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With growing emerging markets and globalization, counterfeiting has gained pervasiveness and presented

worldwide impacts. Using a unique panel dataset and a new model, this article aims at enhancing the under-

standing of brand management against counterfeits. Our model extends two important business analytic

tools, Hierarchical Bayesian (HB) and Random Changepoints models, to simultaneously take into account

the following important data features when studying firms’ responses to counterfeit entry: (1) Endogeneity

of counterfeit entry as well as the moderators of the entry effects, (2) Unobserved heterogeneity in both

magnitudes and timing of firm responses, (3) Discontinuous changes in response to counterfeit entry, and (4)

regime-switching moderating effects. The proposed methodology improves the estimation of firms’ strategies

with heterogeneous response times, and substantially increases the power to identify firm attributes that

moderate the competitive effects. We identify both a temporary negative short-term effect and a stable

positive long-term effect of counterfeit sales on the authentic prices. The finding of dynamic effects precisely

unifies two strands of I.O. theories on the pricing impacts of competition. Such dynamic effects were not

identified in a standard IV model that ignores heterogeneous changepoints. The proposed model allows us to

better identify what moderates the dynamic effects. Because our model extends the popular HB models to

allow for regime-switching moderating effects with unit-specific latent regime changepoints, it substantially

improves the power to detect moderating effects, some of which could not be detected in conventional HB

models. We account for the potential endogeneity of moderating variables through a latent instrumental

variables (LIV) approach. The improved estimation enhances our understanding of firms’ responses to coun-

terfeit entry in emerging markets. The hierarchical dynamic effect analysis reveals that (1) pre-entry product

quality moderates the short-term price competition effects; (2) brand popularity moderates the long-term

price increase effect, and (3) firms with more innovation, less diversification from infringed markets or more

human capital were faster in responding to and differentiating from counterfeits.
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1. Introduction

With the fast growth in emerging markets, consumption of branded products rapidly gain share

in these markets and subsequently in the world economy. Parallel to this trend is the increasing

presence of counterfeits. The Federal Bureau of Investigation reports that U.S. companies lose

$200-250 billion annually due to worldwide copyright, trademark, and trade-secret infringements.

The European Commission (EC) reckons that the value of counterfeiting as a percentage of world

trade is growing. Between 1990 and 1999, it doubled from 3.5 percent to 7 percent (Choate 2005). A

deep understanding of brand management in the face of counterfeiting in these emerging markets is

critical for academics and practitioners. The entry of counterfeiters can have two opposite impacts

on the authentic producers. On the one hand, their entry potentially exerts competitive pressure

on authentic firms. Authentic prices could also drop as a result of limit (predatory) pricing strategy

(Carlton and Perloff, 2005). On the other hand, their entry may lead to increases in authentic

prices due to the segmentation of price-sensitive and insensitive consumers in the market (Frank

and Salkever 1997), or due to authentic producers’ innovations and self-differentiation mechanics to

alleviate competition (Qian 2008). The former competitive effect is likely to take place immediately

upon entry, while the latter effect may arrive with some lags. This lag can differ from company to

company due to inherent firm heterogeneity in their ability to respond to market shakeups caused

by counterfeit entry.

Therefore, how much, in which direction, when and why authentic firms’ marketing norms (e.g.

prices) change in response to counterfeit entry are both interesting and pertinent questions to

address. It is also of substantial interest to identify drivers that explain the potential inter-firm

differences in their response behaviors. When studying these questions, it is worth noting several

important empirical identification challenges. First, counterfeit entry is unlikely to be exogenous.

Counterfeiters are more likely to infringe upon a brand if the authentic product is easier to imitate,

has a larger markup, or if the brand management is worse. Under such circumstances, counterfeit

entry will be correlated with authentic prices. However, a causal link cannot be inferred from this

correlation. The second challenge is discontinuous structural changes in model parameter values.

As noted above, it is natural for the authentic firms to take time to analyze the changing business

environment, design corresponding strategies, and implement them in practice. The stable long-

term effect follows only with some delay in time, which we refer to as response time. Such delay

in firm (or consumer) response behaviors has long been recognized (e.g., Kotler 1971, Robinson

1988, Bowman and Gatignon 1995). In these scenarios, the empirical model parameters capturing

the effect of a market change do not remain unchanged in that an authentic firm changes its state

underlying the marketing outcome at some changepoints. This phenomenon is likely to be more

salient in emerging markets with immature infrastructure from which our data come from: in these
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market environments, firms are more likely to adopt different short-term and long-term strategies

in the face of competitive shocks. Hence it is crucial to incorporate and identify any discontinu-

ous changes in firms’ response behaviors. The third challenge is the unobserved heterogeneity in

individual firms’ response magnitude and timing. In particular, it is often the case that authentic

firms respond to a market change with different response times (e.g., Robinson 1988, Bowman

and Gatignon 1995). Firms in emerging markets often have diverse background and hence exhibit

significant heterogeneous pattern and timing in their competitive strategies. It is important to

account for the heterogeneity in latent response timing in order to obtain accurate ascertainment

of counterfeit entry effects. The forth challenge is to account for two potentially important issues

in assessing drivers of heterogeneity in firms’ response behaviors: the potential regime-switching

moderating effects (i.e., moderating effects varies across regimes (sample periods) separated at

unknown unit-specific changepoints) and the potential endogeneity of moderating variables that

affect firms’ response behaviors. These issues are typically ignored in commonly-used Hierarchical

Bayesian (HB) models but can introduce substantial bias.

We propose here a hierarchical random-changepoints simultaneous equation model to address

these empirical challenges. Our framework builds on and extends the ideas from the following liter-

atures important for business analytics: random changepoints (RC) models for structural changes,

HB models for heterogeneity, and IV methods for endogeneity. In terms of the methodological

contribution, our modeling framework extends two popular/emerging business analytics tools (RC

and HB models) in the following important ways: (1) We extend the well-established random

changepoints model, an emerging business analytic tool, to allow for endogenous regressors, thereby

enabling automatic and cleaner assessment of discontinuous changes in response to endogenous

counterfeit entry; (2) Unlike the traditional HB model, our hierarchical changepoints model allows

the moderators of counterfeiting to have regime-varying moderating effects separated at latent

unit-specific regime changepoints, and consequently improves the power to detect moderators of

counterfeiting impacts; (3) Unlike the standard HB model, we apply the latent IV technique (Ebbes,

Wedel, Böckenholt, and Steerneman 2005, Zhang, Wedel and Pieters 2009) to account for the

potentially endogenous moderators of counterfeiting effects; (4) It extends the conventional HB

model to include latent response time, and consequently this new approach enables us to study

what affect firms’ response time to counterfeit entry, an important dimension in firms’ response

behavior; and (5) Our Bayesian approach provides a tractable and coherent framework to account

for all these issues. The new methodology enables better understanding of firms’ dynamic response

behaviors under heterogeneous response times, minimize bias in the entry effect estimates, and

substantially increase the power to identify firm attributes that moderate these effects. In obser-

vational studies such as ours, the above important issues (endogeneity, discontinuous structural
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changes, and unobserved heterogeneity) are frequently encountered, and therefore these extensions

have the potential to have wide implications.

Substantively, the benefits of our modeling approach enhance our understanding of counterfeiting

issues in emerging markets. First, the new modeling and testing approach are capable of depicting

a more complete picture of the impacts of counterfeits, and provide convincing statistical evidence

for the short-term negative and long-term positive pricing effects of counterfeit entry. 1 By allowing

for unobserved heterogeneity in firms’ latent response times and thus more effectively disentan-

gling these different stages of impacts using the proposed model, our analysis reveals dynamic and

stronger effects of counterfeit entry. The new finding on the dynamic effects precisely unify two

strands of I.O. theories on the pricing effects of competition. We further investigate drivers that can

explain the inter-firm differences in their response behaviors, an interesting topic not yet studied in

prior research. Using the improved dynamic effect estimates and other extensions of HB models as

described above, our analysis reveals several interesting findings. The hierarchical dynamic effect

analysis finds that the pre-entry authentic product quality moderates the short-term price compe-

tition effects of counterfeit entry and is helpful in alleviating the harmful impacts of counterfeit

entry. Furthermore, brand popularity moderates the long-term price increase effect, and firms that

were less popular pre-entry tend to have more price increase, consistent with the hypothesis that

counterfeits can serve as free-advertising for their authentic counterparts. Our hierarchical change-

point analysis shows that firms with more innovation, less diversification from infringed markets

or more human capital were faster in responding and differentiating from counterfeits.

2. Modeling Approach

In this section we develop the proposed methodology to study the effects of counterfeit entry and

sales on the authentic product prices using a dataset on the Chinese shoe industry. The panel

data consist of annual average prices, costs and sales for 31 authentic branded companies and their

counterfeits from the year 1993 to 2004 (Qian 2008). As a preliminary analysis, Figure 1 presents

the time plot of the average log deflated authentic high-end product prices. Specifically the figure

plots the regression coefficients on a set of dummies indicating the number of years relative to the

year of counterfeit entry with the log deflated authentic price as the response variable. The plot

suggests the presence of a discontinuous change in effects of counterfeit entry on authentic prices:

there was a reduction in the average authentic prices within first two years of the counterfeit entry,

after which there was an increase in the average authentic prices.

1 Such dynamic counterfeit entry effect is not tested in related prior research (Qian 2008). The standard econometric technique
employed in Qian (2008) addressed her research question of the average treatment effects of counterfeiting but was not able to
detect a statistically significant short-term negative effect of counterfeit entry. Our new analyses reveals dynamic and stronger
effects of counterfeit entry, which are also crucial for analyzing important moderator effects.
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The above simple analysis, though informative and useful, has some important limitations.

Notably, the analysis has not yet accounted for the potential endogeneity issue of counterfeit entry.

Secondly, although the analysis reveals a potential changepoint in the average price profile, it

ignores the heterogeneity of the changepoint among the firms, and assumes that all the authentic

firms took the same amount of time to respond to their counterfeit entries. As aforementioned and

further demonstrated in the following sections, ignoring the heterogeneity can attenuate the effect

estimates of counterfeit entry. Bias also arises when assessing factors moderating these effects.

Furthermore, the preliminary analysis does not allow us to study what affects a firm’s response

time to counterfeit entry.

To overcome the limitations of the preliminary analysis, we propose a hierarchical random-

changepoints simultaneous equations model to investigate the effects of counterfeit entry. Our

modeling framework jointly models the panel price profiles of the authentic firms evolved over time,

the quantity of counterfeits faced by the authentic firms as well as the latent random changepoints

in the panel outcome profiles. Below we describe the overall model.

2.1. Within-firm Model

Let Y1, ..., YN denote the outcome vectors on a random sample of N units (i.e. firms in our applica-

tion), where Yi = (Yi1, ..., YiT ) is a T -dimensional panel outcome vector for the ith unit, i = 1, ...,N

and N = 31, T = 12 in our application. We seek to develop a modeling approach that simultane-

ously accounts for three important empirical features: (1) Discontinuous changes in effects of a

market change; (2) Endogeneity of the market change and moderating variables; and (3) Hetero-

geneity across market agents in the magnitude of changes, and the heterogeneity of timing at which

different stages of effects kicked in.

We first describe the modeling strategy for effect instability. One approach is to use lagged

covariate values through the distributed lag regression models (Almon 1965), where the response

variable is specified as a function of current and past covariate values as follows

Yit =
L
∑

l=0

X ′
i,t−lβl +U ′

itαi +W ′
itγ + ǫY

it ,

where X refers to the independent variable of primary interest; the index t = 1, · · · , T ; L is the lag

length, and βl, l = 1, · · · ,L, denote the lagged effects. The variable, U , includes those whose effects

on Y are heterogeneous among firms. This may include, though not limited to, the unit dummy

variables to capture the time-constant unobserved heterogeneity across units. The variable, W ,

may include the time dummy variables to capture the common market shocks to all the units at a

given time. To avoid the common multicollinearity issue among the lagged variables, a distributed

lagged function is imposed on the set of parameters (β0, β1, · · · , βL). However, prior information
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on response time is rarely available and thus it can be difficult to specify a sensible lag function.

