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A Appendix to Section 2: Further Results

A.1 Identi�cation from Aggregate Demand Data

De�nition A.1. Let Bε(p, t) := {D(p′, t′)|(p′, t′) ∈ [p−ε, p+ε]×[t−ε, t+ε]}. We say that local knowledge of

D(p, t) at (p, t) is su�cient to identify the e�ciency cost of a small tax change if for each sequence of {∆i}∞i=1

converging to zero there is a sequence of {εi}∞i=1 converging to zero with the property that knowledge of

Bεi(p, t) is su�cient to identify EB(t+ ∆i)− EB(t).

Proposition A.1. Suppose that F (θ|p, t) is degenerate and suppose for simplicity that utility is quasilinear.

1. (CLK and Chetty 2009) Suppose that either i) F (θ|p, t) does not depend on t or that ii) t = 0. Then

local knowledge of D(p, t) is su�cient to identify ∆EB for a small tax change.

2. Suppose that F (θ|p, t) depends on t, and that t > 0. Then local knowledge of D(p, t) is not su�cient

to identify ∆EB for a small tax change. However, full knowledge of D(p, t) is su�cient to identify

∆EB for a small ∆t.

Proposition A.1 shows that when F (θ|p, t) is degenerate, the demand curve D(p, t) identi�es welfare. In

fact, when attention does not vary with the tax, the proposition shows that local knowledge of the demand

curve is su�cient�a replication of CLK and Chetty et al. (2009) for the case of binary demand. To see the

intuition, let θ be the (homogenous) weight placed on the tax. When θ is exogenous to t, it is given by Dt
Dp

:

the extent to which consumers underreact to a change in the tax relative to a change in the posted price.

When θ can depend on t, the ratio Dt
Dp

no longer identi�es θ. The reason is that a change in the

tax also changes attention, so that Dt
Dp

= θ(t) + θ′(t)t. To calculate welfare, however, it is necessary to

know both θ(t) and θ′(t) separately, as shown in Proposition 5. However, full knowledge of D(p, t) is still

su�cient to calculate θ(t). By de�nition, to calculate θ(t), we simply need to �nd the value ∆p such that

D(p+ ∆p, 0) = D(p, t). Then θ(t) = ∆p/t, and θ′(t) can then be backed out from the demand response.

Proposition A.2. Suppose for simplicity that utility is quasilinear. Consider ∆EB(∆t|t) := EB(t+ ∆t)−
EB(t), and let ∆EB0 be the value of ∆EB that would be inferred from D(p, t) under the assumption that

F (θ|p, t) is degenerate. Then there exist d ≤ ∆EB0 < d̄ such that D(p, t) can be consistent with any value
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of ∆EB(∆t|t) in [d, d̄]. When t = 0, and when θ̄ is an upper bound on the possible realizations of θ,

d =
1

2

(
Dt(p,∆t)

Dp(p,∆t)

)2

(∆t)2Dp (A1)

d̄ =
1

2

(
Dt(p,∆t)

Dp(p,∆t)

)
θ̄(∆t)2Dp (A2)

Proposition A.2 shows that when there is heterogeneity in θ, knowledge of the demand curve D(p, t) is

not su�cient to calculate the welfare implications of taxation. To see the intuition for this result, consider

the case in which t = 0. In this case, welfare is proportional to E[θ|p, t]2 + V ar[θ|p, t]. The mean E[θ|p, t] is
identi�ed by Dt/Dp. However, V ar[θ|p, t] cannot be identi�ed from the demand curve, as aggregate demands

do not provide information on the dispersion of the bias, only the extent to which it mutes the response to

taxation on average. The variance is smallest when consumers are homogeneous, which corresponds to d in

(A1), and it is largest when all consumers either have θ = θ̄ or θ = 0, which corresponds to d̄ in (A2).

A.2 Income E�ects

To generate results for income e�ects in the presence of bias heterogeneity, we will temporarily focus on

a continuous demand model, as modeling income e�ects in a discrete choice model is somewhat awkward

and is not typical even in neoclassical results on e�ciency costs of taxation. We assume that producer

prices as �xed, as characterizing e�ciency costs with both income e�ects and endogenous producer prices is

intractable even in the standard model (CLK).

We suppose that consumers have a utility function U(x, y) = v(x) +v(y), and that they react to a tax as

if it were θt. We suppose that U is the same for all consumers for simplicity, but more general results can be

obtained for arbitrary distributions of U (analogous to our binary choice model with arbitrary distributions

of tastes). We study a budget-adjustment rule where consumers react to the price-inclusive price of x as if it

were p+ θt, but overall do not misperceive the size of their budget as a consequence of the tax because they

purchase x frequently and in relatively small amounts, and observe their new budget after every purchase of

x. This gives rise to choices of x and y characterized by the following conditions

v′(x∗θ)

u′(y∗θ)
= p+ θt (A3)

y∗ + (p+ t)x∗θ = z (A4)

where z is the budget.

Now some routine algebra shows that θ =
d(x∗θ)c

dt
d(x∗

θ
)c

dp

for small t, where the compensated demand responses

are de�ned by
d(x∗θ)c

dp := d
dpx
∗
θ + d

dzx
∗
θ and

d(x∗θ)c

dt = d
dtx
∗
θ + d

dzx
∗
θ. It now follows by Proposition 2 of CLK that

the e�ciency cost corresponding to a type θ consumer is given by

1

2
t2θ2

εcD,p
p+ t

, (A5)

where εcD,p is the compensated price-elasticity of demand. Aggregating (A5) across consumers yields the

following analog to Proposition 2:

Proposition A.3. If terms of order t3 are higher are negligible, and if consumers choose x and y according to
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(A3) and (A4), then EB ≈ 1
2 t

2
[
E[θ|p, t] ε

c
D,t

p+t + V ar[θ|p, t] ε
c
D,p

p+t

]
, where εcD,t is the compensated tax elasticity

and εcD,p is the compensated price elasticity.

Note that this proposition is essentially identical to Proposition 2 in the text, since the compensated

elasticity equals the uncompensated elasticity with quasilinear utility. More generally, all the results in the

body of the paper could be re-derived analogously. An important insight of this result is that even with

income e�ects, e�ciency costs are still zero when all consumers neglect the tax completely.

Note, however, that this result depends on the budget adjustment rule. If, instead, consumers �rst

purchased large quantities of x and only then spent the remainder of their income on y, then e�ciency costs

would be positive even with complete neglect of taxes. The reason is that consumers would overspend on x

in a way that would generate ine�ciently low levels of consumption of y.

Concretely, the choice of x would now be characterized by

v′(x∗θ) = (p+ θt)u′(z − (p+ θt)) (A6)

rather than by v′(x∗θ) = (p+θt)u′(z− (p+ t)). In this case, the choice of y would would be overly sensitive to

change dt of the not-fully-salient commodity tax, in the sense that it would decrease by more than it would

with respect to a salient lump sum tax of size dtx∗. This captures the intuition that inattention to taxes

may cause consumers to misperceive their e�ective budget, and thus experience an unpleasant surprise later

in time after seeing how much money they have left to purchase y.

Formally, routine algebra now shows that θ =
dx∗θ
dt
dx∗
θ

dp

for small t. That is, θ is now the ratio of uncompen-

sated demand responses rather than compensated demand responses. Now de�ne θc :=
θ
dx∗θ
dp +x∗θ

dx∗θ
dz

d(x∗
θ

)c

dp

. In this

case, Proposition 2 of CLK can now be used to show that when terms of order t3 and higher are negligible,

EB ≈ 1

2
t2
[
E[θc|p, t]

εcD,t
p+ t

+ V ar[θc|p, t]
εcD,p
p+ t

]
. (A7)

When θ = 0 for all consumers, θc < 0 and εcD,t < 0, and thus (A7) shows that excess burden can still be

positive, formalizing the intuition that we sketched in the previous paragraph.

Note, however, that if x∗u′′/u′ is negligible, as is the case when expenditures arising from x are small

relative to the total budget, then
d(x∗θ)c

dt ≈ dx∗θ
dt and

d(x∗θ)c

dp ≈ dx∗θ
dp . Thus also θ

c ≈ θ, and so e�ciency costs

can still be well approximated by the formula in Proposition 2 for small t. This captures the intuition that

income e�ects are negligible for small-ticket purchases, and thus the derivations in our paper still hold for

such decisions. Modi�cations to our main formulas are needed only when 1) the purchases are large and 2)

the budget adjustment rule does not correspond to the one in (A3) and (A4).

A.3 Welfare with Redistributive Motives

We now consider a policymaker who aims not only to minimize e�ciency costs, but also wishes to equalize

wealth. We model this setting as simply as possible in this paper, but we refer the interested reader

to Lockwood and Taubinsky (2015) and Farhi and Gabaix (2015) for richer models of tax salience with

redistributive concerns. Lockwood and Taubinsky (2015), for example, consider a policymaker who has

access to both a non-linear income tax and a (non)-salient commodity tax that he can apply to a sin good

such as cigarette consumption. Analogous to the results in this section, Lockwood and Taubinsky (2015)

also show that the welfare consequences of the less salient commodity tax depend on how attention to the
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tax covaries with income.1

We consider an economy in which consumers start with di�erent levels of wealth Z1, . . . ZN , indexed

by ω. We let F denote the joint distribution of (v, θ, ω), and we let Dω(p, t) denote the demand curve of

consumers with endowment Zω. We assume for simplicity that Dω(p, 0) and Dω
p (p, 0) do not depend on i.

We let F denote the joint distribution of θ, v, ω and we let H denote the marginal distribution of i. We

continue assuming that consumers choose x if v ≥ p+ θt.

The government maximizes W =
∫
gω(Zω + (v − p − t)1x)dF + λD, where λ is the marginal value of

public funds (used for production of a public good, for example), and gω is the weight on the utility of

consumers with wealth Zw. Redistributive preferences are captured by gω decreasing in Zω. Similar results

can be obtained by endowing consumers with utility functions U(Zω + (v − p − t)1x) instead of assuming

exogenous given weights gω.

Proposition A.4. Set ḡ :=
∫
gω. For a small tax t,

W (t)−W (0) ≈

Welfare implications of misoptimization︷ ︸︸ ︷
t2

2

(
ḡ
(
E[θ|p, t]2 + V ar[θ|p, t]

)
Dp(p, t) + Cov[gω, (θ − 1)2|p, t]Dp(p, t)− 2ḡDt(p, t)

)
+ t(λ− ḡ)D(p, t) +

1

2
t2λDt(p, t)︸ ︷︷ ︸

Impact on public funds net of mechanical income e�ect

Proposition A.4 shows that just as excess burden is increasing in E[θ2] and V ar[θ], welfare is similarly

decreasing in these two terms. Because the welfare formula reduces to the formula in Proposition 2 when

gω = λ = 1 for all ω, Proposition A.4 is a generalization of our baseline result to the case in which the

equalities gω = λ = 1 do not hold.

