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We study issues related to external validity for treatment effects using over 100 replications of the Angrist
and Evans natural experiment on the effects of sibling sex composition on fertility and labor supply. The
replications are based on census data from around the world going back to 1960. We decompose sources of
error in predicting treatment effects in external contexts in terms of macro and micro sources of variation.
In our empirical setting, we find that macro covariates dominate over micro covariates for reducing errors
in predicting treatments, an issue that past studies of external validity have been unable to evaluate. We
develop methods for two applications to evidence-based decision-making, including determining where
to locate an experiment and whether policy-makers should commission new experiments or rely on an
existing evidence base for making a policy decision.
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1. INTRODUCTION

In recent decades across a wide range of fields in eco-
nomics, such as labor, education, development, and health,
the use of experimental and quasi-experimental methods has
become widespread. The emphasis on experimental and quasi-
experimental methods1 was driven by an attempt to generate
internally valid results. At the same time, the global scale of
experiments points to the less-emphasized but central concern
of external validity. In evaluating the external validity of a
set of experiments, one poses the question, “to what popula-
tion, settings, and variables can this effect be generalized?”
(Campbell 1957). In other words, external validity can be
measured in terms of the error in prediction of treatment effects
for new populations beyond those covered in the evidence
base. With a single or handful of studies in a limited range
of contexts, external validity is mostly a matter of theoreti-
cal speculation. But with a large number of internally valid
studies across a variety of contexts, it is reasonable to hope
that researchers are accumulating generalizable knowledge,
that is, not just learning about the specific time and place
in which a study was run but about what would happen if
a similar intervention were implemented in another time or
place.

The success of an empirical research program can be judged
by the diversity of settings in which a treatment effect can

1Throughout the remainder of the article, we will use the term experiments
broadly as referring to internally valid studies that use either true random
experimental or quasi-experimental methods.

be reliably predicted, possibly obviating the need for further
experimentation with that particular treatment. This is the issue
we address in this article. More specifically, given internally
valid evidence from “reference” settings, is it possible to predict
the treatment effect in a new (“target”) setting? Is it possible
to understand how differences between actual and predicted
treatment effects vary with differences between the setting
of interest and the settings in which experimental evidence
is available? And if so which differences are more impor-
tant: context-level (e.g., macro or institutional) variables or
individual-level micro variables? How might we judge whether
an existing evidence base is adequate for informing new poli-
cies, thereby making further experiments with a given treatment
unnecessary?

Although the issue of external validity has garnered the
most attention recently in the context of randomized con-
trolled trials, it is important to underline that the essential
challenge of extrapolation is common to the broad set of
methods used to identify treatment effects. Each of these
methods has its own specific challenges for extrapolation. In
this article, as a starting point, we focus on reduced-form
experiments or natural experiments. In ongoing and future
work, we extend the analysis to other research designs (see,
e.g., Bisbee et al. 2017 for a related analysis of the instrumental
variables case).
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Our approach in this article is to use a natural experiment for
which “replications” are, in fact, available for a wide variety
of settings. We use the Angrist and Evans’s (1998) research
design that treats sex-composition (same sex of the first two
children) as exogenous to define a natural experiment with
outcomes being incremental fertility (having a third child) and
mother’s labor supply. Replications of this natural experiment
are recorded for a large number of countries over many years
in censuses compiled in the Integrated Public Use Microdata
Series-International (IPUMS-I) data. Cruces and Galiani (2007)
and Ebenstein (2009) studied how the effects in this natural
experiment generalize to Argentina and Mexico and to Taiwan,
respectively. Our analysis extends this to all available IPUMS-I
samples around the world going back to 1960, allowing for a
very rich examination of both micro- and macro-level sources
of heterogeneity. Filmer, Friedman, and Schady (2009) esti-
mated effects of sex composition on incremental fertility (but
not labor supply) for mothers in different regions around
the world. Compared to our approach, their primary focus is
on understanding son-preferred differential fertility-stopping
behavior and since they are using Demographic and Health
Survey data, their samples tend to over represent developing
countries. Their results show that the effect of sex composition
on incremental fertility is apparent around the world, partic-
ularly in trying to make up for the absence of sons in early
births.

We discuss the strengths and weaknesses of our data in
greater detail in Section 4. But, briefly, it is important to
acknowledge that Same-Sex is not a perfect natural experiment
when estimated on a global scale. To the extent that fertility
choices could be viewed as culture- and context-specific, we
believe we are setting a high bar for the exercise: if we are
able to find a degree of external validity for a fertility natural
experiment, then there is hope that it might be possible for other
experiments as well.

The article is both a methodological “thought experiment”
and an empirical investigation. As a thought experiment, we
consider the rather fanciful situation of having replications of
an experiment or well-identified result across a wide variety
of contexts that we can use to inform an extrapolation to an
external setting. This is an idealized setting in certain respects,
given the large number of sites and also the homogeneity
in treatments and outcomes. What brings us back down to
earth is that we have only a limited amount of information
that we can use to characterize effect heterogeneity. This
situation applies to many empirical studies. As an empirical
investigation, our task is to assess the external validity potential
of this evidence base in extrapolating to new contexts. The
evidence base consists of the set of studies and its limitations
are defined by the variety of contexts that it covers and,
crucially, the measured covariates that it includes. We approach
the extrapolation problem as empiricists, using the available
data in an agnostic and flexible manner. Our application is
especially conducive to such an agnostic approach, because
we have many contexts, large within-context sample sizes, and
a relatively spare set of micro-level covariates, which allows
us to use saturated specifications. In addition, the inferen-
tial goal is to predict an effect in a target context that is
directly analogous to effects that we can observe in reference

contexts. In other settings, analysts may do better to draw
from theoretically informed models. This includes cases where
the inferential goal is to predict a counterfactual for which
existing experiments provide only indirect information, or cases
where theory can inform parametric restrictions that allow
for more efficient estimation with modest sample sizes. We
examine how working through the extrapolation problem using
the evidence base can inform how an experimental or quasi-
experimental research program might optimally proceed. A
complementary exercise, which we do not undertake in this
article, would be to use the evidence base to explain effect
heterogeneity for the sake of theory development (see Aaronson
et al. 2017).

The topic of external validity has been gathering increasing
attention in the economics literature. Empirical assessments of
external validity in economics include recent work by Allcott
(2014), Andrews and Oster (2018), Bell et al. (2016), Gechter
(2015), Pritchett and Sandefur (2013), and Vivalt (2014). Using
two examples from the education literature (class size effects
and the gains from private schooling), Pritchett and Sandefur
(2013) argued that economy-wide or institutional character-
istics often dominate the importance of individual character-
istics when attempting to extrapolate treatment effects. With
a large number of (natural) experiments in our dataset (over
100 replications compared to the dozen or so studies they use
in their analysis) we are able to address this question with
evidence that has broad temporal and geographic coverage.
(They also argued that estimates from observational studies
within a context are superior to extrapolated experimental
results from other contexts. We address this question in Bisbee
et al. 2017.)

Vivalt (2014) used a random effects meta-analysis to study
sources of effect heterogeneity for sets of development program
impact evaluations. She finds evidence of program effects
varying by the implementing actor, with government programs
tending to fare worse than non-governmental organization pro-
grams. She also finds that with a small set of study-level char-
acteristics (namely, implementer, region, intervention type, and
outcome type), meta-regressions have only modest predictive
power. In our analysis, we consider a somewhat larger number
of covariates both at the micro- and macro-levels and we do so
in a set of experiments that is more homogenous in terms of
treatments and outcomes. This allows us to distinguish issues
of extrapolation from questions of outcome and treatment
comparability.

Our results show that there is considerable treatment effect
heterogeneity in the effect of sex composition on fertility
and labor supply across country-years, but that some of this
variation can be meaningfully explained both by individual
and context (experiment—in our case country-year—level)
covariates. We define and estimate an “external validity
function” that characterizes the quality of an evidence base’s
predictions for a target setting. We examine the relationship
between prediction error and individual and context covariates.
While both are potentially useful in reducing prediction
error from external comparisons, in our application context
variables dominate. This is in part a feature of our set up—
namely, the nature of the effects in our application, the
sparse set of micro covariates that we have at our disposal,
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and also the fact that some of our context covariates (e.g.,
aggregate labor force participation rates) are closely related
to the micro-level outcomes. But it is an important finding
nonetheless, because methodological work on treatment
effect extrapolation (reviewed below) has tended to focus on
accounting for variation in micro-level variables. Moreover,
we find that context interaction effects are important, such
that the effects of the micro-level variables tend to depend
on context variables (e.g., a 35-year-old woman in a lower
income country may have different potential outcomes than a
woman of the same age in a high-income country). Our analysis
and empirical results indicate the need to take context-level
heterogeneity into consideration for extrapolating treatment
effects.

Finally, we present two applications to evidence-based
decision-making. In the first, we use the external validity
function to determine the best location of a new experiment.
Specifically, choosing among our country-year sites, we ask
which location would minimize mean squared prediction error
for the other sites? In the second application, we ask when
a policy decision maker should choose to run an experiment
in a target setting rather than use extrapolated estimates of
the treatment effect from an existing evidence base. For both
applications, pretreatment covariate data proves to be crucial.
Questions of external validity motivate the collection of rich
covariate data even when an experiment or natural experiment
does not require it for internal validity.

The article is organized as follows. In Section 2, we provide
a brief review of the related literature, while in Section 3 we
outline a simple analytic framework for our empirical analysis.
In Section 4, we discuss our data and the sex composition
natural experiment. In Section 5, we present a graphical anal-
ysis of treatment effect heterogeneity, and in Section 6, we
perform the analogous hypothesis tests to reject homogenous
treatment effects. In Section 7, we present nonparametric esti-
mates of the external validity function for selected covariates
of interest. In Section 8, we use multivariate regressions to
examine the relative importance of individual and context-level
predictors in determining the external validity of experimental
evidence. In Section 9, we present evidence on the out-of-
sample predictive accuracy of the model, and in particular
examine how external validity evolves with the accumula-
tion of evidence. Section 10 presents our two applications,
the choice of experimental site and of whether or not to
run an experiment to inform a policy decision. Section 11
concludes.

2. RELATED METHODOLOGICAL LITERATURE

Our analysis follows on the call by Imbens (2010) to
scrutinize empirically questions of external validity, rather than
relying only on theoretical speculation. Focused consideration
of external validity goes back at least to Campbell (1957),
whose approach is taken up by Shadish, Cook, and Campbell
(2002). Debates in the classical literature omit a formal
statement of how external validity may be achieved. Olsen
et al. (2013) derive an expression for “external validity
bias” that characterizes how a treatment effect estimate

from a subset of contexts may differ from the treatment
effect in the complete set of contexts. We pursue a different
approach based on treatment effect extrapolation. This follows
recent work by Hotz, Imbens, and Mortimer (2005), Stuart
et al. (2011), Hartman et al. (2015), and Tipton (2013),
all of whom used the potential outcomes framework to
characterize conditions necessary for extrapolation from a
reference population for which experiments are available
to a target population. These conditions are analogous to
those required for using covariates to identify causal effects
under “strong ignorability” (Rosenbaum and Rubin 1983).
The difference is that the relevant conditional independence
assumptions pertain to inclusion in the reference versus target
population rather than in the treatment versus control group.
Making use of such identifying conditions requires measuring
statistical relations between covariates and treatment effects
that are invariant as we move from the reference to the
target population (Heckman and Vytlacil 2007; Pearl and
Bareinboim 2014). We review these conditions in the next
section.

