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Online Technical Appendix

This Online Appendix accompanies the paper “Inference for VARs Identified with Sign Restrictions”

by H.R. Moon, F. Schorfheide, E. Granziera, and M. Lee. The Appendix has three sections. In

Section A we provide proofs of the lemmas stated in the main text. Section B states and proves

lemmas that are needed to prove Theorems 1 and 2 in the main text. Finally, Section C provides

analytical derivations for the Monte Carlo experiment presented in Section 5 of the main text.

A Proofs of Lemmas stated in the Main Text

Proof of Lemma 1. To simplify the notation in the proof we omit tildes and write Sθ(q), SR(q)

instead of S̃θ(q), S̃R(q). Convexity: Suppose θi ∈ Θ(φ), i = 1, 2, and θ1 < θ2. Then there exist qi

with ‖qi‖ = 1 and µi ≥ 0 such that

Sθ(qi)φ− θi = 0, SR(qi)φ− µi = 0. (A.1)

Convexity-Case (i): Suppose that q1 6= −q2. We now verify that for any λ ∈ [0, 1] θ = λθ1 + (1 −

λ)(θ2) ∈ Θ(φ). For τ ∈ [0, 1] define

q(τ) =
τq1 + (1− τ)q2

‖τq1 + (1− τ)q2‖
, H(τ) = Sθ(q(τ))φ− θ.

The linearity of Sθ(q) with respect to q and (A.1) imply that

H(τ) =
τSθ(q1)φ

‖τq1 + (1− τ)q2‖
+

(1− τ)Sθ(q2)φ

‖τq1 + (1− τ)q2‖
− λθ1 − (1− λ)θ2

=
τθ1

‖τq1 + (1− τ)q2‖
+

(1− τ)θ2

‖τq1 + (1− τ)q2‖
− λθ1 − (1− λ)θ2.

Using ‖qi‖ = 1 we obtain

H(0) = θ2 − λθ1 − (1− λ)θ2 = λ(θ2 − θ1) ≥ 0

H(1) = θ1 − λθ1 − (1− λ)θ2 = −(1− λ)(θ2 − θ1) ≤ 0

Since H(τ) is continuous we deduce that there exists a τ∗ such that H(τ∗) = 0. Now consider

SR(q(τ∗)) =
τ∗SR(q1)φ

‖τ∗q1 + (1− τ∗)q2‖
+

(1− τ∗)SR(q2)φ

‖τ∗q1 + (1− τ∗)q2‖

=
τ∗µ1

‖τ∗q1 + (1− τ∗)q2‖
+

(1− τ∗)µ2

‖τ∗q1 + (1− τ∗)q2‖
≥ 0.
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The first equality follows from the linearity of SR(q), the second equality is implied by (A.1), and

the inequality follows from µi ≥ 0. Thus, θ ∈ Θ(φ).

Convexity-Case (ii): Suppose that q1 = −q2. The linearity of Sθ(q) implies that θ1 = −θ2. By

assumption there exists a q3 6= q1,−q1 with the property that SR(q3)φ ≥ 0. Let θ3 = Sθ(q3)φ. By

construction, θ3 ∈ Θ(φ). If θ3 = θ1 (θ3 = θ2) we simply replace q1 (q2) by q3 and follow the steps

outlined for Case (i). If θ1 < θ3 < θ2, then the Case (i) argument implies that any θ in the intervals

[θ1, θ3] and [θ3, θ2] and thereby any θ = λθ1 + (1 − λ)θ2 is included in the identified set. Finally,

if θ3 < θ1 (θ2 < θ3), we deduce from Case (i) that the interval [θ3, θ2] ([θ1, θ3]) is included in the

identified set.

Boundedness: We shall prove a slightly more general result. Let

Sθc =

{
θ

∣∣∣∣ Q(θ;φ, I) ≤ c
}

For c = 0 Sθc = Θ(φ). Suppose that θ̃ ∈ Sθc . We will assume that θ̃ > 0 and show by contradiction

that Sθc must have an upper bound. Consider a sequence an > 0 with an ↑ ∞ with the property

that anθ̃ ∈ Sθc for each n. The unboundedness of Θ(φ) guarantees the existence of such a series.

Then

Q(anθ̃;φ, I) = min
q=‖1‖, µ≥0

‖Sθ(q)φ− anθ̃‖2 + ‖SR(q)φ− µ‖2

≥ min
q=‖1‖

‖Sθ(q)φ− anθ̃‖2

The definition of Sθ(q) implies that

‖Sθ(q)‖ =
√
tr[(Sθ ⊗ q′)SφS′φ(Sθ ⊗ q′)′] =

√
tr[(SθS

′
θ) = 1.

Since φ and θ̃ are fixed, we deduce that as n −→∞

min
q=‖1‖

‖Sθ(q)φ− anθ̃‖2 −→∞.

Thus, Q(anθ̃;φ, I) > c eventually, which contradicts the assumption that anθ̃ ∈ Sθc for all n. The

existence of a lower bound can be established by considering a sequence −an. Moreover, θ < 0 can

be handled by a straightforward modification of the argument. �

Proof of Lemma 4: In the proof of Lemma 1 we showed that sets of the form

Sθc =

{
θ

∣∣∣∣ Q(θ;φ, I) ≤ c
}

(A.2)
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are bounded. The finite-sample confidence sets take the form

CSθ(i) =

{
θ

∣∣∣∣ Q(θ; φ̂, Ŵ ∗(·)) ≤ c(i)

}
.

