 − 4)+ 4+ 3

1 + 3

We have a profitable deviation if:

b33 () = (1− 2 + 2
3
 − 4)+ 4+ 3

1 + 3
 33

Note that b33 () = 33 () +
1− 3
1 + 3

∙

1− 2 + 22 − 3

1− 3
− − 

¸
Note that: 

£
1− 2 + 22 − 3

¤
(1− 3)− − → 3− − . We have 3− −  ≤ 0

only if  ≤ 3( + ). If   ≤ 0 this is impossible, so 3 −  −   0. We conclude that with

  ≤ 0, 3 has a strictly positive deviation along any sequence of  → 1. ¥
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5 The case with random proposers in 

We prove here that the choice of coalition and the formateur’s payoff is the same as in (3) and (6)

in the paper if we assume that a proposer in  at stage   1 in the intracoalitional bargaining

is randomly selected among the ()− ( − 1) parties in  who have not yet served as proposers

with uniform probability 1 (()− ( − 1)). (Recall that the formateur is the first proposer
at  = 1). Moreover, as ∆ → 0, the coalition and the payoff of all players is the same as in

Proposition 2. In the following we assume  = 1 for simplicity, the argument for   1 proceeds

similarly (as in Lemma 1).

Let ∗ ( ) be the formateur’s payoff when  is proposed, but the equilibrium coalition is

 . We must have that

∗ ( ) =  ()−
X
∈\


(1)

 ( ),

where we are using the notation 
()
 ( ) to indicate the acceptance threshold of  at the

 = 1  () of bargaining when the offer is made by . We have that:

∗ ( ) =  ()− 
X

∈\{}
 (4)

− (1− )
X

∈\{}

⎡⎢⎢⎣µ 1

()− 1
¶⎛⎜⎜⎝

P
∈\{} 

(2)

( )

+ ()−P∈\{} 
(2)

( )

⎞⎟⎟⎠
⎤⎥⎥⎦

= 

⎡⎣ ()− X
∈\



⎤⎦+ (1− )

µ
1

()− 1
¶ X

∈\{}

(2)

 ( )

Note now that we must have: 
(())

 ( ) =  + (1− )∗ (   ) and


(()−1)
 ( ) =  + (1− ) + (1− )2∗ (   )

for all  ∈ \ {}. Iterating ()− 2 times, we have:


(2)

 ( ) = 
X()−2

=0
(1− )


 + (1− )

()−1
∗ (   )

Substituting this expression in (4), we conclude that in equilibrium we must have:

∗ ( ) = 

⎡⎣ ()− X
∈\



⎤⎦ (5)

+

µ
1− 

()− 1
¶ X

∈\{}

⎡⎢⎢⎣ 
P()−2

=0 (1− )



+(1− )
()−1

∗ (   )

⎤⎥⎥⎦  (6)
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It follows that:

∗ (   ) = max
∈C

⎧⎪⎪⎨⎪⎪⎩

£
 ()−P∈ 

¤
+
h
1 +

P()−1
=1 (1− )

i
 + (1− )() · ∗ (   )

⎫⎪⎪⎬⎪⎪⎭  (7)

Recalling that  is a coalition that solves (7), we immediately have that:

∗ (   ) =  +

h
 ( )−

P
∈ 

i
1− (1− )( )

. (8)

Assume now that we have an equilibrium in which a  6= ∗ , as defined in (4) in the paper (with

 = 1). Then can write:

∗ (
∗
   ) = 

⎡⎣ (∗ )−X
∈∗





⎤⎦+ 

⎡⎣(∗ )−1X
=0

(1− )

⎤⎦
+(1− )(

∗
 ) · ∗ (   )

= ∗ (   ) +
h
1− (1− )(

∗
 )
i
·

⎡⎢⎢⎣



 (∗ )−


∈∗





1−(1−)(

∗

)

−

 ( )−


∈ 


1−(1−)( )

⎤⎥⎥⎦  ∗ (   )

Implying that indeed  does not solve (7) above if it does not solve (4) in the paper, a contra-

diction. Similarly we have that ∗ (  
∗
 ) ≤ ∗ (

∗
  

∗
 ) for any  ∈ C : we conclude that

the unique fixed-point of (4) when  = 1 is ∗ . Given that 
∗
 is selected, the derivation of the

payoffs for the proposers at stages  = 0  (∗ ) follows the same steps as in Proposition 1.

Given the choice of ∗ by the formateur, the payoffs of the other players are easily found.

Note that the payoff of a party  when s/he is appointed as proposer is:

∗(
∗
  

∗
 ) =  +



1− (1− )(
∗

)

⎡⎣ (∗ )−X
∈∗





⎤⎦ (9)

independently of the stage. Let 
()
 ( ) be the acceptance threshold of  at stage  when  has

not been proposer yet up to and including that stage. At stage (∗ )− 1,  expect to be proposer
at stage (∗ ), so:


((∗ )−1)
 ( ) =  + (1− )∗(

∗
  

∗
 )

Moreover:


((∗ )−2)
 ( ) =  + (1− )

∙
1

2
∗(

∗
  

∗
 ) +

1

2

((∗ )−1)
 ( )

¸
= 

∙
1 +

(1− )

2

¸
+
P2

=1

(1− )

2
· ∗(∗  ∗ )
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and:


((∗ )−3)
 ( ) =  + (1− )