Hotz, Imbens, and Mortimer (2005), Cole and Stuart (2010),
Stuart et al. (2011), Hartman et al. (2015), and Kern et al. (2016)
apply various approaches to extrapolation from one site to
another, including matching, inverse probability weighting, and
parametric and nonparametric regression techniques. Crump
et al. (2008), Green and Kern (2012), and Imai and Ratkovic
(2013) developed nonparametric methods for characterizing
effect heterogeneity, including sieve estimators, Bayesian addi-
tive regression trees, and support vector machines, respectively.
Because these previous studies work with only a small number
of sites, they focus on micro-level differences across sites. Our
analysis addresses both micro-level differences and macro-level
differences (i.e., country-year-level contextual characteristics).
In a recent study that comes closer to what we do here, Orr
et al. (2017) worked with the results of multisite education
experiments, using a leave-one-out approach to examine the
out-of-sample predictive accuracy of multilevel mixed-effects
regression models that model treatment effects as functions
of context-level variables. In a similar spirit, Bloom et al.
(2017) used a multilevel mixed-effects regression model to
estimate the variance of treatment effects across sites. Angrist
(2004), Angrist and Fernandez-Val (2010), and Aronow and
Carnegie (2013) considered extrapolation from local average
treatment effects identified by instrumental variables to a target
population. We avoid this issue in the current discussion, as
we focus only on reduced form or intention-to-treat effects.
We address extrapolation with instrumental variables in related
work (Bisbee et al. 2017).

Our analysis is related to the meta-analysis literature
(Glass 1976; Hedges and Olkin 1985; Sutton and Higgins
2008). Applications in economics include Bloom, Hill, and
Riccio (2003), Card, Kluve, and Weber (2010), Dehejia
(2003), and Stanley (2001), as well as meta-analytic reviews
that appear in the Journal of Economic Surveys. What
the meta-analysis literature lacks, however, is a general
(i.e., nonparametric) characterization of the conditions
required for consistent extrapolation from reference to target
populations. Classical approaches to meta-analysis use meta-
regression to determine correlates of effect heterogeneity—
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so called “moderator” analysis. The classical literature
tends to leave unclear the purpose of such moderator
analysis with some discussions suggesting that it is merely
descriptive, with no claim of identifying an effect in a
target population, and others suggesting the much more
ambitious goal of trying to establish a full generative model
of the conditional effect distribution (Greenland 1994;
Rubin 1992). The work on nonparametric identification
of extrapolated effects, which we use as the foundation
of our analysis, is explicit about conditions for either
identifying moderator effects or consistent extrapolation to
new populations.

3. ANALYTICAL FRAMEWORK

We have a set of C contexts, indexed by c = 1, . . . , C, drawn
from some global population of contexts. In applied settings,
the set of contexts may be sampled in a manner that is not
completely at random, and so our analysis does not take this
for granted. Rather, as we specify formally below, what we
need for accurate extrapolation is for units across contexts to
be exchangeable conditional on covariates. Thus, each context
is characterized by a vector of context-level covariates, Vc.
Within each sampled context we have Nc units indexed as
i = 1, . . . , Nc, drawn from the context’s population of units.
Each of these units is characterized by a vector of unit-level
covariates, Wic. Our interest is in causal effects for a unit-
level binary treatment, Tic ∈ {0, 1}. Each unit i in context c
is characterized by a pair of potential outcomes, Yic(0) for the
outcome under the control condition (Tic = 0), and Yic(1) for
the outcome under the treatment condition (Tic = 1).

We consider a data-generating process in which individuals
from one of the contexts are selected as the targets for which we
want to predict the average treatment effect, and the individuals
in the other C − 1 contexts serve as reference cases to use
in formulating these predictions. We refer to the context that
contains the target units as the “target context” and the contexts
containing the reference units as the “reference contexts.” The
setup is similar to that of Hotz, Imbens, and Mortimer (2005),
except that we consider situations with potentially many refer-
ence contexts, and so adjusting for context-level variables is a
practical possibility. This corresponds to our empirical setting,
in which available reference experiments accumulate over time.

To formalize this selection process, suppose that each unit
is also characterized by an indicator variable Dic ∈ {0, 1} for
whether a unit is a member of the target population or from a
reference context. Members of the target population have Dic =
1, and units residing in one of the C−1 reference contexts have
Dic = 0. In the reference contexts, experiments are run that
randomly assign the treatment (Tic) to sampled units, revealing
outcomes as

Yic = TicYic(1) + (1 − Tic) Yic(0). (1)

Note that expression (1) embeds the “stable unit treatment value
assumption” (SUTVA; Rubin 1980). For units in the reference
contexts, we observe (Yic, Tic, Wic, Dic, Vc), and for target units,
we observe only (Wic, Dic, Vc). Note that we are assuming that
we have access to micro-level data in both the reference and

target contexts, and the relevance of this assumption depends on
whether the substance of the enquiry is one for which relevant
survey or census data is available.

Suppose the following conditions on the data generating
process:

(C0) Tic ⊥ (Yic (0) , Yic (1)) | (Vc, Wic) , Dic = 0,
(C1) Dic ⊥ (Yic (0) , Yic (1)) | (Vc, Wic), and
(C2) δ < Pr [Dic = 0|Vc = v, Wic = w] < 1 − δ for δ > 0 and

all (v, w) in the support of (V , W).

Condition C0 means that in the reference contexts we
have random assignment with respect to potential outcomes,
conditional on covariates. This implies that conditional treat-
ment effects are identified in each of the reference contexts.
Condition C1 requires that systematic differences in outcomes
across target units and units in the reference contexts depend
only on Vc and Wic. Condition C2 means that for all covariates
values, one can expect to find units in the samples from
reference contexts. If C2 is not satisfied unconditionally, one
can redefine the target population as being the subpopulation
for which common support holds (Hotz, Imbens, and Mortimer
2005, fn. 7). Conditions C1 and C2 mean that conditional
and average treatment effects for target units are identified
from the units in the reference contexts by conditioning on
covariates.

Our estimand is the average treatment effect for target units.
Define E[A] as the expected value of A given the distribution
induced by sampling, selection of target units, and treatment
assignment, and define the conditional expectation E[A|B = b]
similarly for the distribution of A in the subset of units for which
B = b. Then, our estimand is

τ1 = E [Yic(1) − Yic (0) |Dic = 1] . (2)

As per Hotz, Imbens, and Mortimer (2005, Lemma 1), C0–C2
imply that τ1 is identified from the data in the reference contexts

τ1 = E [E [Yic(1)−Yic (0) |Dic =1, Vc =v, Wic =w] |Dic =1]

= E [E [Yic(1)−Yic (0) |Dic =0, Vc =v, Wic =w] |Dic =1]

= E [E [Yic|Tic =1, Dic =0, Vc =v, Wic =w] |Dic =1]

− E [E [Yic|Tic =0, Dic =0, Vc =v, Wic =w] |Dic =1] .
(3)

For the application in Section 10.2, we specify a conditional
mean function as,

μ (t, v, w) = E [Yic|Tic = t, Dic = 0, Vc = v, Wic = w] , (4)

for t = 0, 1. We estimate this conditional mean function using a
series regression with polynomial expansions and interactions
of the covariates. We fit these models using ordinary least
squares, and the order of the polynomials and interactions
are determined using minimum-Cp LASSO regularization, as
in Belloni, Chernozhukov, and Hansen (2014). The LASSO
regularization helps to identify a series specification with high
predictive accuracy but in a manner that reduces the risk of
overfitting. These regressions yield a conditional mean estima-
tor, μ̂(t, v, w) for t = 0, 1. Define V(1) as the value of the context
level covariate that obtains for the target context, Wi(1) as the
covariate value for target unit i, and S(1) as the set of sampled
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target units. Assuming that the conditional mean estimator
is consistent for expression (4), an asymptotically unbiased
estimator for τ1 needs to take the conditional mean estimates
and marginalize with respect to the covariate distribution of
the target population. We implement this with the following
estimator,

τ̂1 = 1

|S(1)|
∑

i∈S(1)

[μ̂ (
1, V(1), Wi(1)

) − μ̂
(
0, V(1), Wi(1)

)], (5)

where unbiased marginalization follows from the random sam-
pling of units from the target population. (Note that since we
only ever observe one target context covariate distribution, we
have asymptotic unbiasedness but not consistency—the error
is non-vanishing. We address this below.) This approach is
similar to the “response surface modeling” approach of Orr
et al. (2017, eq. 4), although in our case, we allow for covariates
to moderate effects at both the unit and context levels, whereas
Orr et al. only model how covariates moderate context-level
effect heterogeneity.

In our analysis below, we compare predictions to the treat-
ment effects that actually arise for each target population. For
any given target population, we can call the treatment effect that
arises τ(1). We can relate a given target population’s treatment
effect to the expected value, τ1, as

τ(1) = τ1 + ε(1). (6)

The term ε(1) captures what we call “intrinsic variation” in
target population treatment effects. It is analogous to the error
between a conditional mean and an observation in a regres-
sion setting. If assumptions C0–C2 hold, this error is zero in
expectation (with respect to the notion of expectations defined
above). For any given target, however, the error could be small
or large, and conditional on (V(1), Wi(1)) it may not be mean
zero.

The identification results above are for τ1 but then if our
interest is really in τ(1), how should we address the issue that
the two differ as characterized in expression (6)? Our approach,
as developed below (Section 10.2) is to construct (1 − α) 100%
predictive intervals that, under substantive assumptions on the
between-context variation in treatment effects, are calibrated to
cover the target τ(1) values with probability 1 − α. Analogous
to prediction in standard regression analyses, width of the
predictive interval measures the degree of uncertainty, and
such uncertainty depends on the number of covariates available
(which in turn defines the degree of “residual variance”) and
then the position of the target context in the covariate space
(where distance from the centroid of the covariate space tends
to imply more uncertainty).

Now, τ(1) is a population parameter that is not directly
observable. Rather, we our empirical analysis uses the real-
ization of the (natural) experiment in the target context to
estimate τ̂(1). We do this using a reduced form regression with
an unbiased specification based on the experimental design.
Our analyses below focus on the distribution of the “prediction
error,” defined as

ζ̂(1) = τ̂1 − τ̂(1). (7)

If both terms on the right-hand side are unbiased for their
respective estimands, then this prediction error is zero in

expectation. The sampling and random assignment processes
imply that τ̂(1) is statistically independent of τ̂1, and the within-
context distribution is asymptotically normal and centered on
τ(1) (Abadie et al. 2014; Freedman 2008; Lin 2013).