Recall that

Q
(
θ; φ̂, Ŵ ∗(·)

)
= min
‖q‖=1,µ≥0

T

∥∥∥∥S(q)φ̂− V (q)

(
θ

µ

)∥∥∥∥2

Σ̂−1(q)

,

where

Σ̂−1 = (S(q)Λ̂S′(q))−1.

Now let

Ŵmin(q) =
1

λmax(Λ̂)λmax(S(q)S(q)′)
I.

By construction Ŵ ∗(q) ≥ Ŵmin(q) > 0 for all q and

Q
(
θ; φ̂, Ŵ ∗(·)

)
≥ Q

(
θ; φ̂, Ŵmin(·)

)
=

1

λmax(Λ̂)λmax(S(q)S(q)′)
Q
(
θ; φ̂, I

)
.

The statement of the lemma follows from setting c = ciλmax(Λ̂)λmax(S(q)S(q)′) in (A.2). �

Proof of Lemma 5: We need to verify that the confidence set constructed by taking unions of

the identified sets can be represented according to (42). Let

CS∗U =
⋃

φ∈CSφ
Θ(φ),

where

CSφ =

{
φ ∈ P

∣∣∣∣ T∥∥φ̂− φ∥∥2

Λ̂−1 ≤ c(χ2
m)

}
.

(i) Show that CS∗U ⊆ CSθU . Suppose θ ∈ CS∗U . Thus, there exists a φ ∈ CSφ such that θ ∈ Θ(φ).

So, T‖φ̂− φ‖2
Λ̂−1
≤ c(χ2

m). This implies that there exist a q∗ with ‖q∗‖ = 1 and a µ∗ ≥ 0 such that

S̃(q∗)φ = [θ′, µ′∗]
′. In turn,

Q(θ; φ̂, Ŵ ∗) = min
‖q‖=1, µ≥0

∥∥∥∥S̃(q)φ̂−
(
θ

µ

)∥∥∥∥2

Ŵ ∗(q)

≤
∥∥∥∥S̃(q∗)φ̂−

(
θ

µ∗

)∥∥∥∥2

Ŵ ∗(q∗)

=
∥∥S̃(q∗)(φ̂− φ)

∥∥2

Ŵ ∗(q∗)

= T (φ̂− φ)′S′(SΛ̂S′)−1S(φ̂− φ)

≤ T‖φ̂− φ‖2
Λ̂−1 ≤ c(χ2

m).
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The third equality uses the definition of Ŵ ∗ in (23) and S(q) = V (q)S̃(q). The second inequality

can be obtained as follows. Factorize Λ = L̂L̂′ and define Â = L̂′S′ as well as the projection matrix

PÂ = Â(Â′Â)−1Â′. Then,

T (φ̂− φ)′S′(SΛ̂S′)−1S(φ̂− φ) = T (φ̂− φ)′(L̂′)−1L̂′S′(SL̂L̂′S′)−1SL̂L̂−1(φ̂− φ)

= T (φ̂− φ)′(L̂′)−1PÂL̂
−1(φ̂− φ)

≤ T (φ̂− φ)′(L̂′)−1L̂−1(φ̂− φ)

= T‖φ̂− φ‖2
Λ̂−1

Thus, we deduce that θ ∈ CSθU .

(ii) Show that CSθU ⊆ CS∗U . Suppose to the contrary that there exists a θ ∈ CSθU and θ /∈ CS∗U .

Thus, θ ∈ (CS∗U )c =
⋂
φ∈CSφ (Θ(φ))c. Hence, for any φ such that θ ∈ Θ(φ), it has to be the case

that φ 6∈ CSφ. Define ψ(µ) = [θ′, µ′]′. Thus,

c(χ2
m) <

(
min

φ∈P, ‖q‖=1, µ≥0
T‖φ̂− φ‖2

Λ̂−1 s.t. 0 = S̃(q)φ− ψ(µ)

)
(A.3)

= min
‖q‖=1, µ≥0

(
min
φ∈P

T‖φ̂− φ‖2
Λ̂−1 s.t. 0 = S̃(q)φ− ψ(µ)

)
Since the matrix V (b) eliminates rows of zeros from S̃(q), we can rewrite the constraint in (A.3) as

0 = V (q)S̃(q)− V (q)ψ(µ) = S(q)− V (q)ψ(µ).

Conditional on q and µ the Lagrangian associated with the minimization over φ is given by

L = T‖φ̂− φ‖2
Λ̂−1 − λ′(S(q)φ− V (q)ψ(µ)).

The first-order conditions are

0 = T Λ̂−1(φ∗ − φ̂)− S′λ∗, 0 = S(φ∗ − φ̂) + Sφ̂− V ψ(µ).

Solving for φ∗ yields

φ∗ = φ̂+ Λ̂S′(SΛ̂S′)−1(Sφ̂− V ψ).

Thus, using the definition Σ̂(q) = S(q)Λ̂S′(q) we can express the constrained minimization in (A.3)

as

min
‖q‖=1, µ≥0

T

∥∥∥∥S(q)φ̂− V (q)

(
θ

µ

)∥∥∥∥2

Σ̂−1(q)

. (A.4)

Thus, min‖q‖=1, µ≥0 Q(θ; φ̂, Ŵ ∗) > c(χ2
m), which contradicts the initial assumption that θ ∈ CSθU .

