
Online Appendix D: Additional Proofs

D.1 Bounds on �U ensuring non-negative equilibrium wages.

We make explicit here the restrictions on �U ensuring that: (i) zH(t) � 0; for all t;36 (ii) �rms
want to keep L types on board. We then provide su¢ cient conditions for all of them to hold

jointly. In Region III, zH(t) = �U + ŷL(t)�� � u(y�) � �Hy
� is decreasing, so it su¢ ces that

limt!+1 zH(t) = zmH � 0: In Regions I and II, zH(t) = UL(t) � �LŷH(t) � u(ŷH(t)); its variations

with t are ambiguous, but since U(t) is (weakly) declining toward �U and ŷH(t) strictly decreasing

from ŷcH(0) = ycH ; it is bounded below by �U � �LycH �u(ycH): Combining this with (16), we require:

�Umin � max fu(y�) + �Hy� � ymL��; u(ycH) + �LycHg � �U � w(ymL )+ �LB� (qH=qL)ymL�� � �Umax:

This de�nes a nonempty interval for �U as long as �Umin < �Umax; which can be insured in at least

two ways. First, for qL close enough to 1 (thus also satisfying the requirement of (30)) ymL is close

to y�; so �Umin � u(ycH) + �Ly
c
H < w(ycH) + �Ly

c
H < w(y�) + �LB � �Umax; ensuring the result.

Alternatively, one can slightly modify �rms�technology so that the revenue generated by each

worker of type � becomes instead Aa + B(� + b) + �d; where �d is a constant re�ecting some other

�basic� activity, performed at a �xed (e.g., perfectly monitored) level by all employees, and for

which their compensation is therefore part of the �xed wage z: This augments total surplus w(y)

by the same amount �d; which can be made large enough to ensure that �Umin < �Umax: �

D.2 General optimization program

Let bC � (ÛH ; ÛL; ŷH ; ŷL) denote the (presumptive) symmetric-equilibrium strategies and pay-

o¤s, given in Proposition 4, and played by the other �rm. For all u 2 R; let X (u) � minfmax fu; 0g ;
2tg: The �rm�s general problem is to choose (UH ; UL; yH ; yL) to solve the program:

max
n
qHX (UH + t� ÛH)[w(yH) + �HB � UH

+qL X (UL + t� ÛL)1fUL� �Ug[w(yL) + �LB � UL]
o

(D.1)

subject to:
UH � UL + yL�� (D.2)

UL � UH � yH�� (D.3)

yL � 0: (D.4)

Note that the objective function (D.1) is not everywhere di¤erentiable, nor (as we shall see), is it

globally concave. Note also that if either UL � ÛL � t or UL < �U; the �rm employs zero (measure

of) low types, in which case it clearly must sell to a positive measure of H agents, requiring

UH > maxfÛH � t; �Ug: We �rst rule out such �exclusion� of low-skill workers, and likewise for
high-skill ones. We then show that is also not optimal to �corner�the market on either type.

36Recall that zL(t) � zH(t) everywhere by incentive compatibility. As to the bonus rates yi(t), they all are bounded
below by ymL ; which is positive since we have assumed that w

0(0) > (qH=qL)��:
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D.2.1 No exclusion

Lemma 9 There exists �qL 2 [q�L; 1); independent of t, such that, for all qL � �qL; it is strictly

suboptimal not to employ a positive measure of L-type agents. In particular, UL � �U:

Proof. Selling only to H agents under some contract (yH ; UH) is less pro�table than sticking

to the symmetric strategy (ŷH ; ÛH) if

qH�H � qH�(UH � ÛH + t) [w(yH) +B�H � UH ]
� qHt[w(ŷH) +B�H � ÛH ] + qLt[w(ŷL) +B�L � ÛL] � qH �̂H + qL�̂L � �̂: (D.5)

For any t > 0; �̂L > 0; so the inequality is satis�ed for qH low enough, or equivalently qL=qH large

enough. To ensure a lower bound independent of t; however, the ratio (�H � �̂H) =�̂L must remain
bounded above as t tends to zero, even though limt!0 �̂L = 0: We will in fact show a stronger

property, namely that �H(t) < �̂H(t) for t small enough.

