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When is ATE enough? Rules of Thumb vs. Decision Analysis in Evaluating

Training Programs

1. Introduction

Program evaluation is typically carried out by considering the average treatment effect

(ATE) of a new program under consideration (called the treatment) relative to a status

quo program (called the control). This is true both in experimental settings where the

ATE can be estimated by a simple difference in means for outcomes of interest between

the treatment and control groups, and also in non-experimental settings where the ATE is

often a parameter in a much more complicated model. Uncertainty regarding the

treatment impact is summarized by the standard error of the ATE, often through the

statistical significance of the point estimate.

In contrast, decision theory offers a more comprehensive method for evaluating

programs. A decision-theoretic analysis leads to a choice that maximizes (minimizes)

expected utility (loss) given a likelihood model of the data. This result was first

established by Wald (1950) and has led many researchers to formalize and extend the

decision-theoretic framework.  Of course, one might argue that this formalized

statement of objectives misses intangible features of the decision problem.  It is

clear, however, that the decision-theoretic framework, while adding a layer of

complexity to simple Neyman-Fisher hypothesis-testing, provides a solid

foundation for inference that explicitly links empirical estimates with the broader

framework of rational, economic decision-making.
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At a more practical level, a decision theory approach is more general along two

dimensions than simply looking at ATE. First, it accounts for uncertainty regarding the

treatment impact in a systematic way, through the decision-maker’s risk attitude in an

expected utility setting. To the extent that the Neumann-Morgenstern (1944) / Wald

(1950) approach is widely accepted in economics, the decision theoretic approach reflects

how we should account for uncertainty.  Second, the decision approach allows for the

decision-maker to exhibit inequality aversion, which would lead him or her to consider

the treatment impact on features of the distribution other than the average.

The aim of this paper is to develop rules of thumb for evaluating programs which

are consistent with the decision framework. Interpreted literally – as adopting a program

when its treatment effect is positive and statistically significant, we show that the

traditional approach to evaluating programs is valid only under very strong assumptions.

We then relax these assumptions to develop simple techniques – rules of thumb – for

evaluating programs that are valid under more general conditions.

The paper proceeds as follows. In Section 2 we set up the general framework for

evaluation. In Section 3 we establish conditions for equivalence between the traditional

approach and the decision approach. In Section 4 we develop several rules of thumb for

evaluating programs. In Section 5 we apply these rules in evaluating the GAIN and JTPA

data sets. Section 6 concludes.
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2. A Framework for Evaluation

2.1 Decision Theory and Evaluation

In a world without uncertainty, the policy-maker adopts a social welfare function,

S(u1(y1), u2(y2), …, uN(yN)) which, for the population of interest, n=1,…, N, aggregates

individual utility over the outcome of interest, yn. In general we think of yn as being the

net outcome of interest. For example, in an evaluation context, yn could be post-program

earnings or post-program earnings net of costs. Note that this is a “welfarist” social

welfare function (see Sen [1973], and Heckman and Smith [1998]), because it is defined

over individual utility, un(·), from the outcome of interest.

In the context of program evaluation, there are two (or more) outcomes of interest

for each individual, )( i
iy τ , with τi=1 representing the treatment program and τi=0

representing the control program. The utility-relevant outcomes are summarized by

n
iii yyW 1

)1()0( },{ == . The observed data are given by n
iiiyZ 1},{ == τ , where

01 )1( iiiii yyy ττ −+= . There is a distribution for Z and W:

QWZ ~),(
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=
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The outcome that will be realized depends on a decision by the policy-maker, a=0,1:

n
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Ex post expected social welfare then is given by:
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where a=0,1 and U(·) is a Neumann-Morgenstern utility function and S is a social welfare

function. A simplification which we will often adopt is to assume that un(yn)=yn, so that

the policy-maker is concerned only with outcomes at the individual level. The

expectation is with respect to the predictive distribution, { } Zy
n

i
a

i 1
)(

= .

An alternative formulation considers ex ante uncertainty. Uncertainty is accounted

for at the individual level. Each individual faces uncertainty regarding the outcome of

interest, represented by Yn
(a), a distribution over yn

(a), and realizes some expected utility

un(Yn
(a)). The policy-maker’s decision is based on a social welfare function defined over

these individual expected utilities, S(u1(Y1
(a)), u2(Y2

(a)),…, un(Yn) (a)) or their certainty

equivalents:

),,,( )(
*

)(
*2

)(
*1

a
n

aa yyyS K , (2)

where )(
*1
ay is the certainty equivalent of individual i’s earnings (see Dehejia [1999]).