Furthermore this approach provides no basis to study the firms’ response time.

Our approach is to adopt the random-changepoints modeling technique to allow for multi-stage

entry effects. The random-changepoints models are well-established modeling techniques for struc-

tural changes and have been widely used for modeling parameter instability with early applications

in statistics and economics (e.g. Barry and Hartigan 1993, Carlin et al. 1992, Lange et al. 1992, Bai

1997, Bai and Perron 1998, Chib 1998). More recently, Fader et al. (2004), Fong and Desarbo (2007)

and Schweidel and Fader (2009) extend the random-changepoints models to business applications.

In our application, we posit the following random-changepoints model for within-firm responses

Yit = X ′
itβik +U ′

itαi +W ′
itγ + ǫY

it , t = Tik, · · · , Ti(k+1) − 1, k = 0, · · · ,K. (1)

In the random-changepoints model, the covariate X includes variables that are believed to have

differential multiple-stage effects; K denotes the number of changepoints which partition the time

series to K +1 regimes; Tik and Ti(k+1) denote the two endpoints for the kth stage with their values

being unobserved and inferred from the outcome trajectory; and notation-wise we set Ti0 = 1 ∀i.

The random-changepoints model is flexible, and nests some interesting models as special cases.

Notably, when each time point is a changepoint (K = T − 1), it becomes the most general model

Yit = X ′
itβit +U ′

itαi +W ′
itγ + ǫY

it , (2)

where βit is allowed to vary over t in an arbitrary form. On the other extreme, when there is no

changepoint (K = 0), it reduces to a static panel data model which assumes that the effect of X

remains constant over time (i.e., βit = βi, ∀t). When 1 ≤ K < T − 1, it is a model intermediate

between these two extreme cases. When K = 1, X is said to have both short-term (βi0) and long-

term (βi1) impacts on the outcome. Regarding the nature of the change, the model makes no

restriction that derivative must exist at the time of change, and allows for sudden discontinuous

changes in parameter values. Therefore random changepoints models are natural for modeling

discrete changes in parameter values. Such regime changes are natural outcomes of some market

variations, such as new competitive entries or technological innovations (Fader, Hardie and Huang

2004, Fong and DeSarbo 2007). As such, this approach is especially suited for our application,

where the changes are sudden and discontinuous. When the changes are continuous, the random-

changepoints model uses a piecewise constant model with flexible data-driven time intervals to

approximate the smooth function. In addition to the modeling flexibility and interpretability, the

random-changepoints model explicitly models the times where each different stage kicks in, and

allows us to investigate the response timing, a feature naturally modeled in changepoints models.

We therefore build our approach from the random-changepoints models.
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In the marketing area, Fader et al. (2004) develop a dynamic changepoint model that allows the

changepoint process itself to evolve over time. They show that the dynamic changepoint model

improves the new product sales forecasting. The method has been further studied and extended by

Schweidel and Fader (2009). Fong and DeSarbo (2007) study Bayesian variable selection problems

in multiple regression models with changepoints. Our approach is more similar to that of Fader et

al. (2004) in that we explicitly model the random changepoints which are heterogeneous among

the study units in a panel data setting. However, there are several important differences. First,

unlike their study which focuses on forecasting new product sales, the focus of our study is on an

accurate ascertainment of causal effects of a market change. As such, we must explicitly deal with

the endogeneity issue, an important issue in empirical studies. To the best of our knowledge, the

endogeneity issue in a hierarchical random-changepoints model has not been dealt with previously,

although its importance has been discussed in Fader et al. (2004).2 Furthermore, our MCMC

algorithm avoids evaluating the model likelihood as required in the MLE approach of Fader et al.

(2004). As a result, computationally it is more scalable to high-dimensional multiple changepoints

problems. Last, the hierarchical structure in our model allows for incorporating covariates into a

model for changepoints.

Related to the random changepoints models are the hidden Markov models. Böckenholt and

Dillon (1997), Poulsen (1990), Ramaswamy (1997) and Netzer et al. (2008) use the hidden Markov

Models to study the changes in segment memberships over time, which can be viewed as a spe-

cial case of more general changepoints models (Fader et al. 2004, Fong and DeSarbo 2007). As

will be shown later, the random changepoints model captures the cross-sectional heterogeneity of

entry effects through a continuous representation of βik values. This is in contrast with the hidden

Markov models where the cross-sectional heterogeneity is captured by a finite number of state vari-

ables. Past studies have demonstrated that continuous representation of heterogeneity is preferred

(Allenby and Rossi 1999), by offering a more thorough control of agents’ heterogeneity.

When the dynamics are assumed to be smooth, an alternative class of modeling approach is a

state-space modeling, where the time-varying parameter is assumed to follow an autoregressive form

that evolves over time smoothly. Neelamegham and Chintagunta (2004), Van Heerde, Mela and

Manchanda (2004) and Lachaab et al. (2006) extended the Dynamic Linear state-space models to

marketing applications. We choose to build on the random-changepoints model for our application

because of (1) its suitability for modeling discrete changes as described above;3 (2) its convenience

2 A concurrent working paper by Perron and Yamamoto (2011) considers multiple structural changes in linear regression models
with endogenous regressors. However as discussed in Section 3, our application is more complicated and our approach avoids
several important difficulties encountered when extending their approach to panel data.

3 For example, as pointed out in Netzer et al. (2008), such an continuous state space modeling approach is “inadequate to
capture dynamics that are postulated to develop in a discrete manner such as an instantaneous regime shift in the market
conditions or consumer preferences...”. Lachaab et al. (2006) also noted that “Instead of a state space approach, a hidden
Markov or change-point framework could be adopted as an alternative to accommodate discrete changes and structural shifts
in the parameters.”
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in modeling firms’ response time and factors affecting response time, an important dimension of

firms’ response behavior and (3) its convenience in modeling regime-switching moderating effects

as will be described later.

In our modeling framework, we allow X to be endogenous. In our application, Xit refers to

the time-varying quantity of counterfeit products faced by the authentic brand i. We follow the

approach of Amemiya (1985) and introduce a latent variable X∗
it as follows

Xit =

{

X∗
it if X∗

it ≥ 0
0 if X∗

it < 0
(3)

X∗
it = δZit + ǫX

it , (4)

where X∗
it is a latent variable that determines the observed variable Xit according to Equation (3),

and Zit is a vector of exogenous instrumental variables that relate to X∗
it. The endogeneity of Xit

is modeled by the correlation between the error terms ǫX
it and ǫY

it , which are assumed to follow a

bivariate normal:

[

ǫY
it , ǫ

X
it

]

∼N(0,Σǫ), Σǫ =

(

σ11 σ12

σ12 σ22

)

. (5)

In this model, X is endogenous when σ12 is nonzero.

In the above simultaneous equation model, we are primarily interested in measuring the causal

effects of changing X on the outcome Y using panel data where at least some of the units in

the sample experienced the change of X value over the period under examination. The model

allows multi-stage effects of changing X on Y : βi = (βi0, · · · , βiK) which denote a vector of K + 1

parameters capturing K + 1 stage effect of X on Y . Let Tik be the latent time point at which

the kth stage kicks in for the ith firm, and set Ti0 = 1. Let τik = Tik − Ti(k−1) for k > 1, and

τi1 = Ti1 −Tie where Tie is the time of counterfeit entry for the ith firm. Then τik denotes the time

for the ith firm to move from the (k − 1)th stage to the kth stage. We note here the one-to-one

correspondence between the latent variables τi = (τi1, · · · , τiK) and Ti = (Ti1, · · · , TiK). An ad-hoc

method that specifies a common response time for firms, say τc, ignores this heterogeneity and

can lead to biased estimates of the nonstationary effects of X on Y , as will be shown later. Our

model aims to separate out these time-heterogeneous effects more cleanly by explicitly modeling

the underlying unit-specific changepoints. Another benefit of doing this is to provide estimates of

response times and to be able to study what affects firms’ response times.

To model the response time τi as a function of firm-characteristics, we assume that there are

continuous response time variables, τ ∗
i , for the firm i. Because the observed value is determined by

the coarsened units of the outcome, e.g. years in our dataset, the response times in τ ∗
i are observed

to fall in certain intervals with their actual values unobserved. Such data often occur in empirical

studies, such as the length of time with the present employer or duration of unemployment in
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survey studies. In our case, the grouped value τi is determined by its underlying value τ ∗
i according

to the following set of rules:

τik =

{

0 if τ ∗
ik ≤ 0

m if m− 1 < τ ∗
ik ≤m, m > 0,

(6)

where m takes integer values. In the above model, τik = 0 implies that the firm does not experience

(k− 1)th stage, and the kth stage effect kicks in immediately for this firm.

We derive the likelihood for the above unit-level model as follows.

f(Yi,Xi|τ ∗
i , βi, αi, γ, δ,Σǫ) =

∫

∑

τi

f(Yi,Xi,X
∗
i , τi|τ ∗

i , βi, αi, γ, δ,Σǫ)dX∗
i

=

∫

∑

τi

f(Yi,Xi,X
∗
i |τi, βi, αi, γ, δ,Σǫ)f(τi|τ ∗

i )dX∗
i , (7)

where the density function f(τi|τ ∗
i ) =

∏K

k=1 f(τik|τ ∗
i ), and f(τik|τ ∗

i ) is

f(τik|τ ∗
i ) ∝

{

I(τik = 0) if τ ∗
i ≤ 0

I(τik = m) if m− 1 < τ ∗
i ≤m, m > 0

(8)

The conditional density function f(Yi,Xi,X
∗
i |τi, βi, αi, γ, δ,Σǫ) can be derived as follows. The

changepoints partition the time series for the ith firm into K + 1 segments, and each segment

contributes a factor fk(Yik,Xik,X
∗
ik|τik, βik, αi, γ, δ,Σǫ) to the likelihood as follows

f(Yi,Xi,X
∗
i |τi) =

K
∏

k=0

fk(Yik,Xik,X
∗
ik|τik, βik, αi, γ, δ,Σǫ)

=
K
∏

k=0

Ti(k+1)−1
∏

t=Tik

[(I(Xit = 0,X∗
it < 0)+ I(Xit > 0,X∗

it = Xit))

φ(Yit −Xitβ2i −UT
it αi −W T

it γ − σ12

σ22

ǫX
it |0, σ2

1|2)φ(ǫX
it = X∗

it − δZit|0, σ22)

]

,

where I(·) is the indicator function; the additive term (I(Xit = 0,X∗
it < 0) + I(Xit > 0,X∗

it = Xit)

enforces the consistency between the observed Xit value and the latent Xit value; φ(·|µ,σ2) stands

for the density function for normal distribution with mean µ and variance σ2.

To help understand the likelihood, it is instructive to consider the simpler case of one changepoint,

i.e., K = 1 and τi is a scalar. The likelihood function under this case can have three forms as follows.

(1) τi1 = 0

This corresponds to the case of immediate stable long-term response from firm i. In our derivation,

we write the joint distribution of f(ǫY
it , ǫ

X
it ) = f(ǫX

it )f(ǫY
it |ǫX

it ) as in Rossi et al. (2005). In this

decomposition, ǫY
it |ǫX

it ∼ N(σ12
σ22

ǫX
it , σ

2
1|2), where σ2

1|2 = σ11 − σ2
12

σ22
. We then have the density function

as follows:

f(Yi,Xi,X
∗
i |τi = 0) =

∏

t

[(I(Xit = 0,X∗
it < 0)+ I(Xit > 0,X∗

it = Xit))

φ(Yit −Xitβ1i −UT
it αi −W T

it γ − σ12

σ22

ǫX
it |0, σ2

1|2)φ(ǫX
it = X∗

it − δZit|0, σ22)

]

,
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In this case, the likelihood from firm i contributes information about the stable long-term effect

but no information about the short-term effect.