Whether τ̂1 is consistent for τ1 depends on whether con-
ditions C0–C2 hold and then whether the conditional mean
estimators are consistent. Our series specification for the con-
ditional mean estimators is meant to ensure consistency. Our
setting is such that C0 is plausible by design, and the unit-
level covariate set is relatively small, in which case C2 is also
uncontroversial. What remains in question, then, is C1. Below,
we conduct descriptive and regression analyses of the distri-
bution of ζ̂(1) as a way to assess C1. We study whether mean
prediction errors go to zero as we align covariate values across
the reference and target contexts. Following Hotz, Imbens, and
Mortimer (2005) and Gechter (2015), we also test whether
expected Yic(0) values, conditional on (Vc, Wic), line up across
reference and target contexts, as such equality is an implication
of C1.

Assuming consistent estimation, and with a large number of
reference contexts and large within-context sample sizes, the
distribution of ζ̂(1) is dominated by the distribution of ε(1). We
only ever select one target context, and so the contribution of
the variance of ε(1) to the variance of ζ̂(1) does not diminish
as we accumulate more experiments—hence the term “intrinsic
variation.” This is the same as in the analysis of a regression
forecast for a single future observation.

We use both dyadic and cumulative analyses to study predic-
tion error and its relationship to covariate differences between
reference and target contexts, which we call the “external
validity function” (analogous to the bias function in Heckman
et al. 1998). In the dyadic analysis, we pair each country-year in
our sample to each other country-year, creating approximately
28,000 dyads consisting of hypothetical target and reference
country-years pairs. In the cumulative analysis, the reference
set includes country-years observed in years prior to that of
the target country-year. We note that, in the analyses below,
we sometimes allow for previous years in a given country to
be used as reference contexts for that country. While this may
be favorable to the task of extrapolation in some ways, it is
worth keeping in mind that sometimes the within-country data
are a decade or more apart, in which case it is not clear that
within-country data would dominate more contemporaneous
data from elsewhere. (See Aaronson et al. 2017 for a relevant
analysis.)

4. A GLOBAL NATURAL EXPERIMENT

There are two main challenges for assessing methods for
extrapolating causal effects. First is to find a randomized
intervention or a naturally occurring experiment that has been
implemented in a wide range of settings around the world. The
second is to find data that are readily available and comparable
across the different settings.

For the first challenge, we propose to use sibling sex com-
position to understand its impact on fertility and labor supply
decisions. The starting point of our article is Angrist and Evans
(1998), who showed, using census data from 1980 and 1990 in
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the U.S., that families have on average a preference to have at
least one child of each sex. Since gender is arguably randomly
assigned, they proposed to use the sibling sex composition of
the first two children as an exogenous source of variation to
estimate the causal impact of fertility on labor supply decision
of the mother.

For the second challenge, we make use of recently available
data from the IPUMS-I. This project is a major effort to
collect and preserve census data from around the world. One
important dimension of IPUMS-I is their attempt to harmo-
nize the data and variables to make them comparable both
across time and space. For our application, we work with
142 country-year samples (from 61 unique countries) with
information on fertility outcomes as well as country-level
covariates, and then 128 country-year samples with data on
both fertility and labor-supply decisions as well as country-
level covariates.

The use of the Angrist–Evans same-sex experiment on a
global scale brings additional challenges, which were not faced
in the original article. In particular, sex selection for the first
two births, which does not appear to be a significant factor in
the United States (Angrist and Evans 1998), could be a factor in
countries where son-preference is a stronger factor than the US.
We view sex selectivity as one of the context covariates, W, that
could be controlled for when comparing experimental results
to a new context of interest, or if not appropriately controlled
for could undermine external validity. In our results below
we pursue three approaches: not controlling for differences in
sex selectivity and examining whether external validity still
holds; directly examining its effect on external validity; and
excluding countries in which selection is known to be widely
practiced.

Another challenge is that, if the cost of children depends
on sibling sex composition, then the variable Same-Sex (which
equals 1 if the first two births are the same sex, and zero
otherwise) would violate the exclusion restriction that formed
the basis of Angrist and Evans’s original instrumental variables
approach, affecting fertility not only through the taste for a
gender balance but also through the cost of additional children
(e.g., with two same sex children hand-me-downs lower the
cost of a third child and thus could affect not only fertility
but also labor supply). Butikofer (2011) examines this effect
for a range of developed and developing countries, and argues
that this is a concern for the latter group. As a result, in
this analysis, we use Same-Sex as a reduced-form natural
experiment on incremental fertility and on labor supply, and
do not present instrumental variables estimates (see Bisbee
et al. 2017 for an effort to extrapolate the instrumental variables
results).

For our empirical analysis, we implement essentially the
same sample restrictions, data definitions, and regression speci-
fications as those proposed in Angrist and Evans (1998).2 Since
the census data that we use does not contain retrospective birth
histories, we match children to mothers as proposed by Angrist
and Evans (1998), using the harmonized relationship codes
available through IPUMS-I, and we also restrict our analysis

2The data and programs used in Angrist and Evans (1998) are available at:
http://economics.mit.edu/ faculty/angrist/data1/data/angev98.

to married women aged 21–35 whose oldest child was less
than 18 at the time of the census. In our analysis we define the
variable Same-Sex to be equal to 1 using the sex of the oldest
two children.

As outcomes we use an indicator for the mother having
more than 2 children (Had more children) and for the mother
working (Economically active). These two outcomes corre-
spond to the first stage and reduced-form specifications of
Angrist and Evans. While there is a natural link between
Same-sex and Had more children, the link is less intuitive for
Economically active. In the context of instrumental variables,
the link is presumably through incremental fertility (and is
assumed exclusively to be so). In our application, since no
exclusion restriction is assumed, the effect can include not
only incremental fertility but also, for example, the income
and time effects of having two children of the same sex.
As such, identification of the reduced-form effect of Same-
sex on Economically active relies only on the validity of the
experiment within each country-year (assumption C0 from
Section 3). As we will see below, the contrast between the two
reduced form experiments is useful in thinking through issues
of external validity.

Next we discuss the choice of individual (micro) and context
(macro) variables to be included in our analysis. In the absence
of a well-defined theory for our specific context, the choice
of individual level variables to explain effect heterogeneity
is based on related models and empirical work (Angrist and
Evans 1998; Ebenstein 2009). We use the education level of
both the mother and the spouse, the age of the mother as
well as the age at first marriage for the mother as our main
individual level variables. For context variables, obvious candi-
dates are female labor force participation as a broad measure
of employment opportunities for women in a given country
(Blau and Kahn 2003) and the total fertility rate. Since the
goal of our exercise is extrapolation, we also include a number
of macro variables that do not necessarily play a direct causal
role in explaining fertility and labor supply decisions but rather
have been shown to be important in explaining broad patterns
of socio-economic outcomes across countries; these include
log GDP per capita, as a broad indicator of development,
average education, and geographic distance between reference
and target country (Gallup, Mellinger, and Sachs 1999). An
important caution is that a number of context variables, but
especially labor force participation and fertility, are potentially
endogenous at the macro level. In principle, such endogene-
ity would tend to increase the explanatory power of these
variables for explaining effect heterogeneity. But the effects
in our applies setting tend to be quite small, and so these
variables’ explanatory power would likely derive primarily
from the fact that they track baseline levels of the outcomes
of interest.

Descriptive statistics for our samples are provided in Table 1.
On average 60% of women have more than 2 children (Had
more than two kids), which is our main fertility outcome.
Furthermore, 46% of women in our sample report being Eco-
nomically active, which is our main labor market outcome.
Summary statistics for a number of additional individual level
variables as well as country level indicators are also presented
in Table 1 and they include the education of the woman and

http://economics.mit.edu/faculty/angrist/data1/data/angev98
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Table 1. Summary statistics

Mean SD Obs

Panel A: Individual level variables
Had more than two kids 0.60 0.49 11,766,586
Economically active 0.46 0.50 10,275,779
First two children are same sex 0.51 0.50 11,766,586
Age 30.00 3.60 11,766,586
Education (own) 1.88 0.85 11,295,065
Education (spouse) 2.02 0.98 9,731,360
Age at first birth 20.65 3.11 11,766,586
Difference in first two kids boys versus girls 0.02 0.71 11,766,586
Year 1991 10.32 11,766,586

Panel B: Individual level variables (weighted by sampling weights)
Had more than two kids 0.60 0.49 11,760,688
Economically active 0.51 0.50 10,269,926
First two children are same sex 0.51 0.50 11,760,688
Age 30.03 3.58 11,760,688
Education (own) 1.72 0.84 11,289,167
Education (spouse) 1.96 0.91 9,726,444
Age at first birth 20.65 2.99 11,760,688
Difference in first two kids boys versus girls 0.04 0.71 11,760,688
Year 1990 9.75 11,760,688

Panel C: Country level variables
Real GDP per capita 9682 9579 141
Mean educational attainment 1.92 0.55 135
Mean age 30.03 0.82 142
Labor force participation (women with at least two children) 0.43 0.24 128
Sex imbalance (first two children) 0.02 0.02 142
Year 1989 11.77 142

Panel D: Dyadic differences between country pairs
Education (own) 0.65 0.48 14,641
Education (spouse) 0.60 0.44 14,641
Age 1.01 0.76 14,641
Year 13.07 10.29 14,641
Real GDP per capita 10432 9464 14,400
Sex imbalance (first two children) 0.015 0.014 14,641
Total fertility rate 0.760 0.610 14,641
Labor force participation (women with at least two children) 0.24 0.61 14,641
Geographic distance (km) 7847 4720 14,641

NOTES: Source: Authors’ calculations based on data from the Integrated Public Use Microdata Series-International (IPUMS-I). Observations vary due to missing data.

her spouse, age, age at first birth, and then at the country level,
real GDP per capita as well as mean levels for the individual
level covariates. We also display summary statistics for the
difference in rates of boys versus girls in women’s first two
births.

For our main empirical specification for each country-year
sample, we examine the treatment effect of the Same-Sex
indicator on two outcome variables (Had more children and
Economically active), and control for age of mother, own
education, and spouse’s education, subject to the sample restric-
tions discussed above. The country-year treatment effects are
summarized in Table A.1. Effects are measured in terms the
changes in the probability of having more kids and being
economically active.