Both formulations are useful, depending on the context. We adopt the first

formulation when focusing on the role that risk attitude plays in the evaluation, since it

allows us to assume inequality neutrality while remaining agnostic about risk attitude.

Instead, we adopt the latter approach when considering the role of inequality aversion,

since this is more transparent in the latter approach.

2.2 Decision Theory in Practice

Three ingredients must be specified in order to implement this approach. First, given the

observed data, an appropriate model must be specified for the outcome. For example, in

an evaluation context, a model for earnings would be needed. If the data are drawn from a

randomized trial, then the model would be straightforward; if there are issues of sample
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selection, then a more complicated model would be needed. From the model, we either

approximate (using maximum likelihood) or simulate (using Markov Chain Monte Carlo)

the posterior distribution of the parameters, p(θ|Z). Based on the posterior distribution of

the parameters, we are interested in the predictive distribution of individual earnings,

{ } Zy
n

i
a

i 1
)(

= . This is the distribution in the space of the outcome that accounts for all

parameter and intrinsic uncertainty, conditional on model choice, and is readily

simulated. Second, we must specify the policy-maker’s risk attitude, and third, must

specify the policy-maker’s inequality attitude.

Two simplifications that are often adopted are risk neutrality and inequality

neutrality. Inequality neutrality implies that the policy-maker is concerned only with the

average outcome over the population of interest. This is stated in Observation 1.

Observation 1: When S(·) is utilitarian (linear) and un(yn)=yn, the policy decision
turns on comparing U( 0y ) with U( 1y ).

This implies that the policy-maker would examine the predictive distribution of y  for

both programs under consideration. The assumption of risk neutrality implies that the

policy-maker is concerned only with the mean predicted value of social welfare. The two

assumptions together have the strong implication that the policy-maker will compare the

mean of the predictive distribution of average earnings across the two programs. Under

the additional assumption of normality of the outcome, the mean of the predictive

distribution of earnings will simply correspond to the sample mean. This is stated in

Observation 2.
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Observation 2: Assume S(·) is inequality neutral, U(·) is risk neutral, ui(yi)=yi,
yi1~N(µ1,σ1), and yi0~N(µ0,σ0). Then the treatment program will be adopted if 1y –

0y >0.

2.3 The Traditional Approach

Rather than focusing on the predictive distribution, the traditional approach to program

evaluation instead examines the average treatment effect (ATE), and its standard error.

One version of this is stated below as Rule of Thumb 0.

Rule of Thumb 0 (RT0): Adopt program 1 (the treatment) if

t = 2/11

01

01

αts
yy

nnp

>
+

− , (RT 0)

i.e., if the treatment effect is positive and statistically significant,  where

2
)1()1(

01

00112

−+
−+−

=
nn

snsn
s p  and ni, iy , and si

2 are the sample size, mean, and

standard deviation for group i=1,0.

Essentially the salience of the treatment effect is evaluated through its t-statistic. Though

this approach might seem overly simplistic, it is the most widely used rule of thumb in

evaluating programs (see for example Friedlander, Greenberg, and Robins [1997], Table

2).

3. Looking for Equivalence

In this section we discuss the assumptions within a decision framework that justify the

use of the average treatment effect in evaluating programs.
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3.1 There Is No General Equivalence

Proposition 1, below, establishes that there are no assumptions that in general justify RT0

as the outcome of an expected utility decision process.

Proposition 1: Assume S(·) is inequality neutral, yi1~N(µ1,σ2), and yi0~N(µ0,σ2).
RT0 is not valid under a decision framework for all n1 and n0.
Sketch Proof: For simplicity, assume that the difference in program cost between
the treatment and control programs is constant, c, so that yi1 and yi0 are the
outcomes. Consider three cases.
(A) Positive program cost, c, and symmetric priors for programs 1 and 0:
Consider n1=n0=n→∞. As n grows large, numerator of RT0 approaches µ1–µ0,
and the denominator of RT0 shrinks . For a sufficiently large n, any positive mean
difference will be statistically significant. But then program 1 will be chosen if
there is a small mean difference with program 0, even though the difference is
less than c. This is inconsistent with U(·) increasing in earnings net of program
costs.
(B) Zero cost and symmetric priors: Consider the case with s1 = s0 and n1=n0. If
utility is increasing in y, 01 yy >  is sufficient to choose program 1, which is not
satisfied by RT0.
(C) Zero cost and asymmetric prior: This case includes situations where there is a
prior preference for one of the programs or extra information about one of the
programs. However, even in this case, for n1 and n0 sufficiently large, the data
will dominate the prior and we return to case (B).