The new insight that the more general welfare framework generates is that welfare is also increasing

in the covariance between gω and the size of the mistake in computing bias. Because (θ − 1)2 attains its

minimum at θ = 1, welfare is decreasing in the extent to which the deviation from full rationality, either due

to over- or underreaction to taxes, is concentrated on the low income earners.

In short, conditional on E[θ|p, t] and V ar[θ|p, t], and knowledge of Dp, inferred welfare is lower when the

mistake is concentrated on the poor. If consumers are over-spending on x because they are underreacting

to the tax, the policymaker prefers that this over-spending is concentrated on consumers with low marginal

social bene�t from income.

B A More General Framework for Optimal Taxes

B.1 Welfare and Optimal Tax Formulas

We now suppose that while a consumer's perceived value from the good x is v, the actual social value from

the consumer getting the good is v − γ. The wedge γ represents either externalities or internalities. For

example, γ could correspond to consumers misperceiving the price of the good. We make several simplifying

assumptions. First, we assume that we can partition consumers into θ types j = 1, . . . J such that type j

1We remind the reader that while the Atkinson-Stiglitz theorem shows that commodity taxation should not be
used with neoclassical consumers in the presence of nonlinear income taxation, this theorem does not hold when the
income tax and the commodity tax are not equally salient, or when there are other biases that cause consumers to
over- or under-consume the good in question (Lockwood and Taubinsky 2015).
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consumers reacts to a tax t as if it was θj(t)t. Let µj be the fraction of type j consumers. Second, we assume

that terms of order t3Dpp are negligible. Third, we assume that γ, v, θ are mutually independent. Fourth,

we assume constant returns to scale production technology.

The policymaker's objective function is to maximize

W (t) =

∫
[y − (p+ t)1x + (v − γ)1x] + λtD

where λ is the marginal value of public funds. We now characterize optimal taxes in this more general model.

Proposition B.1. Normalize p = 1, and de�ne γ̄ := E[γ|p, t] to be the bias of consumers marginal to a tax

change, a(t) := E[θ|p, t] and b(t) := E[θ2|p, t] = E[θ|p, t]2 + V ar[θ|p, t]. Then

1. W ′(t) = (λ− 1)D + [(λ− 1)t− γ̄]Dt + b(t)+b′(t)t/2
a(t)+a′(t)t tDt

2. The optimal tax t is implicitly de�ned by

t = − (λ− 1)(a(t) + a′(t)t)D − γ̄(a(t) + a′(t))Dt

(λ− 1)(a(t) + a′(t)t)Dt + (b(t) + b′(t)t/2)Dt

(λ− 1)(a(t) + a′(t)t) + γ̄(a(t) + a′(t)t)εD,t
(λ− 1)(a(t) + a′(t)t)εD,t + (b(t) + b′(t)t/2)εD,t − (λ− 1)(a(t) + a′(t))

(A8)

Proof. Set ϕj = γj + (1 − θj)t. This is the amount by which a consumer overconsumes a good. There are

now three e�ects from increasing the tax by dt:

1. A mechanical revenue e�ect, net of the impact on individual's utility, given by (λ− 1)Ddt

2. A revenue loss from the substitution e�ect, given by λtDtdt

3. A correction e�ect, given by −
∑
j φjD

j
tµjdt, where D

j
t is the demand response of the type j consumer

to the tax.

The �correction e�ect� is given by

−
∑
j

φjD
j
tµj = −

∑
j

(γj + (1− θj)t)Dj
tµj

= −γ̄Dt −
∑
j

(1− θj)t(θj(t) + θ′j(t)t)D
j
pµj

= −γ̄Dt − ta(t)Dp − t2a′(t)Dp + tb(t)Dp +
t2b′(t)

2
Dp

= −γ̄Dt − tDt + tb(t)Dp +
t2b′(t)

2
Dp

Putting all of the e�ects together and using (a(t) + ta′(t))Dp = Dt implies that

W ′(t) = (λ− 1)D + [(λ− 1)t− γ̄]Dt + (b(t) + b′(t)t/2)tDp

= (λ− 1)D + [(λ− 1)t− γ̄]Dt +
b(t) + b′(t)t/2

a(t) + ta′(t)
tDt
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The general formula in part 1 of Proposition B.1, which is an analogue of the kinds of general results

derived in Farhi and Gabaix (2015) for continuous demand, is a more general manifestation of the forces

discussed in our excess burden analysis in Section 2. Keeping in mind that a(t) := E[θ|t] and b(t) :=

E[θ2|t] = E[θ|t]2 + V ar[θ|t], the formula shows that there are four key statistics: the mean, the variance,

and how both of those change with respect to the tax. The frictions γ̄ enter into the formula additively. The

higher is γ̄, the higher is the optimal tax t, and thus the larger the impact that the variance component of

b(t) has on welfare.

Part 2 of the proposition partially solves for the optimal tax to present formulas generalizing the usual

�inverse elasticity� result from Ramsey taxation. To obtain intuition for the main result, we �rst focus on

a simple case in which γ̄ = 0 and optimal taxes are not large. In this case, the optimal tax formula trades

o� the deadweight loss computed in Proposition 5 with the revenue gain (net of the mechanical e�ect on

consumers' incomes).

Corollary B.1. When λ is close to 1 and γ̄ = 0,

t ≈ (λ− 1)E[θ|p, t]
(E[θ|p, t]2 + V ar[θ|p, t]) εD,t

Proof. When γ̄ = 0 and λ is close to 1, the tax t becomes small and thus terms to t in equation (??) become

negligible. Also the term in the denominator proportional to (λ − 1) becomes negligible. This yields the

desired result.

Just as Proposition 2 shows that the deadweight loss is increasing in both the mean and the variance of

θ, Corollary B.1 shows that the size of the optimal tax is decreasing in both the mean and the variance of θ.

In the presence of other (small) frictions, the tax must be adjusted to o�set the other internalities and/or

externalities captured by γ̄. The extent to which the tax is adjusted depends on both average θ and on the

variance. The lower is the average θ, the more the tax needs to be adjusted, as re�ected by the E[θ|p, t]
term in the numerator and the E[θ|p, t]2 in the denominator. On the other hand, the higher is the variance

in θ, the greater the misallocation form increasing the tax, and thus the lower is the optimal tax.

Corollary B.2. When λ is close to 1,

t ≈ (λ− 1)E[θ|p, t]
(E[θ|p, t]2 + V ar[θ|p, t]) εD,t

+ γ̄
E[θ|p, t]

(E[θ|t]2 + V ar[θ|p, t])

As a last special case for obtaining intuition, we focus on the case in which V ar[θ|p, t] = 0 for all t.

Corollary B.3. Suppose that V ar[θ|p, t] = 0 for all t . Then

t =
λ− 1 + γ̄εD,t

(λ− 1)(εD,t − 1) + E[θ|p, t]εD,t
(A9)

and when γ̄ = 0,

t

1 + t
=

λ− 1

(λ− (1− E[θ|t]))εD,t
(A10)

In this last special case, equation (A10) provides a simple analog to the standard inverse elasticity rule

of Ramsey taxation, showing that the rule is simply modi�ed by the bias term (1− E[θ|t]).
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B.2 Implications for Ramsey Taxation

The formulas derived so far are immediately transferable to the canonical Ramsey taxation models. In

particular, let y be untaxed leisure, and let x1, . . . xK be the possible products consumers can purchase, and

that, for simplicity, utility is separable in the consumption of these goods. Suppose that the government

sets taxes t1, . . . tK on the k goods to meet a revenue target R. In this case, the value of public funds λ is

determined endogenously. Set τi = ti/pi to be the tax rate.

In the standard Ramsey model, the taxes are determined by the inverse elasticity rule

τi/(1 + τi)

τj/(1 + τj)
=
εDj ,tj
εDi,ti

What are the implications of tax salience? For simple intuition, suppose �rst that V ar[θ|t] = 0 and that

γ̄ = 0. Suppose, moreover, that θ depends only on the size of the tax, so that with uniform taxes tk, it would

be identical for across the K goods. In this case, equation (A10) implies that

τi/(1 + τi)

τj/(1 + τj)
=
εDj ,tj
εDi,ti

· λ− (1− E[θ|pj , τj ])
λ− (1− E[θ|pj,τj ])

.

A key implication here is that if E[θ|p, τ ] does not depend on p or τ , then the standard inverse elasticity

rule continues to hold, and thus with a �xed revenue requirement R, taxes are identical to what they are in

the standard model. Matters are di�erent, however, if θ is endogenous to the tax. In particular, if E[θ|p, τ ]

is increasing in p and/or τ , then the inverse elasticity rule becomes dampened toward uniform taxation, as

consumers will be more attentive to higher taxes, and thus higher taxes generate relatively higher e�ciency

costs. Additionally, if E[θ|p, τ ] is increasing in p (because taxes are higher on more expensive items keeping

the tax rate constant), then tax rates should be lower on more expensive products. More generally, the

inverse elasticity rule is modi�ed by how both the mean and the variance change with respect to the tax.

C Proofs of Propositions

Proof of Proposition 1 Let p0 be the initial price and let p(t) be the �nal price set by producers. Let

x∗1 be the equilibrium quantity after the tax change, and let x∗0 be the equilibrium quantity before the tax

change. The formula for excess burden is given by

EB(t, F ) =

Equivalent variation in wealth for consumers︷ ︸︸ ︷[∫
v≥p0

(v − p0)dF −
∫
v≥p(t)+θt

(v − p(t)− t)dF

]
−

Change in government revenue︷ ︸︸ ︷∫
v≥p(t)+θt

tdF

+

Change in producer pro�ts︷ ︸︸ ︷
(p0x

∗
0 − C(x∗0))− (p(t)x∗1 − C(x∗1))

=

∫
v≥p0

(v − p0)dF −
∫
v≥p(t)+θt

(v − p(t))dF + (p0x
∗
0 − C(x∗0))− (p(t)x∗1 − C(x∗1)) (A11)

Now by the multidimensional Leibniz rule,
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d

dt

∫
v≥p(t)+θt

(v − p(t))dF = −
∫ [

(θt)
d

dt
(θt+ p(t))

]
dF (θ, v|v = p(t) + θt)

+

∫
v≥p(t)+θt

(
−dp(t)

dt

)
dF (θ, v)

= −
∫

(θt)

(
θ +

dp(t)

dt

)
dF (θ, v|v = p(t) + θt)

+

∫
v≥p(t)+θt

(
−dp(t)

dt

)
dF

= − tEF

[
θ2 + θ

dp(t)

dt
|v = p(t) + θt

] ∫
dF (θ, v|v = p(t) + θt)− x∗1

dp(t)

dt

= −tEF [θ]E

[
θ +

dp(t)

dt
|v = p(t) + θt

] ∫
dF (θ, v|v = p(t) + θt)