Observe �rst that to exclude the L types, it must be that UL � maxf �U; ÛL � tg: For all t < t1

we have ÛL > �U ; so for small t the relevant constraint is UL � ÛL � t: The �rm thus solves:

max
n
�(UH � ÛH + t) [w(yH) +B�H � UH ]

o
; subject to:

UH � UL + yL�� (�H)

UL � UH � yH�� (�L)

UL � ÛL � t (')

yL � 0 ( ):

To have a positive share of the H types it must be that UH � ÛH > �t > UL � ÛL; therefore

UH � UL > ÛH � ÛL = ŷH��; implying yH > ŷH :
37 Consider now the �rst-order conditions:

�2t � �L � �H � w(yH) +B�H � 2UH + ÛH � t;
with equality for UH � ÛH > t and UH � ÛH < t; respectively;

��H + �L � ' = 0;
�(UH � ÛH + t)w0(yH) + �L�� = 0;
 � �H�� = 0:

If �L = 0; the third condition and �(UH � ÛH + t) > 0 imply yH = y� � ŷH ; a contradiction.

Therefore �L > 0; so that UH � UL = yH��; with ŷH < yH : Next, it cannot be that  > 0;

otherwise yL = 0 and UH � UL = yL�� so yH = yL = 0; another contradiction. Hence �H = 0, so

' = �L > 0; UL = ÛL�t: Since ÛH�ÛL = ŷH�� for t � t2 this implies UH�ÛH+t = (yH�ŷH)��;
which furthermore cannot exceed 2t; since �2t < �L � �H . Thus, �(UH � ÛH + t) = UH � ÛH + t:
Next, eliminating �L;

37We ignore the constraint UH � �U; since the result is trivial if it does not hold (�H(t) = 0):
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w(yH) +B�H � 2UH + ÛH � t+ (UH � ÛH + t)w0(yH)=�� � 0; (D.6)

with equality for UH � ÛH < t:

We also have, from (36) and (38)-(39) with ŷL = y�; a similar condition (with equality) for ŷH :

w(ŷH) +B�H � ÛH � t+ tw0(ŷH)=�� = 0: (D.7)

Subtracting and replacing UH � ÛH + t by (yH � ŷt)�� yields:

�(yH ; ŷH ; t) � w(yH)� w(ŷH)� 2 [(yH � ŷH)�� � t]
+(yH � ŷH)w0(yH)� tw0(ŷH)=�� � 0; (D.8)

with equality for UH�ÛH < t: It cannot be that UH�ÛH = t;moreover, otherwise (yH�ŷH)�� = 2t
and �(yH ; ŷH ; t) = w(yH)�w(ŷH)�2t+[2w0(yH)�w0(ŷH)](t=��) < 0; a contradiction. Therefore
(D.8) is an equality, and since @�=@yH = 2w0(yH)� 2��+ yHw00(yH) + t [w0(yH)� w0(ŷH)] < 0; it
uniquely de�nes yH as a function yH = Y (ŷH ; t): Taken now as a function of t; yH(t) = Y (ŷH(t); t)

tends to Y (ŷH(0); 0) = ŷH(0) = ycH ; as can be seen from taking limits in (D.8) as an equality. A

Taylor expansion of �(yH(t); ŷH(t); t) = 0 then yields

2
�
�� � w0(ycH)

�
(yH(t)� ŷH(t)) = t

�
2� w0(ycH)=��

�
+O(t2))

yH(t)� ŷH(t) = !t+O(t2); (D.9)

where ! � [2� w0(ycH)=��] = [2�� � 2w0(ycH)] 2 (0; 1): Turning now to the associated pro�t mar-
gins, we have from (D.7) and (D.6) (now known to be an equality) respectively,

w(ŷH) +B�H � ÛH = t[1� w0(ŷH)=��];
w(yH) +B�H � UH = (UH � ÛH + t)[1� w0(yH)=��]:

Consequently, as t! 0;

�H(t)

�̂H(t)
=
(UH � ÛH + t)2

t2
1� w0(yH(t))=��
1� w0(ŷH(t))=��

! (!��)2 < 1;

which concludes the proof.

We now rule out excluding high-skill workers.

Lemma 10 It is always strictly suboptimal not to employ a positive measure of H-type agents.

Proof. If a �rm, say Firm 0; employs no H agent it must sell to a positive measure of L agents

and reap strictly positive pro�ts from their contract (yL; UL): Furthermore, the optimal level of yL
is clearly y�: Thus, it must be that �U � UL and ÛL � t < UL < w(y�) +B�L:

In Region III, let the �rm deviate and o¤er the single contract (yL; UL): By taking it, an agent

of type H gets ~UH = UL+ y
��� > ÛL� t+ y��� � ÛH � t; so it is preferred by a positive measure
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of them to going to work for Firm 1; as well as to the outside option ( ~UH > �U): Each of these

workers then generates pro�ts w(y�)+B�H� ~UH = w(y�)+B�L�UL+(B�y�)�� > 0: Therefore,
a contract excluding H workers could not in fact have been optimal.