3.2 A Special Case

Thus, the justification, if any, for the standard decision procedure will rely on fixed

sample size arguments. One argument justifying RT0 for a fixed sample size is offered in

Proposition 2.

Proposition 2: RT0 can be justified by state-dependent preferences which are
defined on the decision space rather than the outcome space.
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Proof:  Consider the following table:

Choice made (c)

Treatment (1) Control (0)

µ1>µ0

(1)
a11 a10

St
at

e 
of

 th
e 

w
or

ld
 (

s)

µ1<µ0

(0)
a01 a00

The elements of the table would normally correspond to the utility from the
choice made, given that state of the world. The decision rule is given by:

EU(c=1 |data) = a11·Pr(µ1>µ0 |data) + a01·Pr(µ1<µ0 |data),
EU(c=0 |data) = a10·Pr(µ1>µ0 |data) + a00·Pr(µ1<µ0 |data),

and
EU(c=1 |data) – EU(c=0 |data) = a01 – a00 + (a11 – a10 – (a01–a00))·Pr(µ1>µ0 |data).
Thus c=1 if

k
aaaa

aa
≡

−−−
−

>>
)(

)dataPr(
00100111

0100
01 µµ . (3)

For fixed n1 and n0 and appropriate values of a01, a11, a10, and a00, k=ta/2.

There are two limitations to this result. First, as mentioned above, it relies on a fixed

sample size. Second, the preferences adopted in Proposition 2 are state dependent and

defined over choices rather than outcomes. This is a problematic assumption, because the

policy-maker’s preferences depend on a state (µ1>µ0 versus µ1<µ0) which is unobserved

both before and after the decision is made.1 . Normally state-dependent preferences rely

                                                
1 For example, in choosing between a picnic and an afternoon at the museum, preferences may be
influenced by the weather, which is unknown when choosing, but during the afternoon the weather
becomes known and of course affects the enjoyment of the activity. In an evaluation context the state of the
world, µ1>µ0 or µ1<µ0, is unknown both when making the decision and also after the decision has been
taken. The policy-maker’s utility from the realization of each program cannot reasonably be state
dependent, because the underlying states are never observed by the policy-maker. In the previous example,
it would be like having utility from a picnic and an afternoon at the museum depend on the weather on
Mars.
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on a state of the world that is unobserved when a decision is being made, but which is

observed when the outcome is experienced.2

In conclusion, the rule of thumb that is widely adopted to evaluate programs is not

in general valid. In next section we examine rules of thumb that are derived directly from

a Bayesian decision procedure.

4. Relaxing Risk and Inequality Neutrality

In this section we develop rules of thumb that unlike RT0 are valid within the standard

decision framework.  In Section 4.1, we develop these rules by making specific

assumptions about the likelihood model for earnings (normal, log normal, a mixture

distribution) while maintaining the assumption of inequality neutrality. In Section 4.2,

while still assuming inequality neutrality, we relax the parametric assumptions by using a

multinomial likelihood. In Section 4.3 we discuss the inclusion of covariates, using a

maximum likelihood framework. Finally in Section 4.4 we allow for inequality aversion.

4.1 Relaxing Risk Neutrality

A policy-maker who is inequality neutral, as we have seen in Observation 1, will consider

y , the average earnings in each program, but will also have to account appropriately for

uncertainty. Table 0, rows 1 to 7, summarize rules of thumb that allow for risk aversion,

but maintain the assumption of inequality neutrality, under a range of parametric

assumptions on the earnings process.

                                                
2 To adopt state-dependent preferences we would have to assume that the policy-maker eventually knows
the true state of the world. This could be justified if the program will be evaluated multiple times, so over
many trials the true parameter values will become known. However, in reality after a few evaluations,
either the treatment or control program is chosen, so either µ1 or µ0 will become known, but not both.
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Table 0: Rules of Thumb for Evaluating Programs
Assumption

on U(·)
Assumption

on S(·)
Distribution Solution

Concept*
Adopt treatment if:

1 -- linear normal SD1 µ1 > µ0 and σ1
2 < σ0

2 (a)

2 -- linear log normal SD2 σ1
2<σ0

2 and
µ1+σ1

2/2 > µ0
2+σ0

2/2 (b)

3 -- linear mixture** SD1 p0 > p1, µ0 < µ1,
and σ0 > σ1 

(c)

4 -- linear mixture SD1

),,Pr(

),Pr(

220

11110

σµ

σµ

cy

cypp

≤−

≤>−

µ0 < µ1, and σ0 < σ1
(d)

5 -- quadratic -- EU bm1+cv1+cm1
2> bm0+cv0+cm0

2 (e)

Notes:
* SDn = n-th order stochastic dominance, EU=expected utility.
** Mixture=Pr(yit=0)=pt, Pr(yit>0)=1–pt, t=1,0. For yi~log N | yi>0.

