Estimating marginal returns to medical care: Evidence from at-risk newborns

Douglas Almond, Columbia
Joseph Doyle, MIT
Amanda Kowalski, Yale
Heidi Williams, Harvard

NBER Health Care meeting
24 July 2009
Medical expenditures are high, increasing
Do the benefits of additional expenditures exceed their costs?
 Estimates of marginal returns needed to inform policy
Empirical challenge: sicker patients usually receive more inputs
This paper:
 Idea: Compare inputs, outcomes across diagnostic thresholds
 Our focus: 1500 gram “very low birth weight” threshold
 Just under 3 pounds, 5 ounces
Why study at-risk newborns?

- High value of even small mortality reductions
- Recent high-cost expansions in treatment
 - Our time period: 1980s-2000s
- Little evidence on returns to incremental expenditures
 - Average returns appear high (Cutler & Meara 2000)
 - Dearth of randomized trials
- Substantively large portion of health care system
 - Child birth common and expensive
 - Data on census of births available
 - Large sample size to test for effects on mortality
Why study birth weight thresholds?

- Do not represent “real” breaks in underlying health risk
 - “...designation of very low birth weight infants as those weighing 1,500 grams or less reflected convention rather than biologic criteria” (Institute of Medicine 1985)
- Birth weight very near threshold “as good as random”
 - Pre-delivery birth weight estimates imprecise
 - Empirically, no evidence of small-scale manipulation
- A priori plausible to affect treatment
 - Familiar to physicians (e.g. Cloherty & Stark)
 - Reflected in diagnosis, billing codes
 - Empirically, appear to affect treatment provision
Preview of results: Hospital charges

![Graph showing relationship between birth weight and hospital charges](image)
Preview of results: One-year mortality

Almond et al.

Estimating marginal returns to medical care
Preview of results: Estimating marginal returns

- Take hospital charges as best available summary measure
- Scale hospital charges by cost-to-charge ratio
- Assume costs fully capture impact of “VLBW” on mortality

- Implied cost of saving statistical life of a newborn with birth weight ~ 1500 grams is on the order of $550,000$ (2006 dollars)
1. Data

2. Empirical framework and estimation

3. Empirical results

4. Heterogeneity across hospitals

5. Estimating returns to medical spending
1 Data

2 Empirical framework and estimation

3 Empirical results

4 Heterogeneity across hospitals

5 Estimating returns to medical spending
Mortality by birth weight: “Nationwide data”

- NCHS linked birth & death certificate data
- ~66 million total births
- ~200,000 births within 3oz of 1500 grams
- Rich set of covariates (e.g. gestational age, mother’s age)
Data: Treatment by birth weight

Treatment by birth weight: “Five-state sample”

- CA OSHPD longitudinal database
 - Linked to death certificates
- HCUP State Inpatient Databases
 - AZ, NJ, NY, & MD
 - Census of birth hospital discharges: various years, 1991-2006
 - *Not* linked to death certificates; mortality from nationwide data
- Combined five-state sample
 - ~10.5 million total births
 - ~30,000 births within 3oz of 1500 grams
 - Charges, length of stay, procedure and diagnosis codes
Additional datasets

- CMS: Hospital-year cost-to-charge ratios
- AHA annual surveys: NICU availability
- Phibbs et al. (2007): CA NICU availability by quality level
Summary statistics

Summary statistics in 3oz above 1500 grams ("control group")

- Nationwide data, 1-year mortality: 5.5%
- Five-state sample, hospital charges: $81,500
- Five-state sample, length of stay: 25 days
1 Data

2 Empirical framework and estimation

3 Empirical results

4 Heterogeneity across hospitals

5 Estimating returns to medical spending
Empirical framework

Standard methods for regression discontinuity analysis (e.g. Imbens & Lemieux (2008), Lee & Lemieux (2009))

- Pilot bandwidth: 3oz (85 grams)
 - Results qualitatively similar across a wide range of bandwidths
Empirical framework (2)