�
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B Technical Lemmas Used in the Proofs of the Main Results

Lemma B 1 Suppose that Assumptions 1 to 3 are satisfied. The sample estimate Λ̂ that enters

Ŵ ∗(·) in the bounding function Q̄
(
q; φ̂, Ŵ ∗(·)

)
, defined in (28), can be replaced by the population

covariance matrix Λ: ∣∣∣∣Q̄(q; φ̂, Ŵ ∗(·))− Q̄(q; φ̂,W ∗(·))∣∣∣∣ = op(1)

uniformly in (φ, q).

Proof of Lemma B 1: Notice that the penalty term in (24) cancels and thus is omitted from the

subsequent calculations. Let

v(Λ̂) = arg min
v≥0

∥∥∥S(q)
√
T (φ̂− φ)− V (q)Mvv

∥∥∥2

Σ̂−1(q)

v(Λ) = arg min
v≥0

∥∥∥S(q)
√
T (φ̂− φ)− V (q)Mvv

∥∥∥2

Σ−1(q)
.

First we show that uniformly in (φ, q)

Q̄
(
q; φ̂, Ŵ ∗(·)

)
− Q̄

(
q; φ̂,W ∗(·)

)
≤ op(1). (B.1)

To do so, consider the following inequalities: Notice that

Q̄
(
q; φ̂, Ŵ ∗(·)

)
− Q̄

(
q; φ̂,W ∗(·)

)
= min

v≥0

∥∥∥S(q)
√
T (φ̂− φ)− V (q)Mvv

∥∥∥2

Σ̂−1(q)
−min

v≥0

∥∥∥S(q)
√
T (φ̂− φ)− V (q)Mvv

∥∥∥2

Σ−1(q)

=
∥∥∥S(q)

√
T (φ̂− φ)− V (q)Mvv(Λ̂)

∥∥∥2

Σ̂−1(q)
−
∥∥∥S(q)

√
T (φ̂− φ)− V (q)Mvv(Λ)

∥∥∥2

Σ−1(q)

≤
∥∥∥S(q)

√
T (φ̂− φ)− V (q)Mvv(Λ)

∥∥∥2

Σ̂−1(q)
−
∥∥∥S(q)

√
T (φ̂− φ)− V (q)Mvv(Λ)

∥∥∥2

Σ−1(q)

=
[
S(q)
√
T (φ̂− φ)− V (q)Mvv(Λ)

]′
Σ−1/2(q)

×
[
Σ1/2(q)Σ̂−1(q)Σ1/2(q)− Il(q)

]
Σ−1/2(q)

[
S(q)
√
T (φ̂− φ)− V (q)Mvv(Λ)

]
≤

∥∥∥S(q)
√
T (φ̂− φ)− V (q)Mvv(Λ)

∥∥∥2

Σ−1(q)

∥∥∥Σ1/2(q)Σ̂−1(q)Σ1/2(q)− Il(q)
∥∥∥

= I × II, say.

The first inequality is obtained by replacing the minimizer ν(Λ̂) with the inferior value ν(Λ). The

third equality follows from writing out the two norms and rearranging the weight matrix differential

Σ̂−1 − Σ−1.
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We now bound the terms I and II. Recall that Σ = SΛS′ and Λ = LL′. For term I we obtain

I = min
v≥0

∥∥∥S(q)
√
T (φ̂− φ)− V (q)Mvv

∥∥∥2

Σ−1(q)

≤
∥∥∥S(q)LL−1

√
T (φ̂− φ)

∥∥∥2

Σ−1(q)

= [L−1
√
T (φ̂− φ)]′PL′S′(q)[L

−1
√
T (φ̂− φ)]

≤
∥∥∥L−1

√
T (φ̂− φ)

∥∥∥2
λmax(PL′S′(q))

=
∥∥∥L−1

√
T (φ̂− φ)

∥∥∥2

= Op(1)

uniformly in (φ, q). Here PL′S′(q) is the matrix that projects onto the column space of L′S′(q). The

second term can be bounded as follows:

II =
∥∥∥Σ1/2(q)(Σ̂−1(q)− Σ−1(q))Σ1/2(q)

∥∥∥
=

∥∥∥Σ−1/2(q)(Σ(q)− Σ̂(q))Σ̂−1(q)Σ1/2(q)
∥∥∥

=
∥∥∥Σ−1/2(q)S(q)(Λ− Λ̂)S(q)′Σ̂−1/2(q)Σ̂−1/2(q)Σ1/2(q)

∥∥∥
=

∥∥∥(Σ−1/2(q)S(q)L)(L′(L̂′)−1 − L−1L̂)L̂′S(q)′Σ̂−1/2(q)Σ̂−1/2(q)Σ1/2(q)
∥∥∥

≤
∥∥∥Σ−1/2(q)S(q)L

∥∥∥∥∥∥L′(L̂′)−1 − L−1L̂
∥∥∥∥∥∥L̂′S(q)′Σ̂−1/2(q)

∥∥∥∥∥∥Σ̂−1/2(q)Σ1/2(q)
∥∥∥

= II1 × II2 × II3 × II4, say.