5. GRAPHICALLY CHARACTERIZING
HETEROGENEITY

To motivate our analysis, we start by providing some
descriptive figures that help to understand the heterogeneity
of the treatment effects in our data. Figure 1 is a funnel
plot, which is a scatterplot of the treatment effect of Same-
Sex on Had more children in our sample of 142 complete-data
country-year samples against the standard error of the treatment
effect. The region within the dotted lines in the figure should
contain 95% of the points in the absence of treatment-effect
heterogeneity. Figure 1 clearly shows that there is substantial
heterogeneity for this treatment effect that goes beyond what
one would expect to see were it a homogenous treatment effect
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Figure 1. Funnel plot of Same-Sex and Having more children.
NOTES: The funnel plot in this figure is based on data from 142
census samples. Source: Authors’ calculations based on data from the
Integrated Public Use Microdata Series-International (IPUMS-I).

Figure 2. Funnel plot of Same-Sex and Being economically active.
NOTES: The funnel plot in this figure is based on data from 128
census samples. Source: Authors’ calculations based on data from the
Integrated Public Use Microdata Series-International (IPUMS-I).

with mean-zero random variation. A similar, but less stark,
picture arises in Figure 2, which presents the funnel plot of
Same-Sex on Economically active in the 128 samples that have
census information on this labor market outcome.

Figures 1 and 2 also highlight the fact that not all country-
year treatment effects are statistically significantly different
from zero. In Figure 1, approximately three fourths of treatment
effects are significant at the 10% level (and two-thirds at the 5%
level). In Figure 2, approximately one tenth of the treatment
effects are significant at standard levels. The differences in
significance are driven both by heterogeneity in estimated
effects as well as variation in the estimated standard errors.

Figure 3. Treatment effect heterogeneity of Same-Sex on Having
more children by the proportion of women with a completed secondary
education. NOTES: The graph plots the size of the treatment effect
of Same-Sex on Having more children by the proportion of women
with a completed secondary education based on data from 142 census
samples. The graph also displays heterogeneity by geographic region.
Pearson’s correlation: 0.38 (p < 0.001). Source: Authors’ calculations
based on data from the Integrated Public Use Microdata Series-
International (IPUMS-I).

Given the substantial heterogeneity in the precision of our
estimates, in our subsequent analysis, we weight the country-
year treatment effects by the standard error of the treatment
effect.

The next set of figures investigates whether any of the
treatment effect heterogeneity documented in Figures 1 and
2 is correlated with heterogeneity in observable covariates. In
Figures 3 and 4 we plot the size of the treatment effect of Same-
Sex on Had more children (Figure 3) and Economically active
(Figure 4) on the y-axis against the proportion of women with a
completed secondary education based on data from 142 census
samples (on the x-axis). Figure 3 shows a positive relationship
that suggests that the treatment effect is larger in countries with
a higher proportion of educated mothers. The same figure also
displays heterogeneity based on geographic region, indicating
small (or zero) effects in countries of sub-Saharan Africa. The
corresponding effects for Economically active in Figure 4 are
suggestive of a negative relationship between the treatment
effect size and the level of education in a country, without a
strong geographical pattern.

Finally, in Figures 5 and 6 we repeat the analysis from the
previous two figures but instead we describe the heterogeneity
with respect to log GDP per capita in a country. Figure 5
shows a striking linear pattern, suggesting the treatment effects
of Same-Sex on Had more children increase with income
per capita. Since the proportion of women with a secondary
education and the log of GDP per capita are clearly corre-
lated, it implies that Figures 3–6 are not informative of the
relative importance of one covariate over another. Nonetheless,
these graphs as well as the funnel plots presented earlier all
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Figure 4. Treatment effect heterogeneity of Same-Sex on Being
economically active by the proportion of women with a completed
secondary education. NOTES: The graph plots the size of the treatment
effect of Same-Sex on Being economically active by the proportion of
women with a completed secondary education based on data from 142
census samples. The graph also displays heterogeneity by geographic
region. Pearson’s correlation: 0.33 (p < 0.001). Source: Authors’
calculations based on data from the Integrated Public Use Microdata
Series-International (IPUMS-I).

Figure 5. Treatment effect heterogeneity of Same-Sex on Having
more children by log GDP per capita. NOTES: The graph plots the size
of the treatment effect of Same-Sex on Having more children by log
GDP per capita based on data from 142 census samples. The graph also
displays heterogeneity by geographic region. Pearson’s correlation:
0.39 (p < 0.001). Source: Authors’ calculations based on data from
the Integrated Public Use Microdata Series-International (IPUMS-I).

provide suggestive evidence showing that there is substantive
heterogeneity for both of our treatment effects and that this
heterogeneity is associated with levels of development.

Figure 6. Treatment effect heterogeneity of Same-Sex on Being
economically active by log GDP per capita. NOTES: The graph plots
the size of the treatment effect of Same-Sex on Being economically
active by log GDP per capita based on data from 142 census samples.
The graph also displays heterogeneity by geographic region. Pearson’s
correlation: 0.26 (p = 0.004). Source: Authors’ calculations based
on data from the Integrated Public Use Microdata Series-International
(IPUMS-I).

6. HOMOGENEITY TESTS

The next step in our analysis is to quantify the heterogeneity
depicted in Figures 1 and 2, and to establish that it is statistically
significant. We start by presenting, in Table 2, the results of
Cochran’s Q tests for effect homogeneity (Cochran 1954),
which quantify what is depicted in Figures 1 and 2 in terms
of the heterogeneity in the observed effect sizes against what
one would obtain as a result of sampling error if there were
a homogenous effect. The resulting test statistics, which are
tested against the chi-square distribution with degrees of free-
dom equal to the number of effects minus one, are extremely
large (and the resulting p-values are essentially zero) and
confirm statistically the visual impression of treatment effect
heterogeneity for both treatment effects from Figures 1 and
2. The results are similar when the unit of observation is the
country-year-education group.

Given that there is heterogeneity, for the second test we
investigate if the effects are distributed in a manner that
resemble a normal distribution. For this we have implemented
an inverse-variance weighted Shapiro–Francia (wSF) test for
normality of effect estimates. This test modifies the Shapiro–
Francia test for normality (Royston 1993) by taking into
account the fact that the country-year treatment effects are
estimated with different levels of precision. Our modification
involves using an inverse-variance weighted correlation
coefficient as the test statistic rather than the simple sample
correlation coefficient. The test statistic is the squared
correlation between the sample order statistics and the expected
values of normal distribution order statistics. In our specific
example, where the outcome is Had more children, we take the
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Table 2. Heterogeneity tests

Outcome Effect specification N* Q-test statistic** wSF-test statistic***

(p-value) (p-value)

More kids Country-year 142 13,998 0.9345
(<0.0001) (<0.0001)

Country-year-ed. category 533 15,573 0.9433
(<0.0001) (<0.0001)

Economically active Country-year 128 224.26 0.948
(<0.0001) −0.0002

Country-year-ed. category 477 586.26 0.8592
(<0.0001) (<0.0001)

NOTES: *Number of studies, which varies over the two outcomes because of incomplete data over available samples for the economically active indicator.
**Q test of effect homogeneity. Degrees of freedom are 141 for More kids and 127 for economically active.
***Inverse-variance weighted Shapiro–Francia (wSF) test for normality of effect estimates. The test statistic is the squared correlation between the sample order statistics and the
expected values of normal distribution order statistics.

order sample values for our 142 country-year observations and
look at the squared correlation between the ordered statistics
from our sample and the expected ordered percentiles of the
standard normal distribution. The results in Table 2 confirm
that for both of our outcome variables we can reject that
the correlation is 1, that is, we can reject the hypothesis of
unconditional normality. This result is not surprising in light
of the visual evidence presented in Figures 1 and 2, which
suggested that the distribution of our country-year effects is
over-dispersed from what a normal distribution would look
like.

The rejection of homogeneity suggests the need to use
available covariates to extrapolate to new contexts. In our
example, the set of covariates is limited. At the micro level
we have only the basic demographic characteristics included
in the standardized IPUMS data, but a somewhat larger set of
country-year covariates. We expect that such limits to available
covariates would be typical of experimental evidence bases.
With a limited set of covariates, we can remain agnostic about
what covariates to include and just incorporate all of them into a
flexible specification without encountering degrees of freedom
problems, using the LASSO regularization to prune interactions
and higher order terms.

7. CHARACTERIZING EXTERNAL VALIDITY: THE
EXTERNAL VALIDITY FUNCTION AND

UNCONDITIONAL RELATIONSHIPS

In this section, we present a graphical analysis of the impor-
tance of context covariates such as education, log GDP per
capita, and geographical distance in improving extrapolations
of the same-sex treatment effects on the Had more children
outcome. We conduct this descriptive analysis using the exter-
nal validity function, which characterizes how prediction errors
from reference to target locations vary as a function of the
context-level covariate differences between locations. (This is
analogous to the bias function in Heckman et al. 1998.)

Specifically, we extrapolate the treatment effect to a target
context adjusting only for unit-level covariates from the refer-

Figure 7. Unconditional external validity function for Had more
children: local linear regression of prediction error on standardized
differences in education. NOTES: The graph plots the local polyno-
mial regression of the dyadic prediction error against the standardized
education difference between target and comparison country, where
the education difference is standardized by its standard deviation
(0.83). The variables are further described in Table 1. Source: Authors’
calculations based on data from the Integrated Public Use Microdata
Series-International (IPUMS-I).

ence context(s) (age, education, etc. from Table 1, Panel A).
For descriptive transparency, we use only a single reference
context, although in practice using the full set of available
reference contexts is more efficient. This yields a prediction
error estimate, ζ̂ci, for each target context c from reference
context i. We then evaluate how this prediction error varies in
Vck−V̄ik, where V̄ik is the mean of the kth context level covariate
from the reference context(s) i used to generate the prediction
for site c. For a single reference context i, V̄ik is simply the value
of the kth context level covariate, but for some examples below,
we construct a context-level covariate by taking the mean of
unit-level covariates. In Figures 7–10, we present local linear
regressions of prediction error for all reference-target dyads, ζ̂ci,
on within-dyad covariate differences Vck − V̄ik.
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Figure 8. Unconditional external validity function for Had more
children: local linear regression of prediction error on standardized
differences in log GDP per capita. NOTES: The graph plots the
local polynomial regression of the dyadic prediction error against the
standardized GDP difference between target and comparison country,
where the GDP difference is standardized by its standard deviation
($9680). The variables are further described in Table 1. Source:
Authors’ calculations based on data from the Integrated Public Use
Microdata Series-International (IPUMS-I).

Unconditional external validity function estimates for edu-
cation are presented in Figure 7. Three features are notable.
Prediction error is approximately zero at zero education dis-
tance, which is consistent with and provides a test of the
unconfounded location assumption. Prediction error increases
with increasing differences in education levels; for a one stan-
dard deviation education difference (approximately one point
on the four-point scale) error increases by approximately 0.1
(relative to the world treatment effect of 0.04 in Figure 1). The
figure also plots ± two standard errors of the external validity
function, which is relatively flat over the range of −2 to +2
educational differences, but increases at greater differences.