In Regions I and II, we will show that there always exists a contract (~yH ; ~UH) that can be o¤ered

alongside with (yL; UL) so as to attract a positive measure of H types, not be strictly preferred

by any L type, and generate positive pro�ts. Note �rst that if UL � ÛL; we can simply choose

(~yH ; ~UH) = (ŷH ; ÛH); that is, the same contract as o¤ered by Firm 1: Indeed, since UL � ÛL �
ÛH� ŷH�� = ~UH� ~yH��; the L types employed at Firm 0 (weakly) prefer their original contract,
(yL; UL): For the H types, clearly ~UH = ÛH > �U and getting it from Firm 0 is preferable to getting

it from Firm 1 for all such agents located at x < 1=2: Such a deviation is thus strictly pro�table.

Suppose from now on that UL < ÛL and consider the contract (~yH ; ~UH) � (ŷH ; UL + ŷH��):

The L types have no reason to switch (they are indi¤erent), while for the H types we have ~UH =

UL+ ŷH�� > ÛL+ ŷH��� t = ÛH � t; so a positive measure of them prefer this new o¤er to what

they could get at Firm 1: Furthermore, since ~UH � UL + y���; they also prefer it to the L types�

contract at Firm 0: The �rm can thus o¤er the incentive-compatible menu f(yL; UL); (~yH ; ~UH)g and
attract a positive measure of H agents, on which it makes unit pro�t

w(ŷH) +B�H � ~UH = w(ŷH) +B�H � ŷH�� � UL
> w(ŷH) +B�H � ŷH�� � ÛL = w(ŷH) +B�H � ÛH > 0:

The deviation is therefore pro�table, which concludes the proof.

D.2.2 A key property

By Lemmas 9 and 10, at an optimum it must be that XH � X (UH + t � ÛH) > 0 and

XL � X (UL + t� ÛL)1fUL� �Ug > 0: This, in turn, implies:

Lemma 11 At any optimum, it must be that either:
(i) yL = y� � yH and UH � UL = yH��; with multiplier �H = 0 on (D.2), or

(ii) yL � y� = yH and UH � UL = yL��; with multiplier �L = 0 on (D.3).

Proof. Consider the sub-problem of maximizing (D.1) over (yH ; yL); while keeping (UH ; UL)

and therefore (XH > 0; XL > 0) �xed. This is a di¤erentiable and concave problem; denoting

by �H and �L the multipliers on the high and low type�s incentive constraints, the �rst-order

conditions are:

0 = qHXHw
0(yH) + �L��; (D.10)

0 = qLXLw
0(yL)� �H�� +  : (D.11)

Once again it cannot be that �H > 0 and �L > 0; otherwise (D.2)-(D.3) and (D.10) imply that

yL = yH > y� and so  = 0; yielding a contradiction in (D.11). Suppose �rst that �H = 0;

implying that  = 0 and yL = y�: If (D.3) were not binding, we would have �L = 0; hence
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yH = y� = yL and UL > UH � yH�� = UH � yL�� � UL; a contradiction. Thus it must be that

yH�� = UH �UL � yL�� = y���; which corresponds to case (i). If �H > 0; then (D.2) is binding

and �L must equal 0; hence yH = y�: Furthermore, yL�� = UH � UL � yH�� = y���; which

corresponds to case (ii).

D.2.3 No cornering.

Lemma 12 At an optimum, XH � UH + t� ÛH and XL � UL + t� ÛL must both lie in (0; 2t]:

Proof. The fact that XH > 0 and XL > 0 was established previously. Suppose �rst that

minfUH + t� ÛH ; UL + t� ÛLg > 2t: Note that this implies UL > ÛL + t > �U: The �rm can then

reduce both UH and UL slightly while keeping the full market of both types, XH = XL = 1 and

not violating any constraint; this increases pro�ts, a contradiction.

