Reconciling Seemingly Contradictory Results from the Oregon Health Insurance Experiment and the Massachusetts Health Reform

Amanda E. Kowalski

Gail Wilensky Professor of Applied Economics and Public Policy
Department of Economics, University of Michigan

January 2019

“How to Examine External Validity Within an Experiment.” *NBER WP 24834.*

“Behavior within a Clinical Trial and Implications for Mammography Guidelines” *NBER WP 25049.*

“Extrapolation using Selection and Moral Hazard Heterogeneity from within the Oregon Health Insurance Experiment.” *NBER WP 24647.*
Reconciling Seemingly Contradictory Results from Oregon and Massachusetts

1. I find selection and treatment effect heterogeneity within Oregon
2. I use it to reconcile Oregon and Massachusetts LATEs
3. I show that self-reported health & previous ER utilization explain heterogeneity and reconciliation
U_D: unobserved net cost of treatment
Number of ER Visits

<table>
<thead>
<tr>
<th>Always Takers</th>
<th>Compliers</th>
<th>Never Takers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_C = 0.15)</td>
<td>(p_I = 0.41)</td>
<td>(U_D: \text{unobserved net cost of treatment})</td>
</tr>
</tbody>
</table>

\(Z = 0\) \[\begin{array}{c|c|c|c}
\hline
&D=1&\text{D}=0&\\
\hline
Z = 1&\text{D}=1&\text{D}=0&\\
\hline
\end{array}\)
U_D: unobserved net cost of treatment
U_D: unobserved net cost of treatment

$p_C = 0.15 \quad p_I = 0.41$
Number of ER Visits

Always Takers | Compliers | Never Takers

$p_C = 0.15$ | $p_I = 0.41$ | U_D: unobserved net cost of treatment
Number of ER Visits

- treated
- untreated

LATE = 0.26
untreated outcome test statistic = 0.34

$p_C = 0.15$
$p_I = 0.41$

U_D: unobserved net cost of treatment
Number of ER Visits

- Treated outcome test statistic = 0.44
- LATE = 0.26
- Untreated outcome test statistic = 0.34

Always Takers: $p_C = 0.15$
Compliers: $p_I = 0.41$
Never Takers: 1

U_D: unobserved net cost of treatment
<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>S.E.</th>
<th>Slope</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTO(p)</td>
<td>2.05</td>
<td>0.14</td>
<td>-2.12</td>
<td>0.82</td>
</tr>
<tr>
<td>MUC(p)</td>
<td>1.41</td>
<td>0.19</td>
<td>-0.80</td>
<td>0.31</td>
</tr>
<tr>
<td>MTE(p)</td>
<td>0.64</td>
<td>0.24</td>
<td>-1.32</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Number of ER Visits

Always Takers | Compliers | Never Takers |
0 | $p_C = 0.15$ | $p_I = 0.41$ |

$p^* = 0.48$

U_D: unobserved net cost of treatment
Reconciling Seemingly Contradictory Results from Oregon and Massachusetts

1. I find selection and treatment effect heterogeneity within Oregon

2. I use it to reconcile Oregon and Massachusetts LATEs

3. I show that self-reported health & previous ER utilization explain heterogeneity and reconciliation
U_D: unobserved net cost of treatment

I: fraction insured
U_D: unobserved net cost of treatment
Reconciling Seemingly Contradictory Results from Oregon and Massachusetts

1. I find selection and treatment effect heterogeneity within Oregon

2. I use it to reconcile Oregon and Massachusetts LATEs

3. I show that self-reported health & previous ER utilization explain heterogeneity and reconciliation
<table>
<thead>
<tr>
<th>Oregon Health Insurance Experiment of 2008</th>
<th>Means</th>
<th>Difference in Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>Always Takers</td>
</tr>
<tr>
<td>Fair or Poor Health, Untreated*</td>
<td>0.42</td>
<td>-</td>
</tr>
<tr>
<td>Number of Pre-period ER Visits</td>
<td>0.87</td>
<td>1.36</td>
</tr>
<tr>
<td>Common Observables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>40.69</td>
<td>39.45</td>
</tr>
<tr>
<td>Female</td>
<td>0.56</td>
<td>0.72</td>
</tr>
<tr>
<td>English</td>
<td>0.91</td>
<td>0.90</td>
</tr>
<tr>
<td>N</td>
<td>19,643</td>
<td>2,986</td>
</tr>
</tbody>
</table>