Figure 9. Unconditional external validity function for Had more
children: local linear regression of prediction error on standardized
differences in women’s labor force participation. NOTES: The graph
plots the local polynomial regression of the dyadic prediction error
against the standardized labor force participation difference between
target and comparison country, where the labor force participation dif-
ference is standardized by its standard deviation (0.21). The variables
are further described in Table 1. Source: Authors’ calculations based
on data from the Integrated Public Use Microdata Series-International
(IPUMS-I).

Figure 8 shows a similar pattern when we explore how the
prediction error changes with GDP per capita. The error at
zero GDP per capita distance is close to zero, and increases
to about 0.1 for a one standard deviation GDP per capita
difference (approximately $10,000). In Figure 9, we focus on
women’s labor force participation differences and again we
observe that any deviations in labor force participation distance
are associated with higher prediction error.

In Figure 10, we present external validity function estimates
with respect to geographic distance, measured as the standard-
ized distance in kilometers between the centroid of a target and
comparison country (where a one standard deviation difference
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Figure 10. Unconditional external validity function: local linear regression of prediction error on standardized geographical distance. NOTES:
The graph plots the local polynomial regression of the dyadic prediction error against the standardized geographical distance between target and
comparison country, where the geographical distance is standardized by its standard deviation (4800 km). The variables are further described in
Table 1. Source: Authors’ calculations based on data from the Integrated Public Use Microdata Series-International (IPUMS-I).
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is approximately 4800 km). Geographic distance is presumed
to proxy for various cultural, climactic, or other geographically
clustered sources of variation in fertility. Looking across all
country-years, in the left panel of Figure 10, we do not find
a significant relationship between geographical distance and
prediction error. Nonlinear features of geographical distance,
most notably oceans, complicate this relationship. To account
for this, in the right of Figure 10, we present differences within
contiguous regions (North and South America, Europe, Asia,
and Africa). Again, we do not find any statistically significant
relationship for distances less than 10,000 km. The estimated
external validity function is positively sloped: for distances
in excess of approximately 10,000 km, there is a statistically
significant increase in prediction error.3

8. CHARACTERIZING EXTERNAL VALIDITY:
CONDITIONAL RELATIONSHIP

In this section, we continue our characterization of external
validity by estimating the multivariate relationship between
prediction error and the full range of dyadic covariate differ-
ences. The goal of this analysis is twofold. First, it allows us
to test with a precise standard error the validity of the uncon-
founded location assumption. Second, it gives us a descriptive
sense of which context covariates are most important when
extrapolating.

We regress ζ̂ci, for each target context c—reference context
i dyad on Vck − V̄ik, for k = 1, . . . , K, the within-dyad covariate
differences, where we adjust the standard errors using the
Cameron and Miller (2014) dyadic cluster-robust estimator.

The results from this exercise for the Had more children
outcome are presented in Tables 3 and 4, where we standardize
covariate differences. To interpret the coefficients it is useful
to note that the standard deviation of the education variable is
close to 0.5, for age it is about 0.75 years, for census year it is
10 years, for log GDP per capita is about 9464 dollars, and for
distance it is about 4700 km.

In columns (1)–(9) of Table 3, we run the prediction error
regressions one covariate at a time, giving us prediction error
linear regressions corresponding to Figures 7–10. Most covari-
ates (measured as standard deviations of reference-target differ-
ences in education, education of spouse, age of the mother, year
of census, log GDP per capita and labor force participation) are
statistically significant, with a one standard deviation covariate
difference increasing prediction error by 0.05–0.1, an order
of magnitude approximately between one and two times the
treatment effect (with differences in mother’s age and total fer-
tility rate leading to even larger errors). Geographical distance
notably is not statistically significant.

In columns (10) and (11) of Table 3, we estimate multivariate
prediction error regressions. Five main observations can be
drawn from the results. First, the constant in the regressions
is close in magnitude to, and not statistically significantly

3Figures A.1–A.3 present results of tests for the unconfounded location
assumption in the spirit of the tests used by Hotz, Imbens, and Mortimer
(2005) and Gechter (2015). They are analogous to Figures 7–10, but instead
extrapolate the Yi(0) distribution. The graphs pass through the origin which is
what we would expect if unconfounded location holds.

different from, zero, matching the finding from Figures 7
to 10 that when covariate differences between the reference
and target location are small prediction error is also small.
This is consistent with the unconfounded location (assumption
C1). Second, many of the variables are statistically significant,
although we note that education and labor force participation
lose significance once the other controls are included. Third,
the size of the prediction error due to covariate differences is
generally large relative to an average treatment effect in the
sample of 0.04. Fourth, it is noteworthy that the effects of GDP
per capita and total fertility rate are negative in column (10).
Since the unconditional effect of GDP per capita differences is
positive in column (5), this reflects the counter-intuitive nature
of the variation identifying the conditional coefficient: variation
in GDP per capita conditional on a similar education, age,
and labor force participation profile of women is presumably
quite limited. At the same time, the coefficient on the dif-
ference in total fertility rate is negative both unconditionally
(in column (8)) and conditionally (column (10)). This implies
that the treatment effect is decreasing in total fertility rate, so
comparing a reference country-year to a target country-year
with a lower total fertility leads to negative prediction error
(under-estimation of the treatment effect). Fifth, the sex ratio
imbalance enters positively, implying that it is indeed impor-
tant to consider the degree of sex selectivity within countries
when extrapolating the treatment effect. This remains true even
when we drop the most notable sex-selectors from the sample
(China, India, Nepal, and Vietnam, column (11)). Furthermore,
dropping sex-selecting countries does not meaningfully change
the estimated coefficients on covariate differences.

The results in Table 4 for the effect of Same-Sex on Eco-
nomically active are similar in three respects. First, the constant
is not statistically significantly different from zero at least
when all covariates are included in columns (10) and (11),
again consistent with unconfounded location (C1). Second,
the magnitude of prediction error generated by reference-
covariate target differences is large relative to the treatment
effect. Third, covariate differences enter both positively (sex
ratio imbalance, total fertility rate) and negatively (age of the
mother, calendar year, and labor force participation of women)
both unconditionally and conditional on other covariates. This
reflects different patterns of treatment effect heterogeneity: a
positive coefficient on the reference-target covariate difference
implies that the treatment effect is increasing in the covariate
(so if the target country has a higher value of the covariate, one
overestimates the treatment effect in the reference country), a
negative coefficient the opposite.

While the results in Tables 3 and 4 allow us to compare the
simultaneous importance of a range of covariates difference on
prediction error, they do not allow us to judge the importance of
micro versus country-level covariates. Since dyads are formed
at the country-year level, micro-level covariates differences are
aggregated to that level. To get at this issue, we perform the
following exercise for each country-year sample. We take a
given country-year as the target country, and all of the other
country-years are treated as reference sites. Pooling the data
from the reference sites, we run a separate regression for the
treated and the control observations, and we use these to predict
the treatment and the control outcomes and the treatment
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effect in the target site. We consider four cases in terms of
possible sets of regressors: (1) one without any covariates,
which recovers the unadjusted estimates; (2) the individual
micro covariates including age of the mother, a set of dummies
on mother’s educational attainment, a set of dummies on the
education of the spouse, age at first marriage, as well as all
the possible interactions of these individual-level variables; (3)
macro covariates consisting of log GDP per capita, labor force
participation, dummies for British and French legal origin, as
well as a variables for the latitude and longitude of a country;
and (4) the combined covariates that consist of the union of
micro (group 2) and macro variables (group 3). We calculate
prediction error in the same manner as above.

This exercise generates a data point for each country-year
with a separate prediction from each of the four covariate sets.
We plot the distribution of these prediction errors for Had more

children in Figure 11 and for Economically active in Figure 12.
The four groups are unadjusted (solid line), micro variables
only (wide dashed line), macro variables only (small dashed
lines), and micro and macro variables together (dotted line). In
panel A of each figure, we plot the density estimates of these
prediction errors, while in panel B we plot the CDFs of the
absolute prediction error.

Looking at Figure 11, we observe that in the case of Had
more children, both micro and macro variables contribute in
pushing prediction error toward zero, dominating the scenario
of no covariates. In the density plots, inclusion of covariates
brings in the tails toward zero, and in the CDF plot the error
distribution is drawn toward zero. However, the contribution of
the macro variables is much stronger and considerably reduces
the error. The results in Figure 12, which use Economically
active as the outcome variable of interest, provide an even

Panel A: Density estimate - prediction error Panel B: CDF - absolute prediction error
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Figure 11. Individual versus macro covariates for Having more children. NOTES: The graph plots the density estimates of the prediction
error and CDF of the absolute prediction error based on the procedure described in Section 9 of the article. Source: Authors’ calculations based
on data from the Integrated Public Use Microdata Series-International (IPUMS-I).
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Figure 12. Individual versus macro covariates for Being economically active. NOTES: The graph plots the density estimates of the prediction
error and CDF of the absolute prediction error based on the procedure described in Section 9 of the article. Source: Authors’ calculations based
on data from the Integrated Public Use Microdata Series-International (IPUMS-I).
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starker picture. In this case, micro variables do not seem useful
in terms of reducing the prediction error, a finding that is in
line with the arguments provided in Pritchett and Sandefur
(2013). But equally remarkable is how well macro variables do
in terms of reducing prediction error. The implication of these
results is that a set of easily available cross-country variables
has the potential to be useful in analyzing external validity.
This also raises concerns about generating extrapolations solely
on the basis of micro-level data, an issue that Hotz, Imbens,
and Mortimer (2005), Stuart et al. (2011), and Hartman et al.
(2015) were unable to investigate due to the limitations of their
evidence bases.

Finally, we obtain similar results on the importance of
context-level covariates when we use the LASSO regular-
ization to specify the approximating functions characterized
in expression (7). This allows us to evaluate the importance
of interactions and higher order terms. In the application in
Section 10.2, we use these LASSO-pruned models to gener-
ate predictions. Figure A.4 shows the solution paths for the
interaction terms in the series expansion. The solution path
reveals that an error-minimizing specification (in terms of
Mallow’s Cp-statistic) is quite sparse in the interaction terms
retained. Moreover, macro-level and macro-micro interaction
terms dominate the LASSO solution paths, which means that
they are the variables that LASSO selects to produce a parsi-
monious and error-minimizing specification. Even in the fully
saturated specification, the macro and macro-micro interaction
terms that we have included dominate in terms of explana-
tory power (evident in looking at the standardized coefficient
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Figure 13. Prediction error with different comparison groups of
Same-Sex on Having more children. NOTES: The graph plots the
prediction error for target country-years available up to the year on
the x-axis using the procedure described in Section 9 of the article
and four groups of reference countries: (1) all the available country
years (graphed as the red line), (2) the best comparison country-
year as predicted by our model (graphed as the blue line), (3) the
nearest country-year by distance excluding own-country comparisons
(graphed orange line), and (4) the nearest country-year by distance,
allowing own-country year comparisons. The variable on the x-axis
refers to the year when a census was taken. The variables are further
described in Table 1. Source: Authors’ calculations based on data from
the Integrated Public Use Microdata Series-International (IPUMS-I).

values displayed all the way to the right in the graphs of the
full LASSO solution paths, Panels A and B). These results
confirm two impressions arising from the exploratory analysis
above: first, much of the effect heterogeneity is attributable to
macro-level variation, and second, to the extent that micro-
level variables matter in explaining effect heterogeneity, the
influence of these micro-level variables is strongly moderated
by macro-level moderation (e.g., the age of mothers moderates
treatment effects, but in a manner that differs depending on
macro context).

