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Additional figures

Figure A1: Baccalaureate exam outcomes by student’s transition score

The figure presents local linear regressions of students’ baccalaureate exam outcomes versus their transition scores. The horizontal
axis represents the student’s within-year percentile rank by transition score. “Take the exam,” “Pass the exam,” and “Perfect score”
are indicator variables.
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Figure A2: Page 1 of the information sheet

 
 
 

Town Code town:  
 
School Code school:  
 
Class  
 
You are receiving this information form because you agreed to participate in the study of the admission process for high 
schools in Romania. This study is done by CCSAS with the approval of the Ministry of Education in collaboration with 
researchers at New York University in the United States of America. 
 
In order to help you and your child make the best choices during the admission process, we wanted to share some 
information with you.  
 
The information on the admission process is available online: 
 
1.) Government order Nr. 4829/2018 from August 30, 2018 on the admission process in 2019-2020 is available here: 
http://ismb.edu.ro/documente/examene/admitere/2019/1_ORDIN_nr_%204829_30_08_2018.pdf 
 
2.) The admission application form is available here: 
http://ismb.edu.ro/documente/examene/admitere/2019/1_Fisa_Admitere_2019.pdf 
 
3.) Information on admission scores in previous years are available here: 
  www.admitere.edu.ro 
  

 Information form  

The figure displays the first page of the information sheet provided at the conclusion of the baseline survey. This information was
provided to all households.

Figure A3: Page 2 of the information sheet
 
A team of economists at New York University has analyzed data in your hometown, Sebes 
Alba. They have calculated which tracks most effectively improve students' chances of 
passing the baccalaureate exam relative to their 9th grade starting points. 

Rank of most 
effective track Name of School Name of track 

1 NATIONAL HIGH SCHOOL "LUCIAN BLAGA" SEBES  Math-Computer Science 
2 NATIONAL HIGH SCHOOL "LUCIAN BLAGA" SEBES  Natural Science 
3 TECHNOLOGICAL HIGH SCHOOL SEBES  Economics 
4 NATIONAL HIGH SCHOOL "LUCIAN BLAGA" SEBES  Social Science 
5 GERMAN HIGH SCHOOL SEBES  Natural Science 
6 TECHNOLOGICAL HIGH SCHOOL SEBES  Textile Industry 
7 NATIONAL HIGH SCHOOL "LUCIAN BLAGA" SEBES  Philology-English 
8 NATIONAL HIGH SCHOOL "LUCIAN BLAGA" SEBES  Philology 

			
In	case	you	have	questions	about	the	data	and	information	provided,	please	call	the	headquarters	of	CCSAS	at	0744393121	or	0729634372.		
	
	
 

The figure displays the second page of the information sheet provided at the conclusion of the baseline survey. This information was
provided only to treated households.
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Figure A4: The relationship between value added and selectivity by curricular focus

The figure presents the relationship between value added and selectivity for subsets of tracks by a track’s curricular focus.
Specifically, it replicates the local linear regressions in Figure 1 separately for tracks with curricular focuses in humanities, math and
science, or technical subjects. See Figure 1 for additional details.

Figure A5: The rel. between VA and selectivity: robustness to alternative VA measures

The figure replicates Figure 1 for alternative value added measures. Specifically, it presents local linear regressions of standardized
values of various value added measures on standardized values of minimum transition score, MTSjt. The value added measures are:
(i) “VA-pass”: a track-year e�ect on the probability of passing the baccalaureate exam; (ii) “VA-percentile rank”: a track-year e�ect
on the percentile rank of a student’s exam performance; (iii) “VA-score”: a track-year e�ect on the exam score, and (iv) track-year
e�ects on the probability of passing the exam that vary by a student’s gender or relative academic strength. See Section I.C for
definitions of each value added measure. See Figure 1 for further details.

4



Figure A6: Choice patterns by transition score: robustness to alternative value added measures

The figure replicates Figure 2 for alternative value added measures. The dotted lines plot local linear regressions of the maximum
value added in the student’s feasible set vs. the within-year percentile rank of the student’s transition score. The solid lines are local
linear regressions of the value added in the track the student attends vs. the student’s percentile rank. The value added measures are:
(i) a track-year e�ect on the probability of passing the baccalaureate exam, (ii) a track-year e�ect on the percentile rank of a
student’s exam performance, (iii) a track-year e�ect on the exam score, and (iv) track-year e�ects on the probability of passing that
vary by a student’s gender or relative academic strength. See Section I.C and Figure 2 for more details.

Figure A7: Comparing our predictions with the value added of students’ actual tracks

The figure illustrates the quality of our predictions for the value added of students’ tracks. The plots are for students in the control
group. They show how our predictions under inaccurate scores, Vi,IS, compare with the value added of the tracks students attend.
Each plot presents a di�erent specification. See Section V.B for definitions of “Just quality scores”, “With measured attributes”,
“Update on all VA dimensions”, and “Adjust for measurement error”. The black line is a 45-degree line, and the blue line is the line of
best fit. The slope coe�cient and R-squared for the line of best fit are shown in each case. The notes to Table 14 discuss the sample.
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Additional tables

Table A1: Administrative data sample size, by year

Year Towns High schools Tracks Students

2004 426 1,247 3,691 185,383
2005 405 1,223 3,500 146,712
2006 386 1,195 3,284 136,671
2007 383 1,192 3,259 134,692
2008 476 1,305 4,851 172,174
2009 438 1,261 4,470 170,087
2010 417 1,226 4,018 164,146
2011 437 1,242 4,506 187,442
2012 410 1,207 4,234 146,114
2013 420 1,208 4,269 141,934
2014 378 1,144 3,784 124,675
2015 368 1,129 3,649 121,880
2016 362 1,116 3,541 115,902
2017 351 1,098 3,427 109,694
2019 312 1,015 3,038 105,230
Mean 398 1,187 3,835 144,182
Total 5,969 17,808 57,521 2,162,736

Distinct 512 1,401 13,405 2,162,736

The table presents summary statistics on the administrative data by year. It restricts the sample to towns that have at least two
tracks in the given year. “Mean” is the average number of the listed quantity during 2004-2017 and 2019. “Total” is the sum of the
quantity over those years. “Distinct” is the number of distinct towns, high schools, tracks, and students. The sample varies year to
year because tracks go in and out of existence, reflecting changes in student enrollment, the emergence of technical fields, and
instructor availability. We exclude the 2018 cohort due to a reporting issue in that year.

Table A2: Correlations of alternative VA measures with
track-year e�ects on passing the baccalaureate exam

Value added measure Correlation Town-years Track-years Students

Percentile rank of exam performance 0.944 4,576 43,866 1,710,030
Exam score 0.931 4,576 43,866 1,710,030
Pass the exam:

Female 0.924 4,572 41,435 1,677,023
Male 0.915 4,575 43,216 1,704,417
Better at language 0.937 4,567 42,622 1,700,886
Better at math 0.929 4,575 43,587 1,708,946

The table presents correlations between estimates for our main value added measure with those for alternative measures. The main
measure is a track-year e�ect on a student’s probability of passing the baccalaureate exam. The alternative measures are: (i) a
track-year e�ect on the percentile rank of a student’s performance, (ii) a track-year e�ect on a student’s exam score, and (iii)
track-year e�ects on the probability of passing the exam that vary by student gender or relative academic strength. See Section I.C
for details. Correlations are weighted by student.
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Table A3: Summary statistics on survey towns

County Town R-squared

2018 2019 Survey

Tracks Students Tracks Students Students Middle Two-class
schools schools

Alba Alba Iulia 0.893 16 504 15 476 132 6 2
Alba Sebes 0.844 10 290 10 297 35 3 0
Arges Campulung 0.793 13 423 11 420 67 4 0
Bacau Moinesti 0.823 9 303 9 280 87 3 2
Bacau Onesti 0.807 16 650 16 637 157 6 2
Bihor Beius 0.601 11 307 10 322 72 2 2
Bistrita Nasaud Bistrita 0.822 28 925 23 782 148 7 2
Brasov Fagaras 0.896 10 323 9 273 117 3 2
Buzau Ramnicu Sarat 0.736 12 476 13 445 113 4 2
Calarasi Calarasi 0.911 24 666 20 709 161 8 2
Caras Severin Resita 0.509 20 473 18 425 103 7 1
Cluj Dej 0.864 10 300 10 299 80 4 1
Cluj Gherla 0.637 10 261 10 265 37 2 0
Cluj Turda 0.788 12 282 11 281 71 5 0
Constanta Mangalia 0.617 10 336 9 252 145 5 2
Constanta Medgidia 0.673 10 308 9 280 27 1 0
Covasna Sfantul Gheorghe 0.849 20 396 20 437 43 2 1
Covasna Tirgu Secuiesc 0.604 9 219 9 233 43 3 0
Dolj Calafat 0.784 7 183 6 168 37 2 0
Galati Tecuci 0.861 18 753 16 728 79 5 0
Giurgiu Giurgiu 0.875 15 591 14 602 148 9 2
Gorj Motru 0.617 11 362 9 308 53 3 0
Harghita Gheorgheni 0.903 11 280 12 263 22 2 0
Harghita Miercurea Ciuc 0.847 22 602 21 589 48 4 1
Harghita Odorheiu Secuiesc 0.861 15 392 15 364 39 3 1
Harghita Toplita 0.747 7 170 8 172 22 2 0
Hunedoara Deva 0.922 19 369 19 353 102 5 1
Hunedoara Hunedoara 0.744 11 364 10 308 91 6 0
Hunedoara Petrosani 0.742 9 299 8 224 101 4 2
Ialomita Slobozia 0.936 19 636 16 644 91 4 2
Ialomita Urziceni 0.887 11 316 7 280 59 3 0
Iasi Harlau 0.861 8 222 7 224 34 2 0
Iasi Pascani 0.842 17 688 16 644 109 4 2
Iasi Targu Frumos 0.792 7 222 6 196 49 3 0
Maramures Sighetu Marmatiei 0.675 21 582 19 565 104 5 2
Mures Sighisoara 0.805 14 307 14 301 55 4 0
Mures Tarnaveni 0.576 8 231 8 194 46 3 0
Neamt Roman 0.847 21 825 19 672 48 3 1
Prahova Campina 0.733 16 530 16 554 76 4 0
Salaj Zalau 0.869 22 759 21 741 125 7 1
Satu Mare Carei 0.830 10 247 8 224 54 3 0
Suceava Gura Humorului 0.479 8 304 9 289 48 3 0
Suceava Radauti 0.775 16 672 18 672 114 4 2
Teleorman Alexandria 0.708 15 699 16 746 88 4 2
Timis Lugoj 0.567 14 427 12 373 131 6 0
Valcea Dragasani 0.818 12 328 7 308 108 2 2
Vaslui Birlad 0.856 20 758 18 694 158 8 2
Vrancea Adjud 0.804 9 314 7 280 21 2 0

Total - 663 20,874 614 19,793 3,898 194 44
Mean 0.776 13.8 435 12.8 412 81.2 4.0 0.9
Min 0.479 7 170 6 168 21 1 0
Max 0.936 28 925 23 782 161 9 2

The table presents summary statistics on towns included in the survey. R-squared is the fraction of the variation in true value added
explained by forecasted value added during 2008-2014 (see the notes to Table A29). “Two-class schools” indicates the number of
middle schools in which we visited two classrooms.
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Table A4: The frequency with which households assign baseline quality scores of each value

All students Scored all tracks

Share of scores
with a value of:
1 0.14 0.16
2 0.12 0.14
3 0.16 0.18
4 0.22 0.23
5 0.36 0.29

Students 2,759 819
Student-tracks 20,482 10,501
Scores 142,692 82,070

The table reveals how often households assign quality scores of a given value. Specifically, it shows the share of households’ baseline
quality scores that are equal to each value from 1 to 5. The results are calculated using scores for all quality dimensions. The results
in the column labeled “Scored all tracks” are calculated using a limited sample. They are for households who provided quality scores
for both peer quality and value added on passing the baccalaureate exam for all of the tracks in their towns. This sample restriction is
useful because it eliminates variation in frequencies related to which tracks households choose to score.

Table A5: Summary statistics for households’ baseline quality scores

Mean Std. dev. Min Max Students Student-tracks
Location 3.84 1.31 1 5 2,673 19,959
Siblings & friends 2.87 1.63 1 5 2,091 15,588
Peer quality 3.57 1.37 1 5 2,496 18,478
Curricular focus 3.39 1.45 1 5 2,516 18,134
Teacher quality 3.83 1.29 1 5 2,478 17,940
VA: pass the bacc. 3.71 1.36 1 5 2,469 17,882
VA: college 3.51 1.44 1 5 2,406 17,451
VA: wages 3.49 1.39 1 5 2,343 17,260

The table describes households’ baseline scores for track characteristics.

Table A6: Correlations between households’ baseline quality scores

Location Siblings Peers Curricular focus Teachers Pass bacc. College Wages
Location 1
Siblings and friends 0.482 1
Peer quality 0.571 0.599 1
Curricular focus 0.517 0.604 0.774 1
Teacher quality 0.569 0.523 0.774 0.726 1
VA: pass the bacc. 0.543 0.548 0.768 0.764 0.810 1
VA: college 0.516 0.576 0.778 0.797 0.752 0.861 1
VA: wages 0.507 0.561 0.726 0.744 0.735 0.809 0.846 1

The table shows correlations between households’ baseline scores for track characteristics.
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Table A7: Summary statistics for the baseline survey

Mean Std. dev. Students

High school application process:
Num. of tracks in the town 13.1 4.7 3,898
Share of tracks ranked 0.424 0.324 3,898
Share of tracks scored on passing the bacc. 0.353 0.413 3,898
Share of tracks scored on peer quality 0.363 0.417 3,898
Very certain of preference ranking 0.389 0.488 3,898
Somewhat certain of preference ranking 0.459 0.498 3,898

Student characteristics:
Female 0.519 0.500 3,898
Mother’s years of schooling 12.0 2.2 3,759
Transition score 7.72 1.41 3,746
Middle school GPA 9.05 0.85 3,769
Transition exam score 7.35 1.61 3,830

The table describes the baseline survey. The sample consists of 3,898 students in 194 middle schools in 48 towns.

Table A8: Summary statistics and balance tests for the experiment

Covariate

Summary statistics Balance tests

Mean Std. dev. Coef. Std. error Clusters Students

Assigned to a high school track 0.845 0.362 0.025 0.020 78 3,186

High school application process:
Num. of tracks in the town 13.1 4.6 0.260 0.324 78 2,692
Share of tracks ranked 0.478 0.312 -0.011 0.029 78 2,692
Share of tracks scored on passing the bacc. 0.411 0.421 -0.014 0.032 78 2,692
Share of tracks scored on peer quality 0.422 0.424 -0.005 0.032 78 2,692
Very certain of preference ranking 0.443 0.497 0.038 0.027 78 2,642
Somewhat certain of preference ranking 0.498 0.500 -0.022 0.022 78 2,642

Student characteristics:
Female 0.530 0.499 0.015 0.022 78 2,692
Mother’s years of schooling 12.3 2.0 0.111 0.102 78 2,625
Transition score 7.87 1.31 0.126 0.093 78 2,692
Middle school GPA 9.20 0.68 0.041 0.051 78 2,692
Transition exam score 7.54 1.50 0.148 0.106 78 2,692

In the follow-up survey 0.569 0.495 -0.014 0.026 78 2,692

The table presents summary statistics and balance tests for the experiment. The sample includes 3,186 students in 170 middle schools
in 45 towns. “Assigned to a high school track” indicates whether a student received a track assignment in the main allocation. The
sample for the other rows is limited to students for whom this variable equals 1. “Coef.” is the coe�cient in a regression of the listed
variable on the treatment indicator. It measures the di�erence between the means for the treatment and control groups. Standard
errors are clustered by middle school treatment-control pairs. * p < 0.10, ** p < 0.05, *** p < 0.01.

9



Table A9: Covariates used in the prediction model: covariates of the track

Covariate

Lags

0 1 2 3 4 5 6 7 8
Curricular focus Y
Language Y
Number of students Y Y Y Y Y
Transition score: minimum Y Y
Transition score: maximum Y
Transition score: average Y Y Y Y Y
Transition score: std. dev. Y Y
Middle school GPA: average Y Y
Transition exam–Math score: average Y
Transition exam–Romanian score: average Y Y
Transition exam–Romanian score: std. dev. Y
Share female Y Y Y Y
Number of students in students’ middle schools: average Y
Average transition score in students’ middle schools: average Y
Average transition score in students’ middle schools: std. dev. Y
Average transition exam–Rom. score in students’ middle schools: average Y
Rank of track in school by average transition score Y
Rank of track in town by average transition score Y
Share of students who took the baccalaureate exam Y Y Y
VA-pass Y Y Y Y
Rank of track in town by VA-pass Y Y Y
VA-pass de-meaned by town-year Y Y
Squared standard error of VA-pass Y Y
VA-pass: female Y Y
VA-pass: male Y Y
VA-pass: better at language Y Y
VA-pass: better at math Y Y
VA-percentile rank Y Y

The table lists covariates used in the local linear forest prediction model—specifically, the subset of covariates concerning
characteristics of the track being predicted. A “Y” indicates that the specified lag of the covariate is included in the model.