Bounds for the four terms can be obtained as follows. First,

II2
1 =

∥∥∥Σ−1/2 (q)S (q)L
∥∥∥2

= tr
(
L′S (q)′

(
S (q)LL′S (q)′

)−1
S (q)L

)
= l (q) ≤ k̃ + r̃2. (B.2)

Similarly, the second term can be bounded by

II2
2 ≤

∥∥∥L̂′S (q)′ Σ̂−1/2 (q)
∥∥∥2

= l (q) ≤ k̃ + r̃2. (B.3)

Third, since Λ̂ − Λ (φ) = op (1) uniformly in φ and Λ (φ) > Λmin > 0, for some positive definite

matrix Λmin, we have

II3 =
∥∥∥L′(L̂′)−1 − L−1L̂

∥∥∥ = op (1) (B.4)
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uniformly in (φ, q) . Finally, we obtain

II2
4 =

∥∥∥Σ̂−1/2 (q) (S (q)L)
(
L′S (q)′

(
S (q)LL′S (q)′

)−1
)

Σ1/2 (q)
∥∥∥2

=
∥∥∥Σ̂−1/2 (q) (S (q)L)

(
L′S (q)′Σ−1 (q)

)
Σ1/2 (q)

∥∥∥2

=
∥∥∥Σ̂−1/2 (q) (S (q)L)

(
L′S (q)′

)
Σ−1/2 (q)

∥∥∥2

≤
∥∥∥Σ̂−1/2(q)(S(q)L̂)

∥∥∥2 ∥∥∥(L̂−1L)
∥∥∥2 ∥∥∥(L′S(q)′)Σ−1/2(q)

∥∥∥2

≤ (k̃ + r̃2)2
∥∥∥(L̂−1L)

∥∥∥2
by (B.2) and (B.3)

≤ (k̃ + r̃2)2Op(1) (B.5)

where Op (1) is uniform in (φ, q) . From the bounds (B.2) , (B.3) , (B.4) , (B.5) , we have

II = op (1)

uniformly in (φ, q) . The desired result in (B.1) is obtained by combining I and II. In a similar

manner it can be shown that

Q̄
(
q; φ̂,W ∗(·)

)
− Q̄

(
q; φ̂, Ŵ ∗(·)

)
≤ op(1). �

The sample estimate Λ̂ that enters Ŵ ∗(·) in the bounding function Q̄
(
q; φ̂, Ŵ ∗(·)

)
can be

replaced by the population covariance matrix Λ:∣∣∣∣Q̄(q; φ̂, Ŵ ∗(·))− Q̄(q; φ̂,W ∗(·))∣∣∣∣ = op(1)

uniformly in (φ, q).

Lemma B 2 Suppose that Assumptions 1 to 3 are satisfied. The sample estimate Λ̂ that enters

Ŵ ∗(·) in the objective function G
(
θ, q; φ̂, Ŵ ∗(·)

)
, defined in (31), can be replaced by the population

covariance matrix Λ: ∣∣∣∣G(θ, q; φ̂, Ŵ ∗(·))−G(θ, q; φ̂,W ∗(·))∣∣∣∣ = op(1)

uniformly in (φ, θ, q) for φ ∈ P, θ ∈ Θ(φ), and q ∈ Q(θ, q).

Proof of Lemma B 2: Notice that the penalty term in (24) cancels and thus is omitted from the

subsequent calculations. By definition

G(θ, q; φ̂, Ŵ ∗(·)) = min
v≥−

√
TD̂
−1/2
R µ(q,φ)

∥∥∥D̂−1/2S(q)
√
T (φ̂− φ)−Mvv

∥∥∥2

Ω̂−1(q)

= min
v≥−

√
Tµ(q,φ)

∥∥∥S(q)
√
T (φ̂− φ)−Mvv

∥∥∥2

Σ̂−1(q)
.
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Moreover, define

v(Λ̂) = arg min
v≥−

√
Tµ(q,φ)

∥∥∥S(q)
√
T (φ̂− φ)−Mvv

∥∥∥2

Σ̂−1(q)

v(Λ) = arg min
v≥−

√
Tµ(q,φ)

∥∥∥S(q)
√
T (φ̂− φ)−Mvv

∥∥∥2

Σ−1(q)
.

By using similar arguments as in the proof of Lemma B 1, we have

G(θ, q; φ̂, Ŵ ∗(·))−G(θ, q; φ̂,W ∗(·))

≤
∥∥∥S(q)

√
T (φ̂− φ)−Mvv(Λ)

∥∥∥2

Σ̂−1(q)
−
∥∥∥S(q)

√
T (φ̂− φ)−Mvv(Λ)

∥∥∥2

Σ−1(q)

=
{
S(q)
√
T (φ̂− φ)−Mvv(Λ)

}′
Σ−1/2(q)

×
{

Σ1/2(q)Σ̂−1(q)Σ1/2(q)− Il(q)
}

Σ−1/2(q)
{
S(q)
√
T (φ̂− φ)−Mvv(Λ)

}
≤

∥∥∥S(q)
√
T (φ̂− φ)−Mvv(Λ)

∥∥∥2

Σ−1(q)

∥∥∥Σ1/2(q)Σ̂−1(q)Σ1/2(q)− Il(q)
∥∥∥

= I × II, say.