− tV arF [θ|v = p(t) + θt]

∫
dF (θ, v|v = p(t) + θt)− x∗1

dp(t)

dt

= tEF [θ|p(t), t] d
dt
x∗1 + tV arF [θ|p(t), t]Dp(p(t), t)− x∗1

dp(t)

dt
(A12)

To arrive to the �nal equation in (A12) from the preceding equation, we use the fact that

d

dt
x∗1 =

d

dt

∫
v≥p(t)+θt

dF

= −
∫

d

dt
(p(t) + θt)dF (θ, v|v = p(t) + θt)

= −
∫ (

θ +
d

dt
p(t)

)
dF (θ, v|v = p(t) + θt) (A13)

Next, the Envelope Theorem implies that

d

dt
(p(t)x∗1 − C(x∗1)) = x1

dp(t)

dt

Putting this together, we thus have that

d

dt
EB(t, F ) = −tEF [θ|v = p(t) + θt]

d

dt
x∗1 − tV arF [θ|v = p(t) + θt]Dp(p(t), t) (A14)

Proof of Proposition 2 Assuming that E[θ|p1, t], V ar[θ|p1, t], D, and x
∗
1 are smooth, it follows from

(A14) that when Ft does not depend on t

d2

dt2
EB(t, F ) = −EF [θ|v = p1 + θt]

d

dt
x∗1 − V arF [θ|v = p1 + θt]Dp(p1, t) +O(t) (A15)

where O(t) represents all terms of order t or higher (as t→ 0). A Taylor expansion thus implies that when

Ft does not depend on t,
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EB(t, F ) = EB(0, F ) + t
d

dt
EB(t, F )|t=0 +

(t)2

2

d2

dt2
EB(t, F )|t=0 +O((t)3)

= −1

2
t2
[
EF [θ|v = p1 + θt]

d

dt
x∗1 + V arF [θ|v = p1 + θt]Dp(p1, t)

]
+O(t3) (A16)

where O(t3) represents all terms of order t3 or higher (as t→ 0). Finally, because EB(t, Ft) = EB(t, Ft)−
EB(0, F0) = EB(t, Ft)−EB(0, Ft), the assumption that Ft does not depend on F is without loss of generality

when computing EB(t, Ft).

Proof of Proposition 3. We use the second order Taylor expansion

EB(t+ ∆t, F )− EB(t, F ) = ∆t
d

dt
EB(t, F ) +

(∆t)2

2

d2

dt2
EB(t, F ) +O((∆t)3).

We have already computed d
dtEB(t, F ) in (A14). To get d2

dt2EB(t, F ) we di�erentiate the expression in

(A14):

d2

dt2
EB(t, F ) = −EF [θ|v = p(t) + θt]

d

dt
x∗ − V arF [θ|v = p1 + θt]Dp(p1, t)

− t
d

dt
EF [θ|v = p(t) + θt]t=t1

d

dt
x∗ − t d

dt
V arF [θ|v = p1 + θt]|t=t1Dp

− tEF [θ|v = p1 + θt]
d2

dt2
x∗ − tV arF [θ|v = p1 + θt]

d

dt
Dp

The crux of the proof is to show that the terms t(∆t)2Dpt, t1(∆t)2 d
dtE[θ|v = p+θt1] and t1(∆t)2 d

dtV arF [θ|v =

p1 + θt1] are negligible. This will establish that t(∆t)2EF [θ|v = p1 + θt] d
2

dt2x
∗ is negligible, and thus that

d2

dt2
EB(t, F ) = −EF [θ|v = p(t) + θt]

d

dt
x∗ − V arF [θ|v = p1 + θt]Dp(p1, t)

+ terms that are negligible when mulitplied by (∆t)2

Once that is established, the second-order Taylor expansion will yield the statement of Proposition 3.

We �rst show that t(∆t)2 d2

dt2x
∗ is negligible when t(∆t)2Dpt, t1(∆t)2 d

dtE[θ|v = p+θt1] and t1(∆t)2 d
dtV arF [θ|v =

p1 + θt1] are negligible. First, note that d
dtDp = Dppp

′(t) + Dpt, and thus the term t(∆t)2 d
dtDp =

t(∆t)2Dppp
′(t) + t(∆t)2Dpt is negligible. Next, note that equation (A13) implies that d

dtx
∗ = E[θ|p, t]Dp +

p′(t)Dp. To derive p′(t), note that it satis�es D(p(t), t) = S(p(t)), and thus Dpp
′(t) + Dt = Spp

′(t), which

implies that p′(t) = Dt
Sp−Dp =

E[θ|p,t]Dp
Sp−Dp . Thus d

dtx
∗ = E[θ|p, t]

(
Dp

Sp−DpDp +Dp

)
. As before, the condition

that t(∆t)2 d
dtDp is negligible will imply that that the term t(∆t)2 d

dt

(
Dp

Sp−DpDp +Dp

)
is negligible. Thus

by the chain rule:

t(∆t)2EF [θ|v = p1 + θt]
d2

dt2
x∗ ≈ t(∆t)2

(
d

dt
E[θ|p, t]

)(
Dp

Sp −Dp
Dp +Dp

)
+ t(∆t)2 (E[θ|p, t]) d

dt

(
Dp

Sp −Dp
Dp +Dp

)

9



Thus, since t(∆t)2 d
dtE[θ|v = p + θt1] and t(∆t)2 d

dt

(
Dp

Sp−DpDp +Dp

)
are negligible, so is t(∆t)2EF [θ|v =

p1 + θt] d
2

dt2x
∗.

We now establish that t(∆t)2Dpt is negligible and also that t1(∆t)2 d
dtE[θ|v = p+θt1] and t1(∆t)2 d

dtV arF [θ|v =

p1 +θt1] are negligible. Let H(θ) be the marginal distribution of θ and let Gθ(v) be the marginal distribution

of v conditional on θ, with di�erentiable density function gθ. First, we show that t(∆t)2Dpt is negligible.

Letting M be the upper bound on θ, we have

∣∣∣∣t(∆t)2 d

dt
Dp

∣∣∣∣ =

∣∣∣∣t(∆t)2 d

dt

∫
gθ(p(t) + θt)dH(θ)

∣∣∣∣
=

∣∣∣∣∫ (t(∆t)2)(θ + p′(t))g′θ(p(t) + θt))dH(θ)

∣∣∣∣
≤

∣∣∣∣∫ (t(∆t)2)(M + |p′(t)|)g′θ(p(t) + θt))dH(θ)

∣∣∣∣
=

∣∣(t(∆t)2)(M + p′(t))Dpp

∣∣
≈ 0

Similarly, we can show that t1(∆t)2 d
dt

∫
θgθ(p(t) + θt)dH(θ) ≈ 0. Thus, since

E[θ|p, t] =

∫
v=p+θt

θgθ(p(t) + θt)dH(θ)∫
v=p+θt

gθ(p(t) + θt)dH(θ)
,

it follows that t1(∆t)2 d
dtE[θ|p(t), t]|t=t1 ≈ 0. Analogous reasoning establishes that t1(∆t)2 d

dtE[θ2|p(t), t]|t=t1 ≈
0. From this it then also follows that

t(∆t)2 d

dt
V ar[θ|p(t), t]t=t1 = t(∆t)2 d

dt

(
E[θ2|p(t), t] + E[θ|p(t), t]2

)
t=t1
≈ 0

Putting this all together, we thus have

d2

dt2
EB(t, F ) = −EF [θ|v = p(t) + θt]

d

dt
x∗ − V arF [θ|v = p1 + θt]Dp(p1, t)

+ terms that are negligible when mulitplied by (∆t)2

The result in the proposition now follows from the second order Taylor expansion EB(t+∆t, F )−EB(t, F ) =

∆t ddtEB(t, F ) + (∆t)2

2
d2

dt2EB(t, F ) +O((∆t)3).

Proof of Proposition 4 We write the equilibrium price as a function of n here, suppressing the depen-

dency on t.

Let Hn(θ) denote the marginal distribution of θ given nudge parameter n. Let Gn(v|θ) denote the

conditional distribution of v, with a di�erentiable density function denoted by gn. Under assumptions A, B,

and C:
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d

dn

∫
v≥p+θt

(v − p)dFn =
d

dn

∫
v≥p+θt

(v − p)dGn(v|θ)dHn(θ)

=
d

dn

∫
v≥p+h(θ,n)t

(v − p)dG0(v|θ)dH0(θ)

=

∫
θ

[
h(θ, n)t

d

dn
(h(θ, n)t+ p)

]
dG0(p+ h(θ, n)t|θ)dH0(θ)

= t2
∫
θ

h(θ, n)
d

dn
h(θ, n)dG0(p+ h(θ, n)t|θ)dH0(θ)

Next,

d

dn
EFn [θ2|p, t] =

d

dn

∫
θ
h(θ, n)2g0(p+ h(θ, n)t|θ)dH0(θ)∫
θ
g0(p+ h(θ, n)t|θ)dH0(θ)

=
2
∫ (
h(θ, n) d

dnh(θ, n)
)
g0(p+ h(θ, n)t|θ)dH0(θ)

Dp

+
t
∫
θ
h(θ, n)2 d

dnh(θ, n)g′0(p+ h(θ, n)t)dH0(θ)

Dp

−
∫
θ
h(θ, n)2g0(p+ h(θ, n)t|θ)dH0(θ) · t

∫
θ
h(θ, n)2 d

dnh(θ, n)g′0(p+ h(θ, n)t|θ)dH0(θ)

D2
p

Let M1 be a bound on |h| and M2 be a bound on | ∂∂nh(θ, n)|. By the triangle inequality,

∣∣∣∣12 t2 ddnEFn [θ2|p, t]Dp −
d

dn

∫
v≥p+θt

(v − p)dFn
∣∣∣∣ =

1

2
t2
∣∣∣∣t∫

θ

h(θ, n)2 d

dn
h(θ, n)g′0(p+ h(θ, n)t)dH0(θ)

∣∣∣∣
+

1

2
t2

∣∣∣∣∣
∫
θ
h(θ, n)2g0(p+ h(θ, n)t|θ)dH0(θ) · t

∫
θ
h(θ, n)2 d

dnh(θ, n)g′0(p+ h(θ, n)t|θ)dH0(θ)

D2
p

∣∣∣∣∣
≤1

2
t3M2

1M2

∣∣∣∣∫
θ

g′0(p+ h(θ, n)t)dH0(θ)

∣∣∣∣
+

1

2
t3

(M2
1 |Dp|) ·

(
M2

1M2

∣∣∫
θ
g′0(p+ h(θ, n)t)dH0(θ)

∣∣)
D2
p

≤1

2
t3|Dpp|

(
M2

1M2 +
M4

1M2

|Dp|

)
But since terms proportional to t3Dpp are negligible (assumption C). We thus have that

d

dn

∫
v≥p+θt

(v − p)dFn ≈
1

2
t2
d

dn
EFn [θ2|p, t]Dp

Since producer pro�ts are �xed, d
dnEB(t, Fn) = − d

dn

∫
v≥p+θt(v − p)dFn, which yields the �rst statement in

the proposition.