9. THE ACCUMULATION OF EVIDENCE AND
OUT-OF-SAMPLE PREDICTION ERROR

Our results so far imply that with sufficient covariate data,
we can extrapolate the treatment effect with zero prediction
error on average, when the reference and target contexts are
similar, particularly with respect to context covariates. We now
consider if and how the accumulation of experiments over
time improves our ability to extrapolate to new settings or
alternatively how well we are able to extrapolate with only
a small experimental evidence base. The results, by year, are
plotted in Figures 13 and 14 for our two outcomes.

For the target country-years observed in a given year, t,
we extrapolate the treatment effect and estimate prediction
error using the reference sample available in years t − 1
and earlier. We restrict the reference sample and generate
extrapolations in four different ways: (method 1, small dashed
lines line) pooling all country-years available up to year t −
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Figure 14. Prediction error with different comparison groups of
Same-Sex on Being economically active. NOTES: The graph plots the
prediction error for target country-years available up to the year on
the x-axis using the procedure described in Section 9 of the article
and four groups of reference countries: (1) all the available country
years (graphed as the red line), (2) the best comparison country-
year as predicted by our model (graphed as the blue line), (3) the
nearest country-year by distance excluding own-country comparisons
(graphed orange line), and (4) the nearest country-year by distance,
allowing own-country year comparisons. The variable on the x-axis
refers to the year when a census was taken. The variables are further
described in Table 1. Source: Authors’ calculations based on data from
the Integrated Public Use Microdata Series-International (IPUMS-I).
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1, we extrapolate using the average treatment effect in the
pooled reference sample; (method 2, solid line) we extrap-
olate using the treatment effect from the lowest prediction
error reference country-year as selected by the prediction-error
model (from Table 3) fit to data up to year t − 1; (method
3, dotted line) we extrapolate using the treatment effect from
the nearest country-year by geographical distance excluding
own-country comparisons; and (method 4, wide dashed lines
line) we extrapolate using the treatment effect from the nearest
country-year by geographic distance, allowing own-country
comparisons.

A number of interesting patterns arise from this exercise.
First, consider the comparison of pooling all available country-
years (method 1, in small dashed lines) versus the best reference
country-year selected by the model (method 2, in solid line).
The results confirm that when using our model we get much
lower prediction error compared to pooling all the samples
available. Second, the pattern of prediction error over time from
using the model-selected reference country-year (method 2)
shows that the accumulation of more samples plays a modest
but meaningful role in reducing the prediction error. The role of
adding samples is modest in the sense that the prediction error
from the model-selected reference country-year hovers between
0.08 and −0.05. This suggests that the model is reasonably
accurate in making predictions even with a limited number of
available samples. But adding samples is also meaningful in the
sense that the prediction error tightens considerably (ranging
between 0.02 and −0.03) from 1985 onward.

We can also compare the model-based approach to simple
rule-of-thumb selection criteria. First is the rule of thumb
of choosing the nearest country-year by geographic distance,
but excluding own-country samples (method 3, dotted line),
and second is the same geographic rule of thumb, but allow-
ing for own-country samples from previous years (method 4,
wide dashed line). In both cases, the prediction error becomes
smaller over time, likely because the geographically nearest
match tends to be quite similar. We see marked improvements
from allowing own-country reference samples from previous
years, suggesting that cross-sectional heterogeneity is impor-
tant. We also find that neither rule of thumb tends to perform as
well as the model-based approach, particularly when available
reference samples are sparse.

Overall, we draw three conclusions from this analysis.
First, without a sufficient number of experiments extrapolating
the treatment effect is challenging; while the model-informed
approach (method 2) performs well on average, in our data, its
reliability is sensitive to year-to-year variation in the reference
sample until around 1985 (by which point we have accumulated
54 country-year samples). Second, with a sufficiently large
evidence base, rules of thumb are somewhat reliable. Third,
in both rich and sparse data environment the model informed
approach tends to dominate either pooled estimation or the
simple rules of thumb.

10. APPLICATIONS

While the natural experiment we have examined, the effect
of Same-sex on fertility (Had more children), clearly is not a

intervention that could or would be implemented by a policy
maker, as a thought experiment we treat it as such, and in this
section examine how our framework would be used to address
two questions a policy maker could face: (1) where to locate
an experiment to minimize average prediction error over a set
of target sites, and (2) when to rely on extrapolation from an
existing experimental evidence base rather than running a new
experiment in a target site of interest.

10.1. Where to Locate an Experiment

Imagine a policy researcher interested in characterizing
how the effect of an intervention varies around the world as
in Imbens (2010, p. 420) or Rubin (1992), but with limited
resources to implement new experiments. In this section, we
examine what the evidence base implies for the best location
of new experimental sites given the goal of generating evidence
that generalizes globally.

At the country-year level, our regressions above suggest that
prediction error should be low for locations with low covariate
distance to the evidence base. In assessing such covariate dis-
tance, the question is how to weight different covariates. With
knowledge of the estimates in Tables 3 and 4 (column (10) in
each table) one would weight each covariate by its conditional
importance for external validity, or more directly one could
also weight each covariate by its conditional influence on the
country-year treatment effect. Figure 15 provides confirmation
for this intuition. We use each country-year to predict the
other country-years in our sample, where the x-axis plots each
country-year by the percentile of its composite covariate, that is,
the sum of covariates weighted by their conditional predictive
relevance for the treatment effect, and where the y-axis plots
the associated mean error from predicting the treatment effect

Figure 15. Mean prediction error on percentile of comparison
country composite treatment-effect predictor, using one site to predict
all others. NOTES: On the x-axis each country-year is ranked based on
its percentile of a composite treatment effect predictor. The composite
predictor is a weighted average country-year covariates weighted by
their effect on the country-year treatment effect. The y-axis shows the
mean prediction error from using the site on the x-axis to predict all
other country-years. Source: Authors’ calculations based on data from
the Integrated Public Use Microdata Series-International (IPUMS-I).
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for other country-years. We see immediately that the lowest
average prediction error is indeed at the median, which turns
out to be the United States in 1980.

The challenge in thinking of this prescriptively is that a
policy maker will not know the conditional importance of
each covariate for external validity without first running the
full set of experiments. In Figure 16, we consider an alterna-
tive that does not rely on knowledge of the treatment effect;
namely, we compute the average covariate Mahalanobis dis-
tance between each country-year and the other country-years.
The covariate Mahalanobis distance accounts for redundancy
due to correlations between covariates. It therefore accounts
for all of the information in the linear external validity function
specification that we can obtain without knowing the regression
coefficients. The figure plots average prediction error against
the rank of average distance of a country-year from other
country-years. Again, it is evident that the country-year with
the lowest average distance to other country-years offers the
lowest prediction error of the treatment effect; the relationship
is also monotonic. Carrying the thought experiment further,
in Figures 17 and 18 we consider adding a second country-
year, conditional on the first choice. As such, in these fig-
ures, we are using two countries to make predictions. Again,
the lowest prediction error is associated with country-years
that are in the middle of the covariate distribution or that
have the lowest average covariate distance to other country-
years.

If one had to choose only a single site to locate an
experiment to learn about a collection of sites, the results
show that choosing in a manner that minimizes Mahalanobis
distance would offer an estimate that extrapolates with
expected prediction error that is low relative to alternative
sites. If, however, the goal is to add new experiments to an
existing evidence base so as to characterize how effects vary,
then these results recommend selecting sites that maximize

Figure 16. Mean prediction error on average Mahalanobis distance
of the comparison country-year to all target country-years. NOTES:
On the x-axis each country-year is ranked based on its average
Mahalanobis distance to all other country-years. The y-axis show the
mean prediction error from using the site on the x-axis to predict all
other country-years. Source: Authors’ calculations based on data from
the Integrated Public Use Microdata Series-International (IPUMS-I).

Mahalanobis distance in the covariates as specified in the
external validity function. It is for such sites that the evidence
base is unreliable in predicting treatment effects. These results
are similar in spirit, though different in details, than those of
Stuart et al. (2011) and Tipton (2014). Stuart et al. (2011)
use the standardized mean difference of experimental site-
selection propensity scores to summarize how a selected and
unselected sites differ in their respective covariate distributions.

Figure 17. Mean prediction error, given the first comparison site,
on percentile of composite treatment-effect predictor covariate, using
two sites to predict the others. NOTES: On the x-axis each country-
year is ranked based on its percentile of a composite treatment effect
predictor. The composite predictor is a weighted average country-
year covariates weighted by their effect on the country-year treatment
effect. The y-axis shows the mean prediction error from using the
site on the x-axis to predict all other country-years. Source: Authors’
calculations based on data from the Integrated Public Use Microdata
Series-International (IPUMS-I).

Figure 18. Mean prediction error, given the first comparison site,
on average Mahalanobis distance of the comparison country-year to
all target country-years, using two sites to predict others. NOTES:
On the x-axis each country-year is ranked based on its average
Mahalanobis distance to all other country-years. The y-axis shows the
mean prediction error from using the site on the x-axis in addition to
the first selected comparison site to predict all other country-years.
Source: Authors’ calculations based on data from the Integrated Public
Use Microdata Series-International (IPUMS-I).
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Tipton (2014) used the Bhattacharyya distance between the
propensity scores distributions of the selected and unselected
sites. As the literature on matching has demonstrated, the
optimal distance metric will depend on the underlying
covariate and outcome distributions (Abadie and Imbens
2006).

10.2. To Experiment or to Extrapolate?

Now suppose a policy maker wants to make an evidence-
based policy decision of whether or not to implement a pro-
gram. The policy maker has a choice between using the existing
evidence base versus generating new evidence by carrying out
an experiment with the target population. That being the case,
the choice is really between whether the existing evidence base
can provide a reliable enough estimate of what would be found
from the new experiment, thus making the new experiment
unnecessary. Essentially, the policy-maker would want to work
with predictions that use available micro-level covariate data
to account for differences in micro-level population charac-
teristics and available macro-level covariate data to account
for differences in macro-level context characteristics. As the
previous section anticipated, we should expect the reliability
of such predictions to depend on the amount of covariate data
available and also how irregular are the covariate values for the
target context as compared to what is contained in the evidence
base.