Massachusetts Health Reform of 2006						
	(1)	(2)	(3)	(1) - (2)	(2) - (3)	
	All	Always Takers	Compliers	Never Takers		
Fair or Poor Health, Untreated*	0.19	-	0.21	0.18	-	0.03
Common Observables						
Age	42.00	42.15	42.42	38.98	-0.26	3.43
Female	0.51	0.52	0.43	0.38	0.10	0.04
English	0.96	0.98	0.86	0.81	0.12	0.05
N	62,456	55,966	3,175	3,314		
The graph illustrates the number of ER visits for different compliance groups under two MTE scenarios: $MTE(p)$ and $MTE(x, p)$.

- **$MTE(p)$** represents the marginal treatment effect for the compliers' compliances (c).
- **$MTE(x, p)$** represents the marginal treatment effect for the compliers' compliances (x) in the pre-period ER visits.

The graph is labeled with the number of pre-period ER visits:

- **≥ 4 pre-period ER visits**
- **2–3 pre-period ER visits**
- **1 pre-period ER visit**
- **0 pre-period ER visits**

The compliance groups are labeled as:

- **Always Takers**
- **Compliers**
- **Never Takers**

The probabilities are given as:

- $p_C = 0.15$
- $p_I = 0.41$

The label U_D: unobserved net cost of treatment is placed at the bottom of the graph.
U_D: unobserved net cost of treatment
Reconciling Seemingly Contradictory Results from Oregon and Massachusetts

1. I find selection and treatment effect heterogeneity within Oregon

2. I use it to reconcile Oregon and Massachusetts LATEs

3. I show that self-reported health & previous ER utilization explain heterogeneity and reconciliation
Appendix
Reconciling Seemingly Contradictory Results from Oregon and Massachusetts

1. Findings
 - Selection & treatment effect heterogeneity within Oregon
 - Selection heterogeneity
 - Treatment effect heterogeneity under an ancillary assumption
 - Reconciling Oregon and Massachusetts LATEs
 - Massachusetts MTE(p) also slopes downward
 - MTE-reweighting from Oregon to Massachusetts can reconcile LATEs
 - Self-reported health & previous ER utilization explain heterogeneity and reconciliation
 - Reconciling LATEs using self-reported health
 - Previous ER utilization explains heterogeneity within Oregon
 - LATE-reweighting with common observables cannot reconcile LATEs
 - MTE-reweighting with common observables can reconcile LATEs
Number of ER Visits for Always Takers, Compliers and Never Takers

<table>
<thead>
<tr>
<th>Number of ER Visits</th>
<th>Mean</th>
<th>Untreated Outcome Test</th>
<th>Treated Outcome Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Always Takers</td>
<td>1.89</td>
<td>1.45</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.11)</td>
<td>(0.45)</td>
</tr>
<tr>
<td>Compliers</td>
<td>1.35</td>
<td>1.19</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>(0.17)</td>
<td>(0.11)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Never Takers</td>
<td>1.35</td>
<td>1.19</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>(0.17)</td>
<td>(0.11)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Treatment Effect</td>
<td>0.54</td>
<td>0.27</td>
<td>-0.29</td>
</tr>
<tr>
<td>(Treated - Untreated)</td>
<td>(0.19)</td>
<td>(0.15)</td>
<td>(0.45)</td>
</tr>
</tbody>
</table>
U_D: unobserved net cost of treatment
$Z = 0 \quad | \quad \textbf{D=1} \quad |$

$0 \leq U_D \leq p_c$

$p_c = 0.15$

U_D: unobserved net cost of treatment
Always Takers

U_D: unobserved net cost of treatment
Always Takers

Never Takers

U_D: unobserved net cost of treatment
$Z = 1$ \\
$D = 1$ \\
$0 \leq U_D \leq p_I$ \\

$D = 0$ \\
$p_I < U_D \leq 1$ \\

$Z = 0$ \\
$D = 1$ \\
$0 \leq U_D \leq p_C$ \\

$D = 0$ \\
$p_C < U_D \leq 1$ \\

$p_C = 0.15$ \\
$p_I = 0.41$ \\

U_D: unobserved net cost of treatment

Always Takers \\
Never Takers
\(U_D: \) unobserved net cost of treatment

Always Takers

\(0 \leq U_D \leq p_I \)