(a) ii y=µ , 2112 )1( inni s
ii
+=σ , i=1 for treatment group, =0 for control group.

(b) ii y=µ , 2112 )1( inni s
ii
+=σ , sample statistics from log earnings data; i=1 for treatment group, =0 for

control group.

(c) pi=proportion of zeros in earnings data, ii y=µ , ))1( 2112
inni s

ii
+=σ , sample statistics from log of

positive earnings data; i=1 for treatment group, =0 for control group.
(d) sample statistics as in (c) with

2
1

2
0

2/1

102
1

2
1

2
0

2
0

2
1

2
0

2

2
1

1
2
0

0
2
1

1
2
0

0

2
1

2
1

loglog
2

1
2

14

σσ

σσ
σ
µ

σ
µ

σσσ
µ

σ
µ

σ
µ

σ
µ

−






















−+−








−−








−−−

=c .

 (e) S(y)=a + by + cy2, cn=certainty equivalent of  individual predictive distributions of earnings,

mi=mean(cn), vi=variance(cn), i=1 for treatment group, =0 for control group.

The simplest assumption is that yit~N(µt,σt), for t=1 (treatment) and 0 (control), in

which case the predictive distribution of average earnings under treatment (control) is

given by,
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),())1(,(~ 2211
tttnntTt NsyNDatay

t
σµ≡+= , (4)

where tTy =  and 2
ts  represent the sample mean and variance of the empirical distribution

and nt is sample size, for t=1,0. Note that ty  is the average predicted earnings for the

sample of interest, whereas tTy =  is the sample mean of earnings for the treatment

(control) group.3,4

We derive a decision rule by using the concept of stochastic dominance. This is a

useful concept because it allows us to compare distributions without making specific

assumptions on the utility function. The limitation of the concept is that not all

distributions can be ranked according to stochastic dominance. Row 1, Table 0, states the

conditions under which the treatment first-order stochastically dominates the control. The

conclusion is that  -- if all we know about the decision-maker is that his utility function is

increasing in the average earnings from the program -- the programs can be ranked

unambiguously only if one of the programs has both a higher mean and a lower variance.

A limitation of the rule described in row 1 is the assumption that the outcome is

normally distributed, which is unrealistic for earnings. A more common assumption is

that earnings are log normally distributed. Equation (1) can be reinterpreted as describing

the predictive distribution of average log earnings (where the sample moments are also

for the log distribution). The policy-maker compares the exponential of this distribution

                                                
3 In principle, (4) can also be interpreted as the predictive distribution from a classical regression model.
This would allow us to relax the assumption of no sample selection bias.
4 The assumption of normality is common, indeed one of the foundations, of mean-variance comparisons in
the portfolio choice literature (see Ingersol 1987 and Samuelson 1970). The normality assumption can be
justified asymptotically, depending on the model. If the variable of interest is defined as a parameter in a
likelihood model (e.g., the mean of the earnings distribution), then we know that it will be asymptotically
normal (see inter alia De Groot 1970 and Le Cam 1953).
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for each program. 5 From row 2, we see that if a distribution is to be preferred by a

decision-maker under all risk-averse preferences to another, then it must have a lower

variance. However, its mean can be lower, because of the second condition. Thus, a

mean-variance tradeoff exists to the extent that if the first distribution has a lower

variance, its mean must be higher to a sufficient degree to obtain second-order stochastic

dominance. Thus this rule is more demanding than the previous one.

Log normality can also be a problematic assumption under some circumstances.

In particular, in many labor training programs a large proportion of observations is

concentrated at zero (representing zero earnings, which is common among welfare

recipients). Rows 3 and 4 generalize the likelihood to a mixture distribution, in which

there is a probability p of zero (and a probability 1–p of positive) earnings. Conditional

on earnings being positive, they are described by a log normal distribution. Row 3

presents the obvious generalization of the rule in row 2: it requires the mass point in the

control distribution to be larger, along with the conditions described in row 2. Row 4

considers an important extension. Even if the conditions from row 2 are not satisfied, if

the mass point in the control distribution is sufficiently larger than the mass point in the

treatment distribution, the treatment can still first-order stochastically dominate the

control.