To prove the second part of the proposition, we now compute the second derivative of excess burden.

We �rst establish that t(∆n)2 d
dnDp is negligible.

Under Assumption A,
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∣∣∣∣ ddnDp

∣∣∣∣ =

∣∣∣∣ ddn
∫
g(p+ h(θ, n)t)dH0(θ)

∣∣∣∣
=

∣∣∣∣∫ ( ∂

∂n
h

)
g′(p+ h(θ, n)t)dH0(θ)

∣∣∣∣
≤ M2

∣∣∣∣∫ g′(p+ h(θ, n)t)dH0(θ)

∣∣∣∣
≤ M2 |Dpp|

Thus t(∆n)2 d
dnDp is negligible if t(∆n)2Dpp is negligible, and

(∆n)2 d
2

dn2
EB ≈ − t

2

2

d2

dn2
EFn [θ2|p, t]Dp.

Now a second-order expansion of EB around n yields

EB(t, Fn+∆n)− EB(t, Fn) = (∆n)
d

dn
EB(t, Fn) +

(∆n)2

2

d2

dn2
EB(t, Fn) +O((∆n)3)

= − t
2

2

(
(∆n)

d

dn
EFn [θ2|p, t] +

(∆n)2

2

d2

dn2
EFn [θ2|p, t]

)
Dp +O((∆n)3).

To complete the proof, note that a second-order Taylor expansion shows that:

EFn+∆n [θ2|p, t]− EFn [θ2|p, t] = (∆n)
d

dn
EFn [θ2|p, t] +

(∆n)2

2

d2

dn2
EFn [θ2|p, t] +O((∆n)3)

Proof of Proposition 5 Combining Propositions 3 and 4, we have

d

dt
EB(t, Ft) ≈ −E[θ2|p, t]tDp −

t2

2

d

dt
E[θ2|p, t]Dp.

Taking the second derivative, and ignoring the terms proportional to d
dtDp since those are negligible (when

multiplied by t(∆t)2 by the reasoning in Propositions 3 and 4, we have

d2

dt2
EB(t, Ft) ≈ −E[θ2|p, t]Dp − t

d

dt
E[θ2|p, t]Dp

− t
d

dt
E[θ2|p, t]Dp −

t2

2

d2

dt2
E[θ2|p, t]Dp

Next, note that

(∆t)
d

dt
E[θ2|p, t]|t=t1 +

(∆t)2

2

d2

dt2
E[θ2|p, t]|t=t1 = E[θ2|p, t2]− E[θ2|p, t1] +O((∆t)3)

(∆t)E[θ2|p, t1] + (∆t)2 d

dt
E[θ2|p, t]t=t1 = (∆t)E[θ2|p, t2] +O((∆t)3)

(∆t)2E[θ2|p, t1] = (∆t)2E[θ2|p, t2] +O((∆t)3)
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Using these identities, we have:

EB(t1 + ∆t, Ft2)− EB(t1, Ft1) = ∆t
d

dt
EB(t, Ft)|t=t1 +

(∆t)2

2

d2

dt2
EB(t, Ft)|t=t1 +O((∆t)3)

= −(∆t)

(
t1E[θ2|p, t] +

t21
2

d

dt
E[θ2|p, t]|t=t1

)
Dp

+ − (∆t)2

2

(
E[θ2|p, t] + t1

d

dt
E[θ2|p, t]|t=t1

)
Dp

+ − (∆t)2

2

(
t1
d

dt
E[θ2|p, t]|t=t1 +

t21
2

d2

dt2
E[θ2|p, t]|t=t1

)
Dp +O((∆t)3)

= −t1(∆t)E[θ2|p, t1]Dp −
(∆t)2

2
E[θ2|p, t1]Dp

+ − t
2
1

2

(
(∆t)

d

dt
E[θ2|p, t]|t=t1 +

(∆t)2

2

d2

dt2
E[θ2|p, t]|t=t1

)
Dp

+ − t1(∆t)2

2

(
d

dt
E[θ2|p, t]|t=t1 +

d

dt
E[θ2|p, t]|t=t1

)
Dp +O((∆t)3)

= −t1
(

(∆t)E[θ2|p, t1] + (∆t)2 d

dt
E[θ2|p, t]|t=t1)

)
Dp

+ − (∆t)2

2
E[θ2|p, t1]Dp

+ − t
2
1

2

(
E[θ2|p, t2]− E[θ2|p, t1]

)
Dp +O((∆t)3)

= −
(
t1(∆t) +

(∆t)2

2

)
E[θ2|p, t2]Dp

+ − t
2
1

2

(
E[θ2|p, t2]− E[θ2|p, t1]

)
Dp +O((∆t)3)

Proof of Corollary 2 Using d
dtD =

(
E[θ|p, t] + t ddtE[θ|p, t]

)
Dp, we have

d

dt
EB(t, F ) ≈ −E[θ2|p, t]tDp −

t2

2

d

dt
E[θ2|p, t]Dp

= −E[θ|p, t]2tDp − V ar[θ|p, t]tDp −
t2

2

d

dt

(
E[θ|p, t]2 + V ar[θ|p, t]

)
Dp

= −E[θ|p, t]2tDp − V ar[θ|p, t]tDp − t2E[θ|p, t] d
dt
E[θ|p, t]Dp −

t2

2

d

dt
V ar[θ|p, t]Dp

= −E[θ|p, t]t
(
E[θ|p, t] + t

d

dt
E[θ|p, t]

)
Dp − t

(
V ar[θ|p, t] +

t

2

d

dt
V ar[θ|p, t]

)
Dp

= −E[θ|p, t]tDt − t
(
V ar[θ|p, t] +

t

2

d

dt
V ar[θ|p, t]

)
Dp

Next,
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d2

dt2
EB(t, F ) ≈ −E[θ|p, t]Dt −

(
V ar[θ|p, t] + t

d

dt
V ar[θ|p, t]

)
Dp

−t d
dt
E[θ|p, t]Dt − E[θ|p, t]t d

dt

(
E[θ|p, t] + t

d

dt
E[θ|p, t]

)
Dp

−t
(
d

dt
V ar[θ|p, t] +

t

2

d2

dt2
V ar[θ|p, t]

)
Dp +O(tDpp)

= −E[θ|p, t]Dt −
(
V ar[θ|p, t] + t

d

dt
V ar[θ|p, t]

)
Dp

−t d
dt
E[θ|p, t]Dt −

t

2

d

dt
E[θ|p, t]2Dp − t

d

dt
V ar[θ|p, t]Dp

−tE[θ|p, t] d
2

dt2

(
E[θ|p, t] +

t

2
V ar[θ|p, t]

)
Dp +O(tDpp)

where we use 2E[θ|p, t] ddtE[θ|p, t] = d
dt

(
E[θ|p, t]2

)
.

Now since the approximations E[θ|p, t2]−E[θ|p, t1] ≈ ∆t ddtE[θ|p, t]|t=t1 and V ar[θ|p, t2]−V ar[θ|p, t1] ≈
∆t ddtV ar[θ|p, t]|t=t1 are valid, the terms (∆t)2 d2

dt2E[θ|p, t] and (∆t)2 d2

dt2V ar[θ|p, t] are negligible. So

EB(t+ ∆t, Ft2)− EB(t, Ft1) = ∆t
d

dt
EB(t, F )|t=t1 +

(∆t)2

2

d2

dt2
EB(t, F )|t=t1 +O((∆t)3)

≈ −t1(∆t)E[θ|p, t1]Dt − t1(∆t)V ar[θ|p, t1]Dp −
t21(∆t)

2

d

dt
V ar[θ|p, t]t=t1Dp

− (∆t)2

2
E[θ|p, t1]Dt −

(∆t)2

2
V ar[θ|p, t1]Dp −

(∆t)2

2
t1
d

dt
V ar[θ|p, t1]|t=t1Dp

− (∆t)2

2
t1
d

dt
E[θ|p, t1]Dt − t1

(∆t)2

2

d

dt
V ar[θ|p, t]|t=t1Dp

− t1(∆t)2

4

d

dt
E[θ|p, t]2|t=t1Dp +O((∆t)3)

Next, note that

(∆t)E[θ|p, t1] +
1

2
(∆t)2 d

dt
E[θ|p, t]t=t1 = (∆t)

E[θ|p, t1] + E[θ|p, t2]

2
+O((∆t)3) (A17)

(∆t)V ar[θ|p, t1] +
1

2
(∆t)2 d

dt
V ar[θ|p, t]t=t1 = (∆t)

V ar[θ|p, t1] + V ar[θ|p, t2]

2
+O((∆t)3) (A18)

(∆t)Dp

(
E[θ2|p, t2]− E[θ2|p, t1]

)
= (∆t)2 d

dt
E[θ2|p, t]|t=t1 +O((∆t)3) (A19)

(∆t)Dp (V ar[θ|p, t2]− V ar[θ|p, t1]) = (∆t)2 d

dt
V ar[θ|p, t]|t=t1 +O((∆t)3) (A20)

Thus

t1(∆t)E[θ|p, t1]Dt +
(∆t)2

2
t1
d

dt
E[θ|p, t1]Dt +

(∆t)2

2
E[θ|p, t1]Dt

=

(
t1(∆t) +

(∆t)2

2

)
E[θ|p, t1] + E[θ|p, t2]

2
Dt +O((∆t)3)
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t1(∆t)V ar[θ|p, t]Dp + t1
(∆t)2

2

d

dt
V ar[θ|p, t1]Dp + t1

(∆t)2

2
V ar[θ|p, t1]Dp

=

(
t1(∆t) +

(∆t)2

2

)
V ar[θ|p, t1] + V ar[θ|p, t2]

2
Dp +O((∆t)3)

t21(∆t)

2

d

dt
V ar[θ|p, t]t=t1Dp + t1

(∆t)2

2

d

dt
V ar[θ|p, t]|t=t1Dp

=
1

2
t1(∆t+ t1) (V ar[θ|p, t2]− V ar[θ|p, t1])Dp +O((∆t)3)

t1(∆t)2

4

d

dt
E[θ|p, t]2|t=t1Dp =

t(∆t)

4

(
E[θ|p, t2]2 − E[θ|p, t1]2

)
Dp +O((∆t)3)

Collecting terms using the above identities shows that

EB(t2, Ft2)− EB(t1, Ft1) ≈

(
t1(∆t) + (∆t)2

2

)
D

p+ t1

(
E[θ|p, t1] + E[θ|p, t2]

2
εD,t +

V ar[θ|p, t1] + V ar[θ|p, t2]

2
εD,p

)
+

1

2
t(∆t+ t)

D

p+ t1
(V ar[θ|p, t2]− V ar[θ|p, t1]) εD,p

+
t(∆t)

4

D

p+ t1

(
E[θ|p, t2]2 − E[θ|p, t1]2

)
εD,p

Proof of Proposition 6 Step 1. We �rst show that V ar[θ|p, τ ] ≥ V ar [φ|p, τ ], where φ = log(1+θτ)
τ .