Notice that

I = min
v≥−

√
Tµ(q,φ)

∥∥∥S(q)
√
T (φ̂− φ)−Mvv

∥∥∥2

Σ−1(q)

≤
∥∥∥S(q)

√
T (φ̂− φ)

∥∥∥2

Σ−1(q)
since µ(q, φ) ≥ 0

≤ Op(1)

uniformly in (φ, θ, q) for φ ∈ P, θ ∈ Θ(φ), and q ∈ Q(θ, q). The first inequality follows from

µ(q, φ) ≥ 0. The second inequality can be verified using the same steps as in the proof of Lemma

B 1. Similarly, we can follow the proof of Lemma B 1 to establish that II = op(1) uniformly in

(φ, θ, q) for φ ∈ P, θ ∈ Θ(φ), and q ∈ Q(θ, q). This leads to the required result. The bound

G(θ, q; φ̂,W ∗(·))−G(θ, q; φ̂, Ŵ ∗(·)) ≤ op(1)

can be established in a similar fashion and the statement of the lemma follows. �

Lemma B 3 Suppose Assumption 3 is satisfied. Denote S̄M,0(q) = S̄(q) and S̄M,k(q) = MS,kS̄M,k−1(q)

for k = 1, . . . , 4. Finally, let S̃(q) = S̄M,4(q)MS,5. Suppose that qT is a converging sequence.

Then, there exists a subsequence qT ′ and index sets Jk that are constant over T ′ such that for all

k = 0, 1, ..., 5, (i)
∥∥∥S̄M,k

j (qT ′)
∥∥∥ > 0 if and only if j ∈ Jk and (ii) S̄M,k

j (qT ′)∥∥∥S̄M,k
j (qT ′)

∥∥∥

j∈Jk

−→
[
S̄M,k
j,∗

]
j∈Jk

,
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where
[
S̄M,k
j,∗

]
j∈Jk

has full row rank.

Proof of Lemma B 3: Part (i): Since the singularity of S̄M,k (qT ) is caused only by zero rows, we

can choose a subsequence of {T} such that the rank of S̄M,k (qT ) is the same along the subsequence.

Then, we can choose a further subsequence such that the index of the nonzero rows are the same.

We set this subsubsequence as {T ′′}, and the index set contains nonzero rows along this sequence

as Jk.

Part (ii): Along the subsequence chosen in Part (i),
S̄M,kj (qT )

‖S̄M,kj (qT )‖
is well defined for all j ∈ Jk,

k = 0, ..., 5. Since

{
S̄M,kj (qT ′′ )

‖S̄M,kj (qT ′′ )‖

}
⊂ Sm, the unit sphere in Rm, which is a compact set, we can

choose a further subsequence, denoted by {T ′} such that

S̄M,k
j (qT ′)∥∥∥S̄M,k
j (qT ′)

∥∥∥ −→ S̄M,k
j,∗ .

For the required result in Part (ii), we show that the row vectors S̄M,k
j,∗ over j ∈ Jk are linearly

independent for k = 0, ..., 5. In what follows we show this required result for the cases k =

0, 1, 2. The cases of k = 3, 4 follow immediately from the case k = 2 because J2 = J3 ⊃ J4 and{
S̄M,2
j,∗ : j ∈ J2

}
=
{
S̄M,3
j,∗ : j ∈ J3

}
⊃
{
S̄M,4
j,∗ : j ∈ J4

}
by the definition of the MS,3 and MS,4.

The case of k = 5 follows because MS,5 deletes only the zero columns.

Before we start the proof, notice that since MS,1 is a full rank diagonal matrix, MS,2 is the

quasi-lower triagular structure of MS,2 with full rank, and both MS,1 and MS,2 do not depend on

q, we have J0 = J1 = J2.

Case k = 0: First notice that the row vectors in
{
S̄j(qT ) : j ∈ J0

}
are orthogonal to each other

and so are the row vectors in
{
S̄M,0
j,∗ : j ∈ J0

}
. Therefore, the row vectors in

{
S̄M,0
j,∗ : j ∈ J0

}
are

linearly independent.

Case k = 1: Notice that MS,1 is a full rank diagonal matrix that does not depend on qT . Therefore,
...

S̄M,1
j,∗
...

 =


...[

MS,1S̄M,0
∗
]
j

...

 has full row rank, and we have the required result for the case

k = 1.

Case k = 2: Similarly, MS,1 is a full rank matrix that does not depend on qT , it follows that
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...

S̄M,2
j,∗
...

 =


...[

MS,2S̄M,1
∗
]
j

...

 has full row rank, and we have the required result for the case

k = 2. �

Lemma B 4 Suppose Assumption 3 is satisfied. For a converging sequence {qT } such that V (qT )

is constant and the rank of S(qT ) equals to l for all T , there exists a subsequence {T ′} ⊆ {T} such

that the matrix defined as

lim
T


S1(qT ′ )
‖S1(qT ′ )‖

...
Sl(qT ′ )
‖Sl(qT ′ )‖


has full row rank l.

Proof of Lemma B 4: Along the sequence qT , V (qT ) is a constant matrix such that each row of

V (qT ) has only one nonzero element, which is one. Choose the subsequence {T ′} in Lemma B 3.