One might imagine different ways to characterize the loss
function governing this decision. We develop an approach
based on the assumption that a new experiment is only worth-
while if the existing evidence base is sufficiently ambiguous
about the potential effects of the treatment for the target popula-
tion. Formally, this means that the policy maker will decide that
the existing evidence is sufficient to determine policy if a 95%
prediction interval surrounding the conditional mean prediction
for the target site is entirely on one or another side of some
critical threshold, c∗. We also assume the experiment that the
policy maker could run with the target population is adequately
well powered that she would find it worthwhile to run the
experiment if the existing evidence is ambiguous. Figure 19
illustrates the decision problem graphically. If the predictive
interval resembles either of the solid-line distributions, then
the evidence is certain enough to rule out the need for an
experiment. If the interval resembles either of the dashed line
distributions, then the existing evidence is too vague and a new
experiment is warranted.

Figure 19. To experiment or extrapolate? A graphical illustration of
the decision problem. NOTES: Solid line = experiment not warranted.
Dashed line = experiment warranted.

This is a reduced-form characterization of any number of
more fully fledged analyses. A fully Bayesian decision analysis
under a Normal model could begin with the premise that
the policy maker implements the program if the posterior
distribution for the program effect provides a specified degree
of certainty that the effect will be above some minimal desirable
effect value. Then, c∗ and the relevant prediction interval could
be defined as a function of the minimum desirable effect value,
the level of certainty required, posterior variance, and the
moments of the predictive distribution. With c∗ and the rele-
vant prediction interval defined, the analysis would otherwise
proceed as we describe here.

Recall that in expression (5) we defined τ̂1 as the estimator
for the target population treatment effect and in expression
(6) we defined the error ε(1) that characterizes how τ(1), the
treatment effect for any given target population, differs from
the expected target population effect, τ1. We apply a working
assumption that ε(1) is normally distributed with mean zero and
variance σ 2

ζ . This is a substantive assumption on the distribution
of treatment effects. We generate a prediction τ̂1, and apply
another working assumption that τ̂1 is normally distributed with
mean τ1 and estimation variance σ 2

1 . This assumption can be
taken to approximate the large sample distribution of τ̂1 as a
consistent, linear estimator. Note that τ(1) and τ̂1 are statistically
independent by virtue of the assumed process through which
individuals are assigned to the target population (assumption
C1) and the fact that outcomes from the target context are not
used to estimate τ̂1. Consider the difference X = τ(1) − τ̂1.
This difference is a linear combination of independent normal
variables, and thus is normal with mean zero and variance
σ 2

ζ + σ 2
1 . Applying the usual parametric results for out-of-

sample prediction intervals, a 95% prediction interval for τ(1)

is given by

PI1 = τ̂1 ± t0.025(σ
2
ζ + σ 2

1 ), (8)

where t0.025 is the appropriate 0.025 quantile value for the
normalized conditional distribution of τ̂1. The first variance
component captures the intrinsic variability of context-level
treatment effects, and does not diminish in the number of
reference contexts. The second variance component captures
estimation variability and goes to zero in the number of ref-
erence contexts. The solution to the decision problem is to
experiment if c∗ ∈ PI1, and accept the existing evidence
otherwise. Under the normality assumptions, this would imply
an error rate of 5%.

We estimate the total variance (σ 2
ζ + σ 2

1 ) in a manner that
accounts for potential dependency between this variance and
covariates. We do so using a leave-one-out approach, similar to
that of Orr et al. (2017). We first generate predictions, τ̂1c, for
each of the reference contexts in the evidence base, and then we
take the difference ζ̂c = τ̂1c−τ̂c, where τ̂c is the effect estimated
using the natural experiment in context c. We then model the
log

(̂
ζ 2

c

)
values in terms of Vc, W̄c using a series specification

analogous to what we used to model the conditional mean.
We take the exponentiated predicted value at V(1), W̄(1) as our
estimate of the total variance.

Figure 20 shows the results of applying this approach to
estimating the effects of Same-sex on More kids. Panel A shows
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Figure 20. To experiment or extrapolate? Sample, prediction intervals, and uncertainty estimates. NOTES: Panel A shows how the cumulative
reference sample evidence base is growing over time in terms of the number of reference country-year samples (black) and the number of
reference sample observations (gray). Panel B shows the estimated prediction interval for the effect of Same-sex on More kids for each target
country-year (gray bars) and then, for validation, the actual effect estimates from those country-year samples (black dots). Panel C shows the
estimation standard error for each target country-year (black line) and then the estimated intrinsic variation, that is, the estimated standard
deviation of the effect distribution at the point in the covariate space for the target country-year. Source: Authors’ calculations based on data
from the Integrated Public Use Microdata Series-International (IPUMS-I).

how the cumulative reference sample evolves over time, eventu-
ally reaching our 142 complete-data country-year samples and
about 10 million observations. Panel B shows the prediction
intervals for target country-year (gray bars), arrayed by year.
We also plot the actual effect estimates from those country-
year samples (black dots) as a way to check on the accuracy of
the procedure. The figure shows that the predictive intervals are
informative, in that they do not span an extreme range, and they
almost always cover the in-sample effect. The intervals become
a bit tighter as the evidence base grows over time, although
they do not collapse to zero. As a result, even for a decision
rule based on a critical value of 0 (c∗ = 0) and even with over
100 reference samples, the analysis would indicate the need for
further experimentation.

That the intervals do not collapse to zero is expected because
of the intrinsic variability, and this highlights the crucial role
of covariate data for analyses that depend on external validity.
Unlike the standard error of prediction, the intrinsic variability
does not depend on the sample size in a strict sense. Rather,
it is a function of the amount of variation left unexplained by
the covariates, which remains fixed in this application. Panel
C demonstrates this point clearly. The black line traces out
the standard error of prediction), which tends toward zero
as the reference samples accumulate. The gray dots show
the estimates of the intrinsic variation, expressed in standard
deviation units and thus on the same scale as the effect esti-
mates. The intrinsic variation always dominates the standard
error of prediction, and it remains quite large (relative to the
size of the treatment effects) even as the sample size gets
huge.

To tighten the intervals further, one would need to reduce the
intrinsic variation. This would require either collecting more
covariate data or finding ways to better use existing covariates
to characterize the conditional effect distribution. Thus, even
if rich covariate data are not needed for internal validity, this
application shows the crucial role of covariate data in informing
decisions that rely on external validity.

11. CONCLUSION

This article has examined whether, in the context of a
specific natural experiment and a data context, it is possible
to reach externally valid conclusions regarding a target setting
of interest using an evidence base from a reference context.
We view this article as having made six contributions to the
literature. First, we provide and implement a simple framework
to consider external validity. Second, we come up with a context
in which it is possible, and meaningful, to ask and potentially
to answer questions of external validity. While randomized
and quasi-experiments are run and estimated globally, to our
knowledge there is no one design that has been run in as many
countries, years, and geographical settings as the Same-Sex
natural experiment. While it has challenges as a natural exper-
iment, we view our exercise as a possibility result: is external
validity—notwithstanding the challenges—possible? Third, we
present results that directly answer the central question of
external validity, namely the extent to which valid conclusions
about a target population of interest can be drawn from the
available data. Fourth, we show that, given the accumulation
of sufficient evidence, it is possible to draw externally valid
conclusions from our evidence base, but the ability to do so is
meaningfully improved (over rule of thumb alternatives) by the
modeling approach we adopt. Fifth, we show that prediction
error can, in general, depend on both individual and context
covariates, although for our application, macro-level context
covariates dominate. Finally, we considered two applications
for our approach. This first showed that experiments located
near the middle of the covariate distribution tend to provide
the most robust external predictions and that selecting on the
maximum covariate Mahalanobis distance is contributes to
learning about effect variability efficiently. The second that in
some contexts it is possible that a policy maker may choose to
extrapolate the treatment effect from an existing experimental
evidence base rather than run a new experiment, but that this
depends crucially on the richness of available covariate data.
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Prescriptively, we would draw four conclusions from
our analysis about extrapolating experimental or quasi-
experimental evidence from one setting to another. First, the
reference and target setting must be similar along economically
relevant dimensions, and particularly in terms of macro level
features. In our analysis reference-target covariate differences
of half a standard deviation created prediction error on the order
of the treatment effect. Second, a sufficiently large experimental
evidence base is needed for reliable extrapolation; for our
data, at least fifty country-year samples were needed before
out-of-sample extrapolation became reliable. Third, given
sufficient data, accounting for treatment effect heterogeneity
in the evidence base is essential in extrapolating the treatment
effect. Fourth, modeling treatment effect heterogeneity is
important when extrapolating treatment effects in sparse data
environments; in data-rich settings, rules of thumb might be
sufficient.

While our conclusions are cautiously optimistic, it is impor-
tant to underline both the caution and the inductive nature
of our exercise. Our conclusions are circumscribed by the
data and application we have considered. Nonetheless, given
the importance of the question and paucity of evidence, we
believe even a single attempt to assess the external validity
of experimental evidence is valuable, despite its flaws and
limitations. A better understanding of our ability to learn from
the rapidly accumulating evidence from randomized experi-
ments and quasi-experiments, and to answer key policy and
economic questions of interest, will require further extensions
and replications of the exercise we have begun here.
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Appendix

Figure A.1. Testing for unconfounded location: local linear regres-
sion of Y(0) prediction error on standardized differences in women’s
labor force participation. NOTES: The graph plots the local polyno-
mial regression of the difference between actual Y(0) and predicted
Y(0) against the standardized education difference between target and
comparison country, where the education difference is standardized
by its standard deviation (0.82). The variables are further described
in Table 1. Source: Authors’ calculations based on data from the
Integrated Public Use Microdata Series-International (IPUMS-I).

Figure A.2. Testing for unconfounded location: local linear regres-
sion of Y(0) prediction error on standardized differences in GDP
per capita. NOTES: The graph plots the local polynomial regression
of the difference between actual Y(0) and predicted Y(0) against
the standardized difference in GDP per capita between target and
comparison country, where the education difference is standardized
by its standard deviation ($9680). The variables are further described
in Table 1. Source: Authors’ calculations based on data from the
Integrated Public Use Microdata Series-International (IPUMS-I).