De�ne J (θ) := θ − φ(θ). Note that J is increasing since J ′ = 1− 1/(1 + θτ) > 0. Now consider

F(k) = V ar[θ − kJ (θ)|p, t] = E
[
(θ − kJ (θ)− E[θ − kJ (θ)|p, t]))2 |p, t

]
The derivative with respect to k is

d

dk
F(k) = −2E [((θ − kJ (θ)− E[θ − kJ (θ)|p, t]) (J (θ)− E[J (θ)|p, t])]

= −2Cov [(θ − kJ (θ)− E[θ − kJ (θ)|p, t],J (θ)− E[J (θ)|p, t]|p, t]

< 0

where the inequality follows because the two random variables in the covariance operator are both increasing

in θ and thus must have positive covariance. This shows that F(k) is decreasing in k. But note that by

de�nition, F(0) = V ar[θ|p, τ ] and F(1) = V ar[φ|p, τ ] since θ−J (θ) = φ(θ). Thus V ar[θ|p, τ ] ≥ V ar [φ|p, τ ].

Intuitively, we are taking a distribution of θ, and we are modifying it by subtracting from each outcome

θ a function J(θ) that is increasing in θ. Thus we are modifying the distribution in a way that pulls in the

highest realizations the most toward zero�exactly the kind of operation that reduces variances.

Step 2. For each consumer marginal at price p and tax τ , and with survey response R = r, de�ne

φ̄(r, p, τ) = E[φ|r, p, τ ]. Note that for each pair (p, τ), the distribution of φ is a mean preserving spread of

the distribution of φ̄. Thus E [V ar [φ|p, τ ]] ≥ E[V ar[φ̄|p, τ ]].
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Step 3. Let µ(p, τ) = E[φ(θ)|p, τ ], and let G be the induced distribution of (p, τ). Then

E[V ar[φ̄|p, τ ]] =

∫ [∑
r

Pr(R = r|p, τ)(φ̄(r, p, τ)− µ(p, τ))2

]
dG(p, τ)

=
∑
r

∫
Pr(R = r|p, τ)(φ̄(r, p, τ)− µ(p, τ))2dG(p, τ)

Now

Pr(R = r)

∫
Pr(R = r|p, τ)(φ̄(r, p, τ)− µ(r, p, τ))2dG(p, τ) (A21)

=EG

[(
Pr(R = r|p, τ)1/2

)2
]
EG

[(
Pr(R = r|p, τ)1/2(φ̄− µ)

)2
]

(A22)

≥
(
EG

[
Pr(R = r|p, τ)1/2 · Pr(R = r|p, τ)1/2(φ̄− µ)

])2

(A23)

=

[∫
(φ̄(r, p, τ)− µ(p, τ))Pr(R = r|p, τ)dG

]2

(A24)

=
[
Pr(R = r)E[φ̄|R = r]− Pr(R = r)E[µ|R = r]

]2
(A25)

=Pr(R = r)2(E[φ̄|R = r]− E[µ|R = r])2. (A26)

In the computations above, line (A22) follows from line (A21) by de�nition. Line (A23) follows from line

(A22) by the Cauchy-Schwarz inequality. And line (A25) follows from line (A24) because by de�nition,

E[φ̄|R = r] =

∫
φ̄P r(R = r, p, τ)dG∫
Pr(R = r, p, τ)dG

=

∫
φ̄P r(R = r, p, τ)dG

Pr(R = r)

and

E[µ|R = r] =

∫
µPr(R = r, p, τ)dG∫
Pr(R = r, p, τ)dG

=

∫
µPr(R = r, p, τ)dG

Pr(R = r)

This implies ∫
Pr(R = r|p, τ)(φ̄− µ)2dG ≥ Pr(R = r)(E[φ̄|R = r]− E[µ|R = r])2

and thus

E[V ar[φ̄|p, τ ]] ≥
∑
r

Pr(R = r)(E[φ(θ)|R = r]− E[µ|R = r])2. (A27)
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Proof of Proposition A.1 With minor abuse of notation, we let θ(t) denote the (homogeneous) θ, as

a function of t.

Part 1. Note that θ = Dt/Dp. Now

EB′(t) = (1− θ)tDt(p, t)

= [1−Dt(p, t)/Dp(p, t)]tDt(p, t)

Thus ifD(p, t′) is known for all values t′ ∈ [t, t+∆t], EB(t+∆)−EB(t) is identi�ed by
∫ t′=t+∆

t′=t
EB′(t′)dt′.

Part 2. We show that EB′(t) cannot be identi�ed if D(p, t) is known only in a small neighborhood

around (p, t). Because EB′(t) = (1− θ(t))tDt(p, t), it is necessary to identify θ(t). Concretely, suppose that

we observe D in the neighborhood R+× [t1, t2], with t1 > 0. The data is rationalized if there exist functions

ψ and θ(t) such that D(p, t) = ψ(p+ θ(t)t) for all p and t ∈ [t1, t2]. Now consider one such pair of functions

ψ and θ. We show that these are not uniquely determined. In particular, consider θ̃(t) = θ(t) − εt1/t, and
ψ̃(x) = ψ(x+ εt1). Then ψ(p+ θ(t)t) = ψ̃(p+ θ̃(t)t) for t ∈ [t1, t2], and thus θ is not uniquely identi�ed by

the data. In particular, note that while θ̃(t1) < θ(t2), it is also true that θ̃′(t) > θ′(t) for t > t1.

These two di�erent rationalizations have di�erent welfare implications. In the �rst case, the marginal

consumers' valuations belong to the interval [v1, v2] such that v1 = p+θ(t1)t1 and v2 = p+θ(t1+∆t)(t1+∆t).

In the second case, the marginal consumers' valuations belong to the interval [v′1, v
′
2] such that

v′1 = p+ t1 · (θ(t1)− εt1) = v1 − t21ε

and

v′2 = p+ (t1 + ∆) · [θ(t1 + ∆t)− t1ε] = v2 − t1(t1 + ∆)ε.

Because the consumers on the margin are di�erent, while the change in demand is the same, the e�ciency

costs generated by eliminating sales to these consumers must be di�erent.

On the other hand, full knowledge of D is su�cient to identify θ(t) for each t. Simply let ∆p(t) be the

value for which D(p+ ∆p, 0) = D(p, t). Then θ(t) = ∆p/t.

Proof of Proposition A.2 First, we show that every demand curve D(p, t) can be rationalized by

assuming that F (θ|v, t) is degenerate. In particular, consider a function ψ(p, t) implicitly de�ned by satisfying

D(p + ψ(p, t)t, 0) = D(p, t). Now since v = p + θt, a homogeneous θ(v, t) that rationalizes choices simply

needs to satisfy θ(p+ ψ(p, t)t, t) = ψ(p, t).

Alternatively rationalize D(p, t) by a distribution in which a consumer has θ = θ̄ with probability q(v, t),

and θ = 0 with probability 1− q(v, t). Set q̃(p, t) to satisfy q̃(p, t)D(p+ θ̄t, 0) + (1− q̃(p, t))D(p, 0) = D(p, t).

Note that because D(p, 0) ≥ D(p, t) ≥ (p + θ̄t, 0) by de�nition, q̃(p, t) ∈ [0, 1]. Now a consumer with θ = θ̄

is marginal at (p, t) if v = p + θ̄t. Thus q(v, t) rationalizes D(p, t) if q(p + θ̄t, t)D(p + θ̄t, 0) + (1 − q(p +

θ̄t, t))D(p, 0) = D(p, t). In this case EB′(t) = −θ̄tDt. Now by construction, ψ(p, t) < θ̄, and thus EB′(t) is

higher in the case with heterogeneous θ.

Finally, to establish the bounds for t = 0 and ∆t → 0, note that EB(∆t) → − 1
2 t

2(E[θ|p, 0]2 +

V ar[θ|p, 0])Dp as ∆t → 0. Now E[θ|p, 0] is pinned down by Dt(p, 0)/Dp(p, 0). But the variance is highest

when all consumers are either θ = θ̄ or θ = 0.
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Proof of Proposition A.4

W (t) =

∫
v<p+θt

gωZωdF̃ +

∫
v≥p+θt

gω(Zω − p− t+ v)dF +

∫
v≥p+θt

tλdF

Analogous to the strategy for excess burden, de�ne W̃ (t, F̃ ) to be the welfare at a tax t given a distribution

F̃ (θ, v, ω) that does not depend on t. Let F̃ (θ, v, ω) = F (θ, v, ω|t) here. Then

d

dt
W̃ =

∫
gω [θZω − θ(Zω + θt− t)] dF̃ (v, θ, ω|v = p+ θt)

−
∫
v≥p+θt

gωdF̃ + tλDt(p, t) + λD(p, t)

= t

∫
gωθ(1− θ)dF̃ (v, θ, ω|v = p+ θt)

−
∫
v≥p+θt

gωdF̃ + tλDt(p, t) + λD(p, t)

= −t
∑
ω

gωµ(ω)E[θ(1− θ)|p, t, ω]Dω
p (p, t)

−
∫
v≥p

gωdF̃ +

∫
p≤v≤p+θt

gωdF̃ + tλDt(p, t) + λD(p, t)

= −t
∑
ω

gωµ(ω)E[θ(1− θ)|p, t, ω]Dω
p (p, t)

−
∑
ω

gωµ(ω)Dω(p, 0)− t
∑
ω

gωµ(ω)E[θ|p, t, ω]Dω
p (p, t) + tλDt(p, t) + λD(p, t) +O(t2)

= −
∑
ω

gωµ(ω)Dω(p, 0)− t
∑
ω

gωµ(ω)E[2θ − θ2|p, t, ω]Dω
p (p, t) + tλDt(p, t) + λD(p, t) +O(t2)

= −ḡD(p, 0)− tCov[gω, 2θ − θ2]Dp − 2tḡDt + tḡE[θ2|p, t]Dp + tλDt + λD +O(t2)

= −ḡD + t(λ− 2ḡ)Dt + tḡE[θ2|p, t]Dp + λD + tCov[gω, (θ − 1)2]Dp +O(t2)