Then, [
Sj(qT ′)

‖Sj(qT ′)‖

]
j=1,...,l

=

 S̃j(qT ′)∥∥∥S̃j(qT ′)∥∥∥

j∈J5

,

where J5 is defined in Lemma B 3. The required result follows by Lemma B 3. �

Lemma B 5 Suppose Assumptions 1 to 3 are satisfied. For a converging sequence {φT , θT , qT }

that satisfies the rank condition l(qT ) = l for all T , there exists a subsequence {T ′′} ⊆ {T}

[D−1/2(qT ′′)S(qT ′′)L(φT ′′)]
′ −→ A

Ω(qT ′′) −→ A′A,

where A is a full rank matrix.

Proof of Lemma B 5: For notational convenience we denote Λ(φT ) = ΛT and L(φT ) = LT .

Consider the spectral decomposition ΛT = UTdiag(λ1,T , . . . , λm,T )U ′T . Since ΛT > Λmin > 0, the

smallest eigenvalue λmin,T > δ > 0. Then,

ΣT = S(qT )UTdiag (λ1,T , . . . , λm,T )U ′TS
′(qT )
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and the diagonal elements of ΣT are given by

Djj(qT ) = λj,TSj(qT )(UTU
′
T )S′j(qT ) = λj,T ‖Sj(qT )‖2 > 0 ∀j, T.

Now we can express

D−1/2(qT )S(qT )LT = diag
(
λ
−1/2
1,T , . . . , λ

−1/2
l,T

)
S1(qT )
‖S1(qT )‖

...
Sl(qT )
‖Sl(qT )‖

 .
Since λ

−1/2
j,T > 0 for all j and Sj(qT )/‖Sj(qT )‖ exists on the unit hypersphere there exists a subse-

quence {T ′} such that

[D−1/2(qT ′)S(qT ′)L(φT ′)]
′ −→ A.

According to Lemma B 4, we can construct a further subsequence {T ′′} along which the matrix
S1(qT ′′ )
‖S1(qT ′′ )‖

...
Sl(qT ′′ )
‖Sl(qT ′′ )‖


has full row rank. Since the limit of the matrix diag

(
λ
−1/2
1,T , . . . , λ

−1/2
l,T

)
is full rank, the limit

matrices A and A′A are also full rank. �

Lemma B 6 If CSθ,q(2) in (32) is a valid 1 − τ confidence set, then CSθ(2) in (33) is a valid 1 − τ

confidence set.

Proof of Lemma B 6: The lemma follows since (θ, q) ∈ CSθ,q(2) if and only if

Mθθ ≥ 0 and G(θ, q; φ̂, Ŵ ∗) ≤ c(2)(q),

where ‖q‖ = 1. Thus,

Mθθ ≥ 0 and min
q̃=‖1‖

[
G(θ, q̃; φ̂, Ŵ ∗)− c(2)(q̃)

]
≤ 0

and therefore θ ∈ CSθ(2). In turn,

1− τ ≤ lim inf
T

inf
φ∈Φ

inf
θ∈Θ(φ)

inf
q∈Q(θ,φ)

Pφ

{
(θ, q) ∈ CSθ,q(2)

}
≤ lim inf

T
inf
φ∈Φ

inf
θ∈Θ(φ)

Pφ

{
θ ∈ CSθ(2)

}
. �



Moon, Schorfheide, Granziera, and Lee: Online Technical Appendix O-App.12

Lemma B 7 Suppose Assumptions 1 to 3 are satisfied. Then under Case (i) considered in the

proof of Theorem 2, the contribution of the moment conditions deemed to be nonbinding to the

objective function G
(
θT , qT ; φ̂,W ∗(·)

)
is asymptotically negligible:

G
(
θT , qT ; φ̂,W ∗(·)

)
= G1

(
θT , qT ; φ̂,W ∗(·)

)
+ op(1),

Proof of Lemma B 7: Recall the definition

G1

(
θT , qT ; φ̂,W ∗(·)

)
= min

ν1≥−
√
Tµ1,T

∥∥∥S1,T

√
T (φ̂− φT )−Mν1ν1

∥∥∥2

Σ−1
11,T

= min
ν1≥−

√
TD
−1/2
R,1,Tµ1,T

∥∥∥D−1/2
1,T S1,TLTL

−1
T

√
T (φ̂− φT )−Mν1ν1

∥∥∥2

Ω−1
11,T

,

where D1,T = diag(Dθ,T , DR,1,T ). Now define h1,T =
√
TD

−1/2
R,1,Tµ1,T and ζT = L−1

T

√
T (φ̂ − φT ).

Thus, we can write

G1

(
θT , qT ; φ̂,W ∗(·)

)
= min

ν1≥−h1,T

∥∥∥D−1/2
1,T S1,TLT ζT −Mν1ν1

∥∥∥2

Ω−1
11,T

and define

ν∗1,T = argminν1≥−h1,T

∥∥∥D−1/2
1,T S1,TLT ζT −Mν1ν1

∥∥∥2

Ω−1
11,T

.

Using the definitions h2,T =
√
TD

−1/2
R,2,Tµ2,T and hT = [h1,T , h2,T ]′, we can write

G
(
θT , qT ; φ̂,W ∗(·)

)
= min

ν≥−hT

∥∥∥D−1/2
T STLT ζT −Mνν

∥∥∥2

Ω−1
T

.