(2) 0 < τi1 < T −Tie +1

In this case, we have the density function as follows:

f(Yi,Xi,X
∗
i |τi) =

∏

t<Tie+τi

[(I(Xit = 0,X∗
it < 0)+ I(Xit > 0,X∗

it = Xit))

φ(Yit −Xitβ0i −UT
it αi −W T

it γ − σ12

σ22

ǫX
it |0, σ2

1|2)φ(ǫX
it = X∗

it − δZit|0, σ22)

]

×
∏

t≥Tie+τi

[(I(Xit = 0,X∗
it < 0)+ I(Xit > 0,X∗

it = Xit))

φ(Yit −Xitβ1i −UT
it αi −W T

it γ − σ12

σ22

ǫX
it |0, σ2

1|2)φ(ǫX
it = X∗

it − δZit|0, σ22)

]

.

In this case, the likelihood from firm i contributes information for both the stable long-term and

temporary short-term effect.

(3) τi1 ≥ T −Tie +1

In this case, we have the density function as follows:

f(Yi,Xi,X
∗
i |τi) =

∏

t

[(I(Xit = 0,X∗
it < 0)+ I(Xit > 0,X∗

it = Xit))

φ(Yit −Xitβ0i −UT
it αi −W T

it γ − σ12

σ22

ǫX
it |0, σ2

1|2)φ(ǫX
it = X∗

it − δZit|0, σ22)

]

.

In this case, the likelihood from firm i contributes information about the short-term effect but no

information about the long-term effect. Given each possible value of τi, we can construct the above

likelihood. These unit-level likelihood is then combined with the hierarchical prior distribution of

unit-level latent data to draw inference on the likely position of changepoints. Note that according

to the above derivation, the likelihood from firms with no counterfeit entry would contribute no

information about the short-term and long-term effects except serving as a control group and

affecting the estimation of other model parameters. Also note that both cases (1) and (3) are

unlikely in our dataset because (1) it usually takes time for a firm to design responding strategy and

(2) our panel spans twelve years and all firms, if infringed, have at least five years of observations

after counterfeit entry, which is long enough for firms to respond. However, for model completeness,

we include these two cases in our model development.

2.2. Between-firm Model

In this subsection, we consider modeling the firm-level parameters and latent variables, (αi, βi, τ
∗
i ),

as a function of firm-level characteristics. Numerous studies (e.g., Chintagunta, Jain and Vilcassim



Author: Article Short Title
Article submitted to Management Science; manuscript no. 11

1991, Allenby and Lenk 1994, Allenby and Rossi 1999, Ansari, Jedidi and Jagpal 2000, Bradlow

and Rao 2000) have demonstrated the usefulness of modeling heterogeneity. The purpose here is to

study factors explaining the interfirm difference on the multi-stage effects and the firms’ response

times to counterfeit entry. We employ the following multivariate normal heterogeneity model.


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, (9)

where Π is a nr ×nz matrix containing the hyperparameters governing the population distribution

of firm-level latent variables, nr is the number of these latent variables, nz is the number of variables

for firm characteristics (plus an intercept term), and eB
i = (eα

i , eβ0
i , · · · , eβK

i , eτ1
i , · · · , eτK

i )′ contains

random residuals that are assumed to be jointly multivariate normal as

(eα
i , eβ0

i , · · · , eβK
i , eτ1

i , · · · , eτK
i ) ∼ MVN[(0,0, · · · ,0,0, · · · ,0),Σe] . (10)

As in a typical HB model, the above between-firm model allows one to study the determinants

of interfirm difference and to leverage strength from different firms in the estimation of firm-level

models. On the other hand, this between-firm model has two important benefits, as compared with

the conventional HB model. The first benefit is allowance for regime-switching moderating effects:

unlike the traditional hierarchical model, the effect of Z are allowed to vary from regime to regime

(e.g., a moderator in one regime but not in another). The second benefit is to provide a framework

for us to investigate how fast firms respond to market change and study the determinants of

firms’ heterogeneous response times. In this approach, the latent response times (τ ∗
i ) are treated

the same as the other firm-level latent characteristics, (αi, βi). Therefore the model extends the

traditional hierarchical model to incorporate the latent response times as additional dimensions

of units’ response behaviors. Given the staggering patterns of defensive responses by incumbents

as identified in prior literature (Robinson, 1988; Bowman and Gatignon, 1995), the following

questions naturally arise: Why do some incumbents choose to respond immediately to competitive

entry while others delay their responses? The response time likely represents the heterogeneity of

the units, such as firms, in their ability to adapt to the changing environment and is an important

dimension of firms’ response behaviors to study (Robinson 1988, Smith et al. 1989, Heil and

Robinson 1991, Bowman and Gatignon 1995). These previous studies typically use survey data to

investigate the questions. As noted by the authors, one methodological limitation of the survey

approach relates to various potential response biases in the dependent variable. Our proposed

method provides an alternative method that uses field data to infer latent response times from
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the trajectory of the market response observed over time.

The above Equations (1),(3), (4), (5), (6), (9) and (10) specify a probability model describing the

data-generating process. The entire parameter vector is (Π, γ, δ,Σǫ,Σe). The likelihood for these

parameters is as follows:

L(Π, γ, δ,Σǫ,Σe;X,Y ) ∝
∏

i

∫

· · ·
∫

f(Yi,Xi|τ ∗
i , βi, αi, γ, δ,Σǫ)f(αi, βi, τ

∗
i |Π,Σe)dαidβidτ ∗

i ,

where i = 1, ...,N , f(Yi,Xi|τ ∗
i , βi, αi, γ, δ,Σǫ) is specified in Equation (7) and f(αi, βi, τ

∗
i |Π,Σe) is

the density function of Equation (9) and (10).

3. Inference

As shown above, the likelihood for the RC-SEM involves integration and summation over the

latent variables X∗
it, αi, βi, τ

∗
i and τi respectively, which renders inference based on the direct Max-

imum Likelihood Estimation or Least Square method intractable. Bai and Perron (1998), Fader et

al. (2004), and Perron and Yamamoto (2011) consider modeling and testing of multiple change-

points in the frequentest framework. Extending these frequentest procedures to our application

encounters several difficulties. Unlike their applications, the likelihood in our application involves

high-dimensional integrations that are hard to evaluate numerically. Further complicating the issue

is that with multiple changepoints the number of possible partitions within each panel, and thus

the number of terms to evaluate in the likelihood functions increases exponentially. For this reason,

Fader et al. (2004) need to restrict analysis to a limited number of changepoints. In contrast, our

Bayesian approach avoids evaluating the model likelihood. Specifically, we use the data augmenta-

tion technique that augments the parameter vector by the latent data, and then sample from the

joint posterior distribution of model parameters and latent variables. This approach requires nei-

ther evaluating high-dimensional integrals numerically nor the likelihood with a exploded number

of terms. As a result, the Bayesian approach is capable of reducing the computational workload

from an exponential rate to a linear rate. Moreover, it is straightforward to make inferences on

both the population parameters and latent variables under the Bayesian framework. For example,

their estimates and the standard errors can be readily obtained from the posterior draws.

To complete our model, we need to specify the priors for the parameters in the model. Let

Θ = vec(Π′). We assign priors for the model parameters as follows:

Θ∼N(µΠ,Λ−1
Π ), γ ∼N(µγ ,A

−2
γ ), δ ∼N(µδ,A

−1
δ ), Σǫ ∼ IW (νǫ, Sǫ), Σe ∼ IW (νe, Se), (11)

where IW (ν,S) stands for an inverse-Wishart distribution with ν degrees of freedom and the scale

matrix S. The above distributional forms are chosen for priors because these are conjugate priors
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for deriving the conditionals in our Gibbs sampler. In our analysis, the constants in the priors

are chosen in a way so that these priors are relatively diffuse. The assignment of values for the

constants is described in Web Appendix A. With the above specified priors, model specification,

and observed data X and Y , the posterior distribution of the parameters and latent data is as

follows, up to a constant:

π(Π, γ, δ,Σǫ,Σe,X
∗, αi, βi, τ, τ

∗|Y,X)∝
N
∏

i=1

f(Yi,Xi,X
∗
i |τi, αi, βi, γ, δ,Σǫ)f(τi|τ ∗

i )f(τ ∗
i , αi, βi|Π,Σe)

·π(Π|µΠ,Λ−1
Π )π(γ|µγ,Aγ)π(δ|µδ,Aδ)π(Σǫ|νǫ, Sǫ)π(Σe|νe, Se). (12)

Because the analytical expression of the posterior distribution is unavailable, we use MCMC sam-

pling method for model inference with details described in the Web Appendix A.

The above estimation algorithm conditions on a known number of changepoints. In practice, an

important issue is to determine the suitable value of K, the number of changepoints. An overly

large number of changepoints can lead to imprecise model estimation and degraded inferential

performance because unnecessary changepoints can lead to few observations per stage and too

much variations in the estimation. On the other hand, an insufficient number of changepoints

will not capture the multi-stage effects adequately. It is thus likely to have an optimal value of

K. The selection of the number of changepoints can be cast as a model selection problem. In

Bayesian framework a well established approach to model selection is Bayes factor (BF). The BF

compares two competing models via the ratio of the marginal likelihood under the two models

and is applicable for comparing non-nested models, as occurred in the selection of the number of

changepoints. When computing BF in our application, we employ the approach of Raftery et al.

(2007) that improves and stabilizes the harmonic mean estimator of Newton and Raftery (1994).

4. A Simulation Study

In this section, we conduct a set of simulation experiments to evaluate the performance of different

models in repeated samples. Because of space limitation we move the details of simulation study

to the Web Appendix B and summarize the main result here. As shown in Table 6, the simulation

study shows that the estimation algorithm under the RC-SEM model recovers the true values of

the temporary short-term β1 and stable long-term entry effect β2 reasonably well. Its RMSEs are

smallest among four models across different strength of endogeneity (i.e., the range of values for

ρ). In addition, the coverage rates of the credible intervals are closest to the nominal 95% rate,

among all methods. The simulation study shows that both the SEM model and OLS that ignores

the heterogeneity in latent response times attenuate entry effects. The attenuation bias could be

as large as 50% reduction in the true effect size. This shows that in the presence of heterogeneous

response time, ignoring the heterogeneity and specifying a common response time can lead to
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severely biased effect estimates. Moreover, the Bayesian estimator from the RC-SEM model has

less variability (i.e. smaller standard error) than that from the SEM, because the RC-SEM model

provides better model-fitting by taking into account the latent response times. The RC estimates

are biased because of the endogeneity issue. The OLS estimate has serious bias, particulary when

the endogeneity is strong, and the 95% credible intervals hardly contain the true effect value.

5. Empirical Analysis
5.1. Data

The dataset is a large national sample that includes 31 branded shoe manufacturers and their

counterfeiters in China. Both multinational brands in China and Chinese-originated brands are

sampled through the stratified random sampling method (Qian 2008). Twenty-two out of the total

23 large branded firms in China are captured, together with a random sample of smaller ones.

Detailed financial statements of each sampled company and their counterfeiters are obtained from

a 12-year window from 1993-2004. This is a unique dataset that overcomes severe data limitations

common in the underground economics.

Our study uses a natural experiment arising from an emergent diversion of government enforce-

ment resources from fashion products to several other sectors. In the early 1990s, a series of unex-

pected accidents took place in sectors such as food, drug, gas, etc., due to sub-quality products. The

bureau that’s in charge of monitoring counterfeits and sampling products, the Quality and Tech-

nology Supervision Bureau (QTSB), had to urgently reallocate resources away from monitoring

footwear (and other fashion) trademarks to guarantee product safety in these other sectors around

the year 1995. Table 1 shows the drastic reduction in government resources allocated to shoe sector

monitoring after 1995, along with summary statistics of some other variables. This leaves loopholes

for counterfeiters to massively enter the footwear industry (Table 1). The branded companies relied

on their own ‘brand-protection” offices to monitor the market, to report infringers of their own

brands to the QTSB, and to track down counterfeits together with the QTSB. Counterfeits, as

these “brand-protection” offices and QTSB shared with me, include all the illegal producers that

infringed on the brand by illegally claiming/copying the brand on the counterfeits.