Suppose next that UH + t� ÛH � 2t < UL+ t� ÛL; which again implies UL > �U ; furthermore,

one must also have UH � UL � ÛH � ÛL: The chosen allocation must thus solve

max
n
qH�(UH + t� ÛH)[w(yH) + �HB � UH ] + qL(2t)[w(yL) + �LB � UL]

o
;

subject again to (D.2)-(D.3), plus the participation constraint UL � �U; which in this particular

case is not binding. Maximizing over UL thus yields the �rst-order condition

0 = �2tqL � �H + �L; (D.12)

which must hold in addition to (D.10)-(D.11) with XL = 1: Clearly, it cannot be that �L = 0:

Therefore, �H = 0 < �L = 2tqL; implying that (D.10) becomes qH(XH=2t)w0(yH) + qL�� = 0:

Furthermore, yH�� = UH � UL � ÛH � ÛL � ycH��; so yH � ycH : But then the interim-e¢ ciency

condition (23) implies that qHw0(yH) + qL�� > 0; a contradiction since XH � 2t:
Suppose now that UL + t� ÛL � 2t < UH + t� ÛH : The allocation must be a solution to

max
n
qH(2t)[w(yH) + �HB � UH ] + qL�(UL + t� ÛL)[w(yL) + �LB � UL]

o
;

subject to (D.2)-(D.3) and the constraint UL � �U; with associated multiplier � � 0: Maximizing

over UH thus yields the �rst-order condition

0 = �2tqH + �H � �L: (D.13)

This precludes �H = 0; so �L = 0 < �H = 2tqH ; yH = y� and qLXLw0(yL) = 2tqH�� �  �
2tqLw

0(ymL ) �  : If  > 0 then yL = 0 < ymL ; and if  = 0 then (XL=2t)w0(yL) = w0(ymL ) so

yL < ymL , as XL � 2t: But we also have yL�� = UH � UL > ÛH � ÛL > ymL��; a contradiction.

D.2.4 Proof of global optimality

The objective function in (D.16) is not globally concave, as can be seen computing the Hessian.

The proof of global optimality will therefore require several steps. First, we will show that for any
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C = (UH ; UL; yH ; yL) to be an optimum, it must lie in either the following subspaces:

SH � f(UH ; UL; yH ; yL) jyL = y� � yH � ycH and UH � UL = yH��g ; (D.14)

SL � f(UH ; UL; yH ; yL) jyH = y� � yL � ymL and UH � UL = yL��g : (D.15)

We will then show that the program is strictly concave on SH and on SL separately, which implies

that bC = (ÛH ; ÛL; ŷH ; ŷL) achieves a maximum over all feasible allocations in the subspace to which
it belongs, namely SH for t � t2 (Regions I and II), or SL for t � t2 (Region III). Finally, we will

show that the global optimum can never lie in the other subspace than the one to which bC belongs,
concluding the proof.

Lemma 13 A global optimum C = (UH ; UL; yH ; yL) must lie in SH or in SL:

Proof. Let S0H be denote the superset of SH obtained by omitting the inequality yH � ycH
from (D.14), and similarly let S0L denote the superset of SL obtained by omitting the inequality

yL � ymL from (D.15). By Lemma 11, an optimum must belong to S
0
H or S

0
L: Furthermore, given no

exclusion nor strict cornering (Lemmas 9, 10 and 12), solving (D.1)-(D.3) is equivalent to solving

the smooth program

max qH(UH + t� ÛH)[w(yH) + �HB � UH ] + qL(UL + t� ÛL)[w(yL) + �LB � UL] ;(D.16)
subject to:

XH � UH + t� ÛH � 2t (�H)

XL � UL + t� ÛL � 2t (�L)

UH � UL + yL�� (�H)

UL � UH � yH�� (�L)

UL � �U (�)

yL � 0 ( ):

The �rst-order conditions are:

qH

h
w(yH) +B�H � 2UH + ÛH � t

i
+ �H � �L � �H = 0; (D.17)

qL

h
w(yL) +B�L � 2UL + ÛL � t

i
+ �L � �H + � � �L = 0; (D.18)

qH

�
UH � ÛH + t

�
w0(yH) + �L�� = 0; (D.19)

qL

�
UL � ÛL + t

�
w0(yL)� �H�� +  = 0 (D.20)

and we also know that XH > 0 and XL > 0 at an optimum.