Thus

d2

dt2
W̃ = (λ− ḡ)D + (λ− 2ḡ)Dt + ḡE[θ2|p, t]Dp + Cov[gω, (θ − 1)2]Dp +O(t)

A second order Taylor expansion thus implies that

W (t)−W (0) = t(λ− ḡ)D(p, 0) +
t2

2
ḡ
(
E[θ|p, t]2 + V ar[θ|p, t]

)
Dp −

t2

2
Cov[gω, 2θ − θ2]Dp + t2(λ− 2ḡ)Dt +O(t3)

= t(λ− ḡ)D(p, t) +
t2

2
ḡ
(
E[θ|p, t]2 + V ar[θ|p, t]

)
Dp −

t2

2
Cov[gω, 2θ − θ2]Dp +

t2

2
(λ− 2ḡ)Dt +O(t3)
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D Additional Econometric Results

D.1 Appendix to Section 4.7: Robustness to Selection on Subject Comprehen-

sion

Let π ∈ {0, 1} denote whether the person passes the quiz question or not. Let η denote the characteristics

associated with passing. Continue letting X denote the vector of covariates of θ. Let φ = log(1+θτ)
τ

Proposition D.1. (Behaghel et al., 2009) Assume that Pr(π = 1|η,C=3x) ≤ Pr(π = 1|η,C=1x) ∀ η. Then∫
E[φ|η, π = 1,C=3x, X]dF (η|π = 1,C=1x, X)−

∫
E[φ|η, π = 1,C=1x, X]dF (η|π = 1,C=1x, X)

≥Pr(π = 1|C=3x)
Pr(π = 1|C=1x)

E[φ|π = 1,C=3x, X]− E[φ|π = 1,C=1x, X] (A28)

The proposition�which is derived in Jones and Mahajan (2015) and Behaghel et al. (2009)�deals with

the question of how to compare average θ across conditions. Here, we use an additional monotonicity

condition to derive a lower bound for the di�erence in average θ between conditions C=3x and C=1x. In

essence, the monotonicity condition states that any subject who did not pass the comprehension check in

the standard-tax arm also would not pass the comprehension check in the triple-tax arm.

Intuitively, the �worst case scenario� for the lower bound is when the study participants who pass in

condition C=1x but not in condition C=3x have θ = 0. The lower bound corresponds to this scenario, in

which case E[θ|π = 1,C=3x,X] must be de�ated by the ratio Pr(π=1|C=3x)
Pr(π=1|C=1x) to derive the treatment e�ect

of higher taxes for the types of study participants who pass in condition 1x. Again, the treatment e�ect

here is the average treatment e�ect on the types of study participants who pass in condition C=1x in the

experiment, rather than the average treatment e�ect on all types in the experiment.

Implementation:

To implement the lower-bound estimate (A28), we estimate three moment conditions: The �rst two are the

moment conditions (5) and (6) for study participants who pass the comprehension questions�these give us

estimates of E[θ|π = 1,C=3x] and E[θ|π = 1,C=1x]. The third moment condition employs the full sample

to estimate Pr(π=1|C=3x)
Pr(π=1|C=1x) . We use these estimates to derive the lower-bound (A28), and we use the delta

method to obtain standard errors.

D.2 Within-Subject Estimation of Endogenous Attention

Let X1
ik denote whether p2 ∈ [5, 10) for consumer i's kth product. Similarly, de�ne X2

ik to be an indicator

for p2 ∈ [5, 10) for consumer i's kth product. For φik = log(1+θikτi)
τi

, we model

E[φik |1p2∈[5,10), αp2≥101p2≥10] = αi + αp2∈[5,10)X
1
ik + αp2≥10X

2
ik

and

E[yik] = bi + b1X
1
ik + b2X

2
ik + φik.

We set φ̄i = 1
20

∑
k φik, ¯̄yi = 1

20

∑
k yik, X

h
i = 1

20

∑
kX

h
ik. From this, it follows that

19



E

[
yik − ¯̄yi

1− 1tax + τi1tax

]
=

b1X
1
ik − b1X1

i

1− 1tax + τi1tax
+

b2X
2
ik − b2X2

i

1− 1tax + τi1tax

+ αp2∈[5,10)(X
1
ik −X1

i )1tax + αp2≥10(X2
ik −X2

i )1tax (A29)

To estimate the parameters, we proceed as before with method of moments, replacing the theoretical

moment in (A29) with the empirical moment. Note that equation (A29) does not contain any of the terms

αi, and simply identi�es the terms αp2∈[5,10) and αp2≥10 using only within-consumer variation. This is

analogous to estimating a linear �xed-e�ects model with the standard demeaning �xed-e�ects estimator.

D.3 Further Details for the Lower-Bound Estimation

The statistic with which we approximate the lower bound from Proposition 6 is∑
r∈{L,M,H}

Pr(R = r)(θ̄r − E[µ̃|R = r])2 (A30)

To estimate (A30), we estimate each θ̄r using the empirical moment version of the left-hand-side of (7). We

estimate µ̃(p1, τ) using the empirical moment counterpart of

E

[
yik − E[yik|no-tax arm, pik1 ∈ p(p1), τi ∈ τ (τ)]

τi
|pik1 ∈ p(p1), τi ∈ τ (τ)

]
(A31)

where E[yik|C = 0x] denotes the average change in valuations that occurs between module 1 and module

2, and is identi�ed from the no-tax arm. We estimate E[µ̃|R = r] by computing the empirical average over

all pairs (p, τ) associated with R = r in the dataset. For concreteness, we construct the estimator for the

standard-tax arm. The estimator for the triple-tax arm is analogous.

We estimate Pr(R = r) by ̂Pr(R = r) := 1
N

∑
1Ri=r, where N is the number of participants in the

standard-tax arm, and 1Ri=r is an indicator that consumer i's response was r. We estimate θ̄r by

̂̄θr =
1

Nr

∑
i,k

[
yik − E[yik|no-tax arm]

τi
|Ri = r

]
.

whereNr is the number of consumer-product pairs associated withRi = r. We estimate E[yik|no-tax arm,p×
τ ], the average order e�ect in the no-tax arm, by

m(p× τ ) :=
1

|p× τ |no tax

∑
(pik1 ,τi)∈p×τ

yik1no-tax

where |p×τ |no tax is the number of observations (p1, τ) in the interval p×τ in the no-tax arm. We estimate

µ̃ by

˜̂µ(p1, τ) :=
1

|p(p1)× τ (τ)|
∑

(pik1 ,τi)∈p×τ

yik −m(p× τ )

τi
(A32)

Clearly, ˜̂µ(p1, τ) is an unbiased estimate of E
[
yik−E[yik|no-tax arm,p(p1),τ (τ)]

τi
|p(p1), τ (τ)

]
. We now end by

showing that this is an unbiased estimate of µ̃. To see this, note that assumption A2 implies that in the

standard-tax arm,
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E [yik|θik, Rj ,p, τ ] = E[yik|no-tax arm,p, τ ] + E[log(1 + θikτi)|p, τ ]

from which the conclusion follows by rearrangement.

Finally, to estimate E[µ|R = r], we simply take the average of ̂̃µik over all observations associated with

R = r in the standard-tax arm. We will call this ̂E[µ|R = r]. Our estimate of the variance bound is now

∑
r∈{L,M,H}

̂Pr(R = r)
( ̂̄θr − ̂E[µik|R = r]

)2

(A33)

By construction, our estimates of Pr(R = r),θ̄r, and µ̃ are all unbiased. Note, however, that (A33) is not

an unbiased estimate of the lower bound because any residual noise terms in our estimates of the moments

are squared and then averaged. We estimate this mean bias with the same bootstrap procedure that we use

to compute the standard errors.

E Additional Empirical Analyses and Robustness Checks

E.1 Further Tests of Module 2 Di�erences

Table A1: Testing for Module 2 Di�erences by Experimental Arm
(1)
OLS

(2)
0.25 Quantile

(3)
0.5 Quantile

(4)
0.75 Quantile

1x Arm �0.09 �0.03 �0.03 �0.09
(0.10) (0.12) (0.08) (0.09)

3x Arm �0.03 �0.05 �0.04 0.21
(0.10) (0.12) (0.08) (0.16)

Observations 59960 59960 59960 59960

Notes: This table tests for di�erences in module 2 willingness to pay for products by experimental arm.
Column 1 reports estimates from an OLS regression. Columns (2)-(4) report 0.25, 0.5, and 0.75 quantile
regressions. Standard errors, clustered at the subject level, reported in parentheses. * p < 0.1, ** p < 0.05,
*** p < 0.01.

E.2 Demographic covariates

We analyze how θ covaries with standard demographics provided by ClearVoice�race, age, educational

attainment, marital status�as well as the three additional covariates that we collected in our experiment,

described below:

Household Income. Participants were also asked to state their household income. We analyze the data

by income quartiles, the cuto�s for which are 28k, 50k, and 82k, which match almost exactly to the 2010 US

census data.2

Ability to compute taxes / Numeracy. Immediately after the survey question about the sales tax rate,

consumers were asked to compute the sales tax (in absolute terms) on an $8 (non-tax-exempt) item. We code

answers as correct if consumers provide the correct answer using their perceived sales tax rate. For example,

if the true sales tax rate is 6%, but the consumer thinks that it is 7%, then an answer is coded as being correct

if it is less than 1 cent from $0.56. Consumers were asked to answer this question in the format of $0.56.

However, as with the question about sales tax beliefs, not all consumers followed the instructions. Some

2According to the 2010 census, the quartile thresholds are 25k, 50k, 90k.
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consumers seemed to have entered their answers in the format of $8.56 instead of $0.56. Other consumers

seem to have entered their answers as 56 instead of $0.56. For consumers whose answers are between 8 and

12 (about 10% of consumers), we recode answers by subtracting 8, as we think it is implausible that anyone

would think that the tax on an $8 item would be greater than $8. For consumers whose answers are above 20,

we recode their answers by dividing by 100, as these consumers most likely entered their answers in number

of cents rather than dollars. Our results are robust to simply excluding consumers with answers above 8.

Overall, accuracy was very high, with 73% of consumers giving the right answer. That underreaction persists

despite this high level of accuracy shows that consumers are either deliberately choosing not to compute the

taxes, or are simply forgetting to think about taxes when determining their willingness to pay. This idea

that consumers seem to make �bad� decisions despite knowing how to make �good� ones is broadly consistent

with the results reported in Ambuehl et al. (2016) and Zimmermann and Enke (2015) for other types of

�nancial decisions.

Financial Sophistication. We use the �Big Three� �nancial literacy questions (Lusardi and Mitchell,

2008, 2014). The three multiple choice questions test for understanding of interest rates, in�ation, and risk

diversi�cation.3 We code participants as �nancially sophisticated if they answer all three questions correctly.