Table A10: Covariates used in the prediction model: covariates of the track’s school

Covariate

Lags

0 1 2 3 4 5 6 7 8
Number of tracks Y Y Y
Number of academic tracks Y Y Y
Number of humanities tracks Y
Number of math or science tracks Y
Number of technical tracks Y
Number of Romanian-language tracks Y
Number of Hungarian-language tracks Y
Number of students Y Y Y
Transition score: minimum Y Y
Maximum of tracks’ minimum transition scores Y Y
Transition score: average Y Y
Transition score: std. dev. Y
Middle school GPA: average Y
Transition exam–Romanian score: average Y
Share female Y
Average transition score in students’ middle schools: average Y
Share of students who took the baccalaureate exam Y Y
VA-pass: average Y Y
VA-pass: std. dev. Y Y

The table lists covariates used in the local linear forest prediction model—specifically, the subset of covariates concerning the high
school of the track being predicted. A “Y” indicates that the specified lag of the covariate is included in the model.
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Table A11: Covariates used in the prediction model: covariates of the track’s town

Covariate

Lags

0 1 2 3 4 5 6 7 8
Number of schools Y
Number of tracks Y Y Y
Number of academic tracks Y
Number of humanities tracks Y Y Y
Number of math or science tracks Y Y Y
Number of technical tracks Y Y Y
Number of Romanian-language tracks Y
Number of Hungarian-language tracks Y
Number of students Y Y Y
Transition score: average Y Y
Transition score: std. dev. Y
Middle school GPA: average Y
Transition exam–Romanian score: average Y
Transition exam–Romanian score: std. dev. Y
Share of students who took the baccalaureate exam Y Y
VA-pass: average Y Y
VA-pass: std. dev. Y Y

The table lists covariates used in the local linear forest prediction model—specifically, the subset of covariates concerning the town of
the track being predicted. A “Y” indicates that the specified lag of the covariate is included in the model.

Table A12: A comparison of the samples used in the paper

Mean Std. dev. Students

Panel A: Administrative data
Female 0.53 0.50 2,162,736
Transition score 7.70 1.35 2,162,736
Middle school GPA 8.65 0.97 2,162,736
Transition exam score 7.05 1.69 2,162,736

Panel B: Baseline sample
Female 0.52 0.50 3,898
Transition score 7.72 1.41 3,746
Middle school GPA 9.05 0.85 3,769
Transition exam score 7.35 1.61 3,830

Panel C: Experimental sample
Female 0.53 0.50 2,692
Transition score 7.87 1.31 2,692
Middle school GPA 9.20 0.68 2,692
Transition exam score 7.54 1.50 2,692

Panel D: Follow-up sample
Female 0.52 0.50 1,533
Transition score 7.92 1.29 1,533
Middle school GPA 9.23 0.66 1,533
Transition exam score 7.59 1.48 1,533

The table provides summary statistics on the main samples used in the paper. See Section I for details on the samples.
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Table A13: Year-specific correlations between value added and selectivity

Year Coe�cient Std. error Towns Tracks Students

2004 0.627 0.019 426 3,691 185,383
2005 0.468 0.026 405 3,500 146,712
2006 0.512 0.023 386 3,284 136,671
2007 0.558 0.018 383 3,259 134,692
2008 0.565 0.015 476 4,851 172,174
2009 0.635 0.011 438 4,470 170,087
2010 0.593 0.015 417 4,018 164,146
2011 0.607 0.013 437 4,506 187,442
2012 0.613 0.016 410 4,234 146,114
2013 0.574 0.017 420 4,269 141,934
2014 0.504 0.014 378 3,784 124,675
2015 0.532 0.016 368 3,649 121,880
2016 0.530 0.017 362 3,541 115,902
2017 0.506 0.019 351 3,427 109,694
2019 0.502 0.020 312 3,038 105,230

The table presents year-specific correlations between a track’s value added and its selectivity. Specifically, it displays coe�cients from
regressions of standardized values of value added, Vjt, on standardized values of minimum transition score, MTSjt. The sample
includes the full set of towns. See Figure 1 and Table 3 for additional details.

Table A14: Summary statistics on households’ track choices:
Feasible tracks with the same curricular focus as the track the student attends

All towns Survey towns

All students Low-achieving High-achieving All students Low-achieving High-achieving
Panel A: Percent of students with only 11.7 15.3 8.0 7.3 9.8 4.9one track in the choice set
Panel B: Mean percentile rank of student’s

track among tracks in the choice set
Value added, Vjt 64.1 61.3 66.7 66.1 61.8 70.2
Selectivity, MTSjt 79.8 75.6 83.6 78.9 76.2 81.4

Panel C: Mean potential increase (std. dev.)
among tracks in the choice set

Value added, Vjt 0.55 0.58 0.53 0.44 0.49 0.40
Selectivity, MTSjt 0.26 0.31 0.21 0.26 0.28 0.23

Number of students 2,162,736 1,081,075 1,081,661 424,508 211,917 212,591

This table replicates Table 4 using a di�erent choice set. The choice set in Table 4 is the set of tracks that a student is eligible to
attend (i.e., the student’s “feasible set”). The choice set in this table is the subset of feasible tracks whose curricula fall into the same
focus as that of the student’s track. See Table 4 for additional details.
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Table A15: E�ects on the value added of students’ tracks: robustness to alternative specifications

(1) (2) (3) (4) (5) (6)
Baseline Final Change Final Change Final

Treated -0.018 0.034 0.052úú 0.048ú 0.063úú 0.054úú

(0.043) (0.044) (0.025) (0.025) (0.026) (0.026)
E�ect in percentage points -0.22 0.41 0.62 0.58 0.76 0.65
Predicted pass rate 62.9 62.9 62.9 62.9 62.9 62.9
Controls:

Indicator for ranking a feasible track Y Y Y Y Y Y
in the baseline survey

Value added of the most-preferred feasible Y Y
track in the baseline survey

Fixed e�ects for middle school Y Y
treatment-control pair

Clusters 78 78 78 78 78 78
Students 2,692 2,692 2,692 2,692 2,692 2,692

The table presents various versions of regression (1). In the first column, the outcome is the value added of the feasible track that the
student ranked highest in the baseline survey. This regression is a balance test. In the columns labeled “Final,” the outcome is the
value added of the track the student attends. The results in Column 4 correspond to those in the first column of Table 7. Finally, in
the columns labeled “Change”, the outcome is the di�erence between the value added of the track the student attends and the value
added of the feasible track that the student ranked highest at baseline. These columns represent di�erence-in-di�erence regressions.
The covariates in each specification are listed under “Controls.” Standard errors are clustered by the middle school treatment-control
pairs within which we conducted the randomization.

Table A16: E�ects on the value added of students’ tracks,
as measured by households’ baseline beliefs

VA: pass the bacc. VA: college VA: wages

Panel A: Eligible for at least one of two top baseline choices
Treated 0.009 0.009 0.003

(0.012) (0.013) (0.012)
Clusters 78 78 78
Students 1,990 1,990 1,990
Panel B: Ineligible for two top baseline choices
Treated 0.107ú 0.132úú 0.117úú

(0.054) (0.059) (0.056)
Clusters 76 76 76
Students 515 515 515

The table presents results similar to those in Table 10, but for additional outcome variables. The outcome variables are track-level
means for the listed baseline quality scores. As in Table 10, regressions control for the value of the outcome variable for the feasible
track that the household ranked the highest in the baseline survey. This is the track to which the student would have been assigned
based on the baseline preference ranking. The regressions also include indicators for students who did not rank any feasible tracks in
the baseline. The sample is slightly smaller than that in Table 10 because we omit students who attend tracks in di�erent towns from
where they attended middle school. We do this because we can’t observe households’ quality scores for these tracks. Standard errors
are clustered by the middle school treatment-control pairs within which we conducted the randomization.
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Table A17: E�ects on the accuracy of households’ value added scores: low-achieving students

xth
most-preferred track in the baseline

All Most- 2nd-most- Ø 3rd-most- Ø 4th-most- Ø 5th-most- Ø 6th-most-
tracks preferred preferred preferred preferred preferred preferred

Treated -0.053 0.034 0.064 -0.122 -0.152ú -0.172ú -0.174ú

(0.057) (0.098) (0.109) (0.076) (0.082) (0.091) (0.098)
Mean abs. di�erence: baseline 1.09 0.88 1.13 1.20 1.24 1.31 1.31
Mean abs. di�erence: follow-up 1.19 0.94 1.21 1.27 1.33 1.35 1.34
Clusters 74 71 68 74 74 74 74
Students 569 411 314 511 461 416 383
Student-tracks 1,886 411 314 1,161 960 820 729

The table presents results analogous to those in Table 11. However, the sample is limited to students with transition scores in the
bottom half of the national distribution. See the notes to Table 11 for additional details.

Table A18: E�ects on the accuracy of households’ value added scores: high-achieving students

xth
most-preferred track in the baseline

All Most- 2nd-most- Ø 3rd-most- Ø 4th-most- Ø 5th-most- Ø 6th-most-
tracks preferred preferred preferred preferred preferred preferred

Treated -0.050 0.025 -0.092 -0.067 -0.076 -0.098 -0.139ú

(0.031) (0.046) (0.064) (0.044) (0.056) (0.065) (0.077)
Mean abs. di�erence: baseline 0.99 0.96 1.05 0.98 1.02 1.06 1.07
Mean abs. di�erence: follow-up 0.89 0.82 0.94 0.91 0.94 0.96 0.97
Clusters 75 74 75 75 74 74 73
Students 956 852 648 841 673 551 485
Student-tracks 3,084 852 648 1,584 1,140 907 758

The table presents results analogous to those in Table 11. However, the sample is limited to students with transition scores in the top
half of the national distribution. See the notes to Table 11 for additional details.

Table A19: E�ects on the association between value added and households’ preference rankings:
low-achieving students

xth
most-preferred track in the baseline

All Two most- Ø 3rd-most- Ø 4th-most- Ø 5th-most- Ø 6th-most-
tracks preferred preferred preferred preferred preferred

Value added: treated 0.095úú -0.131 0.132úúú 0.127úúú 0.123úúú 0.114úúú

(0.040) (0.127) (0.039) (0.040) (0.040) (0.039)
Association: baseline 0.291 0.018 0.128 0.062 0.020 -0.002
Association: follow-up 0.221 0.120 0.113 0.094 0.080 0.080
Clusters 74 74 74 74 74 74
Students 571 565 571 571 571 567
Student-tracks 7,167 1,084 6,083 5,633 5,259 4,968

The table presents results analogous to those in Table 12. However, the sample is limited to students with transition scores in the
bottom half of the national distribution. See the notes to Table 12 for additional details.
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Table A20: E�ects on the association between value added and households’ preference rankings:
high-achieving students

xth
most-preferred track in the baseline

All Two most- Ø 3rd-most- Ø 4th-most- Ø 5th-most- Ø 6th-most-
tracks preferred preferred preferred preferred preferred

Value added: treated 0.022 -0.040 0.024 0.033 0.038 0.045ú

(0.030) (0.130) (0.027) (0.026) (0.026) (0.025)
Association: baseline 0.514 0.019 0.343 0.242 0.148 0.088
Association: follow-up 0.414 -0.043 0.264 0.203 0.180 0.167
Clusters 75 75 75 75 75 75
Students 962 958 962 962 962 947
Student-tracks 12,862 1,853 11,009 10,216 9,520 8,970

The table presents results analogous to those in Table 12. However, the sample is limited to students with transition scores in the top
half of the national distribution. See the notes to Table 12 for additional details.

Table A21: E�ects on beliefs and preference rankings by households’ baseline certainty

Uncert. or somewhat certain Very certain

All Low- High- All Low- High-
students achieving achieving students achieving achieving

Panel A: Treatment e�ects on the accuracy of value added quality scores
Treated -0.139úú -0.208úú -0.107ú -0.037 0.038 -0.014

(0.054) (0.082) (0.059) (0.068) (0.139) (0.062)
Mean abs. di�erence: baseline 1.06 1.18 0.98 1.07 1.25 0.99
Mean abs. di�erence: follow-up 1.11 1.31 0.94 0.99 1.21 0.87
Clusters 76 74 69 75 54 73
Students 767 340 427 585 171 414
Student-tracks 1,605 773 832 1,140 388 752
Panel B: Treatment e�ects on preference rankings
Value added: treated 0.084úúú 0.155úúú 0.048 0.028 0.086 0.000

(0.031) (0.054) (0.038) (0.030) (0.073) (0.031)
Association: baseline 0.249 0.108 0.341 0.295 0.165 0.345
Association: follow-up 0.197 0.094 0.262 0.234 0.149 0.265
Clusters 76 74 69 75 58 73
Students 861 368 493 672 203 469
Student-tracks 9,614 3,934 5,680 7,478 2,149 5,329

The table presents treatment e�ects on beliefs and preference rankings, distinguishing by a household’s degree of certainty in their
preference ranking at the time of the baseline survey. “Uncert. or somewhat certain” are households who reported being uncertain or
somewhat certain of their preference rankings during this survey. “Very certain” are households who reported already being very
certain. Panel A presents results from regression (2), as in Table 11. Panel B presents results from regression (3), as in Table 12. The
sample is for tracks other than a household’s two top baseline choices. See the notes to Tables 11 and 12 for additional details.
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Table A22: Households’ preferences for track attributes: heterogeneity by achievement

Low-achieving students High-achieving students

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)
Location 0.234úú 0.259úú 0.222ú 0.248úú 0.254úú 0.333úúú 0.343úúú 0.348úúú 0.340úúú 0.337úúú

(0.116) (0.112) (0.113) (0.111) (0.113) (0.086) (0.090) (0.087) (0.082) (0.089)
Siblings and friends 0.335úúú 0.305úúú 0.316úúú 0.351úúú 0.289úúú 0.322úúú 0.328úúú 0.307úúú 0.325úúú 0.315úúú

(0.080) (0.076) (0.081) (0.080) (0.077) (0.063) (0.067) (0.064) (0.062) (0.067)
Peer quality 0.064 0.103 0.076 0.126 0.109 0.542úúú 0.473úúú 0.508úúú 0.562úúú 0.429úúú

(0.093) (0.088) (0.094) (0.090) (0.106) (0.078) (0.082) (0.082) (0.081) (0.083)
Curricular focus 0.711úúú 0.611úúú 0.717úúú 0.774úúú 0.616úúú 1.09úúú 0.937úúú 1.01úúú 1.15úúú 0.886úúú

(0.117) (0.109) (0.113) (0.114) (0.107) (0.092) (0.090) (0.083) (0.093) (0.092)
VA: pass the bacc. 0.265úú 0.123 0.430úúú -0.037

(0.111) (0.101) (0.109) (0.114)
VA: college 0.340úúú 0.170 0.626úúú 0.447úúú

(0.111) (0.121) (0.093) (0.103)
VA: wages 0.317úúú 0.227úú 0.572úúú 0.342úúú

(0.097) (0.095) (0.078) (0.089)
Teacher quality 0.041 -0.103 0.296úúú 0.060

(0.132) (0.116) (0.090) (0.096)
R-sq. 0.21 0.21 0.21 0.20 0.22 0.40 0.41 0.40 0.40 0.41
Clusters 119 118 117 119 117 136 135 135 136 135
Students 394 382 387 394 376 776 775 764 774 761
Student-tracks 3,966 3,806 3,889 3,971 3,756 7,609 7,589 7,493 7,602 7,464

The table presents results analogous to those in Table 13, but separately for low- and high-achieving students. See the notes to Table
13 for additional details.