Case A. Consider �rst C 2 S0H : We have yL = y� (so  = 0) and �H = 0; so eliminating �L :

w(yH) +B�H � 2UH + ÛH � t+ (UH � ÛH + t)
w0(yH)

��
� �H
qH

= 0; (D.21)

w(y�) +B�L � 2UL + ÛL � t�
qH
qL
(UH � ÛH + t)

w0(yH)

��
+

�

qL
� �L
qL

= 0: (D.22)
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Subtracting and using UH � UL = yH�� and ÛH � ÛL = ŷ�� (with ŷ = ŷH in Regions I and II

and ŷ = ŷL in Region III) yields

w(yH)� w(y�) + (B + ŷ � 2yH)�� = (UH � ÛH + t)
�
1 +

qH
qL

�
�w0(yH)
��

+
�

qL
+
�H
qH

� �L
qL
:

Next, subtracting w(ycH)� w(y�) + (B � ycH)�� = 0; we have

w(yH)� w(ycH)� (yH � ycH)�� � (yH � ŷ)��

= (UH � ÛH + t)
�
�1� qH

qL

�
w0(yH)

��
+

�

qL
+
�H
qH

� �L
qL
;

or

w(yH)� w(ycH)� (2yH � ycH � ŷ)�� = (UH � ÛH + t)
�w0(yH)
qL��

+
�

qL
+
�H
qH

� �L
qL
: (D.23)

If yH > ycH � ŷ the left-hand side is negative, while the right-hand side is positive, since UH�UL >
ÛH � ÛL implies that UL � ÛL < UH � ÛH � t; so �L = 0: Hence, a contradiction, from which we

conclude that yH � ycH ; so that C 2 SH :

Case B. Consider now C 2 S0L: We have yH = y� and �L = 0; so eliminating �H :

w(y�) +B�H � 2UH + ÛH � t+
qL
qH
(UL � ÛL + t)

w0(yL)

��
+

 

qH��
� �H
qH

= 0; (D.24)

w(yL) +B�L � 2UL + ÛL � t� (UL � ÛL + t)
w0(yL)

��
+

�

qL
�  

qL��
� �L
qL

= 0: (D.25)

If yL < ymL then UH � UL = yL�� < ŷ�� = ÛH � ÛL so UH � ÛH < UL � ÛL � 2t; hence �H = 0:
Suppose �rst that UL > �U ; then � = 0 and from the two above equations we have

w(y�) +B�H � 2UH + ÛH � t < 0 < w(yL) +B�L � 2UL + ÛL � t ()
w(y�)� w(yL) + (B � yL)�� + (ŷ � yL)�� < 0;

a contradiction since this last expression is clearly positive. Therefore, UL = �U: Next, for yL < ymL
we have w0(yL) > w0(ymL ) = (qH=qL)��; hence, by (D.24):

� =qH�� > w(y�) +B�H � 2UH + ÛH � t+ UL � ÛL + t
= w(y�) +B�L � �U + (B � yL)�� � [UH � UL � (ÛH � ÛL)]
= w(y�) +B�L � �U + (B � yL)�� + (ŷ � yL)��:

This last expression is strictly positive, however, since yL < ymL � ŷ < B; where ŷ = ŷH when t is

in Region I or II and ŷ = ŷL when t is in Region III. Hence another contradiction, from which we

conclude that yL � ymL ; so that C 2 SL:
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Lemma 14 The objective function in (D.16) is strictly concave over SH and over SL:

In passing, note that this result implies that the symmetric solution bC � (ÛH ; ÛL; ŷH ; ŷL) always
satis�es the local second-order conditions for a maximum of the program (D.16).38

Proof. First, over SH ; the objective function becomes

�(UH ; yH) � qH(UH � ÛH + t) [w(yH) + �HB � UH ]
+qL(UH � yH�� � ÛL + t) [w(y�) + �LB � UH + yH��] ; (D.26)

for which the Hessian is

H(�) =

"
�2 qHw

0(yH) + 2qL��

qHw
0(yH) + 2qL�� qH(UH � ÛH + t)w00(yH)� 2qL��2

#

and its determinant equals

�q2Hw0(yH)2 � 4qHqLw0(yH)�� � 4q2L��2 + 4qL��2 � 2qHw00(yH)
�
UH � ÛH + t

�
= �qHw0(yH)

�
qHw

0(yH) + 4qL��
�
+ 4qHqL��

2 � 2qHw00(yH)
�
UH � ÛH + t

�
;

which is positive since yH � ycH implies that qHw
0(yH)+4qL�� � qHw

0(ycH)+4qL�� > 0; by (23).