Overall, 49% of consumers in our �nal sample answered all three questions correctly.4 The three questions

are as follows:

1. Suppose you had $100 in a savings account and the interest rate was 2 percent per year. After 5 years,

how much do you think you would have in the account if you left the money to grow? a) More than

$102 b) Exactly $102 c) Less than $102 d) Do not know

2. Imagine that the interest rate on your savings account was 1 percent per year and in�ation was 2

percent per year. After 1 year, would you be able to buy more than, exactly the same as, or less than

today with the money in this account? a) More than today b) Exactly the same as today c) Less than

today d) Do not know

3. Do you think that the following statement is true or false? �Buying a single company stock usually

provides a safer return than a stock mutual fund.� a) True b) False c) Do not know

3Previous work has shown that �nancial literacy is associated with mistakes in other domains, including incurring
overdraft fees (Stango and Zinman, 2014), incorrectly valuing annuities (Brown et al., forthcoming), and not saving
enough for retirement (Lusardi and Mitchell, 2007a,b).

4Our measure of tax numeracy and �nancial sophistication are strongly correlated. Financially sophisticated
consumers have a 12 percentage point grater likelihood of correctly answering the tax computation question (p < 0.01).
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Table A2: Average θ (Weight Placed on Tax) by Demographics

(1)
Standard

(2)
Triple

(3)
Pooled

Compute Tax Correctly 0.123 0.132 0.138 *
(0.204) (0.084) (0.084)

Financially Sophisticated 0.439 * 0.206 ** 0.201 **
(0.224) (0.090) (0.090)

Income Quartile 2 �0.058 0.006 �0.003
(0.277) (0.115) (0.115)

Income Quartile 3 0.237 0.123 0.127
(0.291) (0.121) (0.120)

Income Quartile 4 0.066 0.247 * 0.239 *
(0.295) (0.134) (0.132)

Age �0.022 *** �0.010*** �0.009***
(0.007) (0.003) (0.003)

Male �0.026 �0.044 �0.040
(0.210) (0.085) (0.085)

Married �0.183 �0.130 �0.135
(0.230) (0.092) (0.092)

College Degree �0.159 0.046 0.037
(0.218) (0.095) (0.094)

Asian �0.607 �0.101 �0.092
(0.525) (0.235) (0.237)

Caucasian 0.453 0.008 0.018
(0.321) (0.147) (0.145)

Hispanic 0.737 �0.303 �0.227
(0.517) (0.253) (0.252)

African American 0.664 0.008 0.001
(0.458) (0.191) (0.190)

Observations 38010 36790 54643

Notes: This table displays method of moments estimates of the relationship between average θ and de-
mographic covariates. θ is de�ned as the �weight� that consumers place on the sales tax, with θ = 0
corresponding to complete neglect of the tax and θ = 1 corresponding to full optimization. Standard errors,
clustered at the subject level, reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

23



E.3 Average θ of Marginal Consumers

We estimate a linear model for average θ given by E[θ] = θA + α1marginal, where θA ∈ {θ1X , θ3X} is the
constant for either the triple-tax or standard-tax arm, 1marginal is an indicator for whether the consumer is

labeled �marginal� at the actual Amazon.com price, and α is the scalar corresponding to how that a�ects

average θ. We label consumers are �marginal� if the the module 2 price at which they are marginal is within

∆ of the actual Amazon.com price, where ∆ takes on values of $1, $2, $3.

Table A3: Di�erence in average θ between marginal and non-marginal consumers

(1)

Within $1

(2)

Within $2

(3)

Within $3
Std. tax base θ 0.216** 0.191** 0.189**

(0.092) (0.091) (0.094)
Triple tax base θ 0.460*** 0.442*** 0.422***

(0.041) (0.042) (0.044)
Di�erence for marginal consumers 0.102** 0.121*** 0.148***

(0.047) (0.045) (0.045)
Observations 58478 58478 58478

Notes: The �rst column de�nes consumers as �marginal� if their module 2 price is within $1 of the actual
Amazon.com price. Columns 2 and 3 are constructed analogously for $2 and $3. Standard errors, clustered
at the subject level, reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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E.4 Further Tests of Endogenous Attention Using Amazon.com Prices

We estimate a linear model for average θ given by E[θ] = θA+αp1, where θA ∈ {θ1X , θ3X} is the constant for
either the triple-tax or standard-tax arm, p1 is the module 1 price, and α is the scalar corresponding to how

that e�ects average θ. We instrument p1 using the prices on Amazon.com for the corresponding products at

the time that the experiment was run.

Table A4: Average θ as a function of prices, using Amazon.com prices as instruments

(1)
Pooled

(2)
Standard

(3)
Triple

Std. tax cons. 0.123 0.157
(0.131) (0.263)

Triple tax cons. 0.357*** 0.356***
(0.092) (0.093)

Impact of price 0.020 0.015 0.019
(0.014) (0.040) (0.014)

Observations 58478 40651 39378

Notes: Standard errors, clustered at the subject level, reported in parentheses. * p < 0.1, ** p < 0.05, ***
p < 0.01.
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E.5 Replication of Table 7 Without Excluding Study Participants Failing Com-

prehension Questions

Table A5: Average θ (Weight Placed on Tax) Conditional on Self-Classifying Survey Response

(1)
Standard

(2)
Triple

�Yes� average θ 0.616*** 0.625***
(0.229) (0.081)

�A little� average θ 0.289*** 0.410***
(0.097) (0.040)

�No� average θ �0.246* �0.027
(0.126) (0.045)

Observations 54503 54988

Notes: This table replicates Table 7, but does not exclude study participants who failed comprehension
checks. * p < 0.1, ** p < 0.05, *** p < 0.01.

E.6 Replication of Main Results with OLS Regressions

As an alternative to our GMM approach, one could instead proceed with a simple OLS framework given by:

E[y] = α0 + α1τ + α2τX + β1X. (A34)

Because the linear model is misspeci�ed when underreaction is endogenous to the tax rate, an estimate α̂1

obtained from equation (A34) is not a consistent estimate of E[θik]. In particular, the OLS estimate α̂1

will depend on how much less consumers underreact to large taxes than to small taxes. To take a concrete

illustration, we estimate an average θ of approximately 0.25 and 0.48 in the standard- and triple-tax arms,

respectively, and thus obtain an average θ of 0.37 in the pooled sample. If we simply estimate (A34) using the

OLS estimator, however, we get an α̂1 of 0.49�an estimate that is higher than either average and does not

have a clear economic interpretation. While this problem can be reduced by allowing for di�erent coe�cients

on the tax rate across the standard- and triple-tax arms, there remains natural variation in tax rates within

each experimental arm. This variation induces the same endogeneity concern�although the variation in

natural tax rates is smaller, and thus the bias induced by this variation is less dramatic in magnitude.

While these concerns lead us to prefer the GMM approach as a primary speci�cation, our qualitative

results are also obtained when estimating (A34) using OLS, as we show below.
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Table A6: Estimates of Average θ (Weight Placed on Tax) by Experimental Arm

Dependent variable: yik = log(pik2 )− log(pik1 )

(1)
All

(2)
p2 ≥ 1

(3)
p2 ≥ 5

tax × standard 0.254** 0.252*** 0.202**
(0.105) (0.088) (0.082)

tax × triple 0.487*** 0.479*** 0.532***
(0.043) (0.038) (0.039)

Observations 59960 58478 32810

Notes: This table replicates Table 2, implemented through an analogous OLS procedure. Standard errors,
clustered at the subject level, reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A7: Average θ (Weight Placed on Tax) for Di�erent Product Valuations
Dependent variable: yik = log(pik2 )− log(pik1 )

(1)
Standard

(2)
Triple

(3)
Pooled

(4)
Standard

(5)
Triple

(6)
Pooled

tax × Middle p2 bin �0.127 0.102** 0.109** �0.059 0.085** 0.093***
(0.133) (0.051) (0.051) (0.097) (0.036) (0.036)

tax ×High p2 bin 0.055 0.135* 0.133* 0.074 0.061 0.050
(0.164) (0.070) (0.071) (0.133) (0.048) (0.048)

tax × std. tax arm 0.286** 0.177*
(0.133) (0.094)

tax × triple tax arm 0.415*** 0.412***
(0.052) (0.051)

Fixed e�ects No No No Yes Yes Yes
Observations 40651 39378 58478 40651 39378 58478

Notes: This table replicates Table 3, implemented through an analogous OLS procedure. Standard errors,
clustered at the subject level, reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A8: Average θ (Weight Placed on Tax) Conditional on Self-Classifying Survey Response

Dependent variable: yik = log(pik2 )− log(pik1 )

(1)
Standard

(2)
Triple

tax × Yes 1.068*** 0.923***
(0.281) (0.096)

tax × A little 0.435*** 0.627***
(0.104) (0.047)

tax × No �0.182 0.047
(0.122) (0.052)

Observations 40651 39378

Notes: This table replicates Table 7, implemented through an analogous OLS procedure. Standard errors,
clustered at the subject level, reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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E.7 Replication of Main Results Excluding Study Participants Not Under-

standing the BDM Mechanism

Table A9: Estimates of Average θ (Weight Placed on Tax) by Experimental Arm

(1)
All

(2)

p2 ≥ 1

(3)

p2 ≥ 5
Std. tax avg. θ 0.277** 0.274*** 0.262***

(0.126) (0.103) (0.094)
Triple tax avg. θ 0.524*** 0.513*** 0.595***

(0.052) (0.044) (0.046)
Observations 46540 45372 25658

Notes: This table replicates Table 2, dropping study participants who failed comprehension checks about
the BDM mechanism.* p < 0.1, ** p < 0.05, *** p < 0.01.

Table A10: Average θ (Weight Placed on Tax) for Di�erent Product Valuations

(1)
Standard

(2)
Triple

(3)
Pooled

(4)
Standard

(5)
Triple

(6)
Pooled

Middle p2 bin �0.153 0.156** 0.172*** �0.078 0.123*** 0.132***
(0.155) (0.061) (0.061) (0.115) (0.041) (0.041)

High p2 bin 0.253 0.229*** 0.256*** 0.183 0.095* 0.102*
(0.206) (0.083) (0.082) (0.171) (0.054) (0.054)

Std. tax cons. 0.296* 0.103
(0.159) (0.105)

Triple tax cons. 0.410*** 0.394***
(0.061) (0.060)

Fixed e�ects No No No Yes Yes Yes
Observations 31319 30363 45372 31319 30363 45372

Notes: This table replicates Table 3, dropping study participants who failed comprehension checks about
the BDM mechanism. All speci�cations condition on p2 ≥ 1. Standard errors, clustered at the subject level,
reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A11: Average θ (Weight Placed on Tax) Conditional on Self-Classifying Survey Response

(1)
Standard

(2)
Triple

�Yes� average θ 0.844*** 0.984***
(0.298) (0.113)

�A little� average θ 0.572*** 0.661***
(0.127) (0.054)

�No� average θ �0.219* 0.066
(0.131) (0.064)

Observations 31319 30363

Notes: This table replicates Table 7, dropping study participants who failed comprehension checks about the
BDM mechanism. Column (1) provides estimates for the standard-tax arm, Column (2) provides estimates
for the triple-tax arm. All speci�cations condition on p2 ≥ 1. Standard errors, clustered at the subject
level, reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

F Items Used in the Study

Product Amazon.com

price (as of

Feb 2015)

Amazon.com Product Description

RainStoppers 68-Inch

Oversize Windproof Golf

Umbrella

$12.61 This RainStoppers 68" oversize golf umbrella is large enough to

cover three or more people. Umbrella frame constructed with

�berglass shaft and ribs for maximum stability. Canopy is made of

190T Nylon fabric. Complete with a foam non slip handle.

