
APPENDIX I.  Data Appendix 

 

B. US Patent Awards Data. 

 

a. Choice of US patent awards as outcome variable over the WIPO patent counts. 

There are two main patent measures available in the data I gathered.  One is the 

annual patent application data of each country from 1975-1997, published in the Industrial 

Property Statistics by World Intellectual Property Organization (WIPO).  The second is the 

annual data of the United States on patents awarded listed by industry and by country of 

origin from 1978-1999, collected in a “Patenting Trends in the US, 1999” CD-ROM 

published by the United States Patent and Trademark Office (USPTO).  Both sources list 

data by the innovator's country of residence. 

The problem with the WIPO data is that it could be difficult to control for the 

idiosyncratic patent system differences in different countries.  The number of patent 

applications may not be comparable across countries.  In addition, the number of domestic 

patent applications in a country could be a direct outcome of the domestic patent system, 

instead of the indirect outcome of innovation activities.  For example, a country without a 

domestic patent system will naturally have no domestic patent applications.  Non-

informative changes in the patent counts also occur in the cases of patent law modifications. 

For instance, when Japan’s patent laws changed from one-claim per patent application to 

allowing multi-claims in 1988, there was a significant drop in the number of patent 

applications that does not necessarily reflect a decrease in innovation activity.  

The “Patenting Trends in the US” CD-ROM lists patent awards to innovators from 

ninety-three countries in total, covering the years 1978-1999. The data are listed by industry, 

using the Standard Industrial Classification (SIC) codes. The patents for drug and medicine 

are classified according to the SIC code 283. The US observation is dropped mainly because 

it has extremely high patent counts compared to any other countries. This is partly 

attributable to the fact that US patents constitute domestic patenting for US innovators. 

There are therefore ninety-two countries in total in the sample, and all these countries have 



some propensity to file patents in the US, as reflected by a non-zero count of total US patent 

awards over all the years. 

 The data used are U.S. utility patents granted during the period 1963 to 1999 (with 

aggregated patent counts for 1963-1977, and year-by-year listings for patents since 1978).  

This CD-ROM lists patent grants by year of grant and by state or country of origin, for each 

product field.  Patent origin is based on the residence, at the time of grant, of the first-named 

inventor listed on the patent. Patent awards may introduce lags in processing times, making 

the exact corresponding year of innovative activity unpredictable. Patent data listed by 

application dates are also extracted from the NBER patent database (Hall, et. al., 2001), and 

the citation-weighted patent counts are used as alternative innovation estimates. 

Pharmaceutical patent applications are normally filed near the end of pre-clinical work and 

issued in the clinical testing stage (Scherer & Weisburst, 1995).  

 

 b. Concerns using the US patent awards as innovation measures. 

One concern about the use of US patent awards is that there may be tax evasion 

incentives for some Multinational Enterprises to file from different countries.  Such MNE 

patent application policies may contaminate the patent awards data. This MNE patenting 

complication does not influence my analyses, because the data are listed according to the 

country of residence of inventor and not that of assignees1. Suppose a US subsidiary located 

in China carries out innovation in pharmaceuticals: the patent award will always be listed 

under the entry of China as the country of origin. Only the “assignee” of the patent will 

differ, being either the Chinese subsidiary or the US headquarters, depending on the MNE’s 

preference. 

It would be interesting to test the different changes in the MNE’s innovations in a 

country that changed patent laws, and the changes in the national corporations. 

Unfortunately, such disaggregate data are not available for the US patent awards or the R&D 

expenditure variable. This does not hurt the main analyses of the study, however, as any 

patent filings of the residents reflect the domestic innovation level. If the innovator is a 

                                                           
1 Assignee refers to the person(s) or corporate to whom all or limited rights under a patent are legally 
transferred.  



national, then producer surplus goes to the country. If the innovator is a foreigner, typically 

an MNE subsidiary, then the fact that the innovation takes place in the country suggests that 

the research laboratory is in the country, and there are potential knowledge spillovers to 

benefit the country. Similarly, R&D expenditure include R&D activities of both national 

companies and MNE and reflect domestic innovative incentives. 