- Local linear regressions
 - Triangle kernel: weight decays with distance from 1500 grams
 - Asymptotic standard errors

- OLS
 - For infant i weighing grams g in state s in year t:
 $$ Y_i = \alpha_0 + \alpha_1(VLBW)_i + \alpha_2(VLBW)_i \times (g_i - 1500) + \alpha_3(1 - VLBW)_i \times (g_i - 1500) + \alpha_4(t_i) + \alpha_5(s_i) + \alpha_6(X_i') + \epsilon_i $$

- Robust and Card-Lee (2008) standard errors
1. Data

2. Empirical framework and estimation

3. Empirical results

4. Heterogeneity across hospitals

5. Estimating returns to medical spending
Frequency of births: Full sample

Notes: Nationwide data.

Almond et al. Estimating marginal returns to medical care
Notes: Nationwide data.
Gestational age

Notes: Nationwide data.
Notes: Nationwide data.
One-year mortality: Nationwide data

Introduction
Data
Empirical framework and estimation
Empirical results
Heterogeneity across hospitals
Estimating returns to medical spending

Birth weight density and covariates
Health outcomes
Summary measures of treatment
Mechanisms: Differences in types of care
Robustness & specification tests

Almond et al.
Estimating marginal returns to medical care
One-year mortality: Nationwide data

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>one-year mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model:</td>
<td>local linear</td>
</tr>
<tr>
<td>Birth weight < 1500g</td>
<td>-0.0121 (0.0023)**</td>
</tr>
<tr>
<td>Year controls</td>
<td>No</td>
</tr>
<tr>
<td>Main controls</td>
<td>No</td>
</tr>
<tr>
<td>Mean of dependent variable above cutoff:</td>
<td>0.0553</td>
</tr>
<tr>
<td>Observations</td>
<td>202071</td>
</tr>
</tbody>
</table>

*Notes: OLS models also include (not shown) linear trends interacted with the treatment indicator. Local linear models report asymptotic standard errors. OLS models report heteroskedastic-robust standard errors in parentheses, and standard errors clustered at the gram level in brackets. *: \(p<0.05 \); **: \(p<0.01 \).*
Hospital charges: Five-state sample
Hospital charges: Five-state sample

<table>
<thead>
<tr>
<th>Birth weight < 1500g</th>
<th>Model:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>local linear</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
</tr>
<tr>
<td></td>
<td>9450</td>
<td>9,022</td>
<td>8,205</td>
<td>9,065</td>
</tr>
<tr>
<td></td>
<td>(2710)**</td>
<td>(2,448)**</td>
<td>(2,416)**</td>
<td>(2,297)**</td>
</tr>
<tr>
<td></td>
<td>[3,538]*</td>
<td>[3,174]*</td>
<td>[5,094]</td>
<td></td>
</tr>
<tr>
<td>Year controls</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Main controls</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Mean of dependent variable above cutoff:</td>
<td>81566</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>28928</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: OLS models also include (not shown) linear trends interacted with the treatment indicator. Local linear models report asymptotic standard errors. OLS models report heteroskedastic-robust standard errors in parentheses, and standard errors clustered at the gram level in brackets. *: $p<0.05$; **: $p<0.01$. Charges are in 2006 dollars.
Length of stay: Five-state sample

Almond et al.
Estimating marginal returns to medical care
Length of stay: Five-state sample

<table>
<thead>
<tr>
<th>Birth weight < 1500g</th>
<th>Model:</th>
<th>length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>local linear</td>
<td>OLS</td>
</tr>
<tr>
<td>Birth weight < 1500g</td>
<td>1.97</td>
<td>1.7768</td>
</tr>
<tr>
<td></td>
<td>(0.451)**</td>
<td>(0.4165)**</td>
</tr>
<tr>
<td>Year controls</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Main controls</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Mean of dependent variable above cutoff:</td>
<td>24.68</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>30935</td>
<td></td>
</tr>
</tbody>
</table>

Notes: OLS models also include (not shown) linear trends interacted with the treatment indicator. Local linear models report asymptotic standard errors. OLS models report heteroskedastic-robust standard errors in parentheses, and standard errors clustered at the gram level in brackets. *: $p<0.05$; **: $p<0.01$.