                                                
5 Note that this is not precisely correct, since the exponential is not a linear operator. The policy-maker
should compare the average of the exponential of the individual predictive distributions of earnings.
Unfortunately this distribution will not have a convenient parametric form, which is why we consider this
alternative.
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4.2 Non-Normal Data: A Nonparametric Approach

In this section we consider a non-parametric (or flexibly parametric) approach to

modeling the data and ranking programs. In order to achieve this generalization, we

assume that the data are discrete and use a multinomial distribution.

Divide the support of the earnings distribution into M bins, b1,b2,…, bM. For each

bin, we observe n11,n21,…, nM1 individuals in the treatment group and n10, n20,…, nM0

units in the control group. In this setting, a multinomial likelihood with probability of a

draw from each bin (θ1t, θ2t, …,θMt), t=1,0, is completely unrestrictive. The advantage of

this setup is that it allows us to consider risk aversion under more general parametric

assumptions. Since the model does not incorporate covariates, we still cannot consider

the role of inequality aversion.

A conjugate prior for this model is a Dirichlet prior of the form D(z1t, z2t, …, zMt),

which leads to a posterior of the form (θ1t, θ2t, …,θMt)| data ~ D(z1t+n1t, z2t+n2t, …,

zMt+nMt), for t=1,0. Chamberlain and Imbens (1996) suggest that an improper prior where

nmt→0 is preferable. The predictive distribution of earnings is given by:

,

)(

)()Pr(

)Pr(

mt

mt

tmtmtm

tmtmtmmti

mti

n
n

ddatap

ddatapbY

databY

Σ
=

=

==

=

∫
∫

θθθ

θθθ

where the last step is from the properties of the Dirichlet distribution.  Thus the predictive

distribution of yit is essentially the empirical distribution of the data.

Since the model does not allow for covariates, each individual has the same

expected utility in each program,
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where Nt=Σnmt, and pmt = nmt/Nt, for t=1,0, and the ranking of each program will be

determined by comparing EU1 with EU0.  The stochastic dominance concepts discussed

in the previous section could also be applied in this context, but there are no additional

restrictions, beyond the definition of stochastic dominance, under which a positive mean

difference becomes a sufficient condition for stochastic dominance.6

4.3 Non-Normal Data: A Maximum Likelihood Approach

An alternative to the multinomial model discussed in the previous section is to use

maximum likelihood methods. This would allow for the inclusion of covariates, and more

generally allows for the estimation of relatively complicated models with ease. Once a

likelihood model has been specified for the outcomes of interest, then the posterior

distribution of the parameters can be approximated from the maximum likelihood

estimate using the usual formula:






















∂∂

∂
−12

'
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,ˆ~
θθ

θ
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approx
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Then the predictive distribution of the outcome p(y|z)=p(y|θ)p(θ| z) is readily simulated

by first drawing from the posterior distribution of the parameters, and then drawing from

the outcome distribution specified in the likelihood. The predictive distributions of the

                                                
6 A positive difference in means is a necessary, but not sufficient, condition for the treatment program to
first- and second-order stochastically dominate the control. But in the case of discrete distributions, it is
very easy to check for dominance. The treatment first-order stochastically dominates the control if and only
if:

, somefor strict ,01 mmPP mm ∀≤

where ,
1∑ =

=
m

i itmt pP  t=1,0. The treatment second-order stochastically dominates the control program if:
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outcomes for the individuals of interest can then be fed into the decision problem outlined

in Section 2.

4.4 Relaxing Inequality Neutrality

The final extension we consider is to allow for inequality neutrality. We use the

framework described in equation (2), Section 3, to allow for the possibility of inequality

aversion. The policy-maker’s social welfare for a program is a function of each

individual’s certainty equivalent of earnings under that program. The policy-maker

chooses the program with the higher social welfare. At this level we can be agnostic

about not only individual preferences, but also the likelihood model used to produce the

predictive distributions of earnings.7 All that is required is a certainty equivalent of the

earnings distribution that each individual faces.

In order to obtain rules of thumb for ranking programs, we must make functional

form assumptions about S(·). If S(·) is quadratic, then the programs can be ranked by the

means and variances of the certainty equivalents of earnings for each individual in each

program. This is shown in row 5 of Table 0.