The entry and sale of counterfeits is likely endogenous due to unobserved time-varying firm char-

acteristics. Ignoring the endogeneity, when present, will lead to erroneous inference about its causal

effect on the authentic firms’ pricing. To identify the effects of the counterfeit entry, we adopt an

IV strategy as used in Qian (2008). The identification strategy makes use of the above natural

experiment in which the exogenous shocks led to the loosening of the Chinese government’s mon-

itoring of footwear trademarks, and exploits the interaction between the unexpected enforcement

change and the relationship between each branded company and the government, as proxied by the
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number of days it took each company to pass the required International Standards (ISO) applica-

tions. This IV strategy recognizes that branded companies that have better relationships with the

government are less affected by the sudden loosening of trademark enforcement, and hence face

less threats by counterfeit entry. The identification strategy uses variations in these IVs to tease

out the exogenous components of the counterfeit sales which is then used to identify the causal

effect of counterfeit entry. More institutional details regarding the IV validity are discussed in Qian

(2008). In Equation (4), we use LOOSE, RELATION and LOOSE ∗RELATION as the main

instruments, where LOOSE is an indicator variable denoting the loosening of Chinese government

enforcement in monitoring the footwear trademarks, RELATION denotes the number of days

it took the company to pass the required ISO applications, and LOOSE ∗ RELATION is the

interaction between these two variables. Our analysis consists of two main parts: study and test for

the dynamic effects of counterfeits entry (Section 5.2), and investigate the drivers for the interfirm

difference in their response behavior (Section 5.5). Neither was formally tested or examined in prior

research (Qian 2008).

5.2. Results from a Bayesian Analysis using RC-SEM

We first use the RC-SEM to estimate and test for the dynamic effects of counterfeit entry. In our

empirical RC-SEM model, the outcome variable Yit is the logarithm of the deflated prices for the

ith authentic firm’s high-end product at year t. The explanatory variable of main interest, Xit,

is the quantity of counterfeit products in the market faced by the ith authentic brand at year t,

divided by the sale quantity of this authentic firm. This variable represents a normalized measure

of the significance of counterfeit threat that quantifies the relative importance of counterfeit entry.

The covariate U in Equation (1) includes firm dummies and W includes year dummies. The year

dummies capture the effects of common shocks to the market that may vary by time. The firm

dummies capture the effects of unobserved firm-level time-constant characteristics.

Authentic firms respond to their counterfeit entry with various time lags. As a result, the change

in prices of their products are manifested in the data only after the response time. In the analysis

below, we will use RC-SEM to explicitly model the latent heterogeneous response times among the

authentic firms. One advantage of the RC-SEM is that it automatically detects the presence and

location of firm-specific changepoints in the outcome variable time-series. We first fit the models in

which the covariate Zi in Equation (9) contains only the intercept. Table 2 reports 2 ln(BF ) that

compares models with different values of K, the number of changepoints occurring in the dataset.

A general rule is that a value of larger than 5 for 2 ln(BF ) provides strong evidence against the null

model (Raftery 1996). It shows that the model with one or two changepoints are among the best

ones, and the model with K = 1 is better than K = 2. We also examined the parameter estimates

for K = 2, which gives similar parameter estimates for the short- and long-term estimates. The
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difference is that the model under K = 2 also shows a somewhat smaller positive intermediate effect

for a very short time period, which can be considered as a manifest of model overfitting. Overall,

in addition to the comparison based on BF, the difference in parameter estimates between K = 1

and K = 2 is not substantial from this closer examination of model fitting. In this case, a more

parsimonious model is preferred. Therefore the analysis below will use the model with K = 1.

For comparison purposes, we also fit three nested models of the RC-SEM. The first one is the

OLS with a pre-specified response time common to all firms. This model specification recognizes

the nonstationary effects of the counterfeit entry, and thus it is more realistic than a static OLS

model that assumes static effect of counterfeit sales. Although convenient, this analytic strategy

suffers several drawbacks. First, this approach requires researchers to pre-specify a common value

of response time, which is typically not easy to do and requires considerable prior knowledge

on the underlying economic activities. It would be preferable to have a data-driven approach to

automatically select the timepoint that separates out the short- and long-term effects of market

change. In our analysis, we pre-specify the common response time to be two years, which is the value

closest to the posterior mean of response times estimated from our RC-SEM shown later. Second

and more importantly, it is often the case that there exists a significant amount of heterogeneity

among different units (e.g. firms) in their response times (Bowman and Gatignon 1995, Fader et

al. 2004). However, the simple method ignores timing heterogeneity, which can substantially bias

the effect estimation. Third, specifying a common response time provides no basis to study what

relates to the response speed. The second one is a random-changepoints (RC) model. This model

recognizes the heterogeneous response time but ignores the endogeneity issue. The third one is

the simultaneous equation model (SEM) with a pre-specified response time common to all firms.

The standard SEM accounts for the endogeneity issue. However, like OLS, SEM also assumes a

common response time with a value of two years. All model fittings run the Gibbs sampler for

50,000 iterations and discard the first 10,000 iterations as the burn-in period. The convergence

of the Markov chains to the stationary distributions after the burn-in period is confirmed via

examining traceplots and the Geweke’s diagnostic statistics (Geweke 1992).

The posterior means and standard deviations of the parameter draws from the Gibbs sampler

for all models are reported in Table 3. Under the RC-SEM, we are able to detect the presence

of response times that are heterogeneous among the authentic firms. Figure 2 (a) and (b) plots

the prior and posterior distributions of the latent response time τ ∗
i . As shown in the figure, data

provide a substantial amount of information so that the posterior distribution of τ ∗
i is a much

more condensed distribution as compared with its prior distribution. The average response time

is estimated to be 1.6 years with a standard deviation of 1.1. This shows that the authentic firms

took considerably different amounts of time to design and implement counter measures against
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their counterfeits. In contrast, neither the OLS nor SEM provides the estimates of the response

times since both methods pre-specify them to be a common value of two years.

The results also show that the effect estimates of counterfeit entry are also different for different

methods. Because the covariate Zi in Equation (9) contains only the intercept, the parameter

estimates in Π are the population mean effects. As shown in Table 3, RC-SEM shows that there

is a negative (-0.34) short-term population mean effect and a positive (1.61) long-term population

mean effect of counterfeit entry on the authentic firms’ prices. The 95% credible intervals for both

effects exclude zero. In comparison, the results from SEM show attenuated effects for both the

short-term and long-term effects. In particular, the 95% credible interval for the short-term effect

under the SEM includes zero. This shows that ignoring the heterogeneous response times, like

what a standard SEM does, can lead to attenuated effect estimates and lose power to detect a

change in the marketing response. RC and OLS also yield different estimates of the effect estimates

since they do not model the endogeneous entry or heterogeneous response times. 4 Table 3 shows

a negative value of the posterior mean of the covariance term σ12. Figure 2 (c) and (d) plot the

prior and posterior distributions of the correlation coefficient, ρ = σ12√
σ11σ22

, and show that data

provide strong evidence for the presence of a negative correlation, as compared with its prior

distribution. This implies that there were some unobserved factors that affected the price and

counterfeit entry in opposite directions. These factors could be a firm’s managerial skills that are

positively correlated with product prices and negatively correlated with the counterfeit entry. It is

also possible that higher prices are associated with higher quality products that are harder to be

imitated or counterfeited. The endogeneity issue, if not accounted for in the modeling, will lead to

inconsistent estimate of causal effects.

We also conduct model comparisons using Bayes factors (Raftery et al. 2007), in which the

RC-SEM is considered as the full model, and the other three models (SEM, RC and OLS) are

considered as various nested models of the RC-SEM. 5 Our calculation shows that the 2 ln(BF )

for RC-SEM against SEM (null model) is 321.2 which provides overwhelming evidence for the

presence of heterogeneous random changepoints among firms. The 2 ln(BF ) for RC-SEM against

RC (null model) is 117.1, which provides very strong evidence for the presence of endogeneity of

counterfeit entry. The 2 ln(BF ) for RC-SEM against OLS (null model) is 387.8, which provides

overwhelming evidence for the simultaneous presence of both heterogeneous random changepoints

among firms and the endogeneity of counterfeit entry. Figure 3 presents the posterior predictive

4 In particular, both models significantly underestimate the long-term effect of counterfeit entry. Furthermore, as shown in
the next subsection, these two models also mis-assess the effects of several factors on marketing outcomes and are not able to
identify their significant effects.

5 Because the RC and OLS use a single-equation approach, in order to make their marginal likelihood comparable with those
of the SEM-type models, we have added the contribution of the likelihood from an independent model for X in the calculation
of marginal likelihood for these two models.
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model checking results. The plots show the simple approach that assumes a common changepoint

of two years captures the nonstationary effects poorly. It attenuates both the short-term (most

significantly) and the long-term effects considerably. As a result, there is appreciable discrepancy

between the actual values and the predicted values under the traditional SEM. On the other hand,

the RC-SEM model performs much better and provides a substantially improved model fitting.

5.3. Robustness Checks

Proactive Firm Reaction. The analysis above studies firms’ responses after their own counterfeits

entered market. Because the counterfeit entry time (i.e., Tie) varies among firms, it was possible that

firms might take proactive pricing actions after noticing counterfeit entry for other firms and before

the entry of their own counterfeit. To provide a more complete picture of firms’ response behavior,

we conducted an analysis using a model expanded from the above RC-SEM. Specifically, we expand

the model for the pre-entry period as dictated in Equation (1) to: Yit = αi + x′
itβi0 + W ′

itγ + ǫY
it if

t < mini(Tie); Yit = αi + δi + x′
itβi0 + W ′

itγ + ǫY
it if mini(Tie) ≤ t < Tie, where mini(Tie) denotes the

earliest counterfeit entry time observed in the sample; and the model for post-entry period remain

the same as before. The added parameter δi captures the potential proactive pricing action for

firm i in the period between mini(Tie) and Tie. The prior for δi is assigned using the approach

described in Web Appendix A. We then fit the data with this expanded model. The estimate

of the population mean of δi is small and nonsignificant with its posterior mean (SD) as -0.03

(0.05). We also perform Bayesian model comparison that compares this expanded model with the

RC-SEM fitted above. The 2ln(BF ) for the RC-SEM estimated in the section above against this

expanded model (in the denominator when computing 2ln(BF )) is 6.8. The model estimation and

test provide no evidence for systematic price changes in this pre-entry period. In the pre-entry

period when the counterfeits entered the market for other firms, it may make sense for unaffected

firms to maintain a price sufficiently high to signal the high quality of their authentic products.

However, when counterfeits entered massively for the incumbent, this will cause significant price

competition effect. In the pre-entry period, it is likely the signaling force is dominant, while in

the post-entry period the competition force is dominant. Our analysis also shows that the prices

among authentic firms are fairly stable over time in pre-entry period, which suggests that the price

competition among authentic firms cannot explain the significant price changes after counterfeit

entry. 6

6 As explained in Section 5.1, our strategy to identify the counterfeit entry effects uses a natural experiment coupled with the
instrumental approach. Our approach can be considered as a “limited information” approach that separates the counterfeit
entry effects from other effects such as the competition among authentic firms, as compared with a full information approach
that models entire complicated system. Because our main purpose is to identify counterfeiting effects, we use this “limited
information” identification approach. As discussed in Chintagunta et al. (2006), the estimates from such a limited information
approach are consistent and more robust to the model misspecification as compared with a full-information approach, although
the estimates may be less efficient than a full-information approach.
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Alternative Definition of X. The above analysis defines the key variable X as the share of

counterfeit sales, relative to the concurrent authentic sales. The normalization is meant to measure

the relative severity of counterfeit entry. To evaluate whether our analysis is robust to alternative

definition, we use the un-normalized counterfeit sales in the unit of million pairs as the X variable

and refit the RC-SEM. The RC-SEM using this new X variable shows a statistically significant

population mean short-term negative effect, -0.06 (0.02) and positive long-term effect, 0.26 (0.03).