\(p_I < U_D \leq 1 \)

Compliers

\(0 \leq U_D \leq p_C \)

\(p_C < U_D \leq 1 \)

Never Takers

\(p_C = 0.15 \)

\(p_I = 0.41 \)
First Stage:

\[V = V_U + (V_T - V_U)D \]
\[V_T - V_U = \mu_D(Z) - \nu_D \]
First Stage:

\[V = V_U + (V_T - V_U)D \]
\[V_T - V_U = \mu_D(Z) - \nu_D \]

Assumptions:

A.1. (Continuity) \(F(\cdot) \): absolutely continuous with respect to the Lebesgue measure
First Stage:

\[V = V_U + (V_T - V_U)D \]
\[V_T - V_U = \mu_D(Z) - \nu_D \]
\[U_D = F(\nu_D), \ U_D \sim U[0, 1] \]

Assumptions:

A.1. (Continuity) \(F(\cdot) \): absolutely continuous with respect to the Lebesgue measure

Proof: \(U_D \sim U[0, 1] \)

\[
F_{U_D}(u) = P(U_D \leq u) \\
= P(F(\nu_D) \leq u) \\
= P(\nu_D \leq F^{-1}(u)) \\
= F(F^{-1}(u)) = u
\]

(F(\cdot) absolutely continuous by A.1)
First Stage:

\[V = V_U + (V_T - V_U)D \]
\[V_T - V_U = \mu_D(Z) - \nu_D \]
\[U_D = F(\nu_D), \quad U_D \sim U[0, 1] \]

Assumptions:

A.1. (Continuity) \(F(\cdot) \): absolutely continuous with respect to the Lebesgue measure

A.2. (Independence) \((U_D, \gamma_T)\) and \((U_D, \gamma_U) \perp Z\)
First Stage:

\[V = V_U + (V_T - V_U)D \]
\[V_T - V_U = \mu_D(Z) - \nu_D \]
\[D = 1\{0 \leq V_T - V_U\} \]
\[\Rightarrow D = 1\{U_D \leq P(D = 1 \mid Z = z)\} \]

\[U_D = F(\nu_D), \ U_D \sim U[0,1] \]

Assumptions:

A.1. (Continuity) \(F(\cdot) \): absolutely continuous with respect to the Lebesgue measure

A.2. (Independence) \((U_D, \gamma_I)\) and \((U_D, \gamma_U) \perp Z\)

Proof: \(D = 1\{U_D \leq P(D = 1 \mid Z = z)\} \)

\[D = 1\{0 \leq V_T - V_U\} \]
\[= 1\{0 \leq \mu_D(Z) - \nu_D\} \]
\[= 1\{\nu_D \leq \mu_D(Z)\} \]
\[= 1\{F(\nu_D) \leq F(\mu_D(Z))\} \] (definition of \(F(\cdot) \) from A.1)
\[= 1\{U_D \leq F(\mu_D(Z))\} \] (\(U_D = F(\nu_D) \) by definition)
\[= 1\{U_D \leq P(D = 1 \mid Z = z)\}, \]

where the last equality follows from

\[F(\mu_D(Z)) = P(\nu_D \leq \mu_D(Z)) \]
\[= P(\nu_D \leq \mu_D(z) \mid Z = z) \] (\(U_D \perp Z \) by A.2)
\[= P(0 \leq \mu_D(Z) - \nu_D \mid Z = z) \]
\[= P(0 \leq V_T - V_U \mid Z = z) \]
\[= P(D = 1 \mid Z = z). \]
First Stage:

\[V = V_U + (V_T - V_U)D \]
\[V_T - V_U = \mu_D(Z) - \nu_D \]
\[D = 1\{0 \leq V_T - V_U\} \]
\[\Rightarrow D = 1\{U_D \leq P(D = 1 | Z = z)\} \]

\[U_D = F(\nu_D), U_D \sim U[0, 1] \]

Assumptions:

A.1. (Continuity) \(F(\cdot) \): absolutely continuous with respect to the Lebesgue measure

A.2. (Independence) \((U_D, \gamma_T)\) and \((U_D, \gamma_U) \perp Z\)