Table A23: Households’ preferences for track attributes:
robustness to missing baseline quality scores

Low-achieving students High-achieving students

No impu- Scored Impu- No impu- Scored Impu-
tations all tracks tations tations all tracks tations

Location 0.234úú 0.138 0.340úúú 0.333úúú 0.238úúú 0.379úúú

(0.116) (0.144) (0.091) (0.086) (0.085) (0.099)
Siblings and friends 0.335úúú 0.405úúú 0.264úúú 0.322úúú 0.427úúú 0.302úúú

(0.080) (0.118) (0.076) (0.063) (0.069) (0.063)
Peer quality 0.064 -0.041 -0.200úúú 0.542úúú 0.623úúú 0.753úúú

(0.093) (0.116) (0.064) (0.078) (0.101) (0.064)
Curricular focus 0.711úúú 0.901úúú 1.06úúú 1.09úúú 1.11úúú 0.832úúú

(0.117) (0.133) (0.076) (0.092) (0.102) (0.073)
VA: pass the bacc. 0.265úú 0.255úú 0.424úúú 0.430úúú 0.330úú 0.634úúú

(0.111) (0.125) (0.114) (0.109) (0.137) (0.095)
R-sq. 0.21 0.25 0.20 0.40 0.44 0.38
Clusters 119 72 163 136 83 157
Students 394 199 993 776 354 1,671
Student-tracks 3,966 2,663 12,649 7,609 4,575 22,271

The table shows whether the results from the preference model, equation (4), are sensitive to missing values for households’ baseline
quality scores. “No imputations” are specifications that ignore missing scores. They correspond to the columns labeled (1) in Table
A22. “Scored all tracks” are specifications that restrict the sample to households without any missing scores. “Imputations” are
specifications that impute the missing scores using a random forest, as described in Section V.A. See the notes to Table 13 for
additional details on estimating the preference model.
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Table A24: Households’ preferences for track attributes:
robustness to di�erent definitions of the choice set

Low-achieving students High-achieving students

All tracks Plausible Feasible All tracks Plausible Feasible
Location 0.340úúú 0.320úúú 0.254úú 0.379úúú 0.378úúú 0.359úúú

(0.091) (0.082) (0.104) (0.099) (0.099) (0.093)
Siblings and friends 0.264úúú 0.247úúú 0.263úúú 0.302úúú 0.303úúú 0.285úúú

(0.076) (0.080) (0.079) (0.063) (0.063) (0.061)
Peer quality -0.200úúú -0.106 -0.085 0.753úúú 0.754úúú 0.752úúú

(0.064) (0.066) (0.092) (0.064) (0.064) (0.063)
Curricular focus 1.06úúú 0.981úúú 0.917úúú 0.832úúú 0.831úúú 0.800úúú

(0.076) (0.077) (0.102) (0.073) (0.073) (0.070)
VA: pass the bacc. 0.424úúú 0.474úúú 0.307úúú 0.634úúú 0.634úúú 0.740úúú

(0.114) (0.110) (0.113) (0.095) (0.095) (0.099)
R-sq. 0.20 0.22 0.22 0.38 0.38 0.40
Clusters 163 163 152 157 157 157
Students 993 973 788 1,671 1,671 1,649
Student-tracks 12,649 10,614 5,781 22,271 22,267 20,797

The table presents results from equation (4) for di�erent definitions of a household’s choice set. The columns labeled “All tracks” use
all the tracks in a household’s town. They correspond to the columns labeled “Imputations” in Table A23. The columns labeled
“Plausible” and “Feasible” exclude tracks that households may have considered out of reach. “Plausible” uses only the tracks for which
the prior-year minimum transition score, MTSjt≠1, is no more than 1.5 points above a student’s transition score, TSi. “Feasible” uses
only the tracks that the student would have been eligible for in the prior year—the tracks for which TSi Ø MTSjt≠1. All columns
impute missing quality scores using a random forest (Section V.A). See the notes to Table 13 for additional details on estimation.
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Table A25: Households’ preferences for track attributes:
including measured values of track characteristics

Low-achieving students High-achieving students

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Households’ baseline quality scores:

Location 0.340úúú 0.293úúú 0.327úúú 0.305úúú 0.280úúú 0.379úúú 0.352úúú 0.340úúú 0.407úúú 0.371úúú

(0.091) (0.092) (0.092) (0.090) (0.088) (0.099) (0.101) (0.098) (0.094) (0.097)
Siblings and friends 0.264úúú 0.258úúú 0.265úúú 0.251úúú 0.239úúú 0.302úúú 0.285úúú 0.299úúú 0.320úúú 0.316úúú

(0.076) (0.076) (0.076) (0.077) (0.077) (0.063) (0.062) (0.063) (0.060) (0.061)
Peer quality -0.200úúú -0.162úúú -0.235úúú 0.063 0.027 0.753úúú 0.830úúú 0.441úúú 0.396úúú 0.244úúú

(0.064) (0.061) (0.065) (0.065) (0.063) (0.064) (0.065) (0.067) (0.063) (0.062)
Curricular focus 1.06úúú 1.13úúú 1.09úúú 0.988úúú 1.01úúú 0.832úúú 0.840úúú 1.01úúú 1.05úúú 1.11úúú

(0.076) (0.076) (0.076) (0.078) (0.078) (0.073) (0.071) (0.065) (0.066) (0.066)
VA: pass the bacc. 0.424úúú 0.216ú 0.381úúú 0.294úúú 0.271úú 0.634úúú 0.502úúú 0.378úúú 0.417úúú 0.310úúú

(0.114) (0.118) (0.113) (0.114) (0.115) (0.095) (0.091) (0.090) (0.093) (0.091)

Measured track characteristics:

Value added, 0.286úúú 0.171úú 0.235úúú 0.302úúú

Vjt (s.d.) (0.041) (0.067) (0.054) (0.082)
Selectivity, 0.124ú 0.139ú 1.22úúú 0.786úúú

MTSjt (s.d.) (0.066) (0.084) (0.133) (0.141)
Humanities 0.340úúú -0.093 1.30úúú 0.402úú

(0.109) (0.149) (0.202) (0.193)
Math or science -0.428úúú -0.685úúú 1.86úúú 1.16úúú

(0.119) (0.127) (0.213) (0.210)
R-sq. 0.20 0.21 0.20 0.22 0.22 0.38 0.39 0.42 0.41 0.43
Clusters 163 163 163 163 163 157 157 157 157 157
Students 993 993 993 993 993 1,671 1,671 1,671 1,671 1,671
Student-tracks 12,649 12,649 12,649 12,649 12,649 22,271 22,271 22,271 22,271 22,271

The table presents versions of the preference model, equation (4), that control for measured values of track characteristics.
“Humanities” and “Math or science” are indicators for a track’s curricular focus. The omitted category is technical tracks. All
columns impute missing quality scores using a random forest, as described in Section V.A. See the notes to Table 13 for additional
details on estimating the preference model.
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Table A26: The preference models used in the simulation

Low-achieving students High-achieving students

(1) (2) (3) (1) (2) (3)

Households’ baseline quality scores:

Location 0.340úúú 0.280úúú 0.282úúú 0.379úúú 0.371úúú 0.386úúú

(0.091) (0.088) (0.088) (0.099) (0.097) (0.097)
Siblings and friends 0.264úúú 0.239úúú 0.236úúú 0.302úúú 0.316úúú 0.313úúú

(0.076) (0.077) (0.078) (0.063) (0.061) (0.063)
Peer quality -0.200úúú 0.027 -0.002 0.753úúú 0.244úúú 0.164úúú

(0.064) (0.063) (0.064) (0.064) (0.062) (0.063)
Curricular focus 1.06úúú 1.01úúú 0.972úúú 0.832úúú 1.11úúú 1.00úúú

(0.076) (0.078) (0.084) (0.073) (0.066) (0.073)
VA: pass the bacc. 0.424úúú 0.271úú 0.202ú 0.634úúú 0.310úúú 0.068

(0.114) (0.115) (0.113) (0.095) (0.091) (0.095)
VA: college 0.112 0.392úúú

(0.099) (0.086)
VA: wages 0.066 0.050

(0.105) (0.080)
Teacher quality -0.034 -0.041

(0.104) (0.104)

Measured track characteristics:

Value added, 0.171úú 0.174úú 0.302úúú 0.286úúú

Vjt (s.d.) (0.067) (0.068) (0.082) (0.083)
Selectivity, 0.139ú 0.137 0.786úúú 0.769úúú

MTSjt (s.d.) (0.084) (0.084) (0.141) (0.135)
Humanities -0.093 -0.059 0.402úú 0.512úúú

(0.149) (0.147) (0.193) (0.193)
Math or science -0.685úúú -0.677úúú 1.16úúú 1.19úúú

(0.127) (0.127) (0.210) (0.210)
R-sq. 0.20 0.22 0.22 0.38 0.43 0.44
Clusters 163 163 163 157 157 157
Students 993 993 993 1,671 1,671 1,671
Student-tracks 12,649 12,649 12,649 22,271 22,271 22,271

The table presents results for the preference models used in the simulations in Section V.B. The columns labeled 1 are for the
specification titled “Just quality scores”. Columns 2 are for the “With measured attributes” specification. Columns 3 are for the
“Update on all value added dimensions” specification. Finally, the “Adjust for measurement error” specification uses the same
coe�cients as in Columns 2. However, it inflates the coe�cient on “VA: pass the bacc.” by a factor of 1.5. All columns impute missing
quality scores using a random forest, as described in Section V.A. See the notes to Table 13 for additional details on estimating the
preference model.
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Table A27: The e�ect of accurate beliefs on the value added of students’ tracks:
results in levels of value added

Potential increase in VA Change Share of

Vi,IS Vi,AS in VA pot. incr.

Panel A: Just quality scores
All students 10.7 8.15 2.58 0.240
Low-achieving 10.2 7.79 2.37 0.234
High-achieving 11.1 8.36 2.70 0.244

Panel B: With measured attributes
All students 10.2 8.92 1.32 0.129
Low-achieving 8.80 7.29 1.51 0.172
High-achieving 11.1 9.89 1.21 0.109

Panel C: Update on all VA dimensions
All students 10.3 8.30 2.02 0.196
Low-achieving 8.83 6.83 2.00 0.227
High-achieving 11.2 9.17 2.04 0.182

Panel D: Adjust for measurement error
All students 10.2 8.28 1.90 0.187
Low-achieving 8.67 6.50 2.17 0.251
High-achieving 11.1 9.34 1.73 0.157

The table is analogous to Table 14. However, it reports results in levels of value added, rather than in standard deviation units.
Specifically, “Potential increase in VA” and “Change in VA” are in terms of percentage points of passing the baccalaureate exam.
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Table A28: The e�ect of accurate beliefs on the value added of students’ tracks: robustness

Change in value added: Vi,AS ≠ Vi,IS

All students Low-achieving High-achieving
Panel A: Just quality scores

Top 1 0.207 0.214 0.203
Top 2 0.215 0.198 0.225
Top 3 0.225 0.190 0.246
Top 4 0.238 0.194 0.265
Plausible: Top 2 0.224 0.223 0.225
Feasible: Top 2 0.217 0.151 0.256

Panel B: With measured attributes
Top 1 0.112 0.146 0.092
Top 2 0.110 0.126 0.101
Top 3 0.108 0.124 0.098
Top 4 0.115 0.129 0.107
Plausible: Top 2 0.103 0.106 0.101
Feasible: Top 2 0.102 0.074 0.118

Panel C: Update on all VA dimensions
Top 1 0.223 0.232 0.218
Top 2 0.169 0.167 0.170
Top 3 0.145 0.140 0.148
Top 4 0.142 0.127 0.150
Plausible: Top 2 0.161 0.146 0.170
Feasible: Top 2 0.189 0.194 0.186

Panel D: Adjust for measurement error
Top 1 0.160 0.207 0.133
Top 2 0.158 0.181 0.145
Top 3 0.155 0.179 0.141
Top 4 0.166 0.186 0.153
Plausible: Top 2 0.148 0.153 0.144
Feasible: Top 2 0.146 0.109 0.168

The table presents the mean di�erence between Vi,AS and Vi,IS for alternative specifications of the preference model. See Section V.B
for definitions of “Just quality scores”, “With measured attributes”, “Update on all VA dimensions”, and “Adjust for measurement
error”. The rows within each panel represent specifications in which we estimate the preference model in di�erent ways. “Top 1” fits
the rank-ordered logit using just a household’s top choice, “Top 2” uses the household’s two top choices, and analogously for “Top 3”
and “Top 4”. Each of these specifications defines a choice set using all the tracks in a household’s town. “Plausible: Top 2” and
“Feasible: Top 2” fit the rank-ordered logit using a household’s two top choices among tracks that the household could reasonably
have expected to be feasible at the time of the baseline survey. Specifically, “Plausible” defines a choice set as the tracks for which the
prior-year minimum transition score, MTSjt≠1, is no more than 1.5 points above the student’s transition score, TSi. “Feasible” uses
only the tracks that the student would have been eligible for in the prior year. These are the tracks for which TSi Ø MTSjt≠1. See
Footnote 39 for additional details on fitting the rank-ordered logit. See the notes to Table 14 for details on the sample.
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A Value added

This appendix presents an overview of our methodology for calculating value added. We provide
additional details in Appendices B and C.

A.1 Estimating value added

We estimate value added using a conventional selection-on-observables model (Rothstein 2010;
Angrist et al. 2017). For each student i, let pi be the outcome of interest. For value added on
passing the exam, pi is an indicator equal to 1 if i passes:

pi = {i passes the bacc.},

with pi = 0 if i either fails or does not attempt the test. For value added on the other outcomes,
pi is defined as in Section I.C.

Let dij be an indicator equal to 1 if i attends track j, and let Xi be a vector of i’s covariates,
such as gender and the components of the transition score. We estimate value added by regressing
pi on a set of track attendance dummies, dij, and on flexible controls for covariates, f(Xi).1 We
allow both value added and the e�ects of controls to vary by year. Thus, for each cohort, we fit
the model:

pi = “t
Õ · f(Xi) +

ÿ

j

Vú
jt · dij + ei, i œ It. (6)

Here, It is the set of students in cohort t, and Vú
jt is the true value added of track j for cohort t.

With finite data, we obtain value added estimates V̂jt.
Equation (6) assumes that tracks exert a common e�ect on all students. However, a track’s

value added might vary across student types. To allow for this possibility, we calculate value added
measures that let a track’s e�ect di�er by whether a student is male or female or by whether the
student scores more highly in math or language.2 Specifically, let g index the group that a student
falls into, either by gender or relative academic strength. We fit:

pi = “gt
Õ · f(Xi) +

ÿ

j

Vú
jgt · dij + ei, i œ Igt. (7)

Here Igt µ It is the set of students in cohort t who are in group g, and Vú
jgt is track j’s value

added for these students.3

1. We specify f(Xi) to include an indicator for female; cubics in the student’s: i) middle school GPA, ii) score
on the math section of the transition exam, iii) score on the language section, and iv) middle school’s enrollment;
interactions between female and i)-iv); and levels of variables about other individuals in the student’s middle school:
a) the standard deviation of transition score, b) the average GPA, c) the average score on the math section of the
transition exam, and d) the average score on the language section.

2. For the second partition, we standardize students’ scores on the math and language components of the
transition exam and identify the one on which the student did better.

3. There is a complication when calculating value added on passing the exam. For this measure, pi is a binary
variable, and equations (6) and (7) are linear probability models. As such, they assume that a track exerts a
constant e�ect (either by year or by year-group) on a student’s probability of passing, regardless of her baseline
achievement. This is reasonable for students with a moderate chance of passing; however, it is less plausible for
students with either a very high or very low chance. To test the impact of the assumption, we have fit versions of
(6) and (7) using a logit. This alternative specification assumes that a track exerts a constant e�ect on the index
function for the probability of passing, not on the raw probability itself. The results are hardly changed.
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A.2 Validating value added

Value added measures that rely on the selection-on-observables assumption may su�er from bias.
Notably, they will fail to capture the causal e�ect of attending a track if students’ track choices
are correlated with the unpredictable component of their baccalaureate performance. Prior work
finds that selection-on-observables value added measures often closely approximate causal e�ects
(Rothstein 2010, 2017; Chetty, Friedman, and Rocko� 2014; Deming 2014; Angrist et al. 2017).
Nonetheless, whether this holds in any particular setting is an empirical question.

Fortunately, Romania o�ers a natural experiment to test the validity of our value added mea-
sure. As stated, the serial dictatorship creates an admissions cuto� for each track. We can thus
estimate the causal e�ect of being eligible to attend a track using a regression discontinuity (RD)
design that compares outcomes for students who score just above the cuto� with those of students
who score just below.

Appendix B explains how we assess the quality of our value added measure using the structure
of the RD e�ect. Intuitively, the RD e�ect for a particular track c is a weighted sum of the local
average treatment e�ects of attending the track versus each of the less-selective tracks in the town.
If there is no selection bias and if we appropriately capture treatment e�ect heterogeneity, then the
local average treatment e�ect of attending track c versus fallback track f is equal to the di�erence
in value added between the two tracks. In order to obtain a quantity that is comparable with the
RD treatment e�ect, one has to appropriately weight these value added di�erences. We do this
by running the RD on the value added of a student’s track. Thus, for each track, we calculate two
RDs: the traditional one, on a student’s own outcome, and a non-traditional one, on the value
added of the student’s track. If the value added measure is valid, these RDs are weighted sums
of the same treatment e�ects and are calculated using the same weights. Thus, they should be
equal, at least up to measurement error.