The 95% Bayesian credible intervals of the population variance parameters for these effects also

exclude zero, indicating significant entry effect heterogeneity. In comparison, the conventional IV

analysis using constant two-year cut-off shows no dynamic effects and statistically insignificant

short-term effect with its population mean estimate of 0.02 (0.04). The analysis demonstrates the

robustness of our findings to alternative definition of the key independent variable.

5.4. Summary and Interpretation of Dynamic Effects Results

The analysis above reveals statistically significant dynamics effects of counterfeit entry: authentic

price falls first and then increases, providing a more complete picture of firms’ response to coun-

terfeit entry. In particular, the RC-SEM finds a highly significant short-term effect of counterfeit

entry, whereas in the traditional SEM this effect is not detectable. Our analysis in the next sec-

tion finds that the pre-entry quality of authentic firm moderates the short-term entry effect, which

suggests that the short-term effect is due to price competition of counterfeit entry. We also find

that quality strongly mediates the long-term price increase. Specifically, when we add the loga-

rithm of the concurrent cost variable Costit to become one variable in Uit in our RC-SEM model

specification, we find that the long-term effect dropped from 1.61 to 0.41 . Therefore a majority

of long-term price increase (>70%) can be explained away by the quality upgrade. Overall, the

dynamic effects estimates are consistent with the theoretical prediction that counterfeit entry has

both a price competition effect and an effect of stimulating innovation; This precisely reconcile two

strands of theoretical predictions on competition effects in the industrial organization.

5.5. Investigating Factors Moderating Firms’ Responses

In this subsection, we conduct a finer hierarchical analysis to study factors relating to authentic

firms’ responses to the counterfeit entry. The firms’ response behaviors studied here include both

their response magnitude in short term and long term as well as their response speed. Specifically,

we expand the RC-SEM model as specified above and include a set of observed firm characteristics

to explain the differential responses in the between-firm model as specified in Equation (9). The

descriptive statistics of the firm characteristics included in Z are summarized in Table 4.

An issue commonly ignored in hierarchical Bayesian analysis is the potential endogeneity of

moderating variables. There are several considerations that indicate this issue is likely not serious
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in our application. First, it is important to note that all the moderating variables in our application

take on the average of pre-entry values. These average pre-entry firm attribute variables in Z are

not expected to correlate significantly, if it exists, with the error terms in the first-stage price

equation once the firm-level random effects are included in the model. Second, our interest here is

to evaluate how different pre-entry characteristics of firms relate to firms’ responses behavior after

entry. We use the pre-entry values of market share to proxy for brand popularity so that the usual

simultaneity issue associated with price and market share should not apply here. 7 Third, we have

included a relatively rich set of variables in our between-firm models. Despite these considerations,

the potential endogeneity issue cannot be entirely ruled out. Specifically, there could be nontrivial

correlation between Z and the error term eB in the 2nd stage between-firm model, despite the fact

that we include a relative rich set of variables in Z. For example, there could be omitted variables

or common persistence in time-varying unobservables not included in Z but may be correlated

with variables in Z, resulting in regression-error correlation. Without properly accounting for the

potential endogeneity issue, the moderating effect estimates can only be interpreted as correlational,

instead of causal relationship. The instrumental variable approach is powerful for controlling for

the endogeneity issue. A challenge, however, is the difficulty to find suitable instrumental variables

for these firm-level characteristic variables. To overcome this challenge, we apply the approach

of latent instrumental variables (LIV) to control for the potential endogeneity issue. The LIV

approach has been proposed recently by Ebbes et al. (2005) and successfully applied by Zhang,

Wedel and Pieters (2009) in marketing applications. For the most general case, the LIV augments

the heterogeneity model in Equation (9) with the following models for the firm-level variables:

Zij = π′
jLij + eZ

ij, j = 1, · · · , nZ , (13)

where i index firms; j indexes firm-level variables; Lij denotes a single latent discrete instrument

with M(M > 1) categories and πj is a vector of length M for category means. The instrumental

variable Lij is uncorrelated with the error terms in the system. To allow for the endogeneity of Z,

the error vector eZ
i = (eZ

i1, · · · , eZ
inz

) is combined with eB vector in Equation (9) to form a larger error

vector which is modeled as a multivariate normal with mean zero and a new variance-covariance

matrix Σe. When eZ and eB are correlated, the corresponding elements of Z are endogenous. In

essence, the LIV approach attempts to approximate the situation where an IV has been identified

that partitions the variations in Z into two parts: an explained part by π′
jLij that is exogenous and

an unexplained part eZ
ij that is correlated with the other error terms in the system. Ebbes et al.

(2005) established the nice properties of the LIV procedure. They then applied the LIV approach

7 We further control for other potential endogeneity, such as omitted variables or common persistence in time-varying unob-
servables, through the latent IV approach as detailed later.
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to re-evaluate the relationship between education and income, and found that LIV performs well

in correcting the bias of the OLS procedure. Their studies also demonstrate the robustness of

LIV to the misspecification of the error distributions and to the true number of categories of the

instruments. Therefore, in our analysis, we set the number of categories M = 2, and assume that

the latent binary IV Lij ∼B(pj
L), where B(·) denotes a Bernoulli distribution and P j

L = P (Lij = 1).

We use Beta(1,1) as the prior for P j
L. The LIV model are then combined with the RC-SEM model

to adjust for the potential endogeneity of variables in Z. The details of MCMC algorithm to sample

posterior draws from this combined model is given in Web Appendix A.

In Table 5 we report estimates of the hierarchical parameters in Π for all models considered. The

LIV model controls for the potential endogeneity of Cost, Popular, BrandNo, Ads, firm-level vari-

ables that are either important or suspected to have potential endogeneity concern. The covariates

in Z are standardized before entering the hierarchical model for ease of interpretation. We will

further explain these firm-level variables and the corresponding results in the following paragraphs.

The authentic product quality could moderate the counterfeiting effects in an important way.

Our hypothesis is that it will be easier for consumers to detect counterfeits from authentic products

when the authentic quality is higher. Since it is harder for counterfeiters to close the quality gap,

the short-term shock to the authentic branded company will be less severe. The analyses do show

that the authentic quality, as proxied by unit product costs, helps to alleviate the negative impacts

of counterfeit entry on prices in the short run (Column 2 in Table 5). However, because the short-

term effect estimates are significantly attenuated in traditional SEM, this effect is not significant

under SEM.

Another interesting hypothesis is that counterfeits can serve as free advertising for their authentic

counterparts, and help to expand overall demand by invigorating consumers who are otherwise

uninterested in branded consumption. If this hypothesis is true, one would expect that the long-

term effect tends to increase more for those less-known brands as such free-advertising effects would

be more significant for these less-known and less-popular brands. The analysis in the column 3

of Table 5 from RC-SEM-LIV shows a negative and statistically significant moderating effect of

brand popularity on long-term price increase, supporting the existence of free-advertising effects

of counterfeits. 8

To test whether the degree of diversification moderates the effects of counterfeiting, we collected

data on the number of sub-brands and percentage of the sales values for exports each branded

company had. There is no significant effect associated with the number of sub-brands a branded

company owns, possibly because counterfeiters infringe on all sub-brands (Column 4 in Table 5).

8 The negative effect of pre-entry brand popularity on long-term price increase remains statistical significant when we add the
logarithm of the concurrent cost variable Costit to become one variable in Uit in our the hierarchical analysis, indicating this
effect is not mediated through quality upgrades.



Author: Article Short Title
22 Article submitted to Management Science; manuscript no.

However, companies with larger percentage of sales value for export are less affected by the entry

of counterfeits, because they are more diversified than the companies that rely primarily on the

domestic market where counterfeits massively entered. They correspondingly have less urgency to

respond to counterfeiting and have a longer response time (Column 5 in Table 5).

In theory, the more innovative a company is, the faster it will come up with newer product

designs and innovations to differentiate from counterfeits. We use two alternative proxies for inno-

vativeness: annual R&D expenditures and patent application costs of each branded company. R&D

expenditures measure more of the inputs to innovation while patent costs proxy for innovation

outputs (Qian 2007). These two variables are highly correlated (correlation coefficient = 0.97), so

we include only the patent costs in the main specifications. Robustness checks using R&D instead

of patent costs yield similar results. As expected, the companies with higher levels of patent costs

or R&D responded to counterfeiting in a shorter time-frame by introducing a higher priced high-

end shoes, as compared to companies with lower levels of innovativeness (Column 6 in Table 5).

This suggests that the innovative companies not only innovate faster in the face of competition,

but also innovate with better products given that Qian (2008) has shown very high correspondence

between these shoe prices and their unit product costs as well as characteristics.

We additionally have information on the annual advertising expenditure of each branded com-

pany. While heavier advertising could imply the firms’ strong intention to familiarize consumers

with the branded products, it could also present a larger brand premium for counterfeiters to free

ride on. It then becomes an empirical question whether advertising moderates the effect of entry

by counterfeiters. Column 7 of Table 5 under RC-SEM-LIV did not show any significant effects of

pre-entry average advertising expenditure, after controlling for its potential endogeneity and other

variables in the model.

Finally, we gathered data on human capital within companies to test whether and how this factor

moderates the effects of counterfeiting and brand responses. We include the employment and total

annual wages of the branded companies to proxy for brand-level human resources. Wage is a proxy

for skilled labor commonly used in the economics literature (Huang et al. 2012). Columns 8 and 9

in Table 5 demonstrate that the more human resources a branded company has, the shorter time

it takes to respond to counterfeits by innovating.

One important thing to note in the analysis is that the traditional SEM and OLS method do not

model the heterogeneous response times and therefore do not allow for the study of what affects

firms’ reaction speed. Furthermore, ignoring the heterogeneous response time also lead to mis-

assessment of the effects of firm characteristics and some important moderators are not identified

in SEM and OLS, but in RC-SEM and RC-SEM-LIV. The RC model allows for this feature but

does not model the endogeneity issue. Its effect estimates are also different from those from the

RC-SEM(-LIV).
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6. Discussion

With the growing emerging markets and globalization, counterfeiting has gained pervasiveness and

presented worldwide impacts. It is therefore necessary to study the impacts of counterfeiting and

its policy implications. Our paper aims to address this important substantive issue through our

unique dataset and careful analyses. Like many other empirical studies, the issues of endogeneity,

discontinuity in response, heterogeneity and regime-switching moderating effects are encountered

and can potentially spoil inference if not accounted for properly. In this paper, we consider the

modeling and inference of a simultaneous equation model with heterogeneous changepoints, and

apply the model to study the multi-stage causal effects of counterfeit entry on the authentic firm’s

price. Our application and simulations demonstrate the importance of accounting for the afore-

mentioned data features. Because the proposed method considers both the heterogeneous nature

of marketing players’ response times and the endogeneity issue, it minimizes the bias in the effect

estimation. Using the RC-SEM method that permits changepoints that are heterogeneous among

firms, we are able to test and identify dynamic effects of counterfeit entry. In particular, the new

model identifies compelling evidence for (1) the short-term negative effects of counterfeit entry,

which was masked in the conventional SEM that ignores the heterogeneity in response timing, and

(2) significantly larger long-term positive effects. These improved effect estimates are critical to

identify causal drivers that drives the dynamic effects and important factors that explains inter-

firm response differences. We find that improvement in the effect estimation provided in RC-SEM

leads to substantially more power to identify factors moderating the entry effects, some of which

are not identified in traditional HB models. These more accurate short-term and long-term effect

estimates are also beneficial for future welfare analyses and policy experiments.