Matching sleeve included. Length when closed is 43".

Energizer AA Batteries max

Alkaline 20-Pack

$11.15 energizer AA max alkaline batteries 20 pack super fresh, Expiration

Date: 2024 or better. Packed in original Energizer small box 4

batteries per box x 5 boxes total 20 batteries.

Glad OdorShield Tall Kitchen

Drawstring Trash Bags, Fresh

Clean, 13 Gallon, 80 Count

$12.79 Glad OdorShield Tall Kitchen Drawstring Trash Bags backed by

the power of Febreze are tough, reliable trash bags that neutralize

strong and o�ensive odors for lasting freshness. These durable bags

are great for use in the kitchen, home o�ce, garage, and laundry

room.

Admiral Blue 100% Cotton

Bath Towel - 27 x 52 Inches

$14.99 There isn't much that's better than stepping out of a refreshing

shower and wrapping yourself in the soft, Luxury Bath Towels.

Now you can have that feeling every single day. It won't just be a

treat anymore; it'll be your way of life. These extra-absorbent 100%

cotton towels can be just hanging around waiting for you, ready to

ful�ll their duty in making you feel pampered. Not only practical

but also stylish, these towels will also add a fashionable and

luxurious touch to your bathroom.
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Martex Egyptian Cotton

Hand Towel with Dry-Fast

(French Blue)

$6.79 Martex is one of the oldest and most trusted names in bath

products. This towel is made of loops of 100% Egyptian cotton

which o�ers the absorbency and quality of this �ne

extra-long-staple �ber. The towel o�ers DryFast Technology. Enjoy

a broad color palette to compliment any bathroom decor.

Pilot G2 Retractable

Premium Gel Ink Roller Ball

Pens, Fine Point, Black Ink,

Dozen Box (31020)

$11.89 Discover the smooth writing and comfortable G2, America's #1

Selling Gel Pen*. G2 gel ink writes 2X longer than the average of

branded gel ink pens**. The G2 product line includes four point

sizes, �fteen color options, and multiple barrel styles to suit every

situation and personality. It is the only gel pen that o�ers this level

of customization�because after all, pens aren't one size �ts all.

Scotch-Brite Heavy Duty

Scrub Sponge 426, 6-Count

$7.73 O-Cel-O� sponges and Scotch Brite scrubbers are truly a

fashion-meets-function success story. The highly absorbent and

durable sponges come in di�erent sizes and scrub levels for the

various surfaces around the home. Their assorted colors and

patterns follow the current fashion trends to create the perfect

accent in any room.

Febreze Fabric Refresher

Spring & Renewal Air

Freshener, 27 Fluid Ounce

$4.94 When it comes to your home, you should never settle for less than

fresh. Febreze Fabric Refresher is the �rst step to total freshness in

every room. The �ne mist eliminates odors that can linger in fabrics

and air, leaving behind nothing but a light, pleasing scent. With

Febreze Fabric Refresher, uplifting freshness is a simple spray away.

Microban Antimicrobial

Cutting Board Lime Green -

11.5x8 inch

$8.99 The Microban cutting board from Uniware is the perfect cutting

board for the health conscious. The cutting board has a soft grip

with handle and is dishwasher safe. The cutting board can be

reversible, use on both sides, and is non-porous, non absorbent.

The rubber grips prevents slipping on countertop. Doesn't dull

knives, juice-collecting groove. Microban is the most trusted

antimicrobial product protection in the world. Built-In defense that

inhibits the growth of stain and odor causing bacteria, mold, and

mildew. Always works to keep the cutting board cleaner between

cleanings. Lasts throughout the lifetime of the cutting board. Size:

11.5"x8" Color: Lime Green.

Nordic Ware Natural

Aluminum Commercial

Baker's Half Sheet

$11.63 Nordic Ware's line of Natural Commercial Bakeware is designed for

commercial use, and exceeds expectations in the home. The

durable, natural aluminum construction bakes evenly and browns

uniformly, while the light color prevents overbrowning. The

oversized edge also makes getting these pans in and out of the oven

a cinch. Proudly made in the USA by Nordic Ware

Gain with FreshLock HE

Original Liquid Detergent,

100 Fl Oz

$9.97 The scent of Gain Original liquid laundry detergent brings a lively

scent to your laundry room. Powerful Lift & Lock Technology lifts

away dirt and stains so you can lock in the amazing scent you love.

With bursts of citrus, a green twist, and just enough �oral

fragrance, you'll wish laundry day came more often.
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Rubbermaid Con�gurations

Folding Laundry Hamper,

23-inch, Natural

(FG4D0602NATUR)

$12.99 Rubbermaid Con�gurations Folding Laundry Hamper, 23-inch,

Natural (FG4D0602NATUR). Makes it easy to add hamper space

to any Rubbermaid Con�gurations Kit. Collapses for easy storage.

Neutral two-tone canvas is breathable and stylish. Coordinates with

other items in Rubbermaid Con�gurations collection. For nearly 80

years, Rubbermaid has represented innovative, high-quality

products that help simplify life. Recognized as a �Brand of the

Century� for its impact on the American way of life.

Scotch Precision Scissor,

8-Inches (1448)

$5.44 Scotch Precision 8" Scissors come with the �nest quality stainless

steel blades for a sharp edge and long cutting life. These scissors

also comes with a soft grip handles for ease of use. Great for

everyday cutting needs. Comes with a limited lifetime warranty.

Clorox Company 00450 Gw

All Purpose Cleaner,

32-Ounce

$8.09 Cuts through grease, grime and dirt as well as traditional cleaners.

Spray on counters, appliances, stainless steel, sealed granite,

chrome, cook top hoods, sinks and toilets. Made from plants and

minerals, 99 percent natural, so it leaves no harsh chemical fumes

or residue.

Rubbermaid Easy Find Lid

Medium Value Pack Food

Storage Containers

$10.20 The Rubbermaid Easy Find Lids Medium Value Pack includes (2)

3.0 cup Easy Find Lid containers measures 7" x 7" x 2.3"and (1) 5.0

cup Easy Find Lid container measures 7" x 7" x 3.4". The number

one unmet need for food storage is container and lid organization.

With Rubbermaid's new Easy Find Lids you'll �nd storage and

organization a breeze! The Easy Find Lids snap together as well as

snap to the bases for easy storage. The Easy Find Lids and bases

also nest together making storage in a cabinet or a drawer much

more e�cient. Easy Find Lids are square in shape and allow for

easy of stacking when placed on shelves or in the refrigerator.

Rubbermaid Easy Find Lids also feature a super clari�ed base

which takes the guessing out of what's inside and allows you to see

what's inside quickly and easily. Rubbermaid Easy Find Lids and

bases are also microwave, freezer, and dishwasher safe.

Rubbermaid Lunch Blox

medium durable bag - Black

Etch

$10.47 The Rubbermaid 1813501 Lunch Blox medium durable bag - Black

Etch is an insulated lunch bag designed to work with the

Rubbermaid Lunch Blox food storage container system. The bag is

insulated to achieve the maximum bene�t of Blue Ice blocks and

keep your food cold. The bag features a bottle holder, side pocket,

comfort-grip handle and removable shoulder strap. The lunch Blox

bag is durable and looks good for both the professional bringing

their lunch to work or the kid taking their lunch to school.

Libbey 14-Ounce Classic

White Wine Glass, Clear,

4-Piece

$12.99 Great for any party, this set includes four 14-ounce clear classic

white wine glasses which match perfectly with the classic collection

by libbey. The glasses are dishwasher safe and made in the USA.

Fulcrum 20010-301 Multi-Flex

LED Task Light and Book

Light

$9.47 The Multi Flex Light is an all-purpose book light, task light or

travel light
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Envision Home Micro�ber

Bath Mat with Memory

Foam, 16 by 24-Inch, Espresso

$10.82 Enjoy spa luxury at home with the Envision Home Micro�ber Bath

Mat, featuring memory foam! Designed to absorb water like a

sponge and help protect �oors from damaging puddles of water,

your feet will love stepping on to this soft cushion of memory foam

encased in super-absorbent micro�ber. The Micro�ber Bath Mat

starts with �bers that are split down to microscopic level, resulting

in tiny threads that love to absorb every drop of water. Because of

this increased surface area, this micro�ber mat can collect more

water than an ordinary bath mat. Plus, it dries unbelievably

fast.The soft memory foam interior provides a comfortable and

warm place to stand, or when kneeling to bathe a child or pet,

preventing aches and pains. The seams across the mat allow for it

to be easily folded for storage, or simply hang it from the

convenient drying loop. It is available in three colors to compliment

your personal décor and style � Cream, Celestial and

Espresso.Caring for your Micro�ber Bath Mat is easy; simply toss it

in the washing machine with cold water and a liquid detergent and

then place in the dryer on a low heat setting. The Micro�ber Bath

Mat is just one of the many impressive items o�ered in the Envision

Home Collection. Designed to make it easier to take care of the

home, our innovative, high-value and superior-quality products

provide cleaning, kitchen, bath, laundry and pet solutions to solve

life's little dilemmas.

Carnation Home Fashions

Hotel Collection 8-Gauge

Vinyl Shower Curtain Liner

with Metal Grommets,

Monaco Blue

$8.99 Protect your favorite shower curtain with our top-of-the-line Hotel

Collection Vinyl Shower Curtain Liner. This standard-sized (72� x

72�) liner is made with an extra heavy (8 gauge), water repellant

vinyl that easily wipes clean. With metal grommets along top of the

liner to prevent tearing. Here in Monaco Blue, this liner is available

in a variety of fashionable colors. With its wonderful features and

fashionable colors, this liner could also make a great shower curtain

Note: These are Amazon.com prices as they were displayed to, and documented by, our research

assistant in February 2015. Prices may vary over time or by geographic region.
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