∙
1

3
∗(

∗
  

∗
 ) +

2

3

((∗ )−2)
 ( )

¸
= 

∙
1 +

2(1− )

3
+
(1− )2

3

¸
+
P3

=1

(1− )

3
∗(

∗
  

∗
 )

Assume by induction that we have defined the payoff up to :


((∗ )−)
 ( ) =

∙P−1
=0

(1− ) · ( − )



¸
·  +

P
=1

(1− )


· ∗(∗  ∗ )

Then we have:


((∗ )−(+1))
 ( ) =  + (1− )

∙
1

 + 1
∗(

∗
  

∗
 ) +



 + 1

((∗ )−)
 ( )

¸
=

∙P
=0

(1− ) · ( + 1− )

 + 1

¸
·  +

P+1
=1

(1− )

 + 1
· ∗(∗  ∗ )

We conclude that for  = 1 we have:


(1)
 ( ) =

⎡⎣P(∗ )−2
=0

(1− ) ·
³
(∗ )− 1− 

´
(∗ )− 1

⎤⎦ ·  +P(∗ )−1
=1

(1− )

(∗ )− 1
· ∗(∗  ∗ )

(10)

Inserting (9) in (10), we obtain:


(1)
 ( ) =

P(∗ )−1
=1

(1− )

(∗ )− 1
·
⎡⎣ + 

1− (1− )(
∗

)

⎛⎝ (∗ )−
X
∈∗





⎞⎠⎤⎦
+

"
1− (1− )(

∗
 )−1 − 

(∗ )− 1
P(∗ )−2

=0 (1− ) · 
#
· 

Clearly we must have ∗(
∗
  

∗
 ) = 

(1)
 ( ). Note that As ∆ → 0, we have ∗(

∗
  

∗
 ) →

 +
1

(∗ )

h
 (∗ )−

P
∈∗




i
for all  ∈ ∗  ¥

6 Externalities without transferable utility

In Section 6.4 in the paper we have argued that the baseline model can be applied to study

environments with externalities on parties outside the governing coalition when we assume trans-

ferable utilities and we allow the government to tax the constituencies of the parties out of the

government. When utilities are imperfectly transferable, however, it may be impossible for the

coalition to reduce the utilities of the parties outside the coalition to their reservation values.

In this case an agent  outside a coalition  receive a utility () = (()) if no transfer is
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possible, or () = (()) + (), where () is the minimal transfer that can be made to

 given  consistent with  being above his reservation utility . Assuming here for simplicity

that () = 0 for  ∈ , a coalition  can generate a payoff vector x = (1  ), where

 = () +  for  ∈  and  = () for  ∈ , with  ∈  ,  ≥ −() for  ∈  andP
∈  ≤  ().

We first note that the characterization of Proposition 1 remains unchanged by these modifica-

tions. Assume the formateur deviates to a coalition , when the equilibrium coalition ∗. How

will a player  ∈  evaluate an offer from the formateur? If  ∈ ∗, it knows that as soon as

proposal power returns to the formateur, the formateur selects ∗, so what happens in coalitions

in which  is excluded is irrelevant. If the other player  is not in ∗, it knows that as soon as pro-

posal power returns to the formateur, ∗ forms and it receives (∗) (instead of zero in the case

without externalities). Player  will use this value to compute its reservation utility. This however

does not matter for the formateur because, as it can be seen from (5) in Section 3 of the paper, the

acceptance threshold of  simplifies away from the formula characterizing the formateur’s utility

of selecting , which indeed depends only on the formateur’s expected utility.

What is now affected by the externalities is the analysis of Section 4, where reservation utilities

are endogenous. The reason is that the reservation utility of an agent  when the formateur is  

depends on the utility received if the formateur becomes  +1, who may select a coalition to which

 does not belong. With externalities,  receives (
+1) even if  ∈ +1 (without externalities,

 receives zero in this case). Given this, the analysis remains qualitatively unchanged: the exter-

nalities only add additional variables in the system of equations characterizing the equilibrium).

As an example, consider a simple version of the model of Section 4 in which  = 1 and

 =  =  = 0, so  ({ }) =   0 for all   ∈  with  6= . Now, however, assume that if

coalition   is formed, then the remaining agent  suffers a negative externality . The equilibrium

strategies  in a counterclockwise equilibrium is characterized by a system of nine equations that

can be written as:

 =
1

2

¡
+ +1 + 

¢
, +1 =

1

2

¡
− +1 − 

¢
, +2 = −

for  = 1 2 3 and  + 1 (mod 3). This system is the direct analog of (8)-(9) in Section 4 of the

paper: following the same steps as in Section 4, we can show that this equilibrium always exist

and yields payoffs equal to  =
2
3
+ 1

3
, +1 = −, +2 = 1

3
(− ), thus functions of .

The model described in Section 2in the paper, therefore, presents a convenient framework to

study legislative bargaining with externalities. In the model described above, allowing for external-

ities makes the analysis more complex because it adds a set of extra parameters and, likely, more

cases to consider: but the problem can still be studied with the same techniques developed in Sec-
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tion 4. The analysis is surprisingly manageable because, in a legislature, there is one key coalition

that can generate policy externalities: the government coalition. Previous work focused on more

complex environments in which multiple coalitions can form at the same time (see, among others,

Ray and Vohra [2001]): in such a context, the payoffs are not well defined until all coalitions are

formed, thus making the analysis more difficult to analyze and often intractable.
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