The empirical results in this paper unify two strands of Industrial Organization literature on the

entry effects on prices. In particular, the finding that the authentic prices fell immediately upon

the entry of counterfeiters can be explained by Fudenberg and Tirole (2000). That is, new entry

imposes competitive pressure in the short-run. Our finding that pre-entry quality moderates the

short-term counterfeit entry effects supports this theory. We further identify that authentic prices

rose substantially on average two years after counterfeit entry. This positive effect could be resolved

with the other strand of theories. Notably, Frank and Salkever (1997) predicts that generic entry

could steal away the price-sensitive consumer segment, leaving behind a more inelastic demand

for the branded companies to re-optimize into a higher price. Qian (2006) predicts that compa-

nies invest to differentiate their products from counterfeits through innovation, self-enforcement,

vertical integration, as well as price signaling, and all these mechanics lead to price increases. Our

hierarchical analysis also reveals that the long-term price increases more for those less-known and

less-popular brands, providing evidence for the free-advertising effects of counterfeits. It becomes
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apparent that these theories can better explain the long-term entry effects, and are complementary

rather than contradictory to traditional economic theories that predict negative price shocks. The

empirical findings on the pricing effects of counterfeiting can also shed lights on the private label

literature, where imitation or copycat strategy accounts for more than 50% of the store brand

introductions (Scott Morton and Zettelmeyer, 2004).

The improved hierarchical analyses also uncover a set of firm characteristics that moderate the

timing and magnitude of pricing responses to entry by counterfeiters, and prescribe effective brand

management strategies tailored to each type of firms. For example, the finding that pre-entry

quality reduces the harmful effects of counterfeit entry provides direct evidence for the important

role of product quality as a management strategy against counterfeits. The finding of the free

advertisement effect of counterfeit entry can also have important management implications for

authentic firms to deal with counterfeiting. It suggests that there may be an optimal enforcement

level to control for the amount of counterfeits, and the optimal enforcement level will differ by

firms’ brand popularity levels. Our modeling framework also provides a new approach to study

firms’ response time, an important dimension of firms’ response behavior. We find that firms that

have more human resources or less diversification from markets affected by trademark infringement

are quicker to fire sustainable long-term responses to new competitive threats by counterfeiters.

The need to account for endogeneity, structural changes and heterogeneity simultaneously is not

limited to our dataset. Our modeling framework makes several notable methodological contribu-

tions to address these empirical issues. It extends two important business analytic tools, Hierarchi-

cal Bayesian models and Random Changepoints models, in several important ways as summarized

in the Introduction section. In particular, although the random changepoints model has become an

emerging business analytic tool and has been increasingly used for business applications, a strin-

gent assumption is the exogeneity assumption that limits its applicability. 9 Our approach relaxes

this important assumption and has the potential to substantially expand the scope of its use.
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Figure 1 Average log deflated authentic price versus the years relative to the counterfeit entries. −�−: the

regression coefficient estimates on a set of time dummies denoting the number of years relative to the counterfeit

entries with the log deflated price for high-end product as the response variable. −△−: prediction based on the

pre-entry price trend. The year of entry is anchored at the origin.
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Figure 2 Comparison of Prior and Posterior Distributions of τ∗
i and ρ.
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Figure 3 Posterior Predictive Model Checking. The circles represent the regression coefficient estimates on the

set of time dummies denoting the number of years relative to the counterfeit entries with the original data on the

log deflated price for high-end product as the response variable. The solid line represents the estimates of the

same regression coefficients, obtained as the average over 1000 posterior estimates generated from the RC-SEM.

The dotted line is obtained from the SEM assuming a common changepoint of two years. The upper panel is

obtained for firms with the posterior mean of τ∗
i larger than two years, and the lower panel for posterior mean τ∗

i

smaller than two years. The year of entry is anchored at the origin.
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Table 1 Summary Statistics Pre and Post the Policy Change.

Variable Pre-1995 Post-1995
Share of Government Resources 0.11 0.02

devoted to shoe sector monitoring (0.004) (0.001)
Workdays authentic company took to 142 149

pass ISO (relationship proxy) (116.5) (112.6)
Authentic firm Brand-protection Office 0.17 4.00

personnel (head count) (0.46) (2.23)
Fake Sale quantity ( in 10,000 pairs) Median 0 85.71

Range: 1.2-1.9 (75.85)
Authentic Sale Quantity ( in 10,000 pairs) 309.38 558.28

(725.76) (995.82)
Fake shoe Price (deflated, in US $) Median 0 7.32

Range 8.33-10.4 (4.2)
Fake shoe cost (deflated, in US $) Median 0 2.66

Range 2.2-3.6 (1.56)
Authentic high-end shoe price 43.3 61.5

(20.5) (40.6)
Authentic high-end shoe cost 33.5 47.0

(19.1) (30.0)
Authentic medium-end shoe price 27.3 32.3

(10.2) (18.7)
Authentic medium-end shoe cost 19.6 24.7

(9.0) (13.5)
Authentic low-end shoe price 16.9 18.8

(8.2) (10.5)
Authentic low-end she cost 14.8 14.4

(6.7) (7.7)
N 62 310
Note: Table presents mean and standard deviation (in parentheses) unless noted otherwise. Prices and costs are deflated using
the Consumer Price Index published in the WDI (Year 1995 set as the base year in the database.)

Table 2 Comparison of Models with Different Numbers of Changepoints.

K 2 ln(BF )
0 488.3
1 —
2 4.2
3 69.2

Note: All the models are compared to the model with K = 1, which enters as the numerator in the computation of BF .
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Table 3 Estimation Results Under RC-SEM and Different Reduced Models When Z Contains Only Intercept.

Explanatory Variable RC-SEM SEM RC OLS
(1) Model for log(dfph)

Constant 1.36 (0.12) 1.34 (0.10) 1.41 (0.11) 1.36 (0.11)
fkshST -0.34 (0.08) -0.05 (0.17) -0.57 (0.10) -0.24 (0.07)
fkshLT 1.61 (0.25) 1.02 (0.24) 1.24 (0.27) 0.75 (0.11)
ResponseTime 1.57 (0.11) NA 1.65 (0.13) NA
(3) Model for fksq

Constant -0.29 (0.10) -0.32(0.12) NA NA
Loose 0.59 (0.10) 0.53 (0.09) NA NA
RELATION 0.001 (0.001) 0.001(0.001) NA NA
LOOSE*RELATION 0.003(0.001) 0.003 (0.001) NA NA
(4) Correlation Σǫ

σ11 0.01 (0.001) 0.02 (0.002) 0.01 (0.001) 0.02 (0.002)
σ12 -0.011 (0.002) -0.01(0.002) NA NA
σ22 0.026 (0.003) 0.025(0.003) NA NA
Year Fixed Effects Y Y Y Y
No. of Obs. 372 372 372 372

Note: The table lists the posterior mean and standard deviation of model parameters. log(dfph): the logarithm of deflated
authentic high-end prices. fksh: the quantity of counterfeit products in the market faced by the corresponding authentic firm, as
a share of the sale quantity of this authentic firm. fkshST and fkshLT refer to its short-term and long-term effects, respectively.
RC-SEM: the simultaneous equation model with random changepoints. SEM: the standard simultaneous equation model with a
common response time of two years. RC: random-changepoint model. OLS: the standard OLS model with a common response
time of two years. All models use year fixed effects.

Table 4 Definition and Summary Statistics of Pre-entry Variables of the Authentic Firms.

Variable Definition Mean SD
Cost Unit Product Cost of High-end Product (US $) 33.53 19.14
Popular Brand Popularity proxied by market share (%) 2.9 3.7
BrandNo The Number of Sub-brands 1.45 0.85
Export Percentage of Sale Values for Export (%) 18.1 12.5
PatCost Patent Application Costs (US $) 2453.6 1560.1
Ads Annual Advertisement Expenditure (US $) 1,497,700 2,724,200
Employ The Number of Employees 813.7 482.6
AW Total Annual Wages (US $) 482.8 272.2
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Table 5: Estimation Results Under RC-SEM and Different
Reduced Models When Z Contains Pre-Entry Moderating
Variables.

Attribute Constant Cost Popular BrandNo Export PatCost Ads Employ AW

(1) RC-SEM-LIV

Constant (αi) 1.39∗∗ 0.43∗∗ 0.12 0.01 -0.07 0.08 -0.08 -0.10∗∗ -0.10∗∗

(0.05) (0.06) (0.08) (0.12) (0.06) (0.07) (0.19) (0.05) (0.05)
fkshST (β0i) -0.29∗∗ 0.23∗∗ 0.25 -0.10 0.05 0.05 0.16 0.14∗ 0.24

(0.12) (0.09) (0.16) (0.13) (0.06) (0.11) (0.32) (0.09) (0.14)
fkshLT (β1i) 1.76∗∗ 0.34 -0.67∗∗ 0.69 -0.21 0.17 0.32 -0.32 0.15

(0.27) (0.26) (0.34) (0.40) (0.17) (0.32) (0.46) (0.22) (0.39)
ResponseTime (τ ∗

i ) 1.41∗∗ -0.10 -0.05 0.03 0.37∗∗ -0.25∗ -0.17 -0.35∗∗ -0.27
(0.17) (0.12) (0.22) (0.34) (0.11) (0.14) (0.26) (0.13) (0.21)

(2) RC-SEM

Constant (αi) 1.40∗ 0.52∗ 0.07 0.01 -0.05 0.06 -0.04 -0.13∗ -0.09∗

(0.04) (0.05) (0.06) (0.04) (0.05) (0.05) (0.06) (0.05) (0.04)
fkshST (β0i) -0.25∗ 0.14∗ 0.17 -0.01 0.02 0.02 -0.13 0.07 0.15

(0.08) (0.06) (0.10) (0.04) (0.07) (0.08) (0.15) (0.08) (0.12)
fkshLT (β1i) 1.90∗ 0.21 -0.80∗ 0.23 -0.27 0.23 0.75∗ -0.36∗ 0.29

(0.21) (0.18) (0.25) (0.17) (0.15) (0.23) (0.36) (0.17) (0.31)
ResponseTime (τ ∗

i ) 1.51∗ -0.03 -0.01 -0.15 0.41∗ -0.19 -0.06 -0.32∗ -0.26
(0.14) (0.12) (0.17) (0.12) (0.12) (0.11) (0.17) (0.13) (0.20)

(3) SEM

Constant (αi) 1.33∗ 0.54∗ 0.07 -0.00 0.02 0.06 0.06 -0.14∗ -0.10∗

(0.05) (0.05) (0.07) (0.04) (0.05) (0.07) (0.08) (0.05) (0.05)
fkshST (β0i) 0.08 0.06 0.01 0.03 -0.02 0.07 0.19 0.09 -0.15

(0.10) (0.06) (0.10) (0.06) (0.07) (0.08) (0.17) (0.07) (0.12)
fkshLT (β1i) 1.16∗ 0.05 -0.09 0.19∗ -0.08 -0.15 0.36 -0.07 0.16

continued on next page
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Table 5: continued

Attribute Constant Cost Popular BrandNo Export PatCost Ads Employ AW
(0.15) (0.11) (0.16) (0.09) (0.11) (0.15) (0.28) (0.12) (0.21)

ResponseTime (τ ∗
i ) NA NA NA NA NA NA NA NA NA

NA NA NA NA NA NA NA NA NA

(4) RC

Constant (αi) 1.45∗ 0.54∗ 0.11 0.02 -0.05 0.03 -0.06 -0.13∗ -0.11∗

(0.05) (0.05) (0.07) (0.04) (0.05) (0.07) (0.07) (0.05) (0.05)
fkshST (β0i) -0.61∗ 0.10 0.21∗ -0.04 -0.02 0.06 -0.18 0.13 0.16