One may also question the validity of estimating innovation with the US patent 

awards considering innovators may simply change the location of patenting to domestic 

once a national patent law is in place. The US patent counts would then not capture these 

additional innovations. This may not be important given that US is the largest market in the 

World, and the marginal cost of filing an additional patent application is mitigated with the 

various international treaties since the 1950s (Notably the Patent Cooperative Treaty among 

the WIPO members in 1973). 

There is another concern of the potential bias induced by the data. If there are no 

IPR agreements between a country and the United States, there might be little patenting in 

the US, and once such an arrangement is introduced, companies that were already innovating 

will start patenting their innovations in the US. This would lead to an increase in the number 

of US patent awards, but would not represent that patenting law stimulate domestic 

innovation. To address the validity of using the US patents estimate, I did a correlation plot 

between the R&D expenditure and the US patent awards counts for the countries where 

both data are available. I found that the two variables are highly correlated, with correlation 

coefficient equal to .8. 

Although the US patent awards data act as a good estimate for innovation, the value 

of an innovation is not fully measured by the patent counts, because of the existence of 

asymmetric information between the innovators (patent applicants) and the patent offices 

(Cornelli and Schankerman 1999, and Scotchmer 1999).  The citation weights could serve to 

overcome such problems (Hall, et. al., 2001). In light of this literature, I further research by 

bringing citation weights into the outcome variable, using the NBER patent database. It 

contains the number of citations made to each patent granted by the US patent office from 

1960 to 2002. Following Trajtenberg (1990), I calculate the citation weighted patent counts 



by summing (1+ci)0.6 over all the pharmaceutical patents awarded to a country in a particular 

year, where ci is the citation made to patent i.  In addition, I generated a variable to capture 

the main innovations by counting up the citation weighted patents whose citations are half 

standard deviation above the mean number of citations received by a patent. The important 

innovations are patented in the US regardless of the innovator’s domestic patent legislation 

conditions. The use of this new variable as the response variable can therefore help to tease 

out the national patent effects on innovation instead of the effects on patenting in the US, a 

concern discussed in the previous paragraph.  I have also used a country’s pharmaceutical 

exports to the US as an alternative estimate for innovation. The coefficients on the patent 

implementation dummy variable are statistically insignificant, and in fact negative. The 

interaction variable between PAT and economic freedom index takes on statistically 

significant positive coefficients. 

 

C. Imputation of the R&D data 

The Analytical Business Enterprise Research and Development (ANBERD) database 

provides R&D expenditure data listed by industry for sixteen of the largest OECD R&D 

performing countries: Australia, Belgium, Canada, Denmark, Finland, France, West 

Germany, Germany, Ireland, Italy, Japan, the Netherlands, Norway, Spain, Sweden, the 

United Kingdom and the United States. Industrial research & development (R&D) is defined 

as R&D activities carried out in the business enterprise sector, regardless of the origin of 

funding. While the government and higher education sectors also carry out R&D activities, 

industrial R&D remains the most closely linked to the creation of new products. To make 

the data comparable across nations over time, the ANBERD estimates are measured in 

current PPP$. In addition, I find R&D data for twenty-three OECD countries in the OECD 

Health Care CD-ROM, which includes the fifteen countries (except East Germany) found in 

the ANBERD. The original data is listed in national currency units. To merge this data with 

the ANBERD data, I converted the R&D data into PPP dollars.  This was done by first 

converting the R&D data from national currency measure to US dollars using the current 

year market exchange rate published in the IFS, and then dividing the R&D at current year 



US dollars by the PPP based on consumer prices published in the Penn World Table (PWT 

5.6). Because the PPP index is only available from 1978-1992, the values for years after 1992 

were computed by using the consumer price index published in the IFS. This study uses the 

equation below to impute later year PPP values: PPPt+1 = PPP t* (CPI t+1 / CPI t ), where t 

denotes year t. After this conversion, the data obtained from the Health Care CD-ROM is 

almost equal to that of the ANBERD database for the fifteen countries whose data are 

collected in both databases. The minimum value of the R&D spending among these fifteen 

countries is 1.79 million PPP$, and the maximum difference in values between R&D data 

from the two databases is only 91.3 PPP$. 