The G(·) function can be decomposed as follows:

G
(
θT , qT ; φ̂,W ∗(·)

)
= G1

(
θT , qT ; φ̂,W ∗(·)

)
+ min
ν2≥−h2,T

∥∥∥∥(D−1/2
2,T S2,TLT − Ω21,TΩ−1

11,TD
−1/2
1,T S1,TLT

)
ζT

−
(
ν2 − Ω21,TΩ−1

11,TMν1ν
∗
1,T

)∥∥∥∥2

Ω−1
2.11,T

,

where Ω2.11,T = Ω22,T − Ω21,TΩ−1
11,TΩ12,T . Now denote

ζ∗T =
(
D
−1/2
2,T S2,TLT − Ω21,TΩ−1

11,TD
−1/2
1,T S1,TLT

)
ζT + Ω21,TΩ−1

11,TMν1ν
∗
1,T .

For any η > 0 it follows that

P
{∣∣∣G(θT , qT ; φ̂,W ∗(·)

)
−G1

(
θT , qT ; φ̂,W ∗(·)

)∣∣∣ ≤ η} ≥ P{ζ∗T ≥ −h2,T }.
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In the remainder of the proof we will show that lim infT P{ζ∗T ≥ −h2,T } ≥ 1 − ε for any ε > 0,

which implies the desired result.

We proceed by showing that ν∗1,T is stochastically bounded. Notice that

∥∥D−1/2
1,T S1,TLT ζT

∥∥ ≤ ‖D−1/2
1,T S1,TLT ‖ ·

∥∥ζT∥∥ = O(1)Op(1) = Op(1).

Since our subsequence is constructed such that ΩT −→ A′A > 0 and ΩT is a sequence of correlation

matrices, we deduce that

ν∗1,T = Op(1). (B.6)

In turn, Ω21,TΩ−1
11,TMν1ν

∗
1,T = Op(1). Now consider∥∥∥(D−1/2

2,T S2,TLT − Ω21,TΩ−1
11,TD

−1/2
1,T S1,TLT

)
ζT

∥∥∥ (B.7)

≤
(∥∥D−1/2

2,T S2,TLT
∥∥+ ‖Ω21,T ‖ ·

∥∥Ω−1
11,T

∥∥ · ∥∥D−1/2
1,T S1,TLT

∥∥) ‖ζT ‖
= O(1)Op(1) = Op(1)

Combining the Op(1) results in B.6 and (B.7), we can deduce that

ζ∗T = Op(1).

Thus, for any ε > 0, there exists a constant M > 0 such that

lim inf
T

P
{
ζ∗T ∈ [−M, M ]r22

}
≥ 1− ε.

Here [−M, M ]r22 denotes the Cartesian power of the interval [−M, M ]. Since h2,T −→ ∞ there

exists a T ∗ such that

P{ζ∗T ≥ −h2,T } ≥ P {ζ∗T ∈ [−M, M ]r22} , for all T > T ∗,

which completes the proof. �

Lemma B 8 Suppose Assumptions 1 to 3 are satisfied. Consider the Case (i) in the proof of

Theorem 2. Along the (φT , θT , qT ) sequence, the critical value based on the estimated number of

potentially binding moment conditions is more conservative in the following sense:

c
(1)
k(qT )+r̂21(qT ) ≥ c

(1)
k+r21

.

in probability approaching one.



Moon, Schorfheide, Granziera, and Lee: Online Technical Appendix O-App.14

Proof of Lemma B 8: From Section 4.3 recall the definition

r̂21(qT ) =

r2∑
j=1

I
{
ξ̂j,T (qT ) ≤ κT

}
, where ξ̂j,T (qT ) = D̂

−1/2
jj,R (qT )

√
Tµj(qT , φ̂).

Then,

κ−1
T ξ̂j,T (qT ) = κ−1

T D
−1/2
jj,R (qT )

√
Tµj(qT , φT )

+
[
D̂
−1/2
jj,R (qT )D

1/2
jj,R(qT )− 1

]
κ−1
T D

−1/2
jj,R (qT )

√
Tµj(qT , φT )

+κ−1
T D̂

−1/2
jj,R (qT )

√
T [µj(qT , φ̂)− µj(qT , φT )]

= I + II × I + III, say.

Term I: by definition we obtain

I = κ−1
T D

−1/2
jj,R (qT )

√
Tµj(qT , φT ) −→ πj

Term II: can be bounded as follows:

∣∣∣D̂−1
jj,R(qT )Djj,R(qT )− 1

∣∣∣ =

∣∣∣Djj,R(qT )− D̂jj,R(qT )
∣∣∣

D̂jj,R(qT )

≤

∥∥∥Λ̂− Λ(φT )
∥∥∥

λmin(Λ̂)
= op(1).

The op(1) statement follows because ‖Λ̂− Λ(φT )‖ p−→ 0 and Λ(φT ) > 0.

Term III: Let Sj,R(qT ) be the jth row of SR(qT ). Then, since∣∣∣D̂−1/2
jj,R (qT )

√
T (µj(qT , φ̂)− µj(qT , φT ))

∣∣∣
=

∣∣∣∣∣∣ Sj,R(qT )L̂∥∥∥Sj,R(qT )L̂
∥∥∥ L̂−1

√
T (φ̂− φT )

∣∣∣∣∣∣ ≤
∥∥∥L̂−1

√
T (φ̂− φT )

∥∥∥ = Op(1),

we have

III = Op(κ
−1
T ) = op(1).

