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Abstract The study of choice under uncertainty has made major advances using thought experiments.

We implement a thought experiment involving a choice between two ambiguous acts that have three

outcomes, one being the certainty equivalent of an embedded lottery. Four prominent theories of ambiguity

aversion (multiple priors, rank-dependent, smooth ambiguity preferences, variational preferences) predict

indifference. Employing a novel method, we elicit, without deception, a subject’s certainty equivalent

of the embedded lottery. Three experiments are consistent with indifference being rejected. We show

independence is sufficient for indifference, find empirically that Allais consistency is associated with

indifference, and use recent theory (recursive ambiguity) to explain our results.
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1 Introduction

The development of the normative and positive theory of behavior under uncertainty is

characterized by a series of thought experiments to which scholars or laypersons often give

a “wrong” answer. The St.-Petersburg-Paradox challenged the notion that a lottery will be

evaluated by its expected value (de Montmort 1713). Bernoulli (1738) proposed a concave

utility function instead of the payoffs themselves. Allais (1953) subsequently proposed a

thought experiment demonstrating that many people do not exhibit the behavior suggested

by Bernoulli and von Neumann and Morgenstern’s expected utility theory.1 Ellsberg (1961)

further challenged the notion that decision-makers have a single subjective probability distri-

bution (i.e., are probabilistically sophisticated) with a thought experiment involving choice

over ambiguity. Empirical papers (for a survey see Camerer and Weber, 1992) showed that

people behave differently than probabilistic sophistication prescribes. New models were pro-

posed to accommodate the ambiguity non-neutrality observed in the Ellsberg experiment.

The four prevailing theories are: Schmeidler’s (1989) Choquet model (or Rank-Dependent

Utility); Gilboa and Schmeidler’s (1989) maximin expected utility; Klibanoff et al.’s (2005)

smooth ambiguity; and Maccheroni et al.’s (2006) Variational Preferences Model. Ambiguity

attitudes are now used to explain puzzles in finance2 and promote policies in health3, law4,

and the environment5, to name a few.

A thought experiment challenges the prevailing four theories. Machina (2014) proposes

two ambiguous acts, where the four models all predict indifference. The thought experiment
1This inconsistency gave rise to prospect theory, rank-dependent expected utility, and regret theory to

name a few.
2Financial economists, e.g. Erbas and Mirakhor (2007) and Maenhout (2004), attribute part of the equity

premium to aversion to ambiguity.
3Public health initiatives may base their policies on correlations found between measures of ambiguity

aversion and unhealthy behavior (Sutter et al., 2013).
4Ambiguity aversion is argued to result in plea bargaining that is too harsh, as defendants are typically

more ambiguity averse than the prosecutor who also faces a repeated situation. The criminal process therefore
is systematically affected by asymmetric ambiguity aversion, which the prosecution can exploit by forcing
defendants into harsh plea bargains, as Segal and Stein (2005) contend. Ambiguity aversion has also been
applied to contracts (Talley, 2009) and tax compliance (Lawsky, 2013).

5Uncertain risks surrounding environmental protection and medical malpractice have led to calls to provide
more scientific data on ambiguity aversion in individuals’ policy preferences (Viscusi and Zeckhauser 2006;
Farber 2010).



involves three outcomes (classic Ellsberg urns never have more than two outcomes) as shown

in Figure 1. An urn contains 3 balls, exactly 1 of which is red, while the other two could

be both white, both black, or one white and one black ball. The outcomes in this Machina

thought experiment are monetary prizes of $0, $c and $100, where $c ∼ (1
2
, $0; 1

2
, $100), the

certainty equivalent of the lottery of receiving $100 with probability 50% and else $0.

Act L Act H

2 balls 1 ball 1 ball 2 balls︷ ︸︸ ︷
Black White
$0 $c

Red
$100

Red
$0

︷ ︸︸ ︷
Black White
$c $100

According to Machina (2014), “If ambiguity aversion somehow involves ‘pessimism,’ might

not an ambiguity averter have a strict preference for [Act] H over [Act] L, just as a risk

averter might prefer bearing risk about higher rather than lower outcome levels?” Indeed, in

our experimental implementation, subjects are not indifferent. However, on average subjects

prefer Act L over Act H. We use Dillenberger and Segal (2015) and Segal’s (1987) recursive

ambiguity in combination with Gul’s (1991) disappointment aversion to give conditions under

which Act L or Act H is preferred. Our key contribution is to implement the Machina

“ambiguity at low vs. at high problem with three colors” thought experiment, which to the

best of our knowledge, is the first empirical implementation.6

We describe the methodological challenges to implementing the thought experiment with-

out deception. First, we cannot directly ask subjects to state their true valuation of a lottery

and then ask subjects the Machina (2014) thought experiment where that just-elicited val-

uation appears to increase the values of the acts. It ceases to be optimal to state the true

value (for example, using Becker-Degroot-Marshak (BDM)), since overstating it at the first

stage increases the value of the second stage decision. Subjects reading the instructions for

the entire experiment can see how the two tasks are related. Our use of the PRINCE method

provides full transparency of incentives. Moreover, we raise minimal suspicion from subjects

6A google scholar search as of January 3, 2019 finds no article that does so to date.



(the two stages are clearly connected, but via the realization of a random draw contained

in an envelope, and not via the certainty equivalent) and full transparency (we present the

full set of instructions prior to subjects making any decisions). The PRINCE method, which

uses a choice list, also yields auxiliary data that corroborates the explanation of recursive

ambiguity and disappointment aversion. Namely, with the PRINCE method, we observe the

direction of switch (from preferring Act L to Act H or vice versa) in the choice list as the

value (in the yet-to-be-opened envelope) increases. The envelope is not opened until the end

of the experiment.

We contribute evidence that distinguishes between theoretical foundations of ambiguity

aversion. Machina also proposed earlier thought experiments in Machina (2009). Machina

distinguishes his 2014 thought experiment, which is based on a single source of purely sub-

jective uncertainty, unlike Machina (2009), which is based on two. Baillon et al. (2011)

and L’Haridon and Placido (2010) theoretically and empirically investigated Machina’s 2009

thought experiment. Their results complement ours, and together, advance the argument that

the Machina paradoxes falsify many ambiguity theories, at least in the Anscombe-Aumann

framework adopted by those theories with the independence axiom as central. The remainder

of the paper is organized as follows. Section 2 briefly summarizes the thought experiment,

Section 3 the online implementation, Section 4 the lab, and Section 5 concluding remarks.

2 Machina thought experiment

The theoretical framework found in previous seminal papers show that four prominent the-

ories of ambiguity aversion (multiple priors, rank-dependent, smooth ambiguity preferences,

variational preferences) predict indifference in the Machina “ambiguity at low vs. at high

problem with three colors” thought experiment.

We offer the following example for intuition. By replacing $c with the lottery it is induced,

the original Machina choice becomes:



Act L’ Act H’

2 balls 1 ball 1 ball 2 balls

1
2
1
2

︷ ︸︸ ︷
Black White
$0 $0
$0 $100

Red
$100
$100

1
2
1
2

Red
$0
$0

︷ ︸︸ ︷
Black White
$0 $100

$100 $100

Figure 1: Machina experiment and reduction

Note that $0 occurs with one-third probability and $100 occurs with one-third probability.

That is, once we substitute the certainty equivalent c with the underlying lottery, the lotteries

are now identical in their objective and subjective aspects.

We show that for any prior, someone who satisfies the independence axiom will be indif-

ferent. First, the purely objective act is:

Act 0

1 ball 1 ball 1 ball︷ ︸︸ ︷
Black
$0

︷ ︸︸ ︷
White
$c

︷ ︸︸ ︷
Red
$100

Then, two acts that have ambiguity either at the lower two outcomes or at the higher two

outcomes are:

Act L Act H

2 balls 1 ball 1 ball 2 balls︷ ︸︸ ︷
Black White
$0 $c

Red
$100

Red
$0

︷ ︸︸ ︷
Black White
$c $100

Now consider two acts that are constructed by replacing the certainty equivalent with the

underlying lottery. Note that the acts have an identical mapping from states to outcomes.

Thus, the Anscombe-Aumann axiom of Substitution together with Ordering (completeness

and transitivity) and the classical independence axiom from expected utility theory are

sufficient to imply indifference between Machina’s acts L and H (a longer pedagogical reca-

pitulation is in the appendix).



3 Online Study

The online study used MTurk. We should see equal proportions for each choice to the

extent low stakes bias subjects towards indifference. We use MTurk also to illustrate the

intuition for the lab experiment, which is our main contribution.

We had 213 participants in session 1. Instructions are in Appendix B. We replaced $c

with the lottery it is induced by, and asked individuals to choose an urn (lottery). For the

purposes of the results discussion and continuity with the theoretical discussion, we refer to

Act L’ (ambiguity at low outcome) and Act H’ (ambiguity at high outcome). The ordering

of the urns L’ and H’ was randomized (“A” and “B” in the instructions were in a fixed order,

but assigned arbitrarily) for the subjects. A design choice was the number of balls to put

in the urn. Machina parsimoniously fills his opaque urn with 1 known and 2 unknown balls.

Experience shows that then some subjects assume some symmetric objective probability

distribution is implied, and they mechanically start calculating the resulting distribution

of this compound lottery. We avoid this by having 20 known and 40 unknown balls. This

serves three purposes. First, it makes the mechanical thoughtless calculation harder. Second,

it makes examples better for the experimenter, “for example, 7 black and 33 white balls”.

Third, Ellsberg also proposed a large number of balls. We found that Act L’ was chosen

by 123 participants (58%). The p-value of the binomial test of the null hypothesis that this

preference for Act L’ is random is 0.028.

We had 432 subjects in a second session. Instructions are slightly different and worded in

Appendix C. We used oTree (Chen et al. 2016). Among these 432 subjects, 64% preferred Act

L’. The p-value of the binomal test of the difference between the proportion who preferred

Act L’ and 0.5 is 0.000. Appendix D reports demographic correlates of choice for readers

who are interested in cross-cultural determinants of ambiguity aversion and demographic

determinants of risk aversion (Weber and Hsee 1998; Von Gaudecker et al. 2011). On the

basis of the results described thus far, despite the wording being slightly different across the

two sessions, on average, ambiguity at low outcomes was preferred to ambiguity at higher



outcomes.

4 Lab Study

4.1 Design We ran the lab experiment at the DeSciL lab following their standard

procedures in ETH Zurich using paper-and-pencil, for reasons described below. We had 91

participants across 6 sessions. Rather than replacing $c with the lottery it is induced by

as in Figure 1, we sought to recover $c through revealed preference. If the decision-maker

has a preference relation which satisfies continuity, then a certainty equivalent is guaranteed

to exist; strict monotonicity in the monetary outcomes ensures uniqueness. However, the

certainty equivalent of a subject is unknown to the experimenter.

The main challenge is to elicit the subject’s certainty equivalent prior to conducting the

Machina “ambiguity at low vs. at high problem with three colors” thought experiment. The

state-of-the-art method to experimentally elicit willingness to pay for an object is still BDM

(Becker et al. 1964). BDM can be implemented by the mechanism itself or a simplified “list”

method. In the mechanism, people are asked to state their true valuation, a price is randomly

drawn, and they receive the object at the random price if their stated valuation is above it. In

the “list” method, people are presented with a list of choices, each consisting of two options,

the object and a valuation, and one of the indicated choices is then selected at random. From

a formal point of view, the two are close cousins, the difference being that in the list method

the valuation one can state is quite coarse.7 Regardless of the method, subjects are usually

told that correctly stating their true valuation is optimal.

However, since the elicited value is later used in the Machina paradox, it ceases to be op-

timal to state the true value, but rather overstating it becomes optimal. Moreover, since the

probability of receiving the certainty equivalent in the Machina (2014) thought experiment

is subjective, it is not possible to correct for that incentive. For these reasons, we use the

7Practically, however, there are differences: in the list method, participants may frame each choice as
separate, and not view themselves as confronting a big lottery, thus even if independence does not hold, the
mechanism would work. The mechanism itself is also quite unusual for non-economists and it is far from
obvious to subjects that truth-telling is a dominant strategy. Thus, usually subjects get the opportunity to
practice with the mechanism and are explicitly told that correctly stating their true valuation is optimal.



PRINCE method.8 The PRINCE (PRior INCEntive system) method is like the list method

and formally equivalent to BDM (Johnson et al. 2015). In brief, the choice question (rather

than choice options) and implemention is randomly selected before (rather than after) the

experiment. It is provided to the subjects in a tangible form (for example in a sealed en-

velope). Subjects’ answers are framed as instructions to the experimenter about the real

choice implemented at the end: in the PRINCE method instead of $c, one asks subjects for

instructions for which a lottery is preferred for all possible $c (See Appendix E, especially

E.2). It has the advantage over the list method in that it allows any answer, not just an

answer on the list (so the valuations are not elicited coarsely). Also, the envelope is already

there, and framing as “give us instructions” might lessen concerns of subjects seeing this as

a big lottery when eliciting CE. Moreover, reading the instructions makes clear that isola-

tion across tasks is maximally salient. Finally, to further accentuate isolation, the tasks are

printed on different colored paper (these colors are reproduced in Appendix E.4). We also

offer subjects “indifference” as an option to directly express their indifference rather than

infer it from the population (as in the online study).

It is worth highlighting how PRINCE contrasts with the usual BDM. First, we do not

directly ask subjects to state their true valuation of a lottery and then ask subjects the

Machina (2014) thought experiment where that just-elicited valuation appears to increase

the values of the acts. Subjects reading the instructions for the entire experiment would

easily realize how the two tasks are related. Our use of the PRINCE method provides full

transparency of incentives. Valuations of the lottery from subjects are elicited with their full

awareness of the entire experiment. The lottery whose valuation is being elicited appears as

“Option A” in the second task. Notice further that the realization of the random draw, Y, is

inside an envelope that they hold. This Y is then used in the Machina thought experiment.

We then ask subjects to choose between the acts for every possible value of Y. The connection

of the envelope’s content across tasks is maximally salient to subjects. What we use, as the

8The PRINCE method was also originally designed to test for endowment effects, so its application to the
Machina paradoxes is new.



experimenter, is the valuation reported in the second task to locate the actual comparison

of interest among the 20 choice decisions in the third task. Thus, we raise minimal suspicion

from subjects (there is a clear connection between the second and third tasks) and without

deception (we present the full set of instructions prior to subjects making any decisions).

To familiarize subjects with PRINCE, we first used it for a first order stochastic domi-

nance (FOSD) task (See Appendix E.1) and then for CE. Since the Machina experiment is

implemented with the list method, we can explore if subjects have a unique switching point.

A priori it is not clear that people have a unique switching point nor direction.

4.2 Results Consistent with the online study, we find that subjects prefer the act with

ambiguity at the low outcome relative to the act with ambiguity at the high outcome. Figure

3 easily rejects indifference (only 12 out of 91 subjects explicitly express indifference). The

p-value of the binomal test of the difference between the proportion who express indifference

and 1 is 0.000.

Figure 2: All participants

Next, we use the switching point from the list method to infer indifference between Act L



and ActH. In Figure 3, subjects are classified as indifferent when they are indifferent at their

CE (and two neighboring values). Next, we add those who have a clear switching point and

their CE lies in the confidence interval of this switching point. In other words, individuals

can simply report indifference at CE ± 1. In addition, we can label subjects as indifferent

if CE ∈ {S − 1.96 · SD([CE − S]);S + 1.96 · SD([CE − S])}, where S is the switching

point in Task 3. More precisely, S is the average value between the last A/B and first B/A

for single-switchers. SD is calculated for [CE − S].9 In reality there are people for whom

CE strongly differs from S, and thus our confidence interval is too wide. We therefore may

overestimate the number of people who are indifferent.

Next, we present an analysis of switching. We present the number of participants who fall

into different categories: (i) switch from Ambiguity at Low to Ambiguity at High, (ii) switch

from Ambiguity at High to Ambiguity at Low, (iii) always choose Ambiguity at Low, (iv)

always choose Ambiguity at High, (v) always indifferent, and (vi) other.

Figure 3: All participants

9This means that under the null hypothesis that everyone has CE = S, we treat any difference between
CE and S as measurement error.



Three results emerge from the tabulation. First, a fifth of subjects do not switch. They

strictly prefer Act L or strictly prefer Act H. There is a slight greater preference for ambi-

guity at low outcomes than for ambiguity at high outcomes. Second, switchers switch from

ambiguity at low to ambiguity at high as Y increases, which is what one might expect if

subjects have a preference for non-ambiguity at high outcomes.10 Third, there exists many

people for whom CE strongly differs from S. Thus even allowing subjects to directly express

indifference and inferring as many subjects as possible to be indifferent from their switch-

ing points, we can reject indifference in the Machina “ambiguity at low vs. at high problem

with three colors” thought experiment. The p-value of the binomal test of the difference be-

tween the proportion who express indifference and 1 is 0.000. Appendix F presents additional

tabulations that support this claim.

To see additionally how we can reject indifference, we visualize the separation between

subjects’ CE and switching points. Figure 4 plots the CE on the x-axis and the switching

point on the y-axis.

10This can be seen by considering the extreme case where X = 20 and observing that non-ambiguity
is now maximized at the high outcomes. The order of the lottery presentation was randomized, but even
with the reversed order, the majority of subjects switch from Ambiguity at Low to Ambiguity at High (See
Appendix H).



Figure 4: CE vs. Switching point (raw data)

In each subplot, the 45 degree line is the CE = S line. This sample includes people who

always prefer A or always prefer B (their switching point is represented as 20) and people

with single switching points. Each subplot presents a different sample in robustness checks.

Clockwise from the upper left: (i) All participants, (ii) CE ∈ [4, 10], (iii) FOSD, (iv) both.

The null hypothesis of indifference at X = CE appears to be rejected because the dots are

far away from the 45 degree line. Appendix G visualizes a regression line for “folded” data

(we fold the data because we do not want to average the responses of some subjects who

switch above their CE and other subjects who switch below their CE) and the confidence

interval for the regression line excludes this 45 degree line. A t-test can strongly reject the

null that the mean of abs(CE − S) = 0 with t-statistic of 7.8.

4.3 Allais and Machina paradoxes Next, we present sub-sample analysis, dividing

subjects by whether they are Allais consistent (i.e., satisfying independence) or inconsistent.

Subjects are classified as indifferent when they express indifference at their CE (and two

neighboring values) or when they have a clear switching point and their CE lies in the

confidence interval of this switching point. Indifference appears to depend on the answer



to Allais (see the questionnaire in Appendix E). Appendix A shows that satisfying the

independence axiom is sufficient for indifference, and those who are more Allais consistent

are indeed somewhat more likely to be indifferent. A regression of indifference on Allais

consistency, however, is not significant at conventional levels (t statistic of 1 in the top

panels of Figure 6).

Figure 5: Allais and Machina paradoxes

4.4 Predictions about direction of switch We use Dillenberger and Segal (2015)

and Segal’s (1987) recursive ambiguity in combination with Gul’s (1991) disappointment

aversion to give conditions under which Act L or Act H is preferred. When subjects are

disappointment averse, we should observe switching from Act L to Act H, which is what we

found.

The value of Acts are computed as the weighted average of values of first-stage lotteries,

with weights being subjective probabilities of different states of the world: BB,BW,WW .

WAct L = qBB · VAct L(BB) + qBWVAct L(BW ) + qWWVAct L(WW )



WAct H = qBB · VAct H(BB) + qBWVAct H(BW ) + qWWVAct H(WW )

Since terms for state BW are the same for both urns (same payoffs), we may neglect them

for comparison purposes. Let’s now take Gul’s disappointment aversion model with β as the

disappointment aversion parameter:

VAct L(BB) =
2
3
(1 + β) · 0 + 1

3
· 100

1 + 2
3
β

=
100

3 + 2β

VAct L(WW ) =
2
3
(1 + β) · Y + 1

3
· 100

1 + 2
3
β

=
100 + 2(1 + β)Y

3 + 2β

VAct H(BB) =
1
3
(1 + β) · 0 + 2

3
· Y

1 + 1
3
β

=
2Y

3 + β

VAct H(WW ) =
1
3
(1 + β) · 0 + 2

3
· 100

1 + 1
3
β

=
200

3 + β

So Act L is preferred to Act H if:

qBB
100(1+β)
3+2β

+ qWW
100+2(1+β)Y

3+2β
> qBB

2Y (1+β)
3+β

+ qWW
200
3+β

For qWW = qBB (assuming equal probabilities of having two black balls or two white

balls)11: 100β > 2Y β

We now divide by β. Let’s first assume that β > 0:

50 > Y

11Derivation:

100(1 + β)

3 + 2β
+

100 + 2(1 + β)X

3 + 2β
>

2X(1 + β)

3 + β
+

200

3 + β
· (3 + β)(3 + 2β)

2(1 + β)(3 + β)100 + 2(1 + β)(3 + β)X > (3 + 2β)2X(1 + β) + 200(3 + 2β)

600 + 300β + 6X(1 + β) + 200β + 100β2 + 2X(1 + β)β > 600 + 6X(1 + β) + 400β + 4X(1 + β)β



So if Y < 50, Act L is preferred over Act H. Therefore, as Y increases we should observe

a switch from Act L to Act H, which is what we find.

If we now go back and assume that β < 0:

50 < Y

So if Y > 50, Act L is preferred over Act H. Therefore, as Y increases we should observe

a switch from Act H to Act L.

5 Concluding Remarks

The thought experiment we test is the latest in a series of seminal thought experiments to

push the frontiers of both theoretical and empirical research on choice under uncertainty. In

this thought experiment, major theories of ambiguity aversion predict indifference. We argue

that probabilistically sophisticated non-EU DM can fail to be indifferent. We present an

example (disappointment aversion) where decision makers have a strict preference. Second,

someone who satisfies the independence axiom will be indifferent. Machina’s (2014) thought

experiment to test of major theories of ambiguity non-neutrality appears at least as much

a test of independence as of ambiguity aversion. We overcome a challenge to implementing

Machina’s thought experiment, which requires knowledge of a subject’s certainty equivalent,

using the PRINCE method. We also find a strong pattern in which way people shift (in

our elicitation of Machina’s thought experiment). This shift is used to support recursive

ambiguity as an axiomitization of ambiguity aversion.
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Appendix:
A Model

A.1 The Anscombe-Aumann Framework These acts have both subjective events and objective

ones, which is why we can represent them in the framework by Anscombe and Aumann (1963). We follow

the exposition by Machina and Schmeidler (1995), where the uncertainty facing an individual is represented

by set S = {..., s, ...} of states of nature and a set X = {..., E, ...} of events. The objects of choice in this

framework are bets or acts, which assign an outcome to each state of nature. For objective uncertainty, in

the form of a randomization device generating well-specific probability distribution R over outcomes, the

objects of choice are bets of the form [R1 on E1; ...;Rn on En] a roulette lottery. However, an individual may

also have subjective beliefs over their likelihood of various outcomes. Then the subjective states {..., s, ...}

and events {..., E, ...} describe the outcome of a horse race, and the bets [R1 on E1; ...;Rn on En] would be

termed horse/roulette lotteries. Thus in our context we have the set of outcomes as X = {0, c, 100}, and the

prize c is implicitly defined by c ∼ ( 12 , 0;
1
2 , 100).

In our context, a natural starting point for conceptualizing is the state space in which balls are in the urn:

S = {BB,BW,WB,WW}. Then we can express each of the acts as follows.

Act 0 (purely objective):

[( 13 , 0;
1
3 , c;

1
3 , 100) on all states]

Act L (ambiguity at low outcomes):[
( 23 ,0; 13 ,100) on BB; ( 13 , 0;

1
3 , c;

1
3 , 100) on BW,WB;( 23 , c;

1
3 , 100) on WW

]
Act H (ambiguity at high outcomes)[
( 13 ,0; 23 ,c) on BB; ( 13 , 0;

1
3 , c;

1
3 , 100) on BW,WB;( 13 , 0;

2
3 , 100) on WW

]
Act L’ = Act H’:[
( 23 ,0; 13 ,100) on BB; ( 12 , 0;

1
2 , 100) on BW,WB;( 13 , 0;

2
3 , 100) on WW

]
Instead of using as the state space which balls are in the urn, it might be more natural to think of the state

as the ball drawn. Here the difficulty is that the ball drawn mixes objective and subjective events. Thus, we

can think of the subjective state space as which ball is drawn conditional on that ball not being red, that

is, have S = {B,W}. Another way of thinking about this is that as the red ball is taken out of the urn, one

ball is drawn from the urn (horse race), and then a roulette wheel is spun where one third of the fields are

red, whereas the rest of the fields have no color but, say, look at the color of the ball drawn from the urn.

This approach has the advantage of yielding far shorter expressions, as it has 2 states instead of 4.

Act 0 (purely objective):

[( 13 , 0;
1
3 , c;

1
3 , 100) on all states].

Act L (ambiguity at low outcomes):



[
( 23 ,0; 13 ,100) on B; ( 23 , c;

1
3 , 100) on W

]
Act H (ambiguity at high outcomes):[
( 23 ,c; 13 ,0) on B; (23 , 100;

1
3 , 0) on W

]
Act L’ and H’:[
( 23 ,0; 13 ,100) on B; ( 13 , 0;

2
3 , 100) on W

]
We assume that the DM treats the events B and W as informationally symmetric. Ensuring or assuming

information symmetry is particularly important in the context of these acts, as White yields a strictly higher

prize in both acts. Informational symmetry means pw = pB in the ball draw state space, and pBB = pWW

in the ball in the urn state space.

Under what conditions is a DM indifferent between these Acts? First, observe that by informational

symmetry, pW = pB (resp. pWW = pBB), but then the DM effectively views both L and H as the lottery

( 13 , 0;
1
3 , c;

1
3 , 100), and thus L ∼ H. But more interestingly, what about non-probabilistically sophisticated

decision-makers, when are they indifferent?

As Machina and Schmeidler (1995) explain, Anscombe-Aumann has four axioms, in which the first two,

Ordering and Mixture Continuity are related to nonstochastic consumer theory, while the latter two, Substi-

tution and Independence, are related to expected utility. All four together imply probabilistic sophistication

(and expected utility). Focus here on three of them, abstracting from Mixture Continuity, which we do not

need for present purposes.

Axiom (Ordering) ≿ is a complete, reflexive and transitive binary relation on L .

The following is what Machina and Schmeidler (1995) name the Substitution Axiom, which Anscombe

and Aumann (1963) called the Monotonicity Axiom:

Axiom (Substitution Axiom) For any pair of pure roulette lotteries R∗
i and Ri: If R∗

i ≽ Ri then [R1 on E1; ..;R
∗
i on Ei; ..;Rn on En] ≽

[R1 on E1; ..;Ri on Ei; ..Rn on En] for all partitions {E1, ..., En} and all roulette lotteries {R1, ..., Ri−1, Ri+1, ..., Rn}.

The next axiom of Anscombe-Aumann, is an independence axiom, but they generalized it to apply to

horse race/roulette lotteries, which is why we call it Horse-Race/Roulette-Independence:

Axiom (Horse-Race/Roulette-Independence Axiom) For any partition {E1, ..., En} and roulette lotteries

{P1, ..., Pn} and {R1, ..., Rn}:

If [P1 on E1; ...;Pn on En] ≽ [R1 on E1; ...;Rn on En]

then [αP 1 + (1− α)Q1on E1; ...;αPn + (1− α)Qnon En]



≽ [αR1 + (1− α)Q1on E1; ...;αRn+(1− α)Qnon En]

for all probabilities αϵ(0, 1] and all roulette lotteries {Q1, ..., Qn}.

By contrast, the classical Independence Axiom (for pure roulette lotteries from expected-utility theory) is

the following, and for clarity, we call it Roulette-Independence:

Axiom (Roulette-Independence Axiom) For all pure roulette-lotteries R,P,Q, and all αϵ(0, 1]

If R ≽ P then αR+ (1− α)Q ≽ αP + (1− α)Q.

The Horse Race/Roulette-Independence Axiom implies the Roulette-Independence Axiom, while the con-

verse is not true. Indeed the Horse Race/Roulette-Independence Axiom together with the other 3 Anscombe-

Aumann axioms implies probabilistic sophistication, while Roulette-Independence does not. Many major

theories of ambiguity aversion (as they are theories that allow for ambiguity non-neutrality) violate the

Horse-Race/Roulette Independence Axiom, but satisfy Roulette-Independence:

Remark The Multiple Priors, the Rank-Dependent Model, the Smooth Ambiguity Preferences Model, and

the Variational Preferences Model satisfy Roulette-Independence.

Claim A decision-maker who satisfies the Ordering, Roulette-Independence, and Substitution Axioms is

indifferent between Act L and Act H.

Proof: We prove this separately in both state spaces:

1. State space: Balls in Urn:

By Roulette-Independence, we have ( 23 , 0;
1
3 , 100) ∼ ( 13 ,0; 23 ,c), and ( 23 , c;

1
3 , 100) ∼ ( 13 , 0;

2
3 , 100). But then

the Substitution Axiom implies that L ∼ H, since one can substitute these lotteries on BB and WW ,

respectively.

2. State space: Ball Drawn:

By Roulette-Independence, we have ( 23 , 0;
1
3 , 100) ∼ ( 23 ,c; 13 ,0), and ( 23 , c;

1
3 , 100) ∼ ( 13 , 0;

2
3 , 100). But then the

Substitution Axiom implies that L ∼ H, since one can substitute these lotteries on B and W respectively.

Q.E.D.

A.2 Discussion Note that Substitution and Roulette-Independence, unlike probabilistic sophistica-

tion, do not imply indifference between the horse-race/roulette lotteries L and H on the one hand, and the

pure roulette lottery that is Act 0:

Example (Multiple Priors) Let us use a simple version of the multiple priors model. Let the priors be

p1W = 0 and p2W = 1. The DM evaluates each Act by the expected utility that nature chooses the worst



prior for her. We normalize her Bernoulli utility function with u(0) = 0, u(100) = 100, which implies

u(c) = 50. Thus, the DM evaluates the acts as follows: V (Act 0) = 1
30 + 1

3c +
1
3100 = 50, V (Act L) =

min
{

2
30 + 0· c+ 1

3100, 0· 0 +
2
3 · c+

1
3100

}
= 33 1

3 , V (Act H) = min
{

1
30 +

2
3 · c+ 0· 100, 1

30 + 0· c+ 2
3 · 100

}
=

33 1
3 . Thus, while the DM satisfies Roulette-Independence, she still is ambiguity averse as: Act 0 ≻ Act L ∼

Act H.

We make one additional observation. Probabilistically sophisticated non-Expected Utility (non-EU) deci-

sion makers (DM) can fail to be indifferent. We present an example (disappointment aversion) where decision

makers have a strict preference:

Example of probabilistically sophisticated DM with Act L ≁ Act H

Let the probabilistic sophisticated DM have: pB = 2
3 , pW = 0. Then, suppose the DM has non-EU Gul’s

(1991) disappointment aversion (β > 0). Then, for any lottery with 2 outcomes x < x Gul’s functional is sim-

ply: v(lottery) = (1+β)p(x)u(x)+p(x)u(x)
1+βp(x) . Normalize u(0) = 0, u(100) = 100. Then, u(c) =v($0; 1

2 , $100;
1
2 ) =

1
2 100

1+ 1
2β

= 100
2+β .

Next, v(L) = (1+β) 2
3u(0)+

1
3u(100)

1+β 2
3

= 100
3+2β and v(H) =

(1+β) 1
3u(0)+

2
3u(c)

1+β 1
3

= 2u(c)
3+β = 200

(2+β)(3+β) . Thus v(H) <

v(L) ⇒ Act L ≻ Act H. This example will be used to also explain our findings.



B Instructions For Online Study (session 1)

Appendix Figure A.1



C Instructions For Online Study (session 2)

Appendix Figure A.2: Choice of lottery



D Demographic Correlates of Choice

We also had demographic characteristics for 333 subjects. In linear probability models, Republicans were

22 percentage points more likely to prefer Act L’. Americans were 48 percentage points and Asians were 27

percentage points more likely to prefer Act H’. Marginal effects from logit and probit models were similar.

We did not see significant differences in choice of ambiguity at high or low outcomes by gender (which is the

focal demographic heterogeneity of a recent study on gender differences in ambiguity aversion (Borghans et

al. 2009)).



(1) (2)
chooseA chooseA

Mean dep. Var. 0.36 0.37
Male 0.0564

(0.0559)
Age 0.00200

(0.00249)
Republican -0.215**

(0.102)
Democrat -0.0398

(0.0842)
American 0.475*

(0.280)
Indian 0.438

(0.290)
Black 0.112

(0.120)
Hispanic 0.116

(0.116)
Native American -0.0419

(0.173)
Asian 0.270**

(0.107)
Hindu 0.0489

(0.115)
Catholic -0.0594

(0.0934)
Religious Services 0.00468

(0.0218)
Constant 0.359*** -0.260

(0.0231) (0.291)
N 432 333
R-sq 0.000 0.107
Standard errors in parentheses
* p<0.10  ** p<0.05  *** p<0.01

Correlates of Urn A Choice

Appendix Figure A.3: Regression analysis



E Instructions For Lab Study

The first task is the first order stochastic dominance task. The second task is the CE task. The third task

is the Machina task. The fourth task is a short survey questionnaire shown at the end.



E.1 First Order Stochastic Dominance Task Note that first order stochastic dominance implies

that option B is always preferred when X is less than 7.

Appendix Figure A.4: Envelope content - FOSD

Appendix Figure A.5: Answer sheet - FOSD



E.2 Certainty Equivalent Task (PRINCE method) Note that someone who is risk averse would

write down X less than 10.

Appendix Figure A.6: Envelope content - CE

Appendix Figure A.7: Answer sheet - CE



E.3 Machina Task Note that someone who satisfies SEU would have a unique switching point when

X is CE.

Appendix Figure A.8: Envelope content - Machina

Appendix Figure A.9: Answer sheet - Machina



E.4 Complete Instructions For completeness, we include all relevant information seen by the sub-

jects. The original colors for the experiment tasks are reproduced.



Appendix Figure A.10: FOSD Task



Appendix Figure A.11: CE Task



Appendix Figure A.12: Machina Task (page 1)



Appendix Figure A.13: Machina Task (page 2)



Appendix Figure A.14: Questionnaire (page 1)



Appendix Figure A.15: Questionnaire (page 2)



F Additional Analysis of Switching Points

Next, we restrict to participants with a certainty equivalent between 4 and 10, inclusive. The results are

similar as without the restriction.

Appendix Figure A.16: Participants with reasonable CE

The following tabulation indicates there exists many people for whom CE strongly differs from S:

Count Share in %
CE inside switch interval 20 46.5
CE outside switch interval 23 53.5

Total 43 100

Appendix Figure A.17: Whether CE is inside Machina switching point interval

We also present the number of observations for specific combinations of CE and S values:

CE<10 CE=10 CE>10
S<10 14 4 4
S=10 1 1 0
S>10 5 6 9

Appendix Figure A.18: 2x2 table of CE vs. Switching point



G Additional Regression Analysis of CE and Switching Points

This figure visualizes a regression line and replaces the some dots with bars when subjects report indiffer-

ence for a range rather than the data indicating a switching point. On this evidence, the confidence interval

for the regression line excludes the 45 degree line for the entire set of participants. Smaller samples of the

data would not reject the null.

Appendix Figure A.19: CE vs. Switching point (folded, with regression line)



H Order Effects

The order of the lottery presentation was randomized, but we can check if the order influenced the switch

direction. We find that the answer is yes, but people still generally switch from Ambiguity at Low to

Ambiguity at High.

Fraction of switches from Risk at Low Outcome to Risk at High Outcome depending on
the order of options on the answer sheet (normal order lists Risk at High Outcome first).

Group Obs Mean Std Dev
Normal Order 32 .13 .34
Reversed order 11 .18 .4

H0: means are equal; p-value for two-sided test: 0.648

Appendix Figure A.20: Order and switch direction

The tabulation indicates that the fraction of switches from Ambiguity at High to Ambiguity at Low

depends on the order of options on the answer sheet (normal order lists Ambiguity at Low Outcome first).

But even with the reversed order, the majority of subjects switch from Ambiguity at Low to Ambiguity at

High.