A more crude measure of innovation than R&D expenditure may be number of 

R&D personnel, including scientists, engineers, technicians and any other employees 

involved in R&D. This variable is even less available than R&D expenditure: it is only 

observed for ten OECD countries from 1987-1996, with data missing in certain years. This 

variable is also used in one of the regression specifications to test robustness of results. 

Total R&D expenditure at the country level comes from the World Development 

Indicator database. Fundamental and applied research and experimental development work 

leading to new devices, products, or processes are included in the expenditure account. 

There are many missing data points, especially prior to 1990.  I use simple interpolation to 

fill in missing data in the cases where I can, since the total R&D time series tends to be 

smooth. I specify the model below to impute an industry level R&D for the non-OECD 

countries: log(R&Dj) = β0 +β1*log(TOTRDj) + β2*log(GNPj) + 

β3*log(outputj)+β4*log(employmentj ) + εj. where R&Dj is the pharmaceutical R&D of 

country j, TOTRDj is the country-level R&D expenditure, outputj and employmentj refer to 

those in the pharmaceutical industry of country j, and εj denotes the residual. 

My rationale for this model starts from the conjecture that industry R&D as a share 

of industry output in country j can be predicted by the total R&D as a share of the GNP of 

the country j. (GNP is used instead of GDP because the country level R&D is measured as 

the percentage of GNP in the WDI database.)  The share of industry R&D certainly cannot 

be predicted perfectly by the total R&D share, because R&D intensity and productivity in 



the pharmaceutical industry differ from country to country.  This provides the basis for 

bringing more industry-level variables into the model. Danzon (1997) points out that R&D is 

risky and its average cost is high in truly innovative drugs. Risky innovation increases the 

time and capital costs of developing drugs, which in turn raises input costs and employment 

level. The model specified above yields an R2 = .99 for regressions on the twenty-three 

OECD countries in all the five periods. The US pharmaceutical company foreign affiliate 

counts may also help to predict the pharmaceutical R&D, but I choose not to include this 

variable, because the function of US FDI in the OECD countries can be very different from 

that in other countries. The imputation gives fifty pharmaceutical R&D observations. 

The findings associated with the imputed R&D may well be capturing the change of 

these imputing components due to national patent legislation. My original rationale for using 

this variable includes testing the change in pharmaceutical industry-level variables after 

national patenting. However, total domestic R&D tends to have a substantial weight in 

predicting pharmaceutical R&D compared to the other variables in the imputation model. 

Regression runs using this imputed pharmaceutical R&D may potentially be testing the 

response of total R&D to national patent law, and lead to insignificant results. However, it is 

worth noting that regression on imputed R&D only constitutes a small part of the analyses, 

and other regression results overwhelmingly show similar insignificant coefficients on the 

patent indicators. 

 

 

 

 

 

 

 

 

 

 



APPENDIX  II. Mahalanobis Distance Calculations 

The matching distance follows the standard Mahalanobis metric calculation, and 

takes the form (√( (Xa - Xb)'(invcov)(Xa - Xb) ) ), where Xa and Xb denote the vectors of 

covariates for countries A and B respectively, and invcov denotes the inverse of the pooled 

variance-covariance matrix of the covariates that are observed for the country that switched 

policy. This pooled variance-covariance matrix is calculated in a fashion similar to that in a 

multivariate analysis of variance (MANOVA)2. The intuition of the Mahalanobis distance 

formula can be explained in the following way. Starting with the simple case of a two-

dimensional coordinate system, the Pythagorean theorem implies that the distance between 

any two points is equal to the square root of (x1-y1) 2 + (x2-y2) 2. Further geometry extends 

this result to the n-dimensional space: d(A, B) = sqrt [(x1-y1)2+(x2-y2)2 +…+(xn-yn)2]. 