Combining the results, we deduce that if πj <∞,

κ−1
T ξ̂j,T (qT ) = κ−1

T D̂
−1/2
jj,R (qT )µj(qT , φ̂) −→p πj . (B.8)

In particular, if πj = 0, then

I
{
ξ̂j,T (qT ) ≤ κT

}
p−→ 1,
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which leads to the desired result:

plimT r̂21(qT ) = plimT

r2∑
j=1

I
{
ξ̂j,T (qT ) ≤ κT

}
≥

r2∑
j=1

1 {πj = 0} = r21. �

Lemma B 9 Suppose Assumptions 1 to 3 are satisfied. Consider the Case (i) in the proof of

Theorem 2. Along the {T} sequence, ĉ∗(22)(qT )
p−→ c∗(22). The two critical values are defined in (53)

and (54).

Proof of Lemma B 9: The proof proceeds in three steps. First, show(
ξ̂T , Ω̂(qT )

)
p−→ (π,A′A) and ϕ̂∗T (qT )

p−→ π∗.

Second, show

P

{
min

v≥−ϕ̂∗T (qT )

∥∥∥(D̂−1/2(qT )S(qT )L̂)Zm −Mvv
∥∥∥2

Ω̂−1(qT )
≤ x

}
p−→ P

{
min
v≥−π∗

{∥∥A′Zm −Mvv
∥∥2

(A′A)−1

}
≤ x

}
.

Third, deduce ĉ∗(22)(qT )
p−→ c∗(22), as required for Part (b).

Proof of Step 1: By the choice of the sequence {T} and the limit result in (B.8) and Λ̂
p−→ Λ,(

ξ̂T (qT ), Ω̂(qT )
)

p−→ (π,A′A).

Notice that if πj = 0, then ξ̂T (qT ) < κT and ϕ̂∗j,T (qT ) = ϕ̂j,T (qT ) = 0 = π∗j with probability one.

On the other hand, if πj > 0, then ϕ̂∗j,T (qT ) =∞ = π∗j .

Proof of Step 2: The desired result can be obtained by the same argument used in the proof of

(S1.17) of Andrews and Soares (2010b).

Proof of Step 3: It is immediate from Step 2 and the fact that the distribution of

min
v≥−π∗

{∥∥A′Zm −Mvv
∥∥2

(A′A)−1

}
is continuous if k ≥ 1, and continuous near the (1− τ)′s quantile, where τ < 1/2, if k = 0. �
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C Derivations for Bivariate VAR(1)

Consider a bivariate (n = 2) VAR(1) of the form yt = Φ1yt−1 + ut and focus on the response at

horizon h = 1, which can be constructed from Rv1 = ΦΣtr. Hence, let φ = vec((Rv1)′). The object of

interest is θ = ∂y1,t+1/∂ε1,t, and we impose the sign restriction that both θ as well as ∂y2,t+1/∂ε1,t

are nonnegative. Let q = [q1, q2]′. Then

S̃θ(q) =
[
q1 q2 0 0

]
S̃R(q) =

[
0 0 q1 q2

]
.

Notice that in this example S̃(q) = [S̃′θ(q), S̃
′
R(q)]′ is of full row rank for all values of q. Thus, we

can set V (q) = I, replace S̃(q) by S(q), and write the objective function as

Q
(
θ;φ,W (·)

)
= min
‖q‖=1

G
(
θ, q;φ,W (·)

)
where

G
(
θ, q;φ,W (·)

)
= min

µ≥0

∥∥∥∥S(q)φ−
(
θ

µ

)∥∥∥∥2

W

.

An analytical expression for G
(
θ, q;φ,W (·)

)
can be obtained as follows. Decompose

W =

 W11 W12

W21 W22

 =

 1 W12W
−1
22

0 1

 W11.22 0

0 W22

 1 0

W−1
22 W21 1

 ,
where

W11.22 = W11 −W12W
−1
22 W21.

Thus, we can write∥∥∥∥S(q)φ−
(
θ

µ

)∥∥∥∥2

W

= W11.22(θ − Sθφ)2 +W22

(
µ−

[
SRφ−W12W

−1
22 (θ − Sθφ)

])2

.

Now let

µ̂(θ, q) = argminµ≥0

∥∥∥∥S(q)φ−
(
θ

µ

)∥∥∥∥2

W

=

 SRφ−W12W
−1
22 (θ − Sθφ) if SRφ−W12W

−1
22 (θ − Sθφ) ≥ 0

0 otherwise
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Thus,

G(θ, q;φ,W )

= W11.22(θ − Sθφ)2

+


0 if SRφ−W12W

−1
22 (θ − Sθφ) ≥ 0

W22

(
SRφ−W12W

−1
22 (θ − Sθφ)

)2

otherwise

Let Λ̂ be the bootstrap estimator of the covariance matrix of
√
T (φ̂ − φ). The weight matrix

Ŵ ∗T is given by Ŵ ∗(q) = T (S(q)Λ̂S′(q))−1, and the unit length vector q can be parameterized in

spherical coordinates as q(α) = [cosα, sinα]′. Thus the objective function for the construction of

the confidence set is given by

Q
(
θ; φ̂, Ŵ ∗(·)

)
= min

α∈[−π,π]
G
(
θ, q(α); φ̂, Ŵ ∗(·)

)
.