We test this equality in two ways. First, we calculate the fraction of the variation in the RDs
on students’ baccalaureate outcomes that is explained by the RDs on the value added of students’
tracks. Second, we adapt an IV procedure developed by Angrist et al. (2017), which allows us
to test for bias using all tracks at once. The results (Appendix B) suggest that our value added
measures closely match a track’s causal e�ect. In addition, the measures that rely on a single
track-year e�ect perform as well as those that allow for treatment e�ect heterogeneity by gender
or by relative academic strength. Nonetheless, due to our large sample size, we are able to reject
an over-identification test that, for each cuto�, the RDs on the baccalaureate and value added
outcomes are always the same.4

A.3 Empirical Bayes posteriors and machine learning forecasts

We face two challenges in working with value added. First, value added estimates, V̂jt, contain
measurement error. Second, in our experimental intervention, we need to predict value added for

4. One might wonder why we use value added in our analysis, rather than working directly with RD e�ects.
There are two reasons. First, the RD e�ects are much noisier. The RD treatment e�ect of attending track c is an
IV quantity which is equal to the ratio of the reduced-form RD e�ect of being eligible to attend the track by the
first-stage RD e�ect on the probability of attending the track. Calculating this quantity involves dividing one noisy
estimate by another, which leads to substantial imprecision. Second, the RD e�ects have a complex interpretation:
the RD treatment e�ect of attending track c is a weighted average of pairwise treatment e�ects between track c and
each of the less-selective tracks in a town. It depends both on tracks’ causal e�ects and on the share of students
who “fall back” to each of the less selective tracks if not admitted to track c. Thus, the RDs do not allow us to
easily compare tracks in the way that we can with value added.
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cohorts of students for whom we cannot yet observe baccalaureate outcomes.5 For these students,
we cannot directly estimate value added using equations (6) or (7).

We deal with the first issue by calculating Empirical Bayes (EB) posterior means, VEB
jt . We

calculate these for the 2004-2014 cohorts, the years for which we can observe baccalaureate out-
comes and thus estimate value added. Empirical Bayes strategies have been widely used in the
value added literature (Kane and Staiger 2008; Jacob and Lefgren 2008; Chetty, Friedman, and
Rocko� 2014; Angrist et al. 2017; Abdulkadiroglu et al. 2020). They account for measurement
error in noisy estimates via shrinkage. In our implementation, we use the procedure of Morris
(1983), which we discuss in Appendix C.2.

We deal with the second issue by using machine learning to forecast value added four years
into the future. Specifically, we predict a track’s value added for a given cohort using only the
information available at the time of track choice. We obtain these predictions using a local linear
forest (Athey et al. 2019).6 Our model incorporates current and lagged values of a large number
of track covariates. Notably, this includes a track’s prior value added, its curricular focus, and its
past and current selectivity and demographics. Tables A9-A11 list the full set of covariates and
lags. The first presents the covariates that relate to the track itself, the second displays covariates
that relate to the track’s high school, and the third shows covariates of the track’s town.

We make forecasts, VP
jt, for the 2008-2017 and 2019 cohorts.7 2015-2017 and 2019 are the years

in which we cannot observe baccalaureate outcomes. 2008-2014 allow us to gauge the degree of
forecast error. As explained in Appendix C.3, in these years we calculate out-of-sample R-squared
in predicting true value added, Vú

jt, using the forecasts, VP
jt. The results are presented in the

“R-sq” column of Table A29. They show that our model has substantial predictive power: in each
year, the forecasts predict about 80% of the variation in true value added.

In the analysis, we use a variable which we label Vjt. For 2004-2014, Vjt is equal to the
Empirical Bayes posteriors, VEB

jt . For 2015-2017 and 2019, it is equal to the machine learning
forecasts, VP

jt.

A.4 The magnitude of value added

Table A29 describes the magnitude of value added. The results are for our main measure—track-
year e�ects on passing the baccalaureate exam. Specifically, the column labeled Vjt presents
year-specific standard deviations for the value added variable that we use in analysis. The column
titled Vú

jt displays standard deviations for the unobservable “true e�ects”. For 2004-2014, these
values are calculated by adjusting the standard deviations of V̂jt for measurement error. For
2015-2017 and 2019, they are calculated by adjusting the standard deviations of VP

jt for forecast
error.8 Finally, as a point of comparison, the column titled pjt lists standard deviations for track
“pass rates”—the fraction of students in the track-year who pass the exam.

Table A29 reveals that tracks vary widely in both pass rates and value added.9 For the 2008-

5. Specifically, our experiment aims to inform a household about what a track’s value added will be for the
admissions cohort of its child. This is a non-trivial task because a track’s value added for a given cohort is not
known when households make their high school choices—it cannot be observed until students take the baccalaureate
exam, at the end of their high school careers.

6. This algorithm combines a random forest with a local linear regression. Athey et al. (2019) find that it
improves over a random forest when there is a smooth relationship between outcomes and covariates.

7. For 2004-2007, we lack su�cient prior data to compute lagged values of covariates.
8. The procedures used in making these adjustments are described in Appendices C.1 and C.4.
9. In the results, we distinguish between three groups of cohorts: 2004-2007, 2008-2014, and 2015-2019. The

2004-2007 cohorts featured frequent instances of cheating. Beginning with the 2008 cohort, the government cracked
down on cheating by installing video surveillance in exam centers, and by drastically increasing punishments. These
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Table A29: Summary statistics for value added on passing the baccalaureate exam

Years
Standard deviation

R-sq. Towns Tracks Students

pjt Vú
jt Vjt VEB

jt VP
jt

2004 0.318 0.206 0.200 0.200 - - 426 3,691 185,383
2005 0.256 0.163 0.151 0.151 - - 405 3,500 146,712
2006 0.289 0.194 0.185 0.185 - - 386 3,284 136,671
2007 0.350 0.214 0.208 0.208 - - 383 3,259 134,692
2008 0.365 0.187 0.183 0.183 0.167 0.824 476 4,851 172,174
2009 0.369 0.153 0.146 0.146 0.133 0.796 438 4,470 170,087
2010 0.365 0.137 0.130 0.130 0.118 0.749 417 4,018 164,146
2011 0.364 0.130 0.123 0.123 0.114 0.762 437 4,506 187,442
2012 0.374 0.123 0.115 0.115 0.112 0.797 410 4,234 146,114
2013 0.372 0.114 0.105 0.105 0.105 0.779 420 4,269 141,934
2014 0.356 0.125 0.116 0.116 0.111 0.795 378 3,784 124,675
2015 - 0.124 0.110 - 0.110 - 368 3,649 121,880
2016 - 0.121 0.108 - 0.108 - 362 3,541 115,902
2017 - 0.120 0.107 - 0.107 - 351 3,427 109,694
2019 - 0.120 0.107 - 0.107 - 312 3,038 105,230

2004-2007 0.314 0.195 0.188 0.188 - - 1,600 13,734 603,458
2008-2014 0.371 0.142 0.135 0.135 0.126 0.791 2,976 30,132 1,106,572
2015-2019 - 0.122 0.108 - 0.108 - 1,393 13,655 452,706

The table presents summary statistics for a track’s value added on passing the baccalaureate exam. pjt is the pass rate in track j in
year t, Vú

jt is the track’s (unobserved) true value added, and Vjt is the value added variable used in the analysis. For 2004-2014, Vjt

is equal to the EB posteriors, VEB
jt . For 2015-2017 and 2019, it is equal to the machine learning forecasts, VP

jt. See Appendices A.3
and C.2 for details. See Appendices C.1 and C.4 for how we calculate the standard deviation of Vú

jt. “R-sq.” is the fraction of the
variation in Vú

jt that is predicted by VP
jt. It is an out-of-sample measure of prediction quality. This is because the forecasts are

calculated using trees in the random forest that do not include the track-year being predicted. For details on the calculation of
R-squared, see Appendix C.3. All values are weighted by student.

2014 cohorts, a 1 standard deviation increase in a track’s pass rate is equal to a 37 percentage
point increase in the probability of passing the exam. For these same cohorts, a one standard
deviation increase in true value added, Vú

jt, is equivalent to a 14 percentage point increase in the
probability of passing. Thus, in these years, value added explains 15% of the variation in pass
rates. For the 2004-2007 cohorts, variation in pass rates is smaller and that in true value added
is larger. In this early period, value added explains 39% of the variation in pass rates.10 For the
2015-2019 cohorts, the variation in value added is slightly smaller than it is for 2008-2014. For
these more recent years, a one standard deviation increase in true value added is equivalent to a
12 percentage point increase in the probability of passing. Finally, the results for Vjt show that
standard deviations for this variable are similar to those for the true e�ects, Vú

jt.

B Validating value added

In this section, we use admissions-cuto� RDs to validate our selection-on-observables value added
measures. We first define the admissions-cuto� RD and then explain how it can be used to compare
value added estimates with causal e�ects. We finally present results.

measures were highly successful (Borcan, Lindahl, and Mitrut 2017). We find that dropping the 2004-2007 cohorts
does not a�ect our main results. Consequently, we include them, with the caveat that a track’s value added in this
period could reflect both e�ects on learning and opportunities for cheating. The 2015-2019 cohorts are the students
for whom we must forecast value added.

10. Again, this large percentage could be partly due to cheating.
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B.1 The admissions-cuto� RD

As discussed by Kirkeboen, Leuven, and Mogstad (2016) and Dahl, Rooth, and Stenberg (2020),
the admissions-cuto� RD captures a complicated treatment e�ect. To see this, consider the
admissions-cuto� RD for track c in town l in cohort t. Let F c

t be the set of “fallback” tracks
to track c in cohort t. These are tracks in town l with admissions cuto�s (or minimum transition
scores) that in cohort t are lower than that of track c: MTSft < MTSct ’ f œ F c

t . Calculate a
running variable, mc

i , for student i as the di�erence between the student’s transition score, TSi,
and the track’s minimum transition score: mc

i © TSi ≠ MTSct. Next, let zc
i œ {0, 1} be an o�er

to attend track c, which the student receives if his or her value of the running variable is positive,
mc

i > 0.11 Finally, let dc
ij(z) denote whether student i would attend track j under zc

i = z.
In our setting, the only way receiving an admissions o�er can change track attendance is by

inducing the student to attend track c. As a result, students can be classified as one of two types.
“Type-f compliers” prefer track c to all fallbacks, followed by track f . These students attend track
f if they do not receive an o�er and attend track c if they do: dc

if (0) = dc
ic(1) = 1. By contrast,

“type-f never-takers” prefer track f to track c. Thus, these students attend track f regardless of
whether they receive an o�er: dc

if (0) = dc
if (1) = 1.

The admissions-cuto� RD is the di�erence in observed outcomes between students who score
just above and just below the cuto�. Consider the RD for admissions to track c for students in
cohort t. For reasons that will be apparent later, consider the RD only for students who fall into
group g. This quantity is:

RDcgt © lim
�æ0

{E[yi|mc
i = �, zc

i = 1, i œ Ilgt] ≠ E[yi|mc
i = ≠�, zc

i = 0, i œ Ilgt]}.

Here, y represents a generic outcome and Ilgt is the set of students in town l in cohort t who are in
group g. The RD can be rewritten in terms of potential outcomes. Let yij be the potential value
of outcome y if student i attends track j. Also, for notational simplicity, omit the conditioning on
Ilgt. Then the admissions-cuto� RD can be rewritten:

lim
�æ0

{E[yi|mc
i = �, zc

i = 1] ≠ E[yi|mc
i = ≠�, zc

i = 0]}

= lim
�æ0

{E[yic · dc
ic(1) +

ÿ

f

yif · dc
if (1)|mc

i = �, zc
i = 1] ≠ E[

ÿ

f

yif · dc
if (0)|mc

i = ≠�, zc
i = 0]}

= E[yic · dc
ic(1) +

ÿ

f

yif · dc
if (1)|mc

i = 0] ≠ E[
ÿ

f

yif · dc
if (0)|mc

i = 0]

= E[
ÿ

f

(yic ≠ yif ) · {dc
if (0) = dc

ic(1) = 1} +
ÿ

f

(yif ≠ yif ) · {dc
if (0) = dc

if (1) = 1}|mc
i = 0]

= E[
ÿ

f

(yic ≠ yif ) · {dc
if (0) = dc

ic(1) = 1}|mc
i = 0]

=
ÿ

f

E[yic ≠ yif |dc
if (0) = dc

ic(1) = 1, mc
i = 0] · Pr[dc

if (0) = dc
ic(1) = 1|mc

i = 0].

Define the type-f treatment e�ect as the di�erence in a student’s potential outcome at the cuto�
track relative to track f : yic ≠ yif . Then, in words, the admissions-cuto� RD is a weighted sum
of type-f local average treatment e�ects for type-f compliers at the cuto�. Weights,

Êc
fgt © Pr[dc

if (0) = dc
ic(1) = 1|mc

i = 0, i œ Ilgt],

11. Students with mic = 0 receive an o�er with probability between 0 and 1. We cannot observe which of these
students receive the o�er and choose not to attend the cuto� track and which do not receive the o�er. As a result,
we exclude these students from the analysis.
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are equal to the share of students at the cuto� who are type-f compliers.12

B.2 RDs on two outcomes

Our strategy for validating the value added measures involves calculating RDs on two di�erent
outcomes. First, we calculate the RD on a student’s performance on the baccalaureate exam: pi.
This is the traditional admissions-cuto� RD. Second, we calculate an RD on the value added of
the track that the student attends: V̂i. These RDs capture the following quantities:

RDp
cgt =

ÿ

f

E[pic ≠ pif |dc
if (0) = dc

ic(1) = 1, mc
i = 0, i œ Ilgt] · Êc

fgt

RDV
cgt =

ÿ

f

(V̂cgt ≠ V̂fgt) · Êc
fgt.

Here, pij is the potential baccalaureate outcome from attending track j, V̂jgt is track j’s value
added for students in group g in cohort t, and Êc

fgt are weights. If our value added measure does
not su�er from bias and if tracks exert a constant treatment e�ect on students in group g and
cohort t, then E[pic ≠ pif |dc

if (0) = dc
ic(1) = 1, mc

i = 0, i œ Ilgt] = V̂cgt ≠ V̂fgt. Thus, under these
conditions—and with infinite data—RDs calculated on the two outcomes would be the same.

B.3 Multi-year RDs

In practice, a track-specific RD for students of a particular type in a single year will be very noisy.
In order to gain statistical power, we calculate RDs that aggregate over each group and cohort.
As shown in the appendix to Cattaneo et al. (2016), these RDs are:

RDy
c =

ÿ

t

ÿ

g

RDy
cgt · Pr[i œ Ilgt|mc

i = 0, i œ Il]

for y œ {p, V}. These RDs maintain the same structure as in the previous subsection. As before,
if the value added measure is valid, then RDs on the two outcomes (pi and V̂i) should be equal.

B.4 Estimation

We estimate the RDs using a local linear regression with a uniform kernel. We use a bandwidth
equal to one standard deviation from the nation-wide transition score distribution in each cohort.
Specifically for each cuto� c, we run the regression:

yi = ⁄t + ⁄1 · mc
i + {mc

i Ø 0} · („0 + „1 · mc
i) + ui

for i œ Il with |mc
i | Æ 1 and mc

i ”= 0. Here, yi is an outcome, ⁄t is an intercept that varies by
cohort, ⁄1 · mc

i + {mc
i Ø 0} · „1 · mc

i is a linear spline in the running variable, and „0 is the RD
treatment e�ect (RDy

c for outcome y).

B.5 Comparing RDs

We then compare the RDs for the two outcomes. Figure A8 plots estimated RDs for baccalaureate
outcomes, R̂Dp

c , versus those for the value added of students’ tracks, R̂DV
c . The figure includes

plots for a variety of combinations of baccalaureate outcomes and value added measures. The

12. In the derivation, the first equality is due to the definition of potential outcomes. The second is from the RD
identification proof of Hahn, Todd, and Van der Klaauw (2001). The third is due to the fact that students are
either type-f compliers or type-f never-takers. The fourth is a simple manipulation, and the fifth is due to the law
of total expectation.
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Figure A8: Admissions-cuto� RDs

The figure plots estimates of admissions-cuto� RDs on baccalaureate outcomes, R̂Dp
c , versus those on the value added of students’

tracks, R̂DV
c . The grey line is a 45 degree line, and the blue line is a best fit from a linear regression. Values are weighted by the

number of students with transition scores within 1 standard deviation of the cuto�. See Appendix B.5 for additional details.

top-left, top-right, and middle-left plots are for the baccalaureate outcome of whether the student
passes the exam. These plots use value added measures of, respectively, a single track-year e�ect
on the probability of passing, track-year e�ects on this probability that vary by gender, and those
that vary by relative academic strength. The middle-right plot is for the percentile rank of a
student’s baccalaureate performance; it uses a value added measure of a single track-year e�ect
on this alternative baccalaureate outcome. Finally, the bottom-left plot is for a student’s exam
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score; it again uses a value added measure of a single track-year e�ect on this outcome.
In the plots, each dot represents a di�erent cuto�. The grey diagonal line is a 45-degree line,

and the blue line is a line of best fit from a linear regression. If the RDs on value added are an
unbiased predictor of the RDs on baccalaureate outcomes, then the best fit line will equal the
45-degree line. If the RDs on the two outcomes are always equal, then all the dots will fall on
the 45-degree line. One can see that in each plot the best fit line closely matches the 45-degree
line, but that the dots exhibit dispersion around these lines. Importantly, much of this dispersion
could be due to noise in estimating the RDs.