(0.11) (0.07) (0.10) (0.07) (0.07) (0.09) (0.14) (0.08) (0.11)
fkshLT (β1i) 1.24∗ 0.12 -0.48∗ 0.18 -0.16 0.23 0.76∗ -0.23 0.19

(0.20) (0.15) (0.21) (0.14) (0.15) (0.19) (0.27) (0.17) (0.27)
ResponseTime (τ ∗

i ) 1.52∗ -0.12 0.03 -0.15 0.25∗ -0.15 -0.08 -0.25∗ -0.15
(0.10) (0.10) (0.12) (0.09) (0.09) (0.13) (0.15) (0.11) (0.18)

(5) OLS

Constant (αi) 1.41∗ 0.54∗ 0.08 0.01 0.02 0.05 -0.02 -0.14∗ -0.11∗

(0.05) (0.05) (0.07) (0.04) (0.05) (0.07) (0.08) (0.05) (0.05)
fkshST (β0i) -0.21∗ 0.01 0.02 0.04 -0.13 0.04 0.16 0.06 -0.12

(0.09) (0.07) (0.10) (0.06) (0.07) (0.08) (0.17) (0.07) (0.12)
fkshLT (β1i) 0.96∗ 0.04 -0.15 0.21∗ 0.02 0.04 0.44 -0.07 0.15

(0.15) (0.11) (0.16) (0.09) (0.11) (0.15) (0.31) (0.13) (0.20)
ResponseTime (τ ∗

i ) NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA

Note: The table lists the posterior means and standard deviations of model parameters. log(dfph): the logarithm of deflated authentic high-end prices in Chinese Yuan, using the
Consumer Price index published in the World Bank World Development Indicators (WDI) (Year 1995 was set as the base year in the database, i.e. CPI=100 in 1995). fksh: the
quantity of counterfeit products in the market faced by the corresponding authentic firm, divided by the sale quantity of this authentic firm. fkshST and fkshLT refer to its short-
term and long-term effects, respectively. RC-SEM-LIV: RC-SEM with the LIV model adjusting for the potential endogeneity of moderating variables. RC-SEM: the simultaneous
equation model with random changepoints. SEM: the standard simultaneous equation model assuming a common response time of two years. RC: random-changepoints model.
OLS: the standard OLS model assuming a common response time of two years. “**” and “*” indicate that 95% or 90% credible intervals excludes zero, respectively.
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Appendix. Web Appendix

Web Appendix A: Prior Specification and MCMC algorithm for the RC-SEM

In this Online Appendix, we present the details of prior specification and the MCMC algorithm for estimating

the proposed simultaneous equation model with random changepoints (RC-SEM).

Equation (11) presents the forms of the priors. In our analysis, we set the constants in the priors as follows:

µΠ, µγ , µδ are assigned as vectors of zeros. ΛΠ = 0.01× Inr×nz
, Aγ = 0.01× Inγ

, Aδ = 0.01× Inδ
, νǫ = 5 and

νe = nr + 3, Sǫ = νǫΣǫ0 and Se = νeΣe0, where nr is the dimension of the square matrix of Σe, and nz is

the number of columns of Z, nγ and nδ is the length of γ and δ. When choosing the value for Σǫ0 and Σe0,

we follow the approach suggested in Rossi et al. (2005). Because Σǫ0 is related to the mean of the prior for

the variance-covariance matrix of the error terms of the simultaneous equation model, we would like to take

into account the scale of the outcomes and the explanatory power of the regressors in the assignment of its

value. Rather than assigning an arbitrary value, such as an identity matrix, we set Σǫ0 = Σ̂OLS
ǫ , where the

diagonal entries of Σ̂OLS
ǫ are OLS estimates of error variances for Y equation and X equation, separately,

and the off-diagonal entries of Σ̂OLS
ǫ are zeros. The choice of the prior is reasonable because the resulting

prior is reasonably flat over a wide range of plausible values of the correlation coefficient ρ between ǫX and

ǫY , the measure of the endogeneity strength. Figure 2 (c) displays the marginal prior distribution of the

correlation coefficient ρ = σ12√
σ11σ22

given the choices of the above chosen prior. The histogram is constructed

from sampling 10000 iid draws from the priors of Σǫ, and then calculating ρ for each draw. The histogram

shows that for this prior, the distribution of correlation coefficient ρ is centered at zero and reasonably spread

out between -1 and +1. Similarly, we have set the block in Σe0 for (αi, βi) as Σ̂OLS
e . Because the OLS does

not model the heterogeneity of τ∗
i , we set the corresponding diagonal entries in Σe0 to be one. Using a larger

value (eg., 2) or a smaller value (e.g., 0.5) has little impact on the resulting estimation.

Given the above prior and posterior distribution derived in Equation (12), we devise a Gibbs sampler to

obtain draws from the posterior distribution. The full conditionals of model unknowns for each step of the

Gibbs sampler are derived below.

1. Draw βi, αi|δ, γ,Σǫ, Ti,X
∗

We decompose the joint bivariate normal distribution of the error term (ǫX
it , ǫ

Y
it) as the product of the marginal

distribution of ǫX
it and the conditional distribution of ǫY

it |ǫX
it . We note that the conditional distribution ǫY

it |ǫX
it

is N(σ12

σ22

ǫX
it , σ11 − σ2

12

σ22

). We write ǫY
it = σ12

σ22

ǫX
it + eit, where eit ∼N(0, σ2

e ), σ2
e = σ11 − σ2

12

σ22

and eit⊥ǫX
it . Given δ,

the error term ǫX
it = X∗

it − δZit. To make notation more compact at the unit level, let Yi = (Yi1, ..., YiT ), ǫX
i =

(ǫX
i1, ..., ǫ

X
iT ), ei = (ei1, ..., eiT ). Then at the unit level, we have:

Yi −W ′
i γ − σ12

σ22

ǫX
it = Hi







β0i

· · ·
βKi

αi






+ ei, (14)

where the design matrix for the ith unit Hi is:

Hi = (H ′
i1, ...,H

′
iT )′ =



















Xi1 . 0 Ui1

. . . ...
Xi,Ti1−1 . 0 ...
. . . ...
0 . Xi,TK

...
. . . ...
0 . Xi,T UiT



















, (15)
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and Tik = Tie +
∑k

j=1 τij . We rewrite the variance-covariance matrix, Σe, in the distribution of the latent

variables (βi, αi, τ
∗
i ) in Equation (10) as follows,

Σe =

[

Σe,11 Σe,12

Σe,12 Σe,22

]

(16)

where Σe,11 and Σe,22 are variance-covariance matrix of (βi, αi) and τ∗
i , respectively, and Σe,12 is covariance

matrix between these two blocks of parameters. The prior distribution of (βi, αi)|τ∗
i is N(µ1|2,i,A

−1
1|2) where

µ1|2,i = µ1i +Σe,12Σ
−1
e,22(τ

∗
i −µ2i)

A−1
1|2 = Σe,11 −Σe,12Σ

−1
e,22Σe,21,

and µ1i and µ2i are the prior means of (βi, αi) and τi, respectively, and (µ1i, µ2i) = ΠZi. Note that the above

conditional mean and variance-covariance matrix should also condition on eZ if LIVs are used for Z using the

results derived in Step 7. Then the conditional draws of (βi, αi) can be obtained from the following normal

distribution:

N

(

(
H ′

iHi

σ2
e

+A1|2)
−1(

H ′
iRi

σ2
e

+A1|2µ1|2,i), (
H ′

iHi

σ2
e

+A1|2)
−1

)

where Ri = Yi −W ′
i γ − σ12

σ22

ǫX
i .

2. γ|δ,βi, αi,Σǫ, T,X∗

Given the prior distribution for γ as N(µγ ,A−1
γ ), we have the conditional draw of γ as

N

(

(
W ′

i Wi

σ2
e

+Aγ)−1(
W ′

i R
γ
i

σ2
e

+Aγµγ), (
W ′

i Wi

σ2
e

+Aγ)−1

)

,

where Rγ
i = Yi −Hi[βi, αi]

′ − σ12

σ22

ǫX
i .

3. X∗
it|βi, αi, γ, δ,Σǫ, T

If Xit > 0, then X∗
it = Xit. If Xit = 0, then X∗

it is drawn from a truncated normal distribution with the mean

Zitδ + σ12

σ11

ǫY
it and the variance σ22 − σ2

12

σ11

, where the truncation is to (−∞,0).

4. δ|βi, αi, γ,Σǫ, T,X∗

Following Lahari and Schmidt (1978) and Rossi et al. (2005), we re-express the triangular system specified

in Equation (1), (4) and (5) as a SUR model for making conditional draw of δ. Let Y ∗
i = Yi −Hi(βi, αi)

′,

where Hi is given in Equation (15). We then have the likelihood of the triangular system the same as that

of the following SUR model:
(

Y ∗
it

X∗
it

)

=

(

Wit

Zit

)(

γ
δ

)

+

(

ǫY
it

ǫX
it

)

where Y ∗
it is the jth component of Y ∗

i , Wit is the jth row in the design matrix Wi. Let Mit =

(

Wit

Zit

)

.

Then (γ, δ) has a likelihood as that from a multivariate normal with the mean

(γ̄, δ̄) =

(

∑

i,j

M ′
itΣ

−1
ǫ Mit

)−1(
∑

i,j

M ′
itΣ

−1
ǫ

(

Y ∗
it

X∗
it

)

)
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and the variance-covariance matrix
(

Ωγγ Ωγδ

Ωδγ Ωδδ

)

=

(

∑

i,j

M ′
itΣ

−1
ǫ Mit

)−1

Then given γ, the likelihood for δ is a multivariate normal with mean µδ|γ = δ̄ + ΩδγΩ−1
γγ (γ − γ̄) and

variance-covariance matrix Ωδ|γ = Ωδδ −ΩδγΩ−1
γγ Ωγδ. Thus given the a normal prior N(µδ,A

−1
δ ) for δ, we can

draw δ from a normal distribution with mean (Aδ +Ω−1
δ|γ)−1(Aδµδ +Ω−1

δ|γµδ|γ) and variance (Aδ +Ω−1
δ|γ)−1.

5. Σǫ|βi, αi, γ, δ, T,X∗

The conditional draw of Σǫ follows IW (νǫ +N ×J,Sǫ +S), where S =
∑

i,j

(

ǫY
ij

ǫX
it

)

(ǫY
it , ǫ

X
it ).

6. τ∗
i , τi|βi, αi, γ, δ,Σǫ,X

∗

Random-Walk Metropolis-Hasting algorithm is used to update the individual-specific latent variable τ∗
i

and τi. Draw a proposal τ∗,prop
i from MV N(τ∗,old

i , κΣe,22), where τ∗,old
i and Σe,22 are parameter draws

at the previous iteration, and the scaling parameter κ is adjusted in the RWMH algorithm to achieve

approximately 30% acceptance rate. Calculate p(τ∗,prop
i ) = fτ∗

i
=τ

∗,prop
i

(Yit|Xit)fθ(τ
∗,prop
i ) and p(τ∗,old

i ) =

f
τ∗

i
=τ

∗,old
i

(Yit|Xit)fθ(τ
∗,old
i ), where fτ∗

i
(Yit|Xit) is the likelihood function determined from Equations (14)

and (15), and fθ(τ
∗,old
i ) is the density function of prior distribution for τi. The prior distribution for τ∗

i is

N(µ2|1,i,A
−1
2|1) and

µ2|1,i = µ2i +Σe,21Σ
−1
e,11((βi, αi)

T −µ1i)

A−1
2|1 = Σe,22 −Σe,21Σ

−1
e,11Σe,12,

and µ1i and µ2i are the prior means of (βi, αi) and τ∗
i , respectively, and (µ1i, µ2i) = ΠZi. Note that the

above conditional mean and variance-covariance matrix should also condition on eZ if LIVs are used for Z

using the results derived in Step 7. Then with probability qi = min(1, p(τ∗,prop
i )/p(τ∗,old

i )), τ∗,new
i = τ∗,prop

i ,

and with probability 1 − qi, τ∗,new
i = τ∗,old

i . Given the draws of τ∗
i , the new draw of τi is determined by

Equation (6).