Figure A.3. Testing for unconfounded location: local linear regres-
sion of Y(0) prediction error on standardized differences in GDP
per capita. NOTES: The graph plots the local polynomial regression
of the difference between actual Y(0) and predicted Y(0) against
the standardized difference in GDP per capita between target and
comparison country, where the education difference is standardized
by its standard deviation ($9680). The variables are further described
in Table 1. Source: Authors’ calculations based on data from the
Integrated Public Use Microdata Series-International (IPUMS-I).
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Figure A.4. LASSO solution paths for series approximation interaction terms. NOTES: The graphs plot, on the y-axis, standardized coefficient
values for treatment-covariate interaction terms in the series approximation for the more kids (left) and economically active (right) outcomes,
and on the x-axis, the number of variables retained under LASSO regularization as one loosens the penalty parameter from including only
an intercept (at left in each graph) to including all terms in the series (at right in each graph). The black vertical line shows the point at
which the specification minimizes Mallow’s Cp-statistic. Panels A and B show the full solution path through the full saturated second-order
series expansion, while panels C and D zoom to the neighborhood where Cp is minimized. Micro-level covariates are colored red, macro-level
covariates are colored black, and macro-micro interactions are colored gray for the lines drawing out the coefficient values in the solution paths.
Source: Authors’ calculations based on data from the Integrated Public Use Microdata Series-International (IPUMS-I).
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Table A.1. Treatment effects and standard errors by country-year

Year of Treatment effect for Standard error for Treatment effect for Standard error for
Country census Having more kids Having more kids Economically active Economically active

Argentina 1970 0.0495 0.0078 −0.0034 0.0061
Argentina 1980 0.0451 0.0028 −0.0019 0.0024
Argentina 1991 0.0352 0.0023 −0.0050 0.0024
Argentina 2001 0.0283 0.0026 −0.0034 0.0028
Armenia 2001 0.1259 0.0071 −0.0210 0.0070
Austria 1971 0.0330 0.0061 0.0016 0.0060
Austria 1981 0.0499 0.0063 −0.0157 0.0066
Austria 1991 0.0452 0.0061 −0.0135 0.0067
Austria 2001 0.0520 0.0064 −0.0103 0.0066
Belarus 1999 0.0289 0.0041 −0.0069 0.0039
Bolivia 1976 0.0143 0.0058 0.0018 0.0054
Bolivia 1992 0.0187 0.0052 0.0066 0.0061
Bolivia 2001 0.0164 0.0050 0.0001 0.0056
Brazil 1960 0.0156 0.0021 −0.0002 0.0015
Brazil 1970 0.0218 0.0017 −0.0015 0.0014
Brazil 1980 0.0272 0.0018 0.0000 0.0017
Brazil 1991 0.0399 0.0015 −0.0019 0.0015
Brazil 2000 0.0350 0.0015 −0.0021 0.0015
Cambodia 1998 0.0292 0.0035 0.0024 0.0032
Chile 1970 0.0293 0.0044 0.0057 0.0034
Chile 1982 0.0308 0.0044 0.0007 0.0036
Chile 1992 0.0410 0.0041 0.0007 0.0034
Chile 2002 0.0302 0.0044 −0.0055 0.0043
China 1982 0.0806 0.0013 −0.0043 0.0010
China 1990 0.1501 0.0014 −0.0024 0.0009
Colombia 1973 0.0186 0.0027 0.0030 0.0024
Colombia 1985 0.0374 0.0027 −0.0010 0.0027
Colombia 1993 0.0369 0.0025 0.0026 0.0024
Colombia 2005 0.0351 0.0025 0.0012 0.0022
Costa Rica 1973 −0.0004 0.0084 0.0049 0.0072
Costa Rica 1984 0.0503 0.0081 0.0003 0.0068
Costa Rica 2000 0.0388 0.0071 0.0015 0.0065
Cuba 2002 0.0412 0.0047 −0.0016 0.0056
Ecuador 1974 0.0097 0.0044 0.0079 0.0037
Ecuador 1982 0.0175 0.0044 0.0011 0.0039
Ecuador 1990 0.0332 0.0043 0.0056 0.0042
Ecuador 2001 0.0298 0.0043 −0.0012 0.0043
Egypt 1996 0.0424 0.0014 0.0006 0.0012
France 1962 0.0316 0.0035 −0.0052 0.0029
France 1968 0.0401 0.0035 −0.0049 0.0031
France 1975 0.0325 0.0034 −0.0018 0.0034
France 1982 0.0492 0.0031 −0.0132 0.0032
France 1990 0.0492 0.0035 −0.0077 0.0036
France 1999 0.0477 0.0036 −0.0071 0.0035
Ghana 2000 0.0012 0.0038 −0.0033 0.0028
Greece 1971 0.0770 0.0056 −0.0100 0.0053
Greece 1981 0.0761 0.0047 −0.0006 0.0043
Greece 1991 0.0651 0.0046 −0.0036 0.0052
Greece 2001 0.0517 0.0056 0.0008 0.0066
Guinea 1983 0.0079 0.0070 −0.0106 0.0076
Guinea 1996 0.0055 0.0047 0.0041 0.0050

(continued)
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Table A.1. (Continued)

Year of Treatment effect for Standard error for Treatment effect for Standard error for
Country census Having more kids Having more kids Economically active Economically active

Hungary 1970 0.0407 0.0074 NA NA
Hungary 1980 0.0475 0.0057 NA NA
Hungary 1990 0.0518 0.0059 −0.0219 0.0061
Hungary 2001 0.0405 0.0075 −0.0153 0.0082
India 1983 0.0148 0.0045 −0.0035 0.0049
India 1987 0.0219 0.0044 −0.0133 0.0046
India 1993 0.0337 0.0050 −0.0031 0.0052
India 1999 0.0478 0.0049 0.0006 0.0050
Iraq 1997 0.0104 0.0022 0.0000 0.0017
Israel 1972 0.0288 0.0072 −0.0021 0.0070
Israel 1983 0.0212 0.0063 NA NA
Israel 1995 0.0079 0.0062 0.0130 0.0067
Italy 2001 0.0262 0.0033 0.0013 0.0046
Jordan 2004 0.0170 0.0046 0.0026 0.0046
Kenya 1989 −0.0039 0.0032 −0.0028 0.0036
Kenya 1999 0.0071 0.0033 −0.0013 0.0031
Kyrgyz Republic 1999 0.0688 0.0058 −0.0090 0.0050
Malaysia 1970 0.0150 0.0076 0.0035 0.0105
Malaysia 1980 0.0307 0.0088 −0.0135 0.0104
Malaysia 1991 0.0226 0.0066 −0.0111 0.0073
Malaysia 2000 0.0331 0.0068 −0.0139 0.0072
Mali 1987 0.0010 0.0045 0.0034 0.0055
Mali 1998 0.0077 0.0038 0.0077 0.0048
Mexico 1970 0.0100 0.0043 0.0017 0.0040
Mexico 1990 0.0310 0.0014 −0.0024 0.0012
Mexico 1995 0.0337 0.0069 −0.0003 0.0074
Mexico 2000 0.0337 0.0013 −0.0009 0.0013
Mongolia 1989 0.0133 0.0080 NA NA
Mongolia 2000 0.0495 0.0087 0.0034 0.0071
Nepal 2001 0.0167 0.0023 −0.0048 0.0025
Pakistan 1973 0.0027 0.0031 −0.0015 0.0016
Pakistan 1998 0.0065 0.0010 NA NA
Palestine 1997 0.0051 0.0053 −0.0037 0.0034
Panama 1960 0.0113 0.0154 0.0250 0.0155
Panama 1970 0.0088 0.0087 0.0001 0.0099
Panama 1980 0.0149 0.0087 −0.0036 0.0096
Panama 1990 0.0442 0.0089 −0.0003 0.0087
Panama 2000 0.0332 0.0086 0.0144 0.0088
Peru 1993 0.0276 0.0030 −0.0005 0.0028
Peru 2007 0.0302 0.0031 0.0010 0.0031
Philippines 1990 0.0296 0.0015 −0.0037 0.0017
Philippines 1995 0.0347 0.0015 NA NA
Philippines 2000 0.0335 0.0016 NA NA
Portugal 1981 0.0534 0.0078 0.0023 0.0082
Portugal 1991 0.0245 0.0077 0.0046 0.0085
Portugal 2001 0.0334 0.0088 −0.0207 0.0094
Puerto Rico 1970 0.0196 0.0255 NA NA
Puerto Rico 1980 0.0537 0.0107 NA NA
Puerto Rico 1990 0.0526 0.0111 0.0121 0.0112
Puerto Rico 2000 0.0523 0.0115 −0.0188 0.0119
Puerto Rico 2005 0.0739 0.0310 −0.0063 0.0337

(continued)
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Table A.1. (Continued)

Year of Treatment effect for Standard error for Treatment effect for Standard error for
Country census Having more kids Having more kids Economically active Economically active

Romania 1977 0.0457 0.0036 NA NA
Romania 1992 0.0401 0.0032 −0.0019 0.0030
Romania 2002 0.0407 0.0036 0.0014 0.0040
Rwanda 1991 0.0006 0.0038 −0.0015 0.0017
Rwanda 2002 0.0040 0.0047 −0.0066 0.0029
Saint Lucia 1980 0.0308 0.0388 −0.0023 0.0480
Saint Lucia 1991 0.0003 0.0366 0.0011 0.0404
Senegal 1988 0.0038 0.0041 −0.0010 0.0047
Senegal 2002 0.0006 0.0044 −0.0021 0.0049
Slovenia 2002 0.0075 0.0097 −0.0058 0.0078
South Africa 1996 0.0261 0.0029 0.0001 0.0029
South Africa 2001 0.0222 0.0029 0.0027 0.0028
South Africa 2007 0.0242 0.0063 0.0022 0.0051
Spain 1991 0.0572 0.0040 −0.0018 0.0045
Spain 2001 0.0472 0.0051 −0.0026 0.0064
Switzerland 1970 0.0195 0.0102 −0.0059 0.0088
Switzerland 1980 0.0557 0.0097 −0.0210 0.0099
Switzerland 1990 0.0575 0.0105 −0.0084 0.0108
Switzerland 2000 0.0502 0.0119 −0.0010 0.0123
Tanzania 1988 −0.0123 0.0027 0.0015 0.0021
Tanzania 2002 0.0014 0.0022 −0.0020 0.0021
Thailand 1970 0.0195 0.0041 NA NA
Thailand 1980 0.0463 0.0067 NA NA
Thailand 1990 0.0777 0.0068 NA NA
Thailand 2000 0.0580 0.0060 NA NA
Uganda 1991 −0.0059 0.0029 −0.0029 0.0035
Uganda 2002 0.0001 0.0022 0.0008 0.0029
United Kingdom 1991 0.0996 0.0076 −0.0230 0.0079
United States 1960 0.0406 0.0034 −0.0057 0.0030
United States 1970 0.0382 0.0033 −0.0062 0.0033
United States 1980 0.0609 0.0015 −0.0077 0.0015
United States 1990 0.0616 0.0015 −0.0081 0.0015
United States 2000 0.0575 0.0016 −0.0059 0.0016
United States 2005 0.0597 0.0038 −0.0001 0.0038
Venezuela 1971 0.0169 0.0035 0.0051 0.0034
Venezuela 1981 0.0309 0.0033 0.0029 0.0034
Venezuela 1990 0.0286 0.0032 −0.0040 0.0031
Venezuela 2001 0.0799 0.0031 −0.0035 0.0030
Vietnam 1989 0.0386 0.0024 −0.0027 0.0019
Vietnam 1999 0.0782 0.0027 −0.0037 0.0023

Source: Treatment effect and standard errors by country-year of Same-Sex on Having more children and Being economically active. Source: Authors’ calculations based on data from the
Integrated Public Use Microdata Series-International (IPUMS-I).
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