Simple Euclidean distance, motivated by the Pythagorean theorem, is unsatisfactory for our 

statistical purposes for two reasons. First, each coordinate contributes equally to the 

calculation of Euclidean distance. Second, the coordinates are assumed to be orthogonal to 

each other, which does not apply to practical cases where the covariates are correlated with 

each other. The inclusion of the VC matrix in the Mahalanobis formula adjusts for the above 

two factors (Johnson&Wichern 1992). The inclusion of the VC matrix also gives rise to another 

advantage of Mahalanobis matching -- it matches the interactions of the country covariates 

automatically, even though these interaction variables are not generated and included as 

additional matching covariates (Rubin 1973). Therefore, Mahalanobis matching results in a 

composite score for all the covariates. 

One limitation of the Mahalanobis matching method is that it is not designed to 

match categorical variables, such as the legal families and price control variables used in this 

study. Inclusion of these categorical variables most likely complicates the VC calculations 

and makes the matching inaccurate. To overcome this difficulty and still include the 

important discrete variables in matching, I use the propensity score of these categorical 

variables as a summary statistic, which is continuous, to be one of the matching variables. 

                                                           
2 In calculating the pooled variance-covariance (henceforth abbreviated as VC) matrix for the control 
group and the group of countries that switched policies, the two groups are centered around their 
own means respectively. In cases when the switched group is so small that the VC matrix is singular 
(when the degree of freedom is 0 or negative), then only the VC matrix of the control group is used. 
The final formula for calculating the pooled VC is: ((DFt -1)*VCt + (DFc-1)*VCc)/(DFt + DFc - 2), 
where DF stands for degree of freedom, and subscript t refers to the treatment group, and c refers to the 
control group. 



That is, I calculate the implied probability of having national pharmaceutical patent law (the 

estimated propensity score), which is simply the predicted value from the logistic regression 

of the patent implementation indicator on the non-continuous variables. This propensity 

score can be perceived as a one-dimensional composite score of the discrete variables. This 

new variable—the propensity score—is then included as one of the matching covariates, 

together with all the other continuous variables. 

Missing data prevent completely matching all the covariates in one pass, because 

different observations are missing different variables, and this complicates the calculation of 

the variance-covariance matrix used in the Mahalanobis distance. Therefore, I modify this 

method by matching in two passes. In the first pass I use only the country level variables that 

are observed for almost all the sampling countries. I group the observations according to 

their missing patterns in these covariates before matching. This first pass matching orders 

the countries in the two control groups according to their Mahalanobis distances to each of 

the new-patent countries. I keep a list of countries that are the closest or the next-closest 

matches to each of the new-patent countries, together with the new-patent countries, to 

form a reduced sample of countries. There are eighteen countries in this reduced sample that 

have missing data in industry level covariates. I then search for data for these countries by 

looking through their National Statistical Abstracts and the UN Industrial Statistics 

Yearbook.  I was able to fill in most of the missing values so that the reduced sample is ready 

for the second matching pass. There are still a few countries in this reduced sample whose 

industry data are not found, and these observations have to be dropped out of the second 

pass of matching.  In this second pass, I pair up the countries using all the matching 

covariates.  

To test the robustness of the matching algorithm, I tried several specifications of 

matching covariates. For each specification, the key variables (such as GDP per capita PPP, 

pharmaceutical industry employment and exports to the US) are included with different 

combinations of other control variables. Several rounds of matching using different 

combinations of matching variables are performed until the balances of covariates are the 

best. I checked all the variable values for the matched pairs, and the matching seems to make 

practical sense. 



APPENDIX III. Robustness Results 
 
a. Robustness Checks on the R&D outcome  
 

Instead of using R&D in the same year as the domestic patent implementation as a 

basis for comparison, lagged year R&D (both one-year and two-year) was used in a series of 

robustness regression tests. There were no statistically significant coefficients on the “PAT” 

or “PATMOD”. 