7. Updating Π,Σe|βi, αi,Zi.

We first describe the algorithm for updating in the standard heterogeneity model where no LIVs are used

to control for the potential endogeneity of Z. Let Λ = Σ−1
e . We follow the standard approach (Gelman et al.

2004, Rossi et al. 2005) to obtain the conditional draws as follows:

p(Λ|Θ) = W
(

νe +N,
(

Se +
N
∑

i=1

eie
′
i

)−1
)

,

where ei = Bi −ΠZi, Bi = (αi, βi, τ
∗
i ), and

p(Θ|Λ) = N
(

ΣΠ

[

(Λ⊗ Inz
)HzB +ΛΠµΠ

]

,ΣΠ

)

,

N is the number of subjects, ΣΠ =
[

(Λ⊗Hzz)+ΛΠ

]−1
, and

Hzz =

N
∑

i=1

ZiZ
′
i, Hzβ =











HzB1

HzB2

...
HzBnr











,
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and HzBj
=
∑N

i=1 ZiBit, for j = 1, ..., nr.

We next move to the algorithm when LIVs are used to control for the potential endogeneity. For the most

general case, because the system of equations expands to include models for Z as specified in Equations (13),

the outcome vector is (B′
i,Z

′
i), we redefine Σe as the variance-covariance matrix of the expanded system,

and Σe =

(

Σe,BB Σe,BZ

Σe,ZB Σe,ZZ

)

.

• Update Π

Given the value of error terms in Z equations, eZ
i , Bi = (αi, βi, τ

∗
i ) = ΠZi + eB

i |eZ
i . Therefore, Bi −

Σe,BZΣ−1
e,ZZeZ

i = ΠZi + eB|Z
i , where eB|Z

i is a conditional residual with mean zero and variance Σe,B|Z =

ΣBB −ΣBZΣ−1
ZZΣZB. Because eB|Z

i is independent of Zi, this reduces to the multivariate normal regression

model and thus the standard algorithm described above for updating Π can be used to make conditional

draw of Π.

• Update π

Consider the joint outcome (B′
i,Z

′
i)

′, we have
(

Bi

Zi

)

=

(

ZMi

LMi

)(

Θ
π

)

+

(

eB
i

eZ
i

)

(17)

where ZMi =





Z ′
i

· · ·
Z ′

i



, LMi =





L′
i1

· · ·
L′

inZ



, and π = (π′
1, · · · , π′

nZ
)′. Because the likelihood of the

triangular system is the same as that of the SUR model (Lahari and Schmidt 1978), (Θ, π) has a likelihood

as that from a multivariate normal with the mean

(Θ̄, π̄) =

(

∑

i

M ′
iΣ

−1
e Mi

)−1(
∑

i

M ′
iΣ

−1
e

(

Bi

Zi

)

)

and the variance-covariance matrix
(

ΩΘΘ ΩΘπ

ΩπΘ Ωππ

)

=

(

∑

i

M ′
iΣ

−1
e Mi

)−1

with Mi =

(

ZMi

LMi

)

. Then given Θ, the likelihood for π is a multivariate normal with mean µπ|Θ =

π̄ + ΩπΘΩ−1
ΘΘ(Θ− Θ̄) and variance-covariance matrix Ωπ|Θ = Ωππ −ΩπΘΩ−1

ΘΘΩΘπ. Thus given the a normal

prior N(µπ,A−1
π ) for π, we can draw π from a normal distribution with mean (Aπ +Ω−1

π|Θ)−1(Aπµπ +Ω−1
π|Θµπ|Θ)

and variance (Aπ +Ω−1
π|Θ)−1. To avoid label switching issue in Bayesian inference of LIV models, one approach

is to impose restrictions on the parameters values of π. Let Zij = πj0 + πj1Lij + eZ
ij , where we can impose

restriction that πj1 > 0 to avoid label switching problem. One can then draw πj1 from the univariate truncated

normal distribution derived from the above conditional distribution with the restriction πj1 > 0 (Geweke

1991).

• Update L = (L1, · · · ,LnZ
)

The latent IV Lij is draw from a Bernoulli distribution with the probability p(Lij = 1)∝ f(Bi,Zi|Lij = 1)pL
j ,

where f(Bi,Zi|Lij = 1) is the density function of the SUR system given in Equation (17). The update is

performed for all i = 1, · · · ,N and j = 1, · · · , nZ .

• Update pL = (pL
1 , · · · , pL

nZ
)

For each j = 1, · · · , nZ , the conditional draw of pL
j follows a Beta(1+

∑N

i=1 Lij ,1+N −
∑N

i=1 Lij).

• Update Σe

The conditional draw of Σe follows IW (νe +N,Se +S), where S =
∑

(

eB
i

eZ
i

)

(eB′
i , eZ′

i ).
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Web Appendix B: A Simulation Study

In this section, we conduct a set of simulation experiments to evaluate the performance of different models

in repeated samples. We follow the steps below to simulate data:

• For each simulation dataset, we set the number of units N = 30 and the number of observations per unit

T = 12, similar to those in the Chinese Shoe Market Data.

• To simulate data for Yit, X∗
it and Xit, we first set the mean parameters in the following equations:

Yit =

{

Xitβ1i +αi +W T
it γ + ǫY

it t = 1 , ..., Ti − 1
Xitβ2i +αi +W T

it γ + ǫY
it t = Ti, ..., T

and

X∗
it = δZit + ǫX

it , and Xit =

{

X∗
it if X∗

it ≥ 0
0 if X∗

it < 0.

In simulations, we set the short-term effect β1 = −0.4 and the long-term effect β2 = 1.0. The parameter

vector γ includes the time fixed-effects that are simulated from N(0,0.12). The firm effects αi is simulated

from N(0,0.12). In simulations, we include in Z an intercept and three instrumental variables. The first

IV is 0 before J = 4 and 1 afterward, mimicking the occurrence of a natural experiment. The second IV

is simulated from N(0.5,1), and the third IV is the interaction of the first two IVs. We set the parameter

values for coefficients on the intercept and the IVs to be (−1,2,0,0.5). We then randomly generated

the response time τ∗
i from N(2,1.52) and form the grouped version of the response time τi according to

Equation (6). The changepoint time Ti = Tie + τi, where Tie is the first time that the treatment variable

becomes positive.

• We generate the error terms (ǫX
it , ǫ

Y
it) from a bivariate normal distribution with mean 0 and variance-

covariance matrix

Σǫ =

(

σ11 ρ
√

σ11σ22

ρ
√

σ11σ22 σ22

)

,

where ρ is the correlation coefficient of two error terms. In simulations, we set σ11 = 0.152 and σ22 =

0.52, and we vary ρ in (0,−0.2,0.2,−0.5,0.5,0.8,−0.8) to cover various strengths of endogeneity in both

directions.
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• We then generate Yit, X∗
it and Xit given the above model parameters. We repeat the above steps for

M = 50 times for each parameter setting. This will generate 7*M panel datasets because there are seven

values of ρ specified in step 3.

• We fit each simulated dataset with four models: the RC-SEM, SEM, RC model and the OLS model.

Note that RC-SEM model is the full model and the other models can be considered as reduced models of

RC-SEM. The RC model assumes ρ = 0 (i.e. no endogeneity issue) but allows heterogeneity of response

times across units. In both SEM and the OLS the response times are assumed to be the same for all

units. Furthermore, this common response time is not to be estimated from the data in SEM and OLS,

but rather needs to be pre-specified. In the simulation study, we assume this common response time is 2,

which is the mean of the response time used in the simulation. This corresponds to a scenario that the

best guess of the response time, under the assumption of common response time, is used.

• We compare the estimates for both the population temporary short-term effect β1 and the stable long-

term entry effect β2 from these four models. The result is summarized in Table 6. The columns “Bias”,

“SD” and “RMSE” are the bias, standard deviation, and square root of Mean squared error, respectively,

calculated from the resulting sample of Bayesian estimates. We repeat the process for each value of ρ. The

column “Coverage Rate” is the proportion of 95% credible intervals that contain the true values in the

simulation experiments.

The simulation study shows that the estimation algorithm under the RC-SEM model recovers the true

values of the temporary short-term β1 and stable long-term entry effect β2 reasonably well. Its RMSEs are

smallest among four models across different strength of endogeneity. In addition, the coverage rates of the

credible intervals are closest to the nominal 95% rate, among all methods. The simulation study shows that

both the SEM model and OLS that ignores the heterogeneity in latent response times attenuate entry effects.

The attenuation bias could be as large as 50% reduction in the true effect size. This shows that in the

presence of heterogeneous response time, ignoring the heterogeneity and specifying a common response time

can lead to severely biased effect estimates. Moreover, the Bayesian estimator from the RC-SEM model has

less variability (i.e. smaller standard error) than that from the SEM, because the RC-SEM model provides

better model-fitting by taking into account the latent response times. The RC estimates are biased because

of the endogeneity issue. The OLS estimate has serious bias, particulary when the endogeneity is strong, and

the 95% credible intervals hardly contain the true effect value.
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Table 6 A simulation study on the comparison of performance of four models on estimating the entry effects. “Bias” and “SD” in the table are the bias and

standard deviation of the estimates (posterior means), respectively, over all the replicates. “RMSE” denotes the root mean squared error. “CR” denotes the

coverage rate.

ρ RC-SEM SEM RC OLS
Bias SD RMSE CR Bias SD RMSE CR Bias SD RMSE CR Bias SD RMSE CR

Short-term effect (True value= -0.4)
0 -0.01 0.12 0.12 92% 0.16 0.14 0.21 66% -0.01 0.10 0.10 92% 0.16 0.13 0.20 72%

0.2 0.04 0.10 0.11 88% 0.22 0.13 0.25 52% 0.11 0.09 0.14 76% 0.27 0.12 0.30 32%
0.5 0.03 0.10 0.11 92% 0.25 0.15 0.29 46% 0.20 0.10 0.23 34% 0.38 0.16 0.41 18%
0.8 0.01 0.09 0.09 90% 0.25 0.14 0.27 42% 0.30 0.13 0.33 18% 0.45 0.16 0.48 8%

-0.2 0.01 0.10 0.10 98% 0.18 0.14 0.22 62% -0.05 0.09 0.11 88% 0.12 0.13 0.18 78%
-0.5 0.02 0.10 0.10 92% 0.15 0.14 0.20 70% -0.15 0.10 0.17 60% 0.03 0.14 0.15 84%
-0.8 0.00 0.09 0.09 94% 0.10 0.12 0.15 74% -0.26 0.09 0.27 16% -0.10 0.11 0.15 84%

Long-term effect (True Value=1.0)
0 -0.01 0.08 0.08 94% -0.16 0.10 0.18 54% -0.01 0.06 0.07 94% -0.17 0.09 0.18 46%

0.2 0.00 0.09 0.09 92% -0.13 0.10 0.16 66% 0.07 0.09 0.12 74% -0.07 0.10 0.12 80%
0.5 0.00 0.08 0.08 98% -0.11 0.09 0.14 80% 0.18 0.08 0.20 24% 0.03 0.10 0.10 90%
0.8 -0.01 0.09 0.09 86% -0.09 0.08 0.12 80% 0.30 0.10 0.31 4% 0.12 0.10 0.17 60%

-0.2 -0.01 0.09 0.09 92% -0.18 0.11 0.21 50% -0.09 0.07 0.12 80% -0.25 0.10 0.27 16%
-0.5 0.01 0.09 0.09 88% -0.19 0.10 0.21 46% -0.17 0.08 0.19 36% -0.33 0.10 0.34 6%
-0.8 -0.01 0.06 0.06 98% -0.24 0.08 0.25 20% -0.31 0.08 0.31 2% -0.45 0.07 0.45 0%