5. Two Examples

5.1 The GAIN Demonstration, Riverside County

In this sub-section we re-analyze data from the Riverside county portion of the Greater

Avenues for Independence (GAIN) experiment. Riverside was widely viewed as the most

                                                                                                                                                
. somefor strict  ,0)( mmPP

m mtmt ∀≤−∑
7 The likelihood must allow for heterogeneity in individual earnings. Without heterogeneity, the
distribution of the certainty equivalents of earnings under treatment (control) across individuals would be
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successful portion of the GAIN experiment, and more generally as one of the success

stories of welfare reform.  We demonstrate that the traditional approach of analyzing t-

statistics provides a narrow and misleading view of this program.

GAIN was a welfare-to-work demonstration in which the randomly assigned

treatment consisted of a set of labor training and job-search initiatives imposed on

recipients of Aid to Families with Dependent Children. Table 1 summarizes outcome

information for Riverside County.

Table 1 reveals that an analysis of Riverside based on the statistical significance

of the treatment impact leads to an ambiguous ranking. From panel (a), we note that the

overall treatment effect is positive and significant, but if we break out positive earnings

and consider them separately, panels (b) and (c) reveal that the treatment impact, though

positive, is no longer statistically significant. Note that there is a substantial difference in

the proportion of zeros in the treatment and control groups.

                                                                                                                                                
degenerate. The models considered in Sections 4.1 and 4.2, for example, do not allow for treatment effect
heterogeneity.
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Table 1: GAIN, Riverside County
Treatment Control

(a) Average Quarterly Earnings

Sample Mean 712 550
Sample Standard Deviation 1,351 1,199
Proportion of Zeros 0.5485 0.6249
Average Treatment Effect 163

(36)

(b) Average Quarterly Positive Earnings

Sample Mean 1,578 1,465
Sample Standard Deviation 1,637 1,579
Average Treatment Effect 112

(72)

(c) Average Log Positive Earnings

Sample Mean 6.6499 6.5209
Sample Standard Deviation 1.4870 1.5257
Average Treatment Effect 0.1290

(0.0660)

The rules of thumb from Table 0 give a more consistent ranking of the program.

Based on positive earnings, we note that treatment earnings have both a higher mean and

higher variance than control earnings; thus, rules 1 to 3 do not apply. But when we

consider the zeros, since the mass point at zero is greater for the control distribution by a

sufficient degree than the mass point for the treated distribution, rule 4 implies first-order

stochastic dominance. Thus, the ranking of programs is unambiguous.

Figure 1 confirms this conclusion in a non-parametric setting. Figure 1 plots the

predictive distribution of earnings under treatment and control from the multinomial
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model. We see that the CDF of treatment earnings is everywhere to the left of the CDF of

control earnings, implying first-order stochastic dominance.

The case of Riverside offers one illustration of the fact that t-statistics can be a

very misleading means of accounting for the uncertainty in an evaluation.

Figure 1: Cumulative Distribution Function, Average Earnings,   Riverside
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Another dimension along which we can extend the analysis beyond the traditional

approach is to consider the role played by inequality aversion in evaluating the Riverside

experiment. Recall that a t-statistic implicitly assumes inequality neutrality. To allow for

inequality aversion, we assume that individual preferences are constant relative risk

aversion, and apply rule 5 from Table 0. Table 2 presents the means and variances of the

certainty equivalents. The means for the treatment program are higher than for the control
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program, but the variance is also higher. The final column gives the restrictions on

quadratic preferences for which the treatment is preferred. Since c<0, b>>0 is required.

Table 2: Certainty Equivalents, Riverside
Coefficient of

relative risk
aversion

Treatment Control Restrictions
to prefer
treatment

q mean variance mean variance b/|c|>
2 68 11740 45 1865 0.0018
3 34 941 24 295 0.0082
4 23 283 16 107 0.0150
5 17 131 12 54 0.0217

Calibrating quadratic preferences is not an intuitive exercise. Table 3 instead uses

CRRA preferences to illustrate how risk aversion and inequality aversion are combined

into a ranking of the programs. The table depicts the ranking of the programs using

CRRA preferences both for individuals and the policy-maker, with a range of coefficients

of risk and inequality aversion. Note that for a range of values of risk and inequality

aversion the treatment is not preferred to the control program. Interestingly this includes

the case of ε=0, inequality neutrality, which appears to contradict Figure 1 which

indicates first-order stochastic dominance when ε=0. This is accounted for by the fact that

Table 3 is based on a model which allows for treatment effect heterogeneity, whereas

Figure 1 assumes a constant treatment effect. This reinforces a point that has been made

in the evaluation literature, namely the importance of allowing for treatment effect

heterogeneity (see Dehejia 1999 and Heckman and Smith 1998).  When we increase the

degree of inequality aversion, the control program is preferred for a broad range of

coefficients of risk aversion.
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Table 3: Welfare Rankings, Allowing for Risk- and Inequality-Aversion, Riverside
Coefficient of Inequality Aversion (ε)

-4 -3 -2 -1 0 1 2 3 4 5
-4 + + – – – – – – –
-3 + + – – – – – – –
-2 + + – – – – – – –
-1 + + + – – – – – –
0 + + + + + + – – –

(*)
2 + + + + + + + – –
3 + + + + + + + – –
4 + + + + + + + – –C
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(q

)

5 + + + + + + + – –
Notes: +=treatment preferred to control, –=control preferred to treatment.
(*) q=0.4, ε=0 corresponds to RT0, which accepts the treatment.

There is no combination of the parameters q and ε that directly correspond to

RT0, the rule which would normally be followed. But a partial correspondence can be

established as follows. RT0 embodies inequality neutrality, since it focuses on the

average treatment effect, hence ε=0. It does not also correspond to q=0 because if the

policy-maker is risk-neutral as well then program 1 is chosen if 1y > 0y . For RT0,

1y - 0y >c, where c is the denominator of RT0 multiplied by the right-hand side of the

same expression. Given the distribution of  0y , we can numerically compute q such that

the treatment would be chosen if 1y - 0y >c. For the Riverside program, this corresponds

to q=0.4 Thus RT0 corresponds to slightly risk averse preferences.

In summary, the traditional analysis of GAIN is misleading along two

dimensions. First, the t-statistic on the ATE in positive earnings is not significant, though

for total earnings the difference is significant. Instead, the rules of thumb deliver a more
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consistent ranking, which is confirmed by a non-parametric analysis. Second, the

traditional approach ignores heterogeneity in the treatment impact.

5.2 The JPTA Data

In this section we provide an analysis of the JPTA data. We also illustrate how program

costs can be incorporated into the analysis. The outcome which we study is the sum of

30-month earnings. Costs are measured according to the type of services each individual

received (classroom training, on-the-job training, or other services). We present results

for the adult male sample. Table 4 presents average earnings and training costs from the

program.

Table 4: JTPA Data, Earnings (in dollars)
Treatment Control

(a) Average Quarterly Earnings

Sample Mean 19,520 18,404
Sample Standard Deviation 19,912 18,760
Proportion of Zeros 0.1027 0.1039
Average Treatment Effect 1,117

(580)

(b) Average Quarterly Positive Earnings

Sample Mean 21,754 20,538
Sample Standard Deviation 1,983 1,868
Average Treatment Effect 1216

(610)

(c) Average Log Positive Earnings

Sample Mean 9.3084 9.2782
Sample Standard Deviation 1.5375 1.4645
Average Treatment Effect 0.0302

(0.0475)
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The treatment program has both a higher level and greater variation in treatment earnings

compared to control earnings. The average cost per trainee is $515, whereas the average

treatment effect is $1,117 (with a standard error of 580). The treatment effect is not

statistically significant.

The rules of thumb from Table 0 are not able to rank the programs. Likewise,

Figure 2, which depicts non-parametric estimates of the CDFs of treatment and control

earnings, is inconclusive. Unlike the GAIN example, stochastic dominance does not help

to rank the distributions, which cross twice. One important difference between the JPTA

and GAIN data is that the former has a much smaller proportion of zeros (typically 0.1,

compared to 0.6 for GAIN). The cost component of the program can be taken into

account by netting the training costs out of earnings under treatment. The CDFs of net

earnings are presented in Figure 3. Training costs do not alter the basic conclusion:

stochastic dominance remains an inconclusive means of comparison.  The inability of

stochastic dominance arguments to rank the programs suggests that their ranking will

depend on the degree of risk aversion of the policy-maker. We consider this issue below.
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Figure 2: CDFs of Treatment and Control Earnings, JPTA
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Figure 3: CDFs of Treatment and Control Earnings Net of Training Costs, JTPA
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Before turning to specific functional forms for the social welfare functions, it is

useful to consider the role that inequality aversion could play in ranking the programs.