Table A30 assesses the similarity of the RDs using an approach that allows us to account
for noise. Specifically, we calculate R-squared from predicting RDs on baccalaureate outcomes
using RDs on value added. We present two di�erent versions of R-squared. The first version is
R-squared for the estimated RDs. This quantity is presented in the first column of the table. It
captures the dispersion represented in Figure A8 and does not account for noise. It is:

R2
raw = 1 ≠

q
c

Nc
N (R̂Dp

c ≠ R̂DV
c )2

q
c

Nc
N (R̂Dp

c ≠ q
c

Nc
N R̂Dp

c)2
. (8)

Here, Nc is the number of students in the estimation sample for cuto� c (i.e., i œ Il with |mc
i | Æ 1

and mc
i ”= 0), and N is the sum of the number of students in all cuto�s’ estimation samples.

Next, the second version is R-squared for the true RDs. This quantity is presented in the second
column of Table A30. It is calculated by purging R2

raw of measurement error. Specifically, write
R̂Dy

c = RDy
c + Áy

c , where Áy
c is measurement error. The true (or adjusted) R-squared is:

R2
adj. = 1 ≠

q
c

Nc
N [(R̂Dp

c ≠ R̂DV
c )2 ≠ (Áp

c)2 + 2 · Áp
c · ÁV

c ≠ (ÁV
c )2]

q
c

Nc
N [(R̂Dp

c ≠ q
c

Nc
N R̂Dp

c)2 ≠ (Áp
c)2]

, (9)

To calculate (9), we replace (Áy
c)2 with the squared standard error for R̂Dy

c . Following Appendix
C.3.2 of Chandra et al. (2016), we recover Áp

c · ÁV
c by stacking the RD regression equations for each

outcome for cuto� c and selecting the appropriate element of the variance-covariance matrix.

Table A30: Comparing admissions-cuto� RDs

Value added measure
R-squared

Cuto�s
Student-

Raw Adjusted cuto�s

Pass the exam:
All 0.746 0.994 10,210 24,173,143
Gender 0.753 0.996 10,210 24,173,143
Relative academic strength 0.746 0.987 10,210 24,173,143

Percentile rank of exam performance 0.698 0.964 10,210 24,173,143
Exam score 0.719 0.981 10,210 24,173,143

The table presents R-squared from explaining admissions-cuto� RDs on baccalaureate outcomes, RDp
ct, using those on the value

added of students’ tracks, RDV
ct. Raw R-squared is defined in equation (8). Adjusted R-squared is defined in equation (9).

The values in Table A30 suggest that RDs on value added are highly similar to those on
baccalaureate outcomes. Further, they indicate that much of the dispersion in Figure A8 is due to
measurement error. The values in the first row of the table are for the baccalaureate outcome of
passing the exam and a value added measure of a single track-year e�ect on this outcome. For this
specification, the estimated RDs on value added explain 75% of the estimated RDs on passing.
However, most of the unexplained variation is noise. After adjusting for measurement error, the
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R-squared jumps to 0.994. The next two rows keep the same baccalaureate outcome but use value
added measures that vary by student type. They show that allowing value added to vary by a
student’s gender generates a slight improvement (adjusted R-squared of 0.996), while allowing it to
vary by the student’s relative academic strength causes a slight deterioration (adjusted R-squared
of 0.987). The baccalaureate outcomes in the fourth and fifth rows are the percentile rank of the
student’s exam performance and the student’s exam score (with imputations for missing values).
The value added measures in these rows are single track-year e�ects on the given outcomes. It
can be seen that the adjusted R-squared remains extremely high (0.964 and 0.981, respectively).

B.6 Comparing RDs using an IV approach

The second strategy that we use to compare the RDs is an adaptation of the procedure developed
by Angrist et al. (2017). This involves using the admissions o�ers that students receive due
to scoring above a cuto� as instruments in a regression of pi (a baccalaureate outcome) on V̂i

(the value added of the student’s track). In this regression, we stack observations for all cuto�s
and include cuto�-year fixed e�ects and cuto�-specific controls for the running variable. The
admissions o�ers generate exogenous variation in V̂i due to the fact that some students who
receive an o�er attend the associated track. If on average over all cuto�s, an increase in value
added due to scoring above a cuto� improves outcomes by the same amount, then the coe�cient
on V̂i will equal 1. In addition, Angrist et al. (2017) note that a researcher can use an over-
identification test to examine whether each cuto� would generate the same coe�cient on its own.
Thus, the procedure allows a researcher to both quantify the average bias and to examine whether
there is heterogeneity in the bias across cuto�s.

Table A31: Testing for bias using the Angrist et al. (2017) IV strategy

Group

1 2 3 4 5 6 7 8 9 10
IV coe�cient 1.02 1.05 1.04 1.02 1.05 1.07 1.00 1.09 0.97 1.04

(0.019) (0.019) (0.020) (0.019) (0.020) (0.019) (0.021) (0.021) (0.021) (0.021)
First-stage F statistic 29.2 28.2 26.6 27.0 24.8 26.5 23.9 24.4 25.5 24.7
Bias

Wald statistic 1.58 7.06 4.88 1.38 5.39 12.2 0.05 16.8 2.04 3.94
p-value 0.208 0.008 0.027 0.240 0.020 0.000 0.830 0.000 0.153 0.047

Overidentification
Hansen J statistic 1,330 1,429 1,437 1,556 1,404 1,447 1,456 1,410 1,418 1,497
degrees of freedom 1,033 1,032 1,032 1,033 1,032 1,032 1,033 1,032 1,032 1,032
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Student-cuto�s 2,446,084 2,428,844 2,428,808 2,384,319 2,500,574 2,444,417 2,381,536 2,494,635 2,423,694 2,195,957

The table presents results from the strategy of Angrist et al. (2017), described in Appendix B.6. Results are for the value added
measure of a track-year e�ect on the probability of passing the baccalaureate exam. Cuto�s are divided into ten random groups, and
results are presented separately for these groups. The “IV coe�cient” is the coe�cient on V̂i in an instrumental variables regression
of pi on V̂i, cuto�-year fixed e�ects, and cuto�-specific controls for the running variable. “Bias” is a Wald test that the IV coe�cient
is equal to 1. “Overidentification” is the Sargan-Hansen test of over-identifying restrictions. It tests whether each instrument would
generate the same IV coe�cient if used on its own. The IV regression is estimated using two-stage least squares. All values are robust
to heteroskedasticity.

Table A31 presents results. With our large dataset, this exercise is computationally burden-
some. Thus, we provide results only for our main value added measure of a track-year e�ect on the
probability of passing the baccalaureate exam. In addition, we divide the cuto�s into ten random
groups and calculate results separately for each group. The results in the table indicate that value
added is unbiased on average, with IV coe�cients that hover around 1. However, the results for
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the over-identification test generally allow us to reject that each cuto� would generate the same
IV coe�cient if used on its own.

In short, the results from our validation exercises indicate that our value added measures
closely approximate causal e�ects. However, statistically speaking, the amount of bias is larger
than what would be predicted by noise alone.

C Adjusting for measurement error

This section describes the strategies that we use to adjust for measurement error.

C.1 The standard deviation of V
ú
jt based on

„
Vjt

When fitting equations (6) and (7), we obtain value added estimates, V̂jt, rather than the true
values, Vú

jt. Nonetheless, we can use V̂jt to estimate the standard deviation of true value added.
Suppose that the estimates are equal to the true values plus independent measurement error:

V̂jt = Vú
jt + Ájt,

with Ájt ‹ Vú
jt. By independence, we have:

Var[V̂jt] = Var[Vú
jt] + Var[Ájt],

or alternatively:

SD[Vú
jt] =

Ò
Var[V̂jt] ≠ Var[Ájt].

Var[Ájt] can be estimated as the average of the squared standard errors for the V̂jt estimates.
Thus, we can estimate the standard deviation of true value added by simply subtracting the
average squared standard error from the sample variance of estimated value added and taking the
square root. For tracks in set S, we use the finite-sample formula:

SD[Vú
jt|jt œ S] =

Q

a
ÿ

jtœS

Njt

NS
[(V̂jt ≠

ÿ

jtœS

Njt

NS
V̂jt)2 ≠ Á̂2

jt]
R

b
1/2

,

where Njt is the number of students in track j in cohort t, NS is the total number of students in
S, and Á̂2

jt is the squared standard error for V̂jt.

C.2 Empirical Bayes posterior means based on
„
Vjt

We adjust individual value added estimates for measurement error by calculating Empirical Bayes
posterior means, VEB

jt . To do so, we make slightly stronger assumptions than those in Appendix
C.1. First, we assume the measurement error, Ájt, is not just independent but also has a normal
distribution; i.e.,

Ájt ≥ N(0, Var[Ájt|jt]),

where Var[Ájt|jt] is the variance of the measurement error for track jt. As a result, the value added
estimates are independently normally distributed around the true e�ects: V̂jt ≥ N(Vú

jt, Var[Ájt|jt]).13

13. Note that, by the asymptotic normality of OLS, this assumption holds whenever the sample size is large. This
seems reasonable given we have both a large total number of students and a sizable number of students per track.
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Next, we assume that, in each year, the true e�ects are also independently normally dis-
tributed.14 Further, they have a common variance, and they are centered around a grand mean
which we allow to vary by curricular focus:

Vú
jt ≥ N(µc(j),t, ‡2

t ).

Here, µc(j),t is the mean of true value added in cohort t for tracks with curricular focus c, and ‡2
t

is the variance of Vú
jt ≠ µc(j),t.

Given these assumptions, the posterior distributions of the true e�ects are:

Vú
jt | {V̂jt, Var[Ájt|jt], µc(j),t, ‡2

t } ≥ N
1
Vú,EB

jt , (1 ≠ bjt) · Var[Ájt|jt]
2

,

with
Vú,EB

jt = (1 ≠ bjt) · V̂jt + bjt · µc(j),t and bjt = Var[Ájt|jt]
Var[Ájt|jt] + ‡2

t
.

We estimate the posterior means, Vú,EB
jt , using the procedure in Section 5 of Morris (1983).

First, we estimate Var[Ájt|jt] with the squared standard error of V̂jt, Á̂2
jt. Second, we estimate

µc(j),t as the student-weighted average of V̂jt for tracks in cohort t with curricular focus c:

µ̂c(j),t =
ÿ

jtœSct

Njt

NSct

V̂jt.

Here, Njt is the number of students in track j in cohort t, Sct is the set of tracks in the cohort
with curricular focus c, and NSct is the number of students in this set. Third, we estimate ‡2

t as:

‡̂2
t =

ÿ

jtœSt

Njt

NSt

CA
|St|

|St| ≠ C

B

· (V̂jt ≠ µ̂c(j),t)2 ≠ Á̂2
jt

D

.

Here, St is the set of tracks in cohort t, |St| is the number of tracks in this set, and C is the number
of curricular focuses. Fourth, we estimate bjt as:

b̂jt =
A

|St| ≠ C ≠ 2
|St| ≠ C

B

·
A

Á̂2
jt

Á̂2
jt + ‡̂2

t

B

.

Finally, we estimate the posterior mean, Vú,EB
jt , as

VEB
jt = (1 ≠ b̂jt) · V̂jt + b̂jt · µ̂c(j),t.

C.3 R-squared for predicting V
ú
jt using V

P
jt

We assess the quality of the machine learning forecasts, VP
jt, by examining how well they predict

value added in years in which we can estimate value added. In this exercise, we are interested
in prediction quality for true value added, Vú

jt, not estimated value added, V̂jt. Specifically, the
metric that we want is R-squared in predicting true value added:

R2 = 1 ≠
E[(Vú

jt ≠ VP
jt)2]

Var[Vú
jt]

.

14. It is common in education and health applications to assume that the true e�ects follow a normal distribution
(e.g., Kane and Staiger (2008), Jacob and Lefgren (2008), Chandra et al. (2016), Angrist et al. (2017), and
Abdulkadiroglu et al. (2020)). See Gilraine, Gu, and McMillan (2020) or Kwon (2021) for discussions.
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Var[Vú
jt] can be estimated using the approach explained in Appendix C.1. The other term can be

obtained via the following derivation:

E[(V̂jt ≠ VP
jt)2] = E[(Vú

jt + Ájt ≠ VP
jt)2]

= E[(Vú
jt ≠ VP

jt)2] + Var[Ájt].
∆ E[(Vú

jt ≠ VP
jt)2] = E[(V̂jt ≠ VP

jt)2] ≠ Var[Ájt].

Thus, for tracks in set S, we estimate R-squared using the following finite-sample formula:

R2
S = 1 ≠

q
jtœS

Njt

NS
[(V̂jt ≠ VP

jt)2 ≠ Á̂2
jt]

q
jtœS

Njt

NS
[(V̂jt ≠ q

jtœS
Njt

NS
V̂jt)2 ≠ Á̂2

jt]
.

Here, again, Njt is the number of students in track j in cohort t, NS is the total number of students
in S, and Á̂2

jt is the squared standard error for V̂jt.

C.4 The standard deviation of V
ú
jt based on V

P
jt

For the 2015-2019 admissions cohorts, we cannot estimate value added and instead only have
machine learning forecasts, VP

jt. We would like nonetheless to estimate the standard deviation of
the true e�ects, Vú

jt, for these years. To do this, we assume that the true e�ects are equal to the
forecasts plus independent forecast error:

Vú
jt = VP

jt + Ëjt,

with Ëjt ‹ VP
jt. We calculate the variance of Vú

jt by assuming that VP
jt has an R-squared in

predicting Vú
jt equal to that observed for the 2008-2014 cohorts (0.791, Table A29). Specifically,

we use the following derivation:

R2 =
Var[Vú

jt] ≠ E[(Vú
jt ≠ VP

jt)2]
Var[Vú

jt]

=
Var[Vú

jt] ≠ Var[Ëjt]
Var[Vú

jt]

=
Var[VP

jt]
Var[Vú

jt]

∆ SD[Vú
jt] =

3 1
R2 · Var[VP

jt]
41/2

.

For tracks in set S, we thus use the following finite-sample formula:

SD[Vú
jt|jt œ S] =

Q

a
q

jtœS
Njt

NS
(VP

jt ≠ q
jtœS

Njt

NS
VP

jt)2

R2
0814

R

b
1/2

,

where R2
0814 = 0.791.

C.5 R-squared for beliefs about V
ú
jt, proxied by V

P
jt

In Section III, we are interested in assessing how well households’ beliefs about value added reflect
a track’s true value added. However, for the experimental (2019) cohort, we observe only a track’s
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forecasted value added, VP
jt, not its true value added, Vú

jt. Let pV
ij be the fitted value from a

regression of VP
jt on sV

ij. We estimate R-squared with respect to explaining true value added as
follows. R-squared is:

R2 = 1 ≠
E[(Vú

jt ≠ pV
ij)2]

Var[Vú
jt]

.

Var[Vú
jt] can be estimated using the approach described in Appendix C.4. The other term is:

E[(Vú
jt ≠ pV

ij)2] = E[(VP
jt + Ëjt ≠ pV

ij)2]
= E[(VP

jt ≠ pV
ij)2] + 2 · E[(VP

jt ≠ pV
ij) · Ëjt] + Var[Ëjt]

= E[(VP
jt ≠ pV

ij)2] ≠ 2 · E[pV
ij · Ëjt] + Var[Ëjt].

E[(VP
jt ≠ pV

ij)2] can be estimated from the data. Var[Ëjt] can be written as:

Var[Ëjt] = Var[Vú
jt] ≠ Var[VP

jt].

Finally, we assume E[pV
ij · Ëjt] = 0; that is, households’ scores are not correlated with the unfore-

castable component of track value added.15 Thus, R-squared is:

R2 = 1 ≠
E[(VP

jt ≠ pV
ij)2] + Var[Ëjt]

Var[VP
jt] + Var[Ëjt]

.

The finite-sample formula is:

R2 = 1 ≠
1
J

q
i
q

jœJi
[(VP

jt ≠ pV
ij)2 + 1≠R2

0814
R2

0814
(VP

jt ≠ 1
J

q
i
q

jœJi
VP

jt)2]
1
J

q
i
q

jœJi
(VP

jt ≠ 1
J

q
i
q

jœJi
VP

jt)2/R2
0814

.