Empirical framework and estimation

Health outcomes

Summary measures of treatment

Mechanisms: Differences in types of care

Robustness & specification tests

Introduction

Data

Empirical framework and estimation

Empirical results

Heterogeneity across hospitals

Estimating returns to medical spending
Mechanisms: Differences in types of care

- Procedure codes, focus on common perinatal procedures
 - *E.g.* Ventilation, NICU admission
- Difficult to find differences in five-state sample
 - Likely lack statistical power to detect differences
- Some weak evidence for two relatively common procedures:
 - Diagnostic ultrasounds (consistent with *e.g.* Cloherty & Stark)
 - Operations on the heart
Mechanisms: Any ventilation, five-state sample
Mechanisms: NICU > 24 hours, five-state sample
Mechanisms: Diagnostic ultrasound, five-state sample
Mechanisms: Operations on the heart, five-state sample

![Graph showing the relationship between birth weight and medical care effectiveness](image)

Almond et al. Estimating marginal returns to medical care
Robustness & specification tests

- Bandwidth sensitivity
 - Results qualitatively similar for a wide range of bandwidths
- Polynomial order sensitivity
 - Results qualitatively similar for higher-order polynomials
- Alternative first stage outcomes
 - log(charges), median charges, including transfers
- Causes of death
 - No statistically significant change in external deaths
 - Largest effects for perinatal conditions (e.g. jaundice)
Alternative thresholds: Robustness & alternative estimates

- Unexpected jumps: no other convincing differences
- No convincing differences at 2500 grams ("low birth weight")
- No convincing differences at 37 weeks ("premature")
- Some evidence of small-for-gestational-age effects
Results: Summary

- Preliminaries:
 - Birth frequencies: No evidence of heaping
 - Covariates: Generally smooth across the cutoff
- Reduced form: Mortality
 - 1 percentage point lower one-year mortality (mean = 5.5%)
- First stage: Treatment
 - $9,000 increase in hospital charges (mean = $81,500)
 - 1.5 additional days length of stay (mean = 25 days)
- Mechanisms: Weak evidence
- Robustness checks
1 Data

2 Empirical framework and estimation

3 Empirical results

4 Heterogeneity across hospitals

5 Estimating returns to medical spending
Heterogeneity across hospitals, by NICU quality

Notes: First stage (2006 charges) and reduced form (one-year mortality) coefficients, by NICU level in CA data.
Data

Empirical framework and estimation

Empirical results

Heterogeneity across hospitals

Estimating returns to medical spending
Comparison to time-series estimates of returns

Cutler-Meara style calculation

- Within-birth weight changes in cost, mortality over time
- Implies cost per newborn life of \sim1 million
Two-sample estimates of marginal returns

- Assume costs fully capture impact of “VLBW” on mortality
- Inoue & Solon (2005) for asymptotic confidence intervals

- Five-state sample: \(\sim $615,270 \) per newborn life
 - \(= \$4,553/0.0074 \)
 - 95% confidence interval: $30,000 to $1.20 million

- All available data: \(\sim $527,083 \) per newborn life
 - \(= \$3,795/0.0072 \)
 - 95% confidence interval: $30,000 to $1.05 million
Some cost-effectiveness benchmarks

- Disability-adjusted value of newborn life: $2.7 million
 - Cutler & Meara (2000)
- Value of (non-disabled) newborn life: $3-$7 million
 - Cutler (2004)
Medical inputs may be discontinuous across plausibly smooth measures of health risk

Estimates relevant to “marginally untreated” sub-population

Here: \sim550,000 per statistical life saved (2006 dollars)

Suggests high returns to medical care for newborns near 1500g