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SPARSE MODELS AND METHODS FOR OPTIMAL INSTRUMENTS
WITH AN APPLICATION TO EMINENT DOMAIN

BY A. BELLONI, D. CHEN, V. CHERNOZHUKOV, AND C. HANSEN1

We develop results for the use of Lasso and post-Lasso methods to form first-stage
predictions and estimate optimal instruments in linear instrumental variables (IV)
models with many instruments, p. Our results apply even when p is much larger than
the sample size, n. We show that the IV estimator based on using Lasso or post-Lasso
in the first stage is root-n consistent and asymptotically normal when the first stage
is approximately sparse, that is, when the conditional expectation of the endogenous
variables given the instruments can be well-approximated by a relatively small set of
variables whose identities may be unknown. We also show that the estimator is semi-
parametrically efficient when the structural error is homoscedastic. Notably, our results
allow for imperfect model selection, and do not rely upon the unrealistic “beta-min”
conditions that are widely used to establish validity of inference following model selec-
tion (see also Belloni, Chernozhukov, and Hansen (2011b)). In simulation experiments,
the Lasso-based IV estimator with a data-driven penalty performs well compared to re-
cently advocated many-instrument robust procedures. In an empirical example dealing
with the effect of judicial eminent domain decisions on economic outcomes, the Lasso-
based IV estimator outperforms an intuitive benchmark.

Optimal instruments are conditional expectations. In developing the IV results, we
establish a series of new results for Lasso and post-Lasso estimators of nonparametric
conditional expectation functions which are of independent theoretical and practical
interest. We construct a modification of Lasso designed to deal with non-Gaussian,
heteroscedastic disturbances that uses a data-weighted �1-penalty function. By inno-
vatively using moderate deviation theory for self-normalized sums, we provide con-
vergence rates for the resulting Lasso and post-Lasso estimators that are as sharp as
the corresponding rates in the homoscedastic Gaussian case under the condition that
logp = o(n1/3). We also provide a data-driven method for choosing the penalty level
that must be specified in obtaining Lasso and post-Lasso estimates and establish its
asymptotic validity under non-Gaussian, heteroscedastic disturbances.

KEYWORDS: Inference on a low-dimensional parameter after model selection, im-
perfect model selection, instrumental variables, Lasso, post-Lasso, data-driven penalty,
heteroscedasticity, non-Gaussian errors, moderate deviations for self-normalized sums.

1. INTRODUCTION

INSTRUMENTAL VARIABLES (IV) TECHNIQUES are widely used in applied eco-
nomic research. While these methods provide a useful tool for identifying

1This is a revision of an October 2010 ArXiv/CEMMAP paper with the same title. Preliminary
results of this paper were first presented at Chernozhukov’s invited Cowles Foundation lecture
at the Northern American meetings of the Econometric Society in June of 2009. We thank semi-
nar participants at Brown, Columbia, Hebrew University, Tel Aviv University, Harvard–MIT, the
Dutch Econometric Study Group, Fuqua School of Business, NYU, and New Economic School,
for helpful comments. We also thank Denis Chetverikov, JB Doyle, and Joonhwan Lee for thor-
ough reading of this paper and very useful comments.
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structural effects of interest, their application often results in imprecise infer-
ence. One way to improve the precision of instrumental variables estimators is
to use many instruments or to try to approximate the optimal instruments, as in
Amemiya (1974), Chamberlain (1987), and Newey (1990). Estimation of opti-
mal instruments is generally done nonparametrically and thus implicitly makes
use of many constructed instruments such as polynomials. The promised im-
provement in efficiency is appealing, but IV estimators based on many instru-
ments may have poor properties. See, for example, Bekker (1994), Chao and
Swanson (2005), Hansen, Hausman, and Newey (2008), and Chao, Swanson,
Hausman, Newey, and Woutersen (2012), which proposed solutions for this
problem based on “many-instrument” asymptotics.2

In this paper, we contribute to the literature on IV estimation with many
instruments by considering the use of Lasso and post-Lasso for estimating
the first-stage regression of endogenous variables on the instruments. Lasso
is a widely used method that acts both as an estimator of regression func-
tions and as a model selection device. Lasso solves for regression coefficients
by minimizing the sum of the usual least squares objective function and a
penalty for model size through the sum of the absolute values of the coef-
ficients. The resulting Lasso estimator selects instruments and estimates the
first-stage regression coefficients via a shrinkage procedure. The post-Lasso
estimator discards the Lasso coefficient estimates and uses the data-dependent
set of instruments selected by Lasso to refit the first-stage regression via
ordinary least squares (OLS) to alleviate Lasso’s shrinkage bias. For theo-
retical and simulation evidence regarding Lasso’s performance, see Bai and
Ng (2008, 2009a), Bickel, Ritov, and Tsybakov (2009), Bunea, Tsybakov, and
Wegkamp (2006, 2007a, 2007b), Candes and Tao (2007), Huang, Horowitz,
and Wei (2010), Knight (2008), Koltchinskii (2009), Lounici (2008), Lounici
et al. (2010), Meinshausen and Yu (2009), Rosenbaum and Tsybakov (2008),
Tibshirani (1996), van de Geer (2008), Wainwright (2009), Zhang and Huang
(2008), Belloni and Chernozhukov (2012), and Bühlmann and van de Geer
(2011), among many others. See Belloni and Chernozhukov (2012) for analo-
gous results on post-Lasso.

Using Lasso-based methods to form first-stage predictions in IV estimation
provides a practical approach to obtaining the efficiency gains from using op-
timal instruments while dampening the problems associated with many instru-
ments. We show that Lasso-based procedures produce first-stage predictions
that provide good approximations to the optimal instruments even when the
number of available instruments is much larger than the sample size when
the first stage is approximately sparse—that is, when there exists a relatively
small set of important instruments whose identities are unknown that well-
approximate the conditional expectation of the endogenous variables given

2It is important to note that the precise definition of “many-instrument” is p ∝ n with p < n,
where p is the number of instruments and n is the sample size. The current paper allows for this
case and also for “very-many-instrument” asymptotics where p � n.
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the instruments. Under approximate sparsity, estimating the first-stage rela-
tionship using Lasso-based procedures produces IV estimators that are root-
n consistent and asymptotically normal. The IV estimator with Lasso-based
first stage also achieves the semiparametric efficiency bound under the addi-
tional condition that structural errors are homoscedastic. Our results allow
imperfect model selection and do not impose “beta-min” conditions that re-
strict the minimum allowable magnitude of the coefficients on relevant re-
gressors. We also provide a consistent asymptotic variance estimator. Thus,
our results generalize the IV procedure of Newey (1990) and Hahn (2002)
based on conventional series approximation of the optimal instruments. Our
results also generalize Bickel, Ritov, and Tsybakov (2009) by providing infer-
ence and confidence sets for the second-stage IV estimator based on Lasso
or post-Lasso estimates of the first-stage predictions. To our knowledge, our
result is the first to verify root-n consistency and asymptotic normality of an
estimator for a low-dimensional structural parameter in a high-dimensional
setting without imposing the very restrictive “beta-min” condition.3 (For sim-
ilar results in the partially linear regression see Belloni, Chernozhukov, and
Hansen (2011a, 2011b).) Our results also remain valid in the presence of het-
eroscedasticity and thus provide a useful complement to existing approaches in
the many-instrument literature, which often rely on homoscedasticity and may
be inconsistent in the presence of heteroscedasticity; see Chao et al. (2012)
for a notable exception that allows for heteroscedasticity and gives additional
discussion.

Instrument selection procedures complement existing/traditional methods
that are meant to be robust to many instruments but are not a universal so-
lution to the many-instruments problem. The good performance of instru-
ment selection procedures relies on approximate sparsity. Unlike traditional
IV methods, instrument selection procedures do not require the identity of
these “important” variables to be known a priori, as the identity of these in-
struments will be estimated from the data. This flexibility comes with the cost
that instrument selection tends not to work well when the first stage is not ap-
proximately sparse. When approximate sparsity breaks down, instrument selec-
tion procedures may select too few or no instruments or may select too many
instruments. Two scenarios where this failure is likely to occur are the weak-
instrument case (e.g., Staiger and Stock (1997), Andrews, Moreira, and Stock
(2006), Andrews and Stock (2005), Moreira (2003), Kleibergen (2002, 2005)),
and the many-weak-instrument case (e.g., Bekker (1994), Chao and Swanson

3The “beta-min” condition requires the relevant coefficients in the regression to be separated
from zero by a factor that exceeds the potential estimation error. This condition implies that
the identities of the relevant regressors may be perfectly determined. There is a large body of
theoretical work that uses such a condition and thus implicitly assumes that the resulting post-
model selection estimator is the same as the oracle estimator that knows the identities of the
relevant regressors. See Bühlmann and van de Geer (2011) for the discussion of the “beta-min”
condition and the theoretical role it plays in obtaining “oracle” results.
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(2005), Hansen, Hausman, and Newey (2008), Chao et al. (2012)). We con-
sider two modifications of our basic procedure aimed at alleviating these con-
cerns. In Section 4, we present a sup-score testing procedure that is related to
Anderson and Rubin (1949) and Staiger and Stock (1997) but is better suited
to cases with very many instruments; and we consider a split-sample IV estima-
tor in Section 5 that combines instrument selection via Lasso with the sample-
splitting method of Angrist and Krueger (1995). While these two procedures
are steps toward addressing weak identification concerns with very many in-
struments, further exploration of the interplay between weak-instrument or
many-weak-instrument methods and variable selection would be an interest-
ing avenue for additional research.

Our paper also contributes to the growing literature on Lasso-based meth-
ods by providing results for Lasso-based estimators of nonparametric con-
ditional expectations. We consider a modified Lasso estimator with penalty
weights designed to deal with non-Gaussianity and heteroscedastic errors. This
new construction allows us to innovatively use the results of moderate devia-
tion theory for self-normalized sums of Jing, Shao, and Wang (2003) to pro-
vide convergence rates for Lasso and post-Lasso. The derived convergence
rates are as sharp as in the homoscedastic Gaussian case under the weak con-
dition that the log of the number of regressors p is small relative to n1/3,
that is, logp = o(n1/3). Our construction generalizes the standard Lasso es-
timator of Tibshirani (1996) and allows us to generalize the Lasso results
of Bickel, Ritov, and Tsybakov (2009) and post-Lasso results of Belloni and
Chernozhukov (2012), both of which assume homoscedasticity and Gaussian-
ity. The construction as well as theoretical results are important for applied
economic analysis where researchers are concerned about heteroscedasticity
and non-Gaussianity in their data. We also provide a data-driven method for
choosing the penalty that must be specified to obtain Lasso and post-Lasso
estimates, and we establish its asymptotic validity allowing for non-Gaussian,
heteroscedastic disturbances. Ours is the first paper to provide such a data-
driven penalty, which was previously not available even in the Gaussian case.4
These results are of independent interest in a variety of theoretical and applied
settings.

We illustrate the performance of Lasso-based IV through simulation exper-
iments. In these experiments, we find that a feasible Lasso-based procedure
that uses our data-driven penalty performs well across a range of simulation
designs where sparsity is a reasonable approximation. In terms of estimation
risk, it outperforms the estimator of Fuller (1977) (FULL),5 which is robust

4One exception is the work of Belloni, Chernozhukov, and Wang (2011b), which considered
square-root-Lasso estimators and showed that their use allows for pivotal penalty choices. Those
results strongly rely on homoscedasticity.

5Note that this procedure is only applicable when the number of instruments p is less than the
sample size n. As mentioned earlier, procedures developed in this paper allow for p to be much
larger than n.
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to many instruments (e.g., Hansen, Hausman, and Newey (2008)), except in a
design where sparsity breaks down and the sample size is large relative to the
number of instruments. In terms of size of 5% level tests, the Lasso-based IV
estimator performs comparably to or better than FULL in all cases we con-
sider. Overall, the simulation results are in line with the theory and favorable
to the proposed Lasso-based IV procedures.

Finally, we demonstrate the potential gains of the Lasso-based procedure
in an application where there are many available instruments among which
there is not a clear a priori way to decide which instruments to use. We look
at the effect of judicial decisions at the federal circuit court level regarding
the government’s exercise of eminent domain on house prices and state-level
GDP as in Chen and Yeh (2010). We follow the identification strategy of Chen
and Yeh (2010), who used the random assignment of judges to three-judge
panels that are then assigned to eminent domain cases to justify using the de-
mographic characteristics of the judges on the realized panels as instruments
for their decision. This strategy produces a situation in which there are many
potential instruments in that all possible sets of characteristics of the three-
judge panel are valid instruments. We find that the Lasso-based estimates using
the data-dependent penalty produce much larger first-stage Wald statistics and
generally have smaller estimated second-stage standard errors than estimates
obtained using the baseline instruments of Chen and Yeh (2010).

1.1. Relationship to Econometric Literature on Variable Selection and Shrinkage

The idea of instrument selection goes back to Kloek and Mennes (1960) and
Amemiya (1966), who searched among principal components to approximate
the optimal instruments. Related ideas appear in dynamic factor models as in
Bai and Ng (2010), Kapetanios and Marcellino (2010), and Kapetanios, Kha-
laf, and Marcellino (2011). Factor analysis differs from our approach, though
principal components, factors, ridge fits, and other functions of the instruments
could be considered among the set of potential instruments to select from.6

There are several other papers that explore the use of modern variable se-
lection methods in econometrics, including some papers that apply these pro-
cedures to IV estimation. Bai and Ng (2009b) considered an approach to in-
strument selection that is closely related to ours, based on boosting. The lat-
ter method is distinct from Lasso (cf. Bühlmann (2006)), but it also does not
rely on knowing the identity of the most important instruments. They showed
through simulation examples that instrument selection via boosting works well
in the designs they considered, but did not provide formal results. Bai and Ng

6Approximate sparsity should be understood to be relative to a given structure defined by the
set of instruments considered. Allowing for principal components or ridge fits among the poten-
tial regressors considerably expands the applicability of the approximately sparse framework.
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(2009b) also expressly mentioned the idea of using the Lasso method for in-
strument selection, though they focused their analysis on the boosting method.
Our paper complements their analysis by providing a formal set of conditions
under which Lasso variable selection will provide good first-stage predictions,
and providing theoretical estimation and inference results for the resulting
IV estimator. One of our theoretical results for the IV estimator is also suf-
ficiently general to cover the use of any other first-stage variable selection
procedure, including boosting, that satisfies a set of provided rate conditions.
Caner (2009) considered estimation by penalizing the generalized method of
moments (GMM) criterion function by the �γ-norm of the coefficients for
0 < γ < 1. The analysis of Caner (2009) assumed that the number of parame-
ters p is fixed in relation to the sample size, and so it is complementary to our
approach where we allow p → ∞ as n→ ∞. Other uses of Lasso in economet-
rics include Bai and Ng (2008), Belloni, Chernozhukov, and Hansen (2011b),
Brodie, Daubechies, Mol, Giannone, and Loris (2009), DeMiguel, Garlappi,
Nogales, and Uppal (2009), Huang, Horowitz, and Wei (2010), Knight (2008),
and others. An introductory treatment of this topic was given in Belloni and
Chernozhukov (2011b), and Belloni, Chernozhukov, and Hansen (2011a) pro-
vided a review of Lasso targeted at economic applications.

Our paper is also related to other shrinkage-based approaches to dealing
with many instruments. Chamberlain and Imbens (2004) considered IV esti-
mation with many instruments using a shrinkage estimator based on putting a
random coefficients structure over the first-stage coefficients in a homoscedas-
tic setting. In a related approach, Okui (2011) considered the use of ridge re-
gression for estimating the first-stage regression in a homoscedastic framework
where the instruments may be ordered in terms of relevance. Okui (2011) de-
rived the asymptotic distribution of the resulting IV estimator and provided
a method for choosing the ridge regression smoothing parameter that mini-
mizes the higher-order asymptotic mean squared error (MSE) of the IV es-
timator. These two approaches are related to the approach we pursue in this
paper in that both use shrinkage in estimating the first stage, but differ in the
shrinkage methods they use. Their results are also only supplied in the con-
text of homoscedastic models. Donald and Newey (2001) considered a vari-
able selection procedure that minimizes higher-order asymptotic MSE which
relies on a priori knowledge that allows one to order the instruments in terms
of instrument strength. Our use of Lasso as a variable selection technique
does not require any a priori knowledge about the identity of the most rele-
vant instruments, and so provides a useful complement to Donald and Newey
(2001) and Okui (2011). Carrasco (2012) provided an interesting approach
to IV estimation with many instruments based on directly regularizing the in-
verse that appears in the definition of the two-stage least squares (2SLS) es-
timator; see also Carrasco and Tchuente Nguembu (2012). Carrasco (2012)
considered three regularization schemes, including Tikhonov regularization,
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which corresponds to ridge regression, and showed that the regularized esti-
mators achieve the semiparametric efficiency bound under some conditions.
Carrasco’s (2012) approach implicitly uses �2-norm penalization and hence
differs from and complements our approach. A valuable feature of Carrasco
(2012) is the provision of a data-dependent method for choosing the regular-
ization parameter based on minimizing higher-order asymptotic MSE, follow-
ing Donald and Newey (2001) and Okui (2011). Finally, in work that is more
recent than the present paper, Gautier and Tsybakov (2011) considered the im-
portant case where the structural equation in an instrumental variables model
is itself very high-dimensional, and proposed a new estimation method related
to the Dantzig selector and the square-root-Lasso. They also provided an in-
teresting inference method that differs from the one we consider.

1.2. Notation

In what follows, we work with triangular array data {(zi�n� i = 1� � � � � n)�n =
1�2�3� � � �} defined on some common probability space (Ω� A�P). Each zi�n =
(y ′

i�n� x
′
i�n� d

′
i�n)

′ is a vector, with components defined below in what follows, and
these vectors are i.n.i.d.—independent across i, but not necessarily identically
distributed. The law Pn of {zi�n� i = 1� � � � � n} can change with n, though we do
not make explicit use of Pn. Thus, all parameters that characterize the distri-
bution of {zi�n� i = 1� � � � � n} are implicitly indexed by the sample size n, but we
omit the index n in what follows to simplify notation. We use triangular ar-
ray asymptotics to better capture some finite-sample phenomena and to retain
the robustness of conclusions to perturbations of the data-generating process.
We also use the empirical process notation En[f ] := En[f (zi)] :=∑n

i=1 f (zi)/n,
and Gn(f ) := ∑n

i=1(f (zi) − E[f (zi)])/√n� Since we want to deal with i.n.i.d.
data, we also introduce the average expectation operator: Ē[f ] := EEn[f ] =
EEn[f (zi)] = ∑n

i=1 E[f (zi)]/n� The �2-norm is denoted by ‖ · ‖2, and the �0-
norm, ‖ · ‖0, denotes the number of nonzero components of a vector. We
use ‖ · ‖∞ to denote the maximal element of a vector. The empirical L2(Pn)

norm of a random variable Wi is defined as ‖Wi‖2�n := √
En[W 2

i ]� When the
empirical L2(Pn) norm is applied to regressors f1� � � � � fp and a vector δ ∈ R

p,
‖f ′

i δ‖2�n, it is called the prediction norm. Given a vector δ ∈ R
p and a set of

indices T ⊂ {1� � � � �p}, we denote by δT the vector in which δTj = δj if j ∈ T ,
δTj = 0 if j /∈ T . We also denote T c := {1�2� � � � �p} \ T . We use the notation
(a)+ = max{a�0}, a ∨ b = max{a�b}, and a ∧ b = min{a�b}. We also use the
notation a � b to denote a ≤ cb for some constant c > 0 that does not de-
pend on n; and a �P b to denote a = OP(b). For an event E, we say that E
w.p. → 1 when E occurs with probability approaching 1 as n grows. We say
Xn =d Yn +oP(1) to mean that Xn has the same distribution as Yn up to a term
oP(1) that vanishes in probability.
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2. SPARSE MODELS AND METHODS FOR OPTIMAL INSTRUMENTAL VARIABLES

In this section of the paper, we present the model and provide an overview
of the main results. Sections 3 and 4 provide a technical presentation that in-
cludes a set of sufficient regularity conditions, discusses their plausibility, and
establishes the main formal results of the paper.

2.1. The IV Model and Statement of the Problem

The model is yi = d′
iα0 + εi, where α0 denotes the true value of a vector-

valued parameter α. yi is the response variable, and di is a finite kd-vector of
variables whose first ke elements contain endogenous variables. The distur-
bance εi obeys, for all i (and n),

E[εi|xi] = 0�

where xi is a kx-vector of instrumental variables.
As a motivation, suppose that the structural disturbance is conditionally ho-

moscedastic, namely, for all i, E[ε2
i |xi] = σ2� Given a kd-vector of instruments

A(xi), the standard IV estimator of α0 is given by α̂ = (En[A(xi)d
′
i])−1 ×

En[A(xi)yi]� where {(xi� di� yi)� i = 1� � � � � n} is an i.i.d. sample from the IV
model above. For a given A(xi),

√
n(̂α − α0) =d N(0�Q−1

0 Ω0Q
−1
0

′
) + oP(1),

where Q0 = Ē[A(xi)d
′
i] and Ω0 = σ2Ē[A(xi)A(xi)

′] under standard condi-
tions. Setting A(xi) = D(xi) = E[di|xi] minimizes the asymptotic variance,
which becomes

Λ∗ = σ2
{
Ē
[
D(xi)D(xi)

′]}−1
�

the semiparametric efficiency bound for estimating α0; see Amemiya (1974),
Chamberlain (1987), and Newey (1990). In practice, the optimal instrument
D(xi) is an unknown function and has to be estimated. In what follows, we
investigate the use of sparse methods—namely Lasso and post-Lasso—in es-
timating the optimal instruments. The resulting IV estimator is asymptotically
as efficient as the infeasible optimal IV estimator above.

Note that if di contains exogenous components wi, then di = (di1� � � � �
dike�w

′
i)

′, where the first ke variables are endogenous. Since the rest of the
components wi are exogenous, they appear in xi = (w′

i� x̃
′
i)

′. It follows that
Di := D(xi) := E[di|xi] = (E[d1|xi]� � � � �E[dke |xi]�w′

i)
′; that is, the estimator

of wi is simply wi. Therefore, we discuss estimation of the conditional expecta-
tion functions:

Dil := Dl(xi) := E[dl|xi]� l = 1� � � � �ke�

In what follows, we focus on the strong-instruments case, which translates into
the assumption that Q = Ē[D(xi)D(xi)

′] has eigenvalues bounded away from
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zero and from above. We also present an inference procedure that remains
valid in the absence of strong instruments which is related to Anderson and
Rubin (1949) and Staiger and Stock (1997) but allows for p� n.

2.2. Sparse Models for Optimal Instruments and Other Conditional Expectations

Suppose there is a very large list of instruments,

fi := (fi1� � � � � fip)
′ := (

f1(xi)� � � � � fp(xi)
)′
�

to be used in estimation of conditional expectations Dl(xi)� l = 1� � � � �ke,
where the number of instruments p is possibly much larger than the sample
size n.

For example, high-dimensional instruments fi could arise as any combina-
tion of the following two cases. First, the list of available instruments may
simply be large, in which case fi = xi as in, for example, Amemiya (1974)
and Bekker (1994). Second, the list fi could consist of a large number of se-
ries terms with respect to some elementary regressor vector xi; for example,
fi could be composed of B-splines, dummies, polynomials, and various inter-
actions as in Newey (1990) or Hahn (2002), among others. We term the first
example the many-instrument case and the second example the many-series-
instrument case and note that our formulation does not require us to distin-
guish between the two cases. We mainly use the term “series instruments” and
contrast our results with those in the seminal work of Newey (1990) and Hahn
(2002), though our results are not limited to canonical series regressors as in
Newey (1990) and Hahn (2002). The most important feature of our approach
is that by allowing p to be much larger than the sample size, we are able to con-
sider many more series instruments than in Newey (1990) and Hahn (2002) to
approximate the optimal instruments.

The key assumption that allows effective use of this large set of instruments
is sparsity. To fix ideas, consider the case where Dl(xi) is a function of only
s � n instruments:

Dl(xi)= f ′
i βl0� l = 1� � � � �ke�(2.1)

max
1≤l≤ke

‖βl0‖0 = max
1≤l≤ke

p∑
j=1

1{βl0j �= 0} ≤ s � n�

This simple sparsity model generalizes the classic parametric model of optimal
instruments of Amemiya (1974) by letting the identities of the relevant instru-
ments Tl = support(βl0)= {j ∈ {1� � � � �p} : |βl0j|> 0} be unknown.

The model given by (2.1) is unrealistic in that it presumes exact sparsity.
We make no formal use of this model, but instead use a much more general
approximately sparse or nonparametric model:
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CONDITION AS—Approximately Sparse Optimal Instrument: Each optimal
instrument function Dl(xi) is well-approximated by a function of unknown
s ≥ 1 instruments:

Dl(xi) = f ′
i βl0 + al(xi)� l = 1� � � � �ke� ke fixed�(2.2)

max
1≤l≤ke

‖βl0‖0 ≤ s = o(n)� max
1≤l≤ke

[
Enal(xi)

2
]1/2 ≤ cs �P

√
s/n�

Condition AS is the key assumption. It requires that there are at most s
terms for each endogenous variable that are able to approximate the condi-
tional expectation function Dl(xi) up to approximation error al(xi), chosen
to be no larger than the conjectured size

√
s/n of the estimation error of the

infeasible estimator that knows the identity of these important variables, the
“oracle estimator.” In other words, the number s is defined so that the approx-
imation error is of the same order as the estimation error,

√
s/n, of the oracle

estimator. Importantly, the assumption allows the identity

Tl = support(βl0)

to be unknown and to differ for l = 1� � � � �ke.
For a detailed motivation and discussion of this assumption, we refer the

reader to Belloni, Chernozhukov, and Hansen (2011a). Condition AS gener-
alizes the conventional series approximation of optimal instruments in Newey
(1990, 1997) and Hahn (2002) by letting the identities of the most important
s series terms Tl be unknown. The rate

√
s/n generalizes the rate obtained

with the optimal number s of series terms in Newey (1990) for estimating con-
ditional expectations by not relying on knowledge of what s series terms to
include. Knowing the identities of the most important series terms is unre-
alistic in many examples. The most important series terms need not be the
first s terms, and the optimal number of series terms to consider is also un-
known. Moreover, an optimal approximation could come from the combina-
tion of completely different bases, for example, by using both polynomials and
B-splines.

Lasso and post-Lasso use the data to estimate the set of the most relevant
series terms in a manner that allows the resulting IV estimator to achieve good
performance if a key growth condition,

s2 log2(p∨ n)

n
→ 0�

holds along with other more technical conditions. The growth condition re-
quires the optimal instruments to be sufficiently smooth so that a small (rela-
tive to n) number of series terms can be used to approximate them well. The
use of a small set of instruments ensures that the impact of first-stage esti-
mation on the IV estimator is asymptotically negligible. We can weaken this
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condition to s log(p ∨ n) = o(n) by using the sample-splitting idea from the
many-instruments literature.

2.3. Lasso-Based Estimation Methods for Optimal Instruments and Other
Conditional Expectation Functions

Let us write the first-stage regression equations as

dil =Dl(xi)+ vil� E[vil|xi] = 0� l = 1� � � � �ke�(2.3)

Given the sample {(xi� dil� l = 1� � � � �ke)� i = 1� � � � � n}, we consider estimators
of the optimal instrument Dil :=Dl(xi) that take the form

D̂il := D̂l(xi)= f ′
i β̂l� l = 1� � � � �ke�

where β̂l is the Lasso or post-Lasso estimator obtained by using dil as the de-
pendent variable and fi as regressors.

Consider the usual least squares criterion function:

Q̂l(β) := En

[(
dil − f ′

i β
)2]

�

The Lasso estimator is defined as a solution of the optimization program

β̂lL ∈ arg min
β∈Rp

Q̂l(β)+ λ

n
‖Υ̂lβ‖1�(2.4)

where λ is the penalty level and Υ̂l = diag(γ̂l1� � � � � γ̂lp) is a diagonal matrix
specifying penalty loadings.

Our analysis will first employ the following “ideal” penalty loadings:

Υ̂ 0
l = diag

(
γ̂0
l1� � � � � γ̂

0
lp

)
� γ̂0

lj =
√

En

[
f 2
ij v

2
il

]
� j = 1� � � � �p�

The ideal option is not feasible but leads to rather sharp theoretical bounds on
estimation risk. This option is not feasible since vil is not observed. In practice,
we estimate the ideal loadings by first using conservative penalty loadings and
then plugging in the resulting estimated residuals in place of vil to obtain the
refined loadings. This procedure could be iterated via Algorithm A.1 stated in
the Appendix.

The idea behind the ideal penalty loading is to introduce self-normalization
of the first-order condition of the Lasso problem by using data-dependent
penalty loadings. This self-normalization allows us to apply moderate devia-
tion theory of Jing, Shao, and Wang (2003) for self-normalized sums to bound
deviations of the maximal element of the score vector

Sl = 2En

[(
Υ̂ 0

l

)−1
fivil

]
�
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which provides a representation of the estimation noise in the problem. Specif-
ically, the use of self-normalized moderate deviation theory allows us to estab-
lish that

P
(√

n max
1≤l≤ke

‖Sl‖∞ ≤ 2�−1
(
1 − γ/(2kep)

))≥ 1 − γ + o(1)�(2.5)

from which we obtain sharp convergence results for the Lasso estimator under
non-Gaussianity and heteroscedasticity. Without using these loadings, we may
not be able to achieve the same sharp rate of convergence. It is important to
emphasize that our construction of the penalty loadings for Lasso is new and
differs from the canonical penalty loadings proposed in Tibshirani (1996) and
Bickel, Ritov, and Tsybakov (2009). Finally, to ensure the good performance of
the Lasso estimator, one needs to select the penalty level λ/n to dominate the
noise for all ke regression problems simultaneously; that is, the penalty level
should satisfy

P
(
λ/n ≥ c max

1≤l≤ke
‖Sl‖∞

)
→ 1(2.6)

for some constant c > 1. The bound (2.5) suggests that this can be achieved by
selecting

λ= c2
√
n�−1

(
1 − γ/(2kep)

)
�(2.7)

with γ → 0� log(1/γ)� log(p∨ n)�

which implements (2.6). Our current recommendation is to set the confidence
level γ = 0�1/ log(p∨ n) and the constant c = 1�1.7

The post-Lasso estimator is defined as the ordinary least squares regression
applied to the model Îl ⊇ T