Here, i is a survey respondent, and J © q
i Ji is the sum of the number of tracks in each respon-

dent’s town.

15. This assumption need not hold. However, we think it is reasonable based on the evidence with respect to
households’ scores for peer quality. Specifically, we found that households’ scores for peer quality are not more
predictive of a track’s current-year minimum transition score than they are for the track’s prior-year value. This
suggests that households do not have information on trends in peer quality that is not observable to researchers.
Our assumption is that this is also the case for value added.
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D How households rank and score tracks

In this appendix, we ask two questions related to how households rank and score tracks. First, we
assess whether they consider all the tracks in their towns, or instead focus on a limited subset by
selectivity. Second, we examine whether they rank tracks from multiple curricular focuses.

The fact that the Romanian high school assignment mechanism is incentive compatible means
that it is weakly dominant for a household to rank each track that it prefers to the outside option
of vocational school. Moreover, the dominance is strict if there is a non-zero chance that the
student will be admitted to the track. In practice, however, households may find it costly to
evaluate tracks. As a result, they may focus only on the tracks that they believe their child
is likely to attend. In this case, the relevant choice set for a household would not be the full
set of tracks in a town, but rather a subset of them, with the particular subset depending on
the student’s achievement. For instance, a household with a low-achieving child may not rank
and/or score selective tracks that it is sure will be “out of reach”.16 Similarly, a household with a
high-achieving child may not rank and/or score non-selective tracks.

If households systematically omit certain tracks, there could be issues for our analysis. First,
if households skip out-of-reach tracks, then their preference rankings would not reflect their true
preferences. Households would leave tracks unranked that they actually prefer to those they do
rank.17 Second, if households consider only a subset of tracks, then their quality scores may
pertain to the distribution of tracks within that subset, rather than among the town as a whole.

Table A32: Summary statistics on the share of tracks that a household ranks and/or scores

Included in preference ranking Scored on pass and peers

All students Low-achieving High-achieving All students Low-achieving High-achieving

Mean share of tracks ranked / scored 0.42 0.41 0.45 0.35 0.32 0.38
Fraction of households ranking / scoring:

No tracks 0.09 0.09 0.06 0.38 0.43 0.32
1-25 percent 0.31 0.33 0.28 0.23 0.22 0.24
26-50 percent 0.29 0.28 0.31 0.08 0.06 0.10
51-75 percent 0.10 0.09 0.12 0.04 0.04 0.04
> 75 percent 0.21 0.21 0.23 0.27 0.26 0.30

Number of students 3,898 1,554 2,192 3,898 1,554 2,192

The table describes the share of tracks that a survey household ranks and/or scores in the baseline survey. A household is said to
rank a track if it includes the track in its preference ranking. A household scores a track if it assigns scores for both value added on
passing the baccalaureate exam (“pass”) and peer quality (“peers”). “Mean share of tracks ranked/scored” is the average share of
tracks that a household ranks or scores. The remaining rows display the fraction of households that rank or score none of the tracks
in their towns, 1-25 percent, 26-50 percent, 51-75 percent, and more than 75 percent. Low-achieving (high-achieving) students are
those with transition scores in the bottom (top) half of the national distribution.

To assess these issues, we first provide additional detail on the share of tracks that households
rank and score. As noted in Section I.D, households, on average, rank 42% of the tracks in
their towns, and they score 35% on academic value added and 36% on peer quality (Table A7).
Table A32 summarizes how these shares vary across households. The first column shows that
most households rank a significant share of tracks; 60% rank over a quarter, and 21% rank over
three quarters. Meanwhile, 9% rank no tracks. The fourth column displays the share of tracks
that a household scores.18 It shows that this distribution is more bimodal, with most households

16. This is the issue of “skipping” discussed by Fack, Grenet, and He (2019) and Artemov, Che, and He (2020).
17. Omitting non-selective tracks is not an issue, as these are less preferred than the tracks that are ranked.
18. Here, we define a household as scoring a track if it assigns scores for both peer quality and value added on

passing the baccalaureate exam.
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assigning scores to either a small or large share of the tracks in their towns. Specifically, 61% of
households score a quarter of the tracks or fewer, with 38% scoring no tracks. On the other hand,
27% score over three quarters of the tracks.

Figure A9 and the remaining columns of Table A32 show how the share of tracks ranked or
scored varies with the student’s transition score. They reveal that households with low-achieving
students are more likely to not assign scores to any track. However, behavior is otherwise relatively
similar across the achievement distribution.

Figure A9: The share of tracks that a household ranks and/or scores by student transition score

The figure shows how the share of tracks that a survey household ranks and/or scores varies with the student’s transition score.
Specifically, households are assigned to groups based on whether they ranked and/or scored none of the tracks in their towns, 1-25
percent of the tracks, 26-50 percent, 51-75 percent, or more than 75 percent. The colored areas in the figure represent the fraction of
households in each group. The dividing lines are calculated using local linear regressions of indicators for group membership on the
national percentile rank of student’s transition score.

Next, we inspect whether households with low- and high-achieving children di�er in the selec-
tivity of the tracks that they include in their preference rankings and sets of quality scores. We
find that households include tracks from across the selectivity distribution. Figure A10 reveals the
fraction of tracks that a household ranks and/or scores that come from each within-town quin-
tile of selectivity.19 The figure reveals a few notable facts. First, households with low-achieving
children include tracks from each quintile at almost uniform rates. Second, households with high-
achieving children are more likely to include selective tracks than non-selective ones. Among this
group, about 40% of the tracks that a household ranks and/or scores fall into the top quintile.
Nonetheless, these households still include significant fractions of non-selective tracks. About 20%
of their ranked and/or scored tracks come from the two least-selective quintiles.

The evidence in this section thus counters the notion that households consider only a subset
of tracks based on their child’s achievement; instead, they rank and score tracks with a range
of selectivities. Thus, the evidence broadly supports the assumptions that households’ track

19. We define selectivity using a track’s prior-year minimum transition score, MTSjt≠1. We use the prior-year
(2018) value of this variable because it can be observed by households at the time of the information sessions.
Prior-year MTS is published by the government just before these sessions—when the government announces the
year’s list of available tracks. In addition, households may be able to remember it from the previous allocation. As
such, it is likely to be more closely related to a household’s beliefs about track selectivity than is the current-year
(2019) version. Furthermore, the 2019 version may be influenced by our experiment.
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Figure A10: The selectivity of ranked and/or scored tracks by student transition score

The figure provides information on the selectivity of the tracks that survey households consider. Specifically, among either the tracks
that a household includes in its preference ranking (Panel A) or among those that the household scores on both peer quality and
value added on passing the baccalaureate exam (Panel B), the figure summarizes the shares of tracks that fall into each within-town
quintile of 2018 minimum transition score, MTSjt≠1. The dividing lines in the figure represent local linear regressions of a
household’s cumulative shares against the national percentile rank of the student’s transition score. The sample drops respondents
who didn’t score any tracks on both peer quality and value added on passing the baccalaureate exam, as well as those who didn’t
include any tracks in their preference rankings.

preference rankings reflect their true preferences and that their quality scores map to the full
distribution of tracks within their towns. Nonetheless, in the main analysis we are careful to show
that our results are not sensitive to these assumptions.

We next examine whether households rank tracks from multiple curricular focuses—or if, in-
stead, they emphasize just one. The answer to this question reveals whether a student’s choice
set is best reflected by all its available options or by only those with its preferred curricular focus.

Table A33: The number of curricular focuses among a household’s top choices

Among top:
Curricular focuses

Students

Rank Ø 2 Mean
2 0.36 1.36 3,227
3 0.68 1.73 2,783
4 0.82 1.97 2,365
5 0.93 2.26 1,868
6 0.98 2.39 1,452

The table provides summary statistics on the number of curricular focuses that are included among a household’s top choices in the
baseline preference ranking. “Rank Ø 2” is an indicator for whether the household ranks tracks from at least two focuses. “Mean” is
the mean number of focuses from which a household ranks tracks. The sample in each row is restricted to households who ranked at
least the listed number of tracks.

Table A33 presents the results. The table shows the share of households who include tracks
from multiple curricular focuses among their top baseline choices. It also lists the mean number of
focuses that households rank. The results indicate that households consider tracks with di�ering
curricula. For instance, among their top three choices, 68% of households include tracks from at
least two focuses. Among the top six choices, this value is 98%.
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E Explaining households’ beliefs about value added

This section considers two questions related to households’ beliefs about value added. First, we
investigate whether households believe that value added is multi-dimensionsal. For instance, do
they think that some tracks have high value added in one dimension, while others have high value
added in another dimension—or, instead, do they think the same tracks are good across the board?
Second, we explore how households’ beliefs about other track characteristics explain their beliefs
about value added. In particular, do they believe value added is interchangeable with peer quality,
or do they think it additionally depends on factors such as curricular focus and teacher quality?

These questions have important implications for the paper’s analysis. First, in the experiment,
we provided information only on value added with respect to passing the baccalaureate exam. For
students with a relatively even chance of passing, this outcome is of direct interest. However, it
is less relevant for students with either high or low chances of passing. For these students, the
information is of interest only to the extent that it illuminates tracks’ e�ects on other outcomes,
such as on wages or attending a high-quality college. If households believe that value added is
correlated across dimensions, then they would interpret our information as a signal of tracks’ value
added on the outcomes they care about. If not, then they would find the information to be of
little use. This would cause treatment e�ects to be smaller than if we had informed them about
value added on the appropriate dimension.

Next, the second question has implications for the pathways through which our treatment
e�ect operates. If households do not distinguish value added from peer quality (i.e., if they do not
understand selection bias), then our intervention may teach households about the concept of value
added. By contrast, if households already understand this distinction, then the impact of the
intervention will operate mainly through revealing which tracks have high value added—although
it may still serve to direct attention to value added vis-a-vis other track characteristics.

Figure A11: The correlation between households’ scores for value added on passing the
baccalaureate exam and their scores for other track attributes

The figure presents coe�cients from correlations between households’ baseline quality scores for value added on passing the
baccalaureate exam and those for the listed track attributes. Each point in the figure is the coe�cient from a di�erent correlation.
The correlations are calculated using the sample of students with transition scores within a 20-percentile-rank range. The coe�cients
are plotted against the median value of transition score percentile rank in the range.
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The results for the first question are presented in Figure A11. The figure shows coe�cients
from correlations between households’ baseline quality scores for value added on passing the bac-
calaureate exam and their scores for other value added dimensions. As a benchmark, it also
includes correlations with scores for peer quality. Each point in the figure is the coe�cient from
a di�erent correlation. The correlations are calculated using only students with transition scores
within a 20-percentile-rank range. Thus, the figure reveals how the correlations vary in magnitude
across the achievement distribution.

The figure indicates that households’ believe value added is highly correlated across dimensions.
Nonetheless, they also seem to see it as multi-dimensional. Scores for value added on passing the
exam are most related to those for value added on college quality, with correlations that vary
between 0.82 and 0.89 (blue line). For the full sample, the value is 0.86 (Table A6). Correlations
with value added on wages (green line) are slightly lower, ranging from 0.75 to 0.83, with a full-
sample value of 0.81. For neither set of correlations is there strong heterogeneity by student
achievement. Next, the correlations with peer quality (orange line) are even lower than those with
value added on wages. For peer quality, these vary between 0.62 and 0.82, with a full-sample value
of 0.77. Further, for this track attribute there is more variation by achievement. Households with
low-achieving children think there is a weaker relationship between value added and peer quality
(correlation of 0.72) than do those with high-achieving children (correlation of 0.78).

The above results suggest that households likely interpreted our information as being infor-
mative about the value added dimensions they care about. However, treatment e�ects may be
slightly smaller than if we had provided information on value added for additional outcomes.

Table A34: Regressions of scores for “VA: pass the bacc.” on scores for other track attributes

(1) (2) (3) (4) (5) (6) (7)
Teacher quality 0.850úúú 0.465úúú 0.460úúú 0.438úúú 0.471úúú

(0.012) (0.033) (0.031) (0.046) (0.036)
Curricular focus 0.719úúú 0.281úúú 0.260úúú 0.225úúú 0.279úúú

(0.017) (0.024) (0.023) (0.025) (0.033)
Peer quality 0.754úúú 0.194úúú 0.179úúú 0.185úúú 0.178úúú

(0.016) (0.023) (0.025) (0.042) (0.026)
Location 0.037úúú 0.064úúú 0.024

(0.013) (0.023) (0.015)
Siblings and friends 0.028úúú 0.046úú 0.015

(0.011) (0.018) (0.011)
All students x x x x x
Low-achieving x
High-achieving x
R-sq. 0.65 0.58 0.58 0.73 0.73 0.68 0.76
Clusters 188 189 188 188 186 163 173
Students 2,382 2,390 2,370 2,333 1,957 706 1,251
Student-tracks 17,455 17,439 17,460 17,175 14,751 5,348 9,403

The table presents results for regressions of households’ baseline quality scores for “VA: pass the bacc.” on their scores for the listed
track attributes. The sample for the 6th (7th) column is students with transition scores in the bottom- (top-) half of the national
distribution. Standard errors are clustered by middle school.

Next, Table A34 reveals how households’ beliefs about value added are explained by their
beliefs about other track attributes. It shows results for regressions of scores for value added on
passing the baccalaureate exam on scores for teacher quality, curricular focus, and peer quality.
In a few specifications, it also controls for scores for a track’s location and for whether a student’s
siblings and friends attend the track.
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The table reveals that households’ value added scores are most closely related to their scores
for teacher quality. However, they are also related to scores for curricular focus and peer quality.
A one unit increase in a score for teacher quality is associated with a 0.85 unit increase in the
score for value added, with an R-squared of 0.65 (Column 1). Coe�cients on scores for curricular
focus (Column 2) and peer quality (Column 3) are respectively 0.72 and 0.75, with R-squared in
both cases equal to 0.58. Column 4 presents a horse race, showing that a one unit increase in a
score for teacher quality is associated with a 0.47 unit increase in the score for value added, while
scores for curricular focus and peer quality are associated with increases of only 0.28 and 0.19.
Next, Column 5 adds scores for location and siblings and friends. It indicates that these latter
variables do not contribute additional explanatory power. Finally, Columns 6 and 7 reveal that
there is little heterogeneity in the results by student achievement.

Thus, the evidence suggests that households did understand the concept of value added in
advance of the experiment. Namely, they conceived value added as being related to the quality of
a track’s teachers, while also depending on the track’s curricular focus and peers.
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F How certain were households at the time of the baseline?

In this section, we examine the timing of the baseline survey. Specifically, we investigate how
carefully households had thought about their options at this point in time. Recall that the baseline
survey is when we collected baseline preference rankings and quality scores and when we provided
treated households with information on value added. It occurred about a month before households
were required to submit their o�cial rankings. Further, it occurred in school-organized information
sessions that are used to explain the admissions process.

The question of timing is important for two reasons. First, it has implications for the magnitude
of the treatment e�ects. If households had already settled on their track choices at the time of our
intervention, then they may have been resistant to incorporating new information. This would
cause the treatment e�ects to be smaller than if we had intervened earlier on. Second, the timing
of the survey also has implications for the relevance of the baseline preference rankings and quality
scores. Namely, if households hadn’t yet begun to consider their options, then these would likely
have little in common with households’ beliefs and choices when they submit their o�cial lists.

Figure A12: Households’ certainty about their baseline track preference rankings

The figure presents information on the share of survey households who, at the time of the baseline survey, report being somewhat
certain or very certain of their track preference rankings. The category “Somewhat or very certain” is the sum of the categories
“Somewhat certain” and “Very certain”. The lines represent local linear regressions of the listed variables on the percentile rank of a
student’s transition score.

We explore the question of timing in two ways. First, we use self-reports from the baseline
survey in which households were asked if they were already certain of their preference rankings.
As mentioned in Section I.D, on this measure, households appear to have di�ered in their degree
of certainty. 39% report already being very certain, 46% report being somewhat certain, and 15%
were uncertain (Table A7). Figure A12 reveals how these shares vary by student achievement.
The figure plots the fraction of households who were somewhat certain, very certain, or either
somewhat or very certain against the national percentile rank of the student’s transition score.
Table A35 presents corresponding summary statistics. The results indicate that households with
low-achieving children were slightly less certain than those with high-achieving children. However,
both groups exhibited a range of certainty. For households with children in the bottom half of the
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national distribution, 33% were very certain, 50% were somewhat certain, and 17% were uncertain.
Meanwhile, for households with children in the top half of the national distribution, 45% were very
certain, with 43% being somewhat certain and 12% being uncertain.