Although the majority of regression results provided no evidence to reject the null 

hypothesis that national patent law has no direct effect on R&D incentives, there may still be 

instances where some individual countries had increases in R&D.  However, these increases 

may have been masked by the insignificant results of all the other countries within the 

sample.  In order to detect such instances, I plotted the residuals against the predicted values 

for each regression run, and found no abnormal observations in most cases.  The only 

exception has in the regression using one-period forward R&D expenditure for the OECD 

countries. There are two countries with high positive residuals—Canada and Norway, while 

a large negative residual is attributable to Turkey. This finding involving Canada 

corroborates that of Pazderka (1999) and McFetridge (1996), highlighting Canada’s boost in 

R&D following its 1987 Act to abolish compulsory licensing for pharmaceuticals3. Norway, 

on the other hand, increased its domestic R&D from $9.92 million in the period of 1983-5 

to $32.10 million in the next period (1986-90), although it did not have pharmaceutical 

product patents until 1992. A closer reading of the data reveals that R&D increased in 

Norway at an annual growth rate of approximately 30% after 1986, peaking in 1993, to 

finally plateau and decline in the late 1990s. It could be that Norwegian domestic innovators 

increased their R&D activities in earlier years in anticipation of the upcoming patent law.  

However, the implication that this response started six years ahead of the actual 

implementation of the law is unpersuasive. Given that the increase in Canadian R&D is in a 

large part due to the political commitment of the PMAC, this observation alone does not 

                                                           
3 My data divulge an increase from an average annual value of $118.70 million in the period of 1986-90 to 
$285.90 million in the period of 1991-5. Most of the increase in Canadian R&D occurred after 1988; its 
domestic average R&D during the period of 1983-5 was $54.04. 



provide enough evidence to reject the null hypothesis in the one-period forward R&D 

regression. 

Regression models are also applied to the R&D scientists, technicians and engineers 

(RSE). This variable is only observed for ten OECD countries, and the results for these 

countries corroborate those obtained in the regressions of R&D expenditures (Table 12-17). 

Because there are very few observations, coefficients are only estimated when using period 

comparisons of RSE. My attempt to compare RSE changes for one-year and two-year 

forward fails to yield estimates on the patent implementation indicator.  

 

b. Other Robustness Checks   

Besides the already-mentioned robustness checks, random effects regression models 

are performed instead of fixed-effects. In addition, the constructed “innovative potential” 

variable may be capturing the difference between patent awards in pharmaceuticals and 

those in other industries due to the implementation of pharmaceutical patent protection. 

Therefore, I carried out robustness regressions that did not include this control variable. The 

regression results have been consistent over all specifications. Once again, this robustness is 

partly attributed to the matching procedure.  The main finding in all cases is that 

implementation of national patent protection in the sampled countries only brings about 

statistically significant increases in the US patent awards to domestic innovators and in R&D 

expenditure, conditional on economic freedom and domestic development. 

 To test the overall importance of patent treatment on innovation, a propensity score 

“treat” is generated as a summary score of all the patent protection characteristics. I regress 

the patent implementation indicator variable on the process patent indicator variable, the 

interaction variables between the patent implementation indicator “PAT” and per capita 

GDP in PPP terms, between “PAT” and IPR score variable, between “PAT” and economic 

freedom, between “PAT” and education attainment, and between “PAT” and price control 

indicator. The variable “treat” is then the predicted outcome variable from this regression.  

Seemingly Unrelated Regression is then carried out regressing the US patent awards of 



various years on “treat” and a set of country covariates.  There are still no statistically 

significant coefficients on the “treat” variable (Table 7).   

 Previous literature also identified the likely importance of the inequality factor for 

countries’ innovative potentials. In particular, countries at the top income levels tend to 

dominate in innovation. In light of this, I generated a dummy variable “topPPP”, which 

takes on value 1 if a country’s log(GDPpcPPP) is one standard deviation above the sample 

mean, and 0 otherwise. The regression results including this variable are similar to those in 

the other specifications, and there is no statistically significant coefficient on this inequality 

indicator variable at the 10% level. 

Moreover, I have carried out sensitivity analyses on my regression models (testing 

the importance of each right-hand side variable in the regression by removing one variable at 

a time and check the coefficient changes in all other variables).  The regression applied to the 

sample after matching obtains results robust to various specifications. Neither the coefficient 

magnitudes nor significance levels experienced memorable changes. 
 