Next, over SL; the objective function becomes

�(UL; yL) � qH(UL + yL�� � ÛH + t)[w(y�) + �HB � UL � yL�� ]
+qL(UL + t� ÛL)[w(yL) + �LB � UL]; (D.27)

for which the Hessian is

H(�) =

"
�2 qLw

0(yL)� 2qH��
qLw

0(yL)� 2qH�� qL(UL � ÛL + t)w00(yL)� 2qH��2

#

and its determinant equals:

�q2Lw0(yL)2 + 4qHqLw0(yL)�� � 4q2H��2 + 4qH��2 � 2qLw00(yL)(UL � ÛL + t)
= qLw

0(yL)
�
�qLw0(yL) + 4qH��

�
+ 4qHqL��

2 � 2qLw00(yL)(UL � ÛL + t);

which is positive since yL � ymL implies qLw0(yL) � qLw
0(ymL ) < 4qH��; by (15).

Proposition 19 The unique global optimum to (D.1)-(D.3) is the allocation bC � (ÛH ; ÛL; ŷH ; ŷL)
characterized in Proposition 4, which is therefore an equilibrium (the unique symmetric one) of the

game between the two �rms.

38This can also be shown directly, by computing the appropriate bordered Hessians, given each of the constraints
binding in Regions I, II and III respectively. The proof is available upon request.
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Proof. By Lemmas 9 and 10, the global solution C = (UH ; UL; yH ; yL) to (D.1)-(D.3) is also

the global solution to (D.16) and satis�es the associated �rst-order condition (D.17)-(D.20), with

XH � UH � ÛH + t and XL � UH � ÛH + t both in (0; 2t]: By Proposition 4, bC � (ÛH ; ÛL; ŷH ; ŷL)
solves these conditions (with X̂H = X̂L = t), is the unique candidate for a symmetric equilibrium,

and is such that bC 2 SH when t is in Regions I and II, while bC 2 SL when t is in Region III.

Furthermore, by Lemma 14, the objective function is strictly concave over each of these subspaces,

so in each case bC maximizes the program over the one to which it belongs. By Lemma 14, moreover,
the global optimum C must also belong to SH or SL: Two cases therefore remain to consider.

Case A: t lies in Region I or II, so that bC 2 SH : If C 2 SH as well, they must coincide. If

C 2 SL then yH = y�; �L = 0 and

UH � UL = yL�� � ŷH�� = ÛH � ÛL: (D.28)

Subcase A1. If the inequality is strict then

UH � ÛH < UL � ÛL: (D.29)

Note that this requires �H = 0; otherwise t = UH � ÛH < UL � ÛL � t; a contradiction. Next,

subtracting from (D.17) its counterpart for bC ; and likewise for (D.18), we have:
qH

h
w(y�) +B�H � 2UH + ÛH � t

i
+ �H = qH

h
w(ŷH) +B�H � ÛH � t

i
� �̂L;

qL

h
w(yL) +B�L � 2UL + ÛL � t

i
� �H + � � �L = qL

h
w(y�) +B�L � ÛL � t

i
+ �̂L + �̂:

The �rst equation implies that w(y�)�w(ŷH) � 2(UH � ÛH); hence UL� ÛL > 0 by (D.29). Thus
UL > �U; implying � = 0: It then follows from the second equation above that w(yL)+B�L�2UL+
ÛL � w(y�) +B�L � ÛL, hence 2(UL � ÛL) � w(yL)� w(y�) � 0; which contradicts UL > ÛL:

Subcase A2. Equation (D.28) is therefore an equality, implying that yL = ŷH = y� = yH (and

 = 0): Thus UH � UL = yH�� and yL = y�; implying that C 2 SH , so it must coincide with bC:
Note that bC 2 SH \ SL can only occur at t = t2.

Case B: t lies in Region III, so that bC 2 SL: If C 2 SL as well, they must coincide. If C 2 SH
then yL = y�; �H = 0 and UH � UL = yH�� � ŷL�� = ÛH � ÛL: Therefore:

UH � ÛH � UL � ÛL = UL � �U � 0: (D.30)

Subtracting from (D.17) its counterpart for bC , we now have:
qH

h
w(yH) +B�H � 2UH + ÛH � t

i
� �L � �H = qH

h
w(y�) +B�H � ÛH � t

i
+ �̂H ;

Therefore w(yH)�w(y�) � 2(UH � ÛH); which together with (D.30) requires that UH = ÛH ; UL =

ÛL and yH = y� = ŷL; so that C = bC: Here again it must be that t = t2; which corresponds to the

only intersection of SH and SL:
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