Table A35: Summary statistics on households’ certainty in their baseline preference rankings

All Low- High-

students achieving achieving

Share who reported being:
Very certain 0.39 0.33 0.45
Somewhat certain 0.46 0.50 0.43
Uncertain 0.15 0.17 0.12

Students 3,898 1,554 2,192

The table presents summary statistics on the share of households who reported (in the baseline survey) that they were “very certain”,
“somewhat certain”, or “‘uncertain” of their track preference rankings.

The second way we assess timing is by comparing baseline preference rankings with o�cial
track assignments for control households. Control households were not provided with information
on value added. Thus, their behavior reveals the dynamics of decision-making in the absence of
the experiment. If households were already settled on their choices at the time of the baseline
survey, then track assignments for control households should match those implied by their baseline
preference rankings. By contrast, if households hadn’t yet thought through their options, then
they would be likely to change their choices before submitting their o�cial lists. As a consequence,
their assignments would di�er from those implied by their baseline preference rankings.

Table A36: The share of control households whose baseline preference rankings
match their track assignments

N Share

All students 1,095 0.74
Very certain 481 0.78
Somewhat certain 544 0.72
Uncertain 70 0.64

The table reveals the fraction of households in the control group who were assigned to the feasible track that they ranked most highly
in the baseline survey.

Table A36 presents the results. It displays the fraction of control households whose track
assignment matches the track to which they would have been assigned based on their baseline
preference ranking. Overall, it shows that 74% of control households fall into this group. Among
those who reported being “very certain” in the baseline survey, the fraction is 78%. Meanwhile,
for those who were somewhat certain or uncertain, the shares are 72% and 64%, respectively.

In total, the evidence suggests that we intervened at a reasonable time. Most households had
already begun considering their options, but many were not yet fully settled on their choices. In
addition, a quarter of control households meaningfully changed their choices after the baseline
survey, while three quarters did not.
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G Details on the randomization

We conducted a clustered randomization that involved matching pairs of middle schools within
towns, and then randomizing within pairs. We began with a target sample of 228 middle schools
in 49 towns. Schools in the sample had either one or two classrooms.

We first conducted the randomization for the two-class schools. In our sample, towns had no
more than two two-class schools. There were 25 towns with two two-class schools. In these towns,
we paired the two-class schools and randomly selected one for treatment. Next, in two towns, there
was one two-class school. In one of these towns, there was one two-class school and one one-class
school. These were matched into a pair, with one school randomly assigned to treatment. In the
other town, there was one two class-school and two one-class schools. These were matched into a
three-school pair, with the one two-class school and the two one-class schools being restricted to
have a di�erent randomly assigned treatment.

We next randomized the one-class schools. We calculated the Mahalanobis distance among
all one-class schools in each town, using as covariates: (i) the number of students in the school,
(ii) the average transition score of students in the school, (iii) the share of students in the school
that were assigned to academic high-school tracks, and (iv) the share of students in the school
that were assigned to tracks with Romanian as the language of instruction. We then selected
treatment-control pairs sequentially. In each iteration of the matching algorithm, we created a
pair by selecting the two schools in the town with the lowest distance among the schools that
did not already form part of a pair. Finally, we randomly assigned one element of the pair to
treatment.

One complication for the matching algorithm was that some towns had an odd number of one-
class schools. In these towns, we stopped the matching algorithm when there were three remaining
one-class schools. We calculated the Mahalanobis distance of the covariates for each school in the
triple to the average of the covariates of the other two schools in the triple. We split the triple
into two groups based on which school had the lowest Mahalanobis distance to the average of the
two other schools. We then randomly assigned one of the two groups in the triple to treatment.

In the target sample, the treatment and control groups each consisted of 114 schools. Some
of these schools did not agree to participate in the survey, and in some schools there were issues
with its implementation. When there was an issue with one school in a matched pair, we dropped
the entire pair. Thus, the final experimental sample included 170 middle schools in 45 towns, of
which 86 middle schools were in the treatment group and 84 were in the control group.
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H Households’ top track choices

In this section, we examine households’ behavior with respect to their most-preferred tracks. We
explore whether households tend to select “reach” tracks that they do not believe will be feasible,
or whether they instead choose options that they expect their child to be eligible for.20 We also
assess the accuracy of households’ expectations.

Figure A13: Summary statistics on a household’s most-preferred tracks

The figure provides information on households’ most-preferred tracks in the baseline survey. Panel A pertains to a household’s
top-ranked track; Panel B relates to its two highest-ranked tracks. The green lines display the shares of households that expect their
child to be eligible for these tracks. The blue lines exhibit the shares whose children would have been eligible based on selectivity in
2018. A household is in this latter group if the student’s transition score is greater than or equal to a track’s 2018 minimum transition
score, MTSjt≠1. The purple line shows the mean 2018 selectivity of a household’s most-preferred tracks (in standard deviation units).

Figure A13 provides the results. Panel A relates to a household’s highest-ranked track; Panel
B is for the two highest-ranked tracks. The figure shows that a large majority of households select
options that they expect to be feasible. Depending on the student’s transition score, 84-94% of
households believe their child will be admitted to their most-preferred track and 93-97% think
their child will be admitted to at least one of their two most-preferred tracks.21 Lending credence
to these expectations, households with lower-performing children choose less selective tracks than
do those with higher-performing children. However, households tend to be overly optimistic about
track feasibility. For students with transition scores in the bottom half of the distribution, only
40% would be eligible for their top-ranked track based on the track’s prior-year minimum transition
score. Similarly, only 54% would be eligible for one of their two top choices. Not until about the
70th percentile of the transition score distribution does the probability that a student is eligible
catch up to households’ expectations.

Thus, the results in this section reveal that most households expect their child to attend one
of their top choices. However, many households are over-optimistic in this regard.

20. We highlight that the latter behavior does not imply that households are deviating from truthful revelation.
Notably, it could be that households prefer tracks that are a “good fit” in terms of their child’s achievement level.

21. Over the full sample, these values are 89.2% and 95.4%, respectively.
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I Additional results for Section II

In this appendix, we provide additional results for Section II. First, we show additional robustness.
Second, we use an additional approach to characterize households’ track choices.

I.1 Additional robustness

One concern with our value added measures is that they may be sensitive to e�ects on test taking.
It is possible that there is a large reward—in terms of measured value added—from inducing
students to switch their behavior on this dimension. If so, then a track’s measured value added
may depend on the share of the track’s students who are marginal in terms of test taking. Notably,
measured value added may be capped for tracks in which large shares of students take the exam.
This may explain why the relationship between value added and selectivity flattens out among
the most selective tracks (Figure 1).

Figure A14: The relationship between value added and selectivity: further robustness

The figure shows the relationship between value added and selectivity for two versions of value added on exam score. The first
version, “VA-score: all students”, is calculated using all students. The second version, “VA-score: high-achievers”, is calculated using
only high-achieving students, defined as those with transition scores in the top half of the within-year distribution. The sample is
restricted to track-years with at least 5 high-achieving students. Variables are standardized by year using the mean and standard
deviation among all tracks.

We do not believe this concern is a major issue, as we have shown that the pattern of results
holds across multiple value added measures, some of which are more sensitive to test-taking than
others. Nonetheless, we probe the concern using one further strategy. This strategy involves
calculating tracks’ value added for high-achieving students, defined as those with transition scores
in the top half of the within-year distribution. 91% of these students take the baccalaureate exam;
thus, e�ects on test taking can exert only a limited impact on this value added measure.

Specifically, among all track-years with at least five high-achieving students, we calculate value
added on exam score using just the high-achieving students.22 We then compare this measure with
our main measure of value added on exam score, which is calculated using all available students.
We find that the two measures are highly similar: their correlation is 0.95; in addition, they have
the same relationship with selectivity, as seen in Figure A14. Importantly, for both measures, the
relationship is flat or even negative among the most selective tracks. Thus, this finding is not due
to di�erences in the share of students who are marginal.

22. We focus on exam score—rather than passing the exam—because a large fraction of high-achievers pass.
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I.2 Characterizing track choices using a discrete choice model

We next use an additional approach to characterize households’ track choices. This approach
involves explaining track choices using measured values of track characteristics, including value
added, Vjt, and selectivity, MTSjt. The approach is similar to the discrete choice analysis in
Abdulkadiroglu et al. (2020) and Beuermann et al. (2019). It is useful because it allows us to
precisely compare our results with those of the previous papers.

As discussed in Section I, the administrative data reveals the track a student attends, jú
i , as

well as the set of tracks for which the student is eligible, J e
i . Following Fack, Grenet, and He

(2019), we assume that the track the student attends is the household’s most preferred among the
feasible set. That is, expected utility from track jú

i , Uijú
i
, is at least as large as that from all the

household’s other options. This amounts to assuming that households—when submitting their
preference rankings—did not believe that any feasible tracks were out of reach.

We write a household’s expected utility for track j as a linear function of characteristics of the
track, Xjt, in the household’s cohort t:

Uij = ÊÕXjt + Êij. (10)

We assume Êij is independent and has a Type I Extreme Value distribution. We then fit equation
(10) to students’ track assignments using a multinomial logit.

Table A37: How track utilities relate to measured values of track characteristics

(1) (2) (3) (4) (5) (6)
Value added, 0.605úúú -0.010 0.119úúú 0.033úúú 0.217úúú

Vjt (s.d.) (0.008) (0.006) (0.007) (0.012) (0.011)
Selectivity, 2.05úúú 2.06úúú 2.03úúú 1.71úúú 2.26úúú

MTSjt (s.d.) (0.021) (0.022) (0.023) (0.021) (0.039)
Humanities -0.468úúú -0.405úúú -0.384úúú

(0.016) (0.030) (0.022)
Math or science 0.005 -0.406úúú 0.253úúú

(0.014) (0.019) (0.023)
All students x x x x
Low-achieving x
High-achieving x
R-sq. 0.05 0.20 0.20 0.20 0.12 0.28
Clusters 5,969 5,969 5,969 5,969 5,911 5,714
Students 2,110,527 2,110,527 2,110,527 2,110,527 1,029,297 1,081,230
Student-tracks 47,298,149 47,298,149 47,298,149 47,298,149 13,812,463 33,485,686

The table presents results from equation (10). These rely on a multinomial logit to explain the track a student attends, jú
i , among the

options in its feasible choice set, J e
i . The sample is the administrative data for the 2004-2017 and 2019 cohorts. “Humanities” and

“Math or science” are indicators for a track’s curricular focus (the omitted category is technical tracks). Colums 5 and 6 are for
students with transition scores in the bottom- (top-) half of the within-year distribution. Standard errors are clustered by town-year.

Table A37 presents the results. The first column is for a specification that includes only value
added, Vjt, while the second includes only selectivity, MTSjt. The third and fourth columns
include both variables, with the fourth also adding controls for a track’s curricular focus. Finally,
the last two columns are the same as Column 4, but for either low- or high-achieving students.

The results suggest that both value added and selectivity explain utility; however, selectivity’s
explanatory power is much stronger.23 A one standard deviation increase in value added (selec-
tivity) is associated with a 0.61 (2.05) unit increase in utility. Both e�ects are significant at the

23. Note that the relationship between track utilities and selectivity is not mechanical. This is because tracks
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1% confidence level. When the two variables are included together, in Column 3, the coe�cient
on value added falls to zero, while that on selectivity remains large. When we add controls for
curricular focus, in Column 4, the coe�cient on value added increases slightly, but is still only
6% as big as that on selectivity. Finally, the results in Columns 5 and 6 suggest that value added
has some explanatory power, conditional on selectivity, for high-achieving students, but none for
low-achieving ones.

These results are broadly similar to those of Abdulkadiroglu et al. (2020) and Beuermann
et al. (2019). As in Abdulkadiroglu et al. (2020), we find that, over the full sample, value added
doesn’t explain utility after conditioning on a measure of peer quality. As in Beuermann et
al. (2019), we find that it does—to some extent—for high-achieving students.

di�er in size. In particular, it is possible for one track to be both more popular and less selective than another if
it is larger. However, for two tracks that are the same size, the more selective one is necessarily more popular.
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J Additional results for Section III

In this appendix, we show that the results in Section III are highly robust.

Table A38: Explaining within-town quintiles of track attributes using households’ quality scores:
households who scored all tracks

All students Low-achieving High-achieving

quint(Vjt) quint(MTSjt≠1) quint(Vjt) quint(MTSjt≠1) quint(Vjt) quint(MTSjt≠1)
Score: VA-pass 0.446úúú 0.420úúú 0.463úúú

(0.020) (0.035) (0.017)
Score: Peers 0.611úúú 0.589úúú 0.631úúú

(0.015) (0.028) (0.014)
R-sq. 0.19 0.37 0.15 0.30 0.23 0.42
Clusters 117 117 89 89 106 106
Students 811 811 308 308 503 503
Student-tracks 10,393 10,393 3,988 3,988 6,405 6,405

The table presents results analogous to those in Table 6. However, the sample is limited to households who provided quality scores for
both value added and peer quality for all of the tracks in their towns. See Table 6 for additional details.

First, it is possible that the results in Table 6 are impacted by the fact that most households
score only a subset of the tracks in their towns. In Table A38, we replicate Table 6 but restrict
the sample to the 21% of households with no missing scores. Results are similar.

Table A39: Explaining within-town quintiles of track attributes using households’ quality scores:
tracks that would have been feasible in the prior year

All students Low-achieving High-achieving

quint(Vjt) quint(MTSjt≠1) quint(Vjt) quint(MTSjt≠1) quint(Vjt) quint(MTSjt≠1)
Score: VA-pass 0.425úúú 0.314úúú 0.438úúú

(0.018) (0.027) (0.018)
Score: Peers 0.569úúú 0.378úúú 0.600úúú

(0.013) (0.021) (0.012)
R-sq. 0.18 0.33 0.10 0.20 0.20 0.38
Clusters 186 186 158 158 177 177
Students 2,136 2,136 682 682 1,454 1,454
Student-tracks 13,691 13,691 3,261 3,261 10,430 10,430

The table presents results analogous to those in Table 6. However, the sample is limited to student-track observations in which the
track would have been feasible for the student in the prior year. These are observations in which the student’s transition score is
greater than or equal to the track’s prior-year minimum transition score, MTSjt≠1. See Table 6 for additional details.

Second, it may be that households gather information only on tracks that their child is likely
to be eligible for. In this case, the results in Table 6 would average over accurate scores for tracks
that are plausibly feasible and inaccurate ones for tracks that are out of reach. In Table A39
we replicate Table 6 but restrict the sample to tracks that a student would have been eligible to
attend in the prior year. Results are again similar.

Third, it may be that households had not yet studied their options when the baseline survey
took place. To investigate this, we replicate Table 6 while restricting the sample to the 39%
of households that reported already being “very certain” of their preference rankings during the
baseline survey. The results, in Table A40, are still similar.

Finally, the R-squared statistics that we provide in Table 6 may be misleading. These are
R-squared in terms of explaining value added forecasts, Vjt = VP

jt. However, we are ultimately
interested in R-squared in terms of explaining true value added, Vú

jt. To investigate this distinction,
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Table A40: Explaining within-town quintiles of track attributes using households’ quality scores:
households who are certain of their preference rankings

All students Low-achieving High-achieving

quint(Vjt) quint(MTSjt≠1) quint(Vjt) quint(MTSjt≠1) quint(Vjt) quint(MTSjt≠1)
Score: VA-pass 0.438úúú 0.388úúú 0.459úúú

(0.020) (0.039) (0.017)
Score: Peers 0.583úúú 0.491úúú 0.622úúú

(0.018) (0.048) (0.015)
R-sq. 0.20 0.35 0.13 0.22 0.23 0.42
Clusters 176 176 127 127 158 158
Students 1,042 1,042 309 309 733 733
Student-tracks 7,288 7,288 2,252 2,252 5,036 5,036

The table presents results analogous to those in Table 6. However, the sample is limited to households who reported being “very
certain” of their preference rankings in the baseline survey. See Table 6 for additional details.