Figures 4 to 6 (below) present the percentiles of the earnings distribution of each

program.  The first figure considers earnings, ignoring training costs. We can see that in

terms of percentiles of earnings the two programs start out together at $0 until about the

10th percentile. Then for the next range (roughly from the 10th to the 15th percentiles) the

treatment distribution is higher. For the 15th to the 30 percentiles, control earnings are

higher, and above the the 30th percentile treatment earnings are higher. In terms of

inequality the treatment program raises earnings at both ends of the distribution.

When we add training costs into the analysis, the conclusions remain similar,

except  that the treatment distribution is pulled down by the training costs. This implies

that the treatment distribution only overtakes the control distribution at the upper end of

the distribution. This is depicted in Figures 5 and 6.

Figure 4: Percentiles of Earnings, JTPA
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Figure 5: Percentiles of Earnings Net of Training Costs, JTPA
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Figure 6: Difference in Percentiles of Treatment and Control Earnings, JTPA,
(detail: 6th to 100th percentile)
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The two strands of the analysis – risk aversion and inequality aversion – are

combined in the tables below. They present the welfare rankings of the treatment and

control programs using CRRA preferences and allowing for a range of risk- and

inequality-attitudes.  Ignoring training costs, we see that the treatment program is

preferred to the control as long as the policy-maker’s risk attitude is risk-neutral or risk-

loving, and if the coefficient of inequality aversion is less than 5. When the coefficient of

inequaliy aversion is in an intermediate range, between 2 and 4, the treatment is also

preferred when the policy-maker is risk averse. RT0 corresponds to ε=0 and q=0.1, a very

low level of risk aversion. From Table 4 we know that RT0 leads to the treatment being

rejected.

Table 5: Welfare Rankings, Earnings, JTPA
Coefficient of Inequality Aversion

-4 -3 -2 -1 0 1 2 3 4 5
-4 + + + + + + + + –
-3 + + + + + + + + –
-2 + + + + + + + + –
-1 + + + + + + + + –
0 + + + + + + + + –
1 (*)
2 – – – – – + + + –
3 – – – – – + + + –
4 – – – – – + + + +C

oe
ff

ic
ie

nt
 o

f R
el

at
iv

e
R

is
k 

A
ve

rs
io

n

5 – – – + + + + + +
Notes: (*) q=0.1, ε=0 corresponds to RT0, which rejects the treatment.

When we take the training costs into account, the range of risk and inequality

preferences for which the treatment is preferred shrinks. In particular, now the treatment

is strictly preferred if the policy-maker is risk neutral or risk loving and coefficient of

inequality aversion is less than 5. Strong inequality aversion (ε=5) can lead to a

preference for the control, presumably since the treatment lifts earnings at the upper end
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of the distribution and reduces earnings for the lower range. But for less extreme degrees

of inequality aversion, the preference over programs is decided purely by the degree of

risk aversion. In this case, RT0 again corresponds to ε=0 and q=0.1, and rejects the

treatment.

Table 6: Welfare Rankings, Earnings Net of Training Costs, JTPA
Coefficient of Inequality Aversion

-4 -3 -2 -1 0 1 2 3 4 5
-4 + + + + + + + + –
-3 + + + + + + + + –
-2 + + + + + + + + –
-1 + + + + + + + + –
0 + + + + + + + + –
1 (*)
2 – – – – – – – – –
3 – – – – – – – – –
4 – – – – – – – – –C
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5 – – – – – – – – –
Notes (*) q=0.1, ε=0 corresponds to RT0 and rejects the treatment.

6. Conclusion

This paper has develop a set of simple rules of thumb that can be used to evaluate

programs. These rules of thumb account for risk aversion and for inequality aversion. By

applying these rules to data from the GAIN and JTPA experiments, we demonstrated that

these two factors are very important in ranking programs. For the GAIN data, which is

widely cited as an example of a successful training program, the treatment is not always

preferred to the control, when we allow for inequality aversion. For the JTPA, the simple

rules of thumb were unable to rank the programs, but the full analysis which combines

inequality aversion, risk aversion, and heterogeneous treatment impacts demonstrated

that for risk or inequality averse preferences the control program is preferred.
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One of the limitations of the methods discussed is that they rely on strong

assumptions. The rules of thumb use assumptions such as normality and log normality,

and the non-parametric analysis does not account for covariates. All of these can be

readily corrected by applying more general models and techniques. But at that point the

analysis would cease to be through simple rules of thumb and would become a full-blown

decision analysis. Given the impracticality of such an analysis in many contexts, the

methods that this paper has developed offer a useful overview of the evaluation problem.
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