A.3. (Instrument Relevance) \(\mu_D(Z) \): nondegenerate random variable
First Stage:

\[V = V_U + (V_T - V_U) D \]

\[V_T - V_U = \mu_D(Z) - \nu_D \]

\[D = 1\{0 \leq V_T - V_U\} \]

\[\Rightarrow D = 1\{U_D \leq P(D = 1 \mid Z = z)\} \]

\[Z = 0: \quad D = 1\{U_D \leq p_C\}, \quad p_C = P(D = 1 \mid Z = 0) \]

\[Z = 1: \quad D = 1\{U_D \leq p_I\}, \quad p_I = P(D = 1 \mid Z = 1) \]

Assumptions:

A.1. (Continuity) \(F(\cdot) \): absolutely continuous with respect to the Lebesgue measure

A.2. (Independence) \((U_D, \gamma_T)\) and \((U_D, \gamma_U) \perp Z\)

A.3. (Instrument Relevance) \(\mu_D(Z)\): nondegenerate random variable
First Stage:

\[V = V_U + (V_T - V_U)D \]
\[V_T - V_U = \mu_D(Z) - \nu_D \]
\[D = 1 \{ 0 \leq V_T - V_U \} \]
\[\Rightarrow D = 1 \{ U_D \leq P(D = 1 \mid Z = z) \} \]

\[Z = 0 : \quad D = 1 \{ U_D \leq p_C \}, \quad p_C = P(D = 1 \mid Z = 0) \]
\[Z = 1 : \quad D = 1 \{ U_D \leq p_I \}, \quad p_I = P(D = 1 \mid Z = 1) \]

\[U_D = F(\nu_D), \quad U_D \sim U[0, 1] \]
First Stage:

\[V = V_U + (V_T - V_U)D \]
\[V_T - V_U = \mu_D(Z) - \nu_D \]
\[D = 1\{0 \leq V_T - V_U\} \]
\[\Rightarrow D = 1\{U_D \leq P(D = 1 \mid Z = z)\} \]

\[Z = 0 : \quad D = 1\{U_D \leq p_C\}, \quad p_C = P(D = 1 \mid Z = 0) \]
\[Z = 1 : \quad D = 1\{U_D \leq p_I\}, \quad p_I = P(D = 1 \mid Z = 1) \]

\[U_D = F(\nu_D), \quad U_D \sim U[0, 1] \]

\[Z = 0 \quad \begin{array}{c}
\text{D=1} \\
0 \leq U_D \leq p_C
\end{array} \]

\[0.00 \quad p_c = 0.15 \quad 1.00 \]

Always Takers

\[U_D: \text{unobserved net cost of treatment} \]
First Stage:

\[V = V_U + (V_T - V_U)D \]
\[V_T - V_U = \mu_D(Z) - \nu_D \]
\[D = 1 \{ 0 \leq V_T - V_U \} \]
\[\Rightarrow D = 1 \{ U_D \leq P(D = 1 \mid Z = z) \} \]

\[Z = 0 : \quad D = 1 \{ U_D \leq p_c \}, \quad p_c = P(D = 1 \mid Z = 0) \]
\[Z = 1 : \quad D = 1 \{ U_D \leq p_I \}, \quad p_I = P(D = 1 \mid Z = 1) \]

\[U_D = F(\nu_D), \quad U_D \sim U[0, 1] \]

Diagram:

- \(Z = 0 \) \(D = 1 \) \(D = 0 \)
- \(0 \leq U_D \leq p_c \)
- \(p_c < U_D \leq 1 \)
- \(0.00 \) \(p_c = 0.15 \) \(1.00 \)

Always Takers

\(U_D \): unobserved net cost of treatment
First Stage:

\[V = V_U + (V_T - V_U)D \]
\[V_T - V_U = \mu_D(Z) - \nu_D \]
\[D = 1\{0 \leq V_T - V_U\} \]
\[\Rightarrow D = 1\{U_D \leq P(D = 1 | Z = z)\} \]

\[Z = 0 : \quad D = 1\{U_D \leq p_C\}, \quad p_C = P(D = 1 | Z = 0) \]
\[Z = 1 : \quad D = 1\{U_D \leq p_I\}, \quad p_I = P(D = 1 | Z = 1) \]

\[0.00 \quad p_c = 0.15 \quad p_I = 0.41 \quad 1.00 \]

\[U_D: \text{unobserved net cost of treatment} \]
First Stage:

\[V = V_U + (V_T - V_U)D \]

\[V_T - V_U = \mu_D(Z) - \nu_D \]

\[D = 1\{0 \leq V_T - V_U\} \]

\[\Rightarrow D = 1\{U_D \leq P(D = 1 | Z = z)\} \]

\[Z = 0: \quad D = 1\{U_D \leq p_C\}, \quad p_C = P(D = 1 | Z = 0) \]

\[Z = 1: \quad D = 1\{U_D \leq p_I\}, \quad p_I = P(D = 1 | Z = 1) \]

\[U_D = F(\nu_D), \quad U_D \sim U[0, 1] \]

\[0.00 \quad p_c = 0.15 \quad p_I = 0.41 \quad 1.00 \]

\[\text{Always Takers} \quad \text{Never Takers} \]

\[U_D: \text{ unobserved net cost of treatment} \]
First Stage:

\[V = V_U + (V_T - V_U)D \]
\[V_T - V_U = \mu_D(Z) - \nu_D \]

\[D = 1\{0 \le V_T - V_U\} \]

\[\Rightarrow D = 1\{U_D \le P(D = 1 \mid Z = z)\} \]

\[Z = 0: \quad D = 1\{U_D \le p_C\}, \quad p_C = P(D = 1 \mid Z = 0) \]
\[Z = 1: \quad D = 1\{U_D \le p_I\}, \quad p_I = P(D = 1 \mid Z = 1) \]

\[U_D = F(\nu_D), \quad U_D \sim U[0, 1] \]

\[Z = 1 \quad D=1 \quad D=0 \]
\[0 \le U_D \le p_I \quad \quad \quad \quad \quad p_I < U_D \le 1 \]

\[Z = 0 \quad D=1 \quad D=0 \]
\[0 \le U_D \le p_C \quad \quad \quad \quad \quad p_C < U_D \le 1 \]

Always Takers

Compliers

Never Takers

\[U_D: \text{unobserved net cost of treatment} \]
First Stage:

\[
V = V_U + (V_T - V_U)D \\
V_T - V_U = \mu_D(Z) - \nu_D \\
D = 1\{0 \leq V_T - V_U\} \\
\Rightarrow D = 1\{U_D \leq P(D = 1 \mid Z = z)\} \\
Z = 0: \quad D = 1\{U_D \leq p_C\}, \quad p_C = P(D = 1 \mid Z = 0) \\
Z = 1: \quad D = 1\{U_D \leq p_I\}, \quad p_I = P(D = 1 \mid Z = 1) \\
U_D = F(\nu_D), \quad U_D \sim U[0,1]
\]

Second Stage:

\[
Y = Y_U + (Y_T - Y_U)D \\
Y_T = g_T(U_D, \gamma_T) \\
Y_U = g_U(U_D, \gamma_U) \\
Z \perp (\gamma_T, \gamma_U) \text{ by A.2.}
\]

Assumptions (Second Stage):

A.4. (Treated and Untreated) $0 < P(D = 1) < 1$
A.5. (Finite Average Outcomes) $E[Y_T], E[Y_U]$ are finite
First Stage:

\[V = V_U + (V_T - V_U)D \]
\[V_T - V_U = \mu_D(Z) - \nu_D \]
\[D = 1\{0 \leq V_T - V_U\} \]
\[\Rightarrow D = 1\{U_D \leq P(D = 1 | Z = z)\} \]
\[Z = 0: \quad D = 1\{U_D \leq p_C\}, \quad p_C = P(D = 1 | Z = 0) \]
\[Z = 1: \quad D = 1\{U_D \leq p_I\}, \quad p_I = P(D = 1 | Z = 1) \]

\[U_D = F(\nu_D), \; U_D \sim U[0, 1] \]

Second Stage:

\[Y = Y_U + (Y_T - Y_U)D \]
\[Y_T = g_T(U_D, \gamma_T) \]
\[Y_U = g_U(U_D, \gamma_U) \]

\[Z \perp (\gamma_T, \gamma_U) \text{ by A.2.} \]

<table>
<thead>
<tr>
<th>Always Takers</th>
<th>Compliers</th>
<th>Never Takers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(p_C = 0.13)</td>
<td>(p_I = 0.41)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(U_D\): unobserved net cost of treatment
Selection and Treatment Effect Heterogeneity

Selection + Treatment Effect Heterogeneity: \[MTO(x, p) = E[Y_T \mid X = x, U_D = p] \]
Selection Heterogeneity: \[MUO(x, p) = E[Y_U \mid X = x, U_D = p] \]
Treatment Effect Heterogeneity: \[MTE(x, p) = E[Y_T - Y_U \mid X = x, U_D = p] \]

Selection Heterogeneity from Literature: \[E[Y_U \mid D = 1] - E[Y_U \mid D = 0] \]
Treatment Effect Heterogeneity from Literature: \[E[Y_T - Y_U \mid D = 1] - E[Y_T - Y_U \mid D = 0] \]
Identifying Selection and Moral Hazard Heterogeneity

Untreated Outcome Test

\[E[Y_U \mid p_C < U_D \leq p_I] - E[Y_U \mid p_I < U_D \leq 1] = \int_0^1 (\omega(p, p_C, p_I) - \omega(p, p_I, 1)) \text{MUO}(p) \, dp \]

Treated Outcome Test

\[E[Y_T \mid 0 \leq U_D \leq p_C] - E[Y_T \mid p_C < U_D \leq p_I] = \int_0^1 (\omega(p, 0, p_C) - \omega(p, p_C, p_I)) \text{MTO}(p) \, dp \]

with weights \(\omega(p, p_L, p_H) = 1\{p_L \leq p < p_H\}/(p_H - p_L) \)
First Stage:

\[V = V_U + (V_T - V_U)D \]
\[V_T - V_U = \mu_D(Z) - \nu_D \]
\[D = 1\{0 \leq V_T - V_U\} \]
\[\Rightarrow D = 1\{U_D \leq P(D = 1 \mid Z = z)\} \]

Second Stage:

\[Y = Y_U + (Y_T - Y_U)D \]
\[Y_T = g_T(U_D, \gamma_T) \]
\[Y_U = g_U(U_D, \gamma_U) \]

\[U_D = F(\nu_D), \ U_D \sim U[0, 1] \]

Ancillary Assumption:

AA.1. (Linear Selection Heterogeneity and Linear Treatment Effect Heterogeneity)

\[MTO(p) = E[Y_T \mid U_D = p] = \alpha_T + \beta_T p \]
\[MUO(p) = E[Y_U \mid U_D = p] = \alpha_U + \beta_U p \]
\[MTE(p) = E[Y_T - Y_U \mid U_D = p] = (\alpha_T - \alpha_U) + (\beta_T - \beta_U) p. \]
MTE-Reweighting from Oregon to Massachusetts Can Reconcile LATEs

Integrate the weighted MTE, MTO and MUO functions over a general range of enrollment margin $p_L < U_D \leq p_H$

\[
E [Y_T | p_L < U_D \leq p_H] = \int_0^1 \omega(p, p_L, p_H) \text{MTO}(p) \, dp
\]

\[
E [Y_U | p_L < U_D \leq p_H] = \int_0^1 \omega(p, p_L, p_H) \text{MUO}(p) \, dp
\]

\[
E [Y_T - Y_U | p_L < U_D \leq p_H] = \int_0^1 \omega(p, p_L, p_H) \text{MTE}(p) \, dp
\]

using weights $\omega(p, p_L, p_H) = 1\{p_L < p \leq p_H\}/(p_H - p_L)$
First Stage:

\[V = V_U + (V_T - V_U)D \]
\[V_T - V_U = \mu_D(Z, X) - \nu_D \]
\[D = 1\{0 \leq V_T - V_U\} \]
\[\Rightarrow D = 1\{U_D \leq P(D = 1 \mid Z = z, X)\} \]
\[Z = 0: \quad D = 1\{U_D \leq p_{CX}\}, \quad p_{CX} = P(D = 1 \mid Z = 0, X) \]
\[Z = 1: \quad D = 1\{U_D \leq p_{IX}\}, \quad p_{IX} = P(D = 1 \mid Z = 1, X) \]

Second Stage with Shape Restriction:

\[Y = Y_U + (Y_T - Y_U)D \]
\[Y_T = \delta'_T X + \lambda_T U_D + \xi_T \]
\[Y_U = \delta'_U X + \lambda_U U_D + \xi_U \]

\[Z \perp (\gamma_T, \gamma_U) \text{ by A.2.} \]

Ancillary Assumption - Linearity of MTO\((x, p)\), MUO\((x, p)\) in \(p\):

AA.2. MTO\((x, p)\) = \(E [Y_T \mid X = x, U_D = p] = \delta'_T x + \lambda_T p\)

AA.3. MTO\((x, p)\) = \(E [Y_T \mid X = x, U_D = p] = \delta'_T x + \lambda_T p\)

MTO\((x, p)\) = \(E [Y_T - Y_U \mid X = x, U_D = p] = (\delta'_T - \delta'_U) x + (\lambda_T - \lambda_U)p\)
Subgroup Analysis of Common Observables with LATE and MTE(p)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>≥ mediana</td>
<td>< mediana</td>
<td>Female</td>
<td>Male</td>
<td>English</td>
<td>Non-English</td>
</tr>
<tr>
<td>LATE</td>
<td>0.39</td>
<td>0.14</td>
<td>0.44</td>
<td>0.14</td>
<td>0.39</td>
<td>0.30</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(0.18)</td>
<td>(0.25)</td>
<td>(0.21)</td>
<td>(0.21)</td>
<td>(0.16)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>p_C</td>
<td>0.15</td>
<td>0.13</td>
<td>0.17</td>
<td>0.20</td>
<td>0.10</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>p_I</td>
<td>0.41</td>
<td>0.43</td>
<td>0.39</td>
<td>0.43</td>
<td>0.38</td>
<td>0.41</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>MTE intercept</td>
<td>0.64</td>
<td>0.98</td>
<td>0.31</td>
<td>0.48</td>
<td>0.92</td>
<td>0.72</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>(0.24)</td>
<td>(0.28)</td>
<td>(0.39)</td>
<td>(0.32)</td>
<td>(0.33)</td>
<td>(0.25)</td>
<td>(0.47)</td>
</tr>
<tr>
<td>MTE slope</td>
<td>-1.32</td>
<td>-3.01</td>
<td>0.48</td>
<td>-1.06</td>
<td>-2.20</td>
<td>-1.51</td>
<td>-1.07</td>
</tr>
<tr>
<td></td>
<td>(0.88)</td>
<td>(1.04)</td>
<td>(1.49)</td>
<td>(1.08)</td>
<td>(1.40)</td>
<td>(0.92)</td>
<td>(2.07)</td>
</tr>
<tr>
<td>p^*</td>
<td>0.48</td>
<td>0.33</td>
<td>-0.63</td>
<td>0.45</td>
<td>0.42</td>
<td>0.48</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>(2.84)</td>
<td>(0.85)</td>
<td>(10.37)</td>
<td>(1.49)</td>
<td>(3.47)</td>
<td>(4.53)</td>
<td>(11.99)</td>
</tr>
<tr>
<td>N</td>
<td>19,622</td>
<td>9,816</td>
<td>9,806</td>
<td>10,932</td>
<td>8,690</td>
<td>17,871</td>
<td>1,751</td>
</tr>
</tbody>
</table>
Subgroup Analysis of Common Observables with LATE and $\text{MTE}(\rho)$

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>\geq mediana</td>
<td>$< \text{median}^a$</td>
<td>Female</td>
<td>Male</td>
<td>English</td>
<td>Non-English</td>
</tr>
<tr>
<td>Massachusetts Health Reform of 2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_C</td>
<td>0.90</td>
<td>0.93</td>
<td>0.87</td>
<td>0.92</td>
<td>0.87</td>
<td>0.91</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.005)</td>
<td>(0.003)</td>
<td>(0.005)</td>
<td>(0.003)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>p_I</td>
<td>0.95</td>
<td>0.96</td>
<td>0.93</td>
<td>0.96</td>
<td>0.93</td>
<td>0.96</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.002)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>N</td>
<td>62,456</td>
<td>40,492</td>
<td>21,964</td>
<td>38,808</td>
<td>23,648</td>
<td>59,233</td>
<td>3,223</td>
</tr>
</tbody>
</table>
Reconciling Seemingly Contradictory Results from Oregon and Massachusetts

• Build on selection/moral hazard in insurance

• Build on MTE and LATE
 – Bjorklund and Moffitt (1987)
 – Imbens and Angrist (1994)
 – Vytlacil (2002)
 – Brinch, Mogstad, Wiswall (2015)