Table A41: Explaining track attributes (in std. dev.) using households’ quality scores

All students Low-achieving High-achieving

Vjt (s.d.) MTSjt≠1 (s.d.) Vjt (s.d.) MTSjt≠1 (s.d.) Vjt (s.d.) MTSjt≠1 (s.d.)
Score: VA-pass 0.306úúú 0.271úúú 0.325úúú

(0.013) (0.023) (0.011)
Score: Peers 0.353úúú 0.322úúú 0.375úúú

(0.021) (0.031) (0.021)
R-sq. 0.17 0.29 0.13 0.22 0.20 0.35
R-sq.: Vú

jt 0.14 - 0.10 - 0.16 -
Clusters 188 188 171 171 177 177
Students 2,370 2,370 883 883 1,487 1,487
Student-tracks 17,460 17,460 6,433 6,433 11,027 11,027

The table presents results from regressions of value added, Vjt, and prior-year selectivity, MTSjt≠1, on households’ quality scores.
The regressions are similar to those in Table 6. However, the outcome variable is in standard deviations, rather than within-town
quintiles. “R-sq.” is the R-squared from explaining the listed outcome variable. “R-sq.: Vú

jt” adjusts for the fact that we observe only
a forecast for value added, Vjt = VP

jt, not the true value, Vú
jt. Appendix C.5 explains how we calculate “R-sq.: Vú

jt”. See Table 6 for
additional details.

we run regressions that use values of track characteristics in standard deviation units, rather than
within-town quintiles. For this alternative parameterization, we can calculate R-squared in terms
of explaining Vú

jt. We do this by adjusting the R-squared for VP
jt for forecast error (Appendix C.5

describes the procedure). Table A41 contains the results. It shows that R-squared for true value
added, Vú

jt, is similar to, but slightly lower than, that for forecasted value added, VP
jt.
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K Testing for informational spillovers

This appendix investigates whether the experiment su�ered from informational spillovers. In
particular, it is possible that treated households shared the information on track value added with
households in the control group. If so, treatment e�ects would be biased toward zero.

Our experimental set-up included factors that both decreased and increased the likelihood of
spillovers. First, we tried to limit spillovers by visiting only a fraction of middle schools in each
town. Across towns, we visited an average of 11% of middle schools and a maximum of 29%. On the
other hand, our method for distributing information potentially facilitated spillovers. We provided
treated households with informational flyers, which we allowed households to keep. Households
may have given these flyers to others in their towns.

We test for spillovers by examining whether treatment e�ects di�er in towns in which we visited
a smaller or larger fraction of middle schools. If there are spillovers, then, all else equal, treatment
e�ects should be smaller in towns where this fraction is larger. In these, there is more interaction
between treated and control households and more opportunity for the information to be shared.
Importantly, our test will be confounded if there are third factors that are correlated with both
the fraction of schools that we visited and with the magnitude of treatment e�ects. We think this
is unlikely to be the case. In particular, we decided what fraction of schools to survey based on
(i) the share of schools with at least 15 students and (ii) logistical considerations, such as whether
the date of a school’s information session was convenient for our surveyors. These traits have no
obvious relationship with the magnitude of treatment e�ects, except via their e�ect on spillovers.

To conduct the test, we partition the sample based on whether a student’s town is in the
bottom or top half by the share of schools surveyed. We then calculate treatment e�ects on the
value added of students’ tracks (regression (1)) separately for these two groups.

Table A42: Testing for spillovers in treatment e�ects

All students Low-achieving
Low-achieving and

ineligible

All towns Bottom Top All towns Bottom Top All towns Bottom Top
Treated 0.048ú 0.056ú 0.037 0.121úú 0.122ú 0.118ú 0.204úúú 0.184úú 0.223úú

(0.025) (0.033) (0.039) (0.049) (0.072) (0.067) (0.069) (0.084) (0.109)
Clusters 78 37 41 78 37 41 76 36 40
Students 2,692 1,407 1,285 1,012 462 550 533 266 267

The table presents results from regression (1) for subsets of students by whether a student’s town was in the bottom (“Bottom”) or
top (“Top”) half by the share of middle schools surveyed. The columns for “All towns” replicate results from Section IV.A.
“Low-achieving” are students with transition scores in the bottom half of the national distribution. “Low-achieving and ineligible” are
low-achieving students who did not gain admission to either of their two top baseline choices. See the notes to Table 7 for additional
details on the regressions.

The results are in Table A42. The first three columns refer to the full sample of students, and
the remaining to the sub-samples with non-zero treatment e�ects in Section IV.A. The columns la-
beled “All towns” replicate results from Section IV.A, while the other columns distinguish between
the share of schools surveyed. The results provide no evidence of spillovers. Instead, treatment
e�ects are shown to be similar in magnitude for each group of towns.
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L Estimating preferences using experimental variation

In this appendix, we provide additional results for Section V. In Section V, we fit the preference
model, equation (4), using baseline quality scores and baseline preference rankings. We now fit
the model using endline quality scores and endline preference rankings. In addition, we make use
of experimental variation in beliefs about value added.

We first discuss why our main analysis relies on baseline data. We then explain our approach
for using endline data and experimental variation. Finally, we present the results.

L.1 Issues with the endline data and the experimental variation

There are two sets of reasons why we use baseline data in the main text. First, there are issues
with the endline quality scores. Second, there are problems with the exclusion restriction that is
needed to exploit the experimental variation.

There are a few issues with the endline quality scores. First, we have endline scores only
for value added on passing the baccalaureate exam, not for other types of value added or for
other track characteristics. Thus, to use endline data, we need to make assumptions about how
households updated their beliefs about these other quality dimensions. Second, there is substantial
missing data for the endline value added scores. To avoid restricting households’ choice sets, we
must impute these missing values. This requires us to make assumptions about how treated and
control households updated their value added beliefs.24 Third, there may be measurement error
in the endline value added scores. As we discussed in Section IV.B, the follow-up survey was
conducted a few weeks after households submitted their o�cial track preference rankings. By
this time, households may have forgotten some of what they knew when they settled on their
rankings.25 Finally, the endline data has a considerably smaller sample size than the baseline, due
to non-response in the follow-up survey.

Next, the exclusion restriction required for identification may not be valid. Our goal is to
use experimental variation in households’ endline value added scores, sV

ij,fs, to identify households’
preference coe�cient for value added, —V. This requires us to assume that the experiment a�ected
treated households’ utilities from tracks only via its e�ects on their value added scores—not via
any other channel. In reality, the experiment may have caused treated households to update their
beliefs about tracks on multiple quality dimensions. If these changes in beliefs are correlated with
the treatment e�ect on value added scores, then the approach of using experimental variation may
overstate the preference for value added.26 Similarly, the experiment may have directly impacted
preferences. For instance, it may have caused treated households to care more about value added.
If so, then the approach of using experimental variation would identify a special form of —V. It
would recover the value of —V in a world in which policymakers signal the importance of value
added. By contrast, it would not recover the value in the current institutional context, where
policymakers are neutral about track characteristics.

24. Note that we did not impute missing scores in Section IV.B, when we calculated treatment e�ects on beliefs.
There, we examined e�ects on the accuracy of the scores that households provided. Nonetheless, for estimating
preferences and for running our simulation, it is important to have scores for all tracks in a choice set.

25. As we mentioned in Section IV.C, we do not believe that there is significant measurement error in the endline
preference rankings. This is because we asked households to find their o�cial submissions and read them to us.

26. We could model these other changes if we had endline scores for all quality dimensions; however, we do not. A
related issue is that the experiment may have influenced the precision of value added beliefs in ways not captured
by e�ects on the quality scores. If utility also depends on precision in ways not captured by the quality scores,
then we may again overstate the preference for value added. That said, if this is the case, then using the baseline
data likely understates the preference for value added.
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Despite these various issues, we find that using endline data and experimental variation gen-
erates similar results as our main strategy, which relies on baseline data.

L.2 Detailing our approach

Our approach for exploiting experimental variation is to augment the preference model with a
control function. Control functions are commonly used to deal with endogeneity in discrete choice
models, as discussed in Petrin and Train (2010) and Wooldridge (2014, 2015).

Our strategy proceeds in three steps. First, we impute missing endline value added scores, sV
ij,fs.

Second, we run a first-stage regression of these scores on (i) the other variables that we want to
include in the preference model, (ii) measured value added, (iii) the treatment indicator, and (iv)
the interaction of measured value added and the treatment indicator. Third, we fit the preference
model. As covariates, we include (i) and (ii) but not (iii) and (iv). Further, we add a flexible
function of the first-stage residuals. This function is the “control function”. It controls for the
unexplained variation in endline value added scores, and it means that the only remaining variation
in these scores is due to the treatment-induced increase in their association with measured value
added. Thus, by adding the control function, the preference coe�cient for value added scores, —V,
is identified using experimental variation.27

To probe robustness, we provide results under di�erent assumptions about how to impute
missing endline value added scores. For control households, we always replace missing values
with baseline scores. For treated households, we use five alternative strategies. In the “Accurate”
specification, we fill in accurate scores (i.e., the within-town quintile of measured value added). In
the “Two-thirds accurate” and “Half accurate” specifications, we use averages of baseline scores
and accurate scores that respectively place two-thirds and one-half weight on the accurate scores.
In “Accurate other than top 2” and “Accurate other than top 4”, we use baseline scores for either
the two or four most-preferred tracks at baseline and accurate scores for the remainder.28

We also must construct variables to reflect households’ beliefs about quality dimensions other
than value added. To do this, we make the same assumptions as in Section V.B. For “Location”,
“Siblings and friends”, and “Curricular focus”, we use baseline scores. For “Peer quality”, we use
the within-town quintile of a track’s selectivity.

L.3 Results

We present results both for preference estimates and for the simulated impact of making households
have accurate beliefs about value added.

The preference estimates are presented in Table A43. The columns of the table reflect the
five di�erent assumptions about how to impute missing endline value added scores for treated
households. Due to sample size considerations, we fit the models using all students, rather than
separately by achievement level. The variables in the models correspond to those in the “With
measured attributes” specification in Section V.B.29 In addition, the models control for a cubic

27. Another commonly used approach for dealing with endogeneity in discrete choice models is that derived in
Berry, Levinsohn, and Pakes (1995, 2004). The BLP approach can deal with unobservables that vary by track,
but not by track and household. In our setting, if there is an unobservable that causes bias, it likely varies over
households, given that households di�er in their beliefs about track quality.

28. The logic for replacing missing values with accurate scores is two-fold. First, when a household does not
score a track, it is often because the household is unfamiliar with the track. Second, in our experiment, treated
households were allowed to keep the informational flyers. Thus, they may have referenced these flyers when deciding
their track preferences and used them to shape their beliefs about unfamiliar tracks.

29. We use this specification for a few reasons. First, we must control for measured value added in the first-stage
regression. Thus, we cannot use the “Just quality scores” specification. Second, we do not have endline scores for
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function of first-stage residuals; we find that results are similar using alternative functional forms.
The preference estimates are similar to those calculated using baseline data (as shown in, e.g.,

Tables 13 and A26). The only di�erences are that the coe�cient for location is smaller and the
coe�cient for value added scores is slightly larger. The small increase in the value added preference
could reflect the violations of the exclusion restriction discussed in Appendix L.1.

Table A44 provides the results of the simulation. It shows that these are quite close to the
values based on baseline data, displayed in Tables 14 and A28. In particular, Table A44 reveals
that correcting households’ value added scores is predicted to, on average, cause low-achieving
(high-achieving) students to attend tracks with between 0.11 and 0.24 (0.09 and 0.23) s.d. worth
of additional value added. Table A28 shows that the corresponding ranges based on baseline data
are 0.07 to 0.23 (0.09 to 0.27).

In sum, the results in this appendix show that the findings in Section V are robust to estimating
preferences using endline data and experimental variation in beliefs about value added.

the alternative value added dimensions. As such, it would be di�cult to use the “Update on all VA dimensions”
specification. Third, the control function should mitigate measurement error issues. Consequently, it would be
inappropriate to use the “Adjust for measurement error” specification.

53



Table A43: Households’ preferences for track attributes:
results calculated using experimental variation in value added scores

(1) (2) (3) (4) (5)

Households’ quality scores:

Location 0.008 0.002 0.001 0.003 -0.008
(0.061) (0.065) (0.069) (0.061) (0.061)

Siblings and friends 0.368úúú 0.373úúú 0.376úúú 0.363úúú 0.363úúú

(0.065) (0.066) (0.068) (0.066) (0.066)
Peer quality 0.119ú 0.118ú 0.115ú 0.113ú 0.109ú

(0.066) (0.065) (0.065) (0.066) (0.064)
Curricular focus 1.07úúú 1.06úúú 1.06úúú 1.04úúú 1.03úúú

(0.074) (0.083) (0.095) (0.074) (0.075)
VA: pass the bacc. 0.399úúú 0.505úúú 0.575úú 0.460úúú 0.536úúú

(0.131) (0.193) (0.255) (0.133) (0.142)

Measured track characteristics:

Value added, Vjt 0.180ú 0.147 0.123 0.170ú 0.154ú

(s.d.) (0.093) (0.095) (0.096) (0.092) (0.091)
Selectivity, MTSjt 0.345ú 0.331ú 0.321ú 0.329ú 0.307ú

(s.d.) (0.177) (0.175) (0.174) (0.177) (0.173)
Humanities -0.331ú -0.299 -0.276 -0.360úú -0.369úú

(0.176) (0.182) (0.187) (0.174) (0.175)
Math or science 0.143 0.148 0.155 0.130 0.133

(0.163) (0.169) (0.173) (0.163) (0.163)

Control function:

Residuals 0.640úúú 0.686úúú 0.639úú 0.509úúú 0.391úúú

(0.151) (0.215) (0.276) (0.150) (0.150)
Squared residuals 0.438úúú 0.596úúú 0.655úúú 0.448úúú 0.430úúú

(0.038) (0.050) (0.052) (0.037) (0.035)
Cubed residuals -0.090úúú -0.128úúú -0.125úúú -0.081úúú -0.064úúú

(0.017) (0.027) (0.031) (0.018) (0.019)
R-sq. 0.37 0.38 0.38 0.37 0.36
Clusters 76 76 76 76 76
Students 1,533 1,533 1,533 1,533 1,533
Student-tracks 20,029 20,029 20,029 20,029 20,029

The table presents results from versions of the preference model, equation (4), that are calculated using experimental variation in
value added scores. The results are from rank-ordered logits that are fit using endline preference rankings and endline value added
scores. The rank-ordered logits define the choice set as all tracks in a student’s town and are estimated using a household’s two top
choices. “Residuals” are the residuals from a first-stage regression of endline value added scores on the other covariates included in the
preference model, the treatment indicator, Ti, and the interaction of the treatment indicator and measured value added, Ti · sd(Vjt).
“Squared” and “Cubed” residuals are the square and cubic of these residuals. The columns provide results under di�erent
assumptions about how to impute missing endline value added scores for households in the treatment group. Column 1 is the
“Accurate” specification. The specifications in the remaining columns are, respectively, “Two-thirds accurate”, “Half accurate”,
“Accurate other than top 2”, and “Accurate other than top 4”. See Appendix L.2 for details on these specifications. For households in
the control group, we impute missing endline value added scores using baseline value added scores. See Appendix L.2 for details on
how we constructed the quality score variables for the other quality dimensions. The sample is students in the follow-up survey.
Standard errors are clustered by the middle school treatment-control pairs within which we conducted the randomization.
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Table A44: The e�ect of accurate beliefs on the value added of students’ tracks:
results based on experimental preference estimates

Change in value added: Vi,AS ≠ Vi,IS

All students Low-achieving High-achieving
Panel A: Accurate

Top 1 0.162 0.165 0.160
Top 2 0.168 0.171 0.167
Top 3 0.171 0.171 0.171
Top 4 0.161 0.160 0.161
Plausible: Top 2 0.154 0.161 0.149
Feasible: Top 2 0.096 0.107 0.090

Panel B: Two-thirds accurate
Top 1 0.199 0.204 0.196
Top 2 0.206 0.210 0.203
Top 3 0.206 0.207 0.205
Top 4 0.185 0.185 0.185
Plausible: Top 2 0.183 0.193 0.178
Feasible: Top 2 0.102 0.113 0.096

Panel C: Half accurate
Top 1 0.232 0.239 0.228
Top 2 0.231 0.237 0.228
Top 3 0.229 0.230 0.228
Top 4 0.199 0.199 0.199
Plausible: Top 2 0.201 0.211 0.195
Feasible: Top 2 0.098 0.108 0.092

Panel D: Accurate other than top 2
Top 1 0.190 0.194 0.187
Top 2 0.197 0.201 0.195
Top 3 0.198 0.199 0.198
Top 4 0.185 0.185 0.185
Plausible: Top 2 0.184 0.194 0.179
Feasible: Top 2 0.118 0.133 0.110

Panel E: Accurate other than top 4
Top 1 0.218 0.223 0.214
Top 2 0.231 0.237 0.228
Top 3 0.234 0.237 0.233
Top 4 0.220 0.221 0.219
Plausible: Top 2 0.217 0.230 0.210
Feasible: Top 2 0.147 0.166 0.137

The table summarizes the di�erence between Vi,AS and Vi,IS for simulations in which the preference model is calculated using
experimental variation in value added scores. The columns provide the means of this di�erence for the listed groups of students. The
panels present results for versions of the preference model that are calculated under five di�erent assumptions about how to impute
missing endline value added scores for households in the treatment group. See Appendix L.2 for details on these assumptions. The
rows within each panel present results for versions of the preference model that are estimated using di�erent numbers of choices and
di�erent choice sets; see the notes to Table A28 for more details. The sample is students in the follow-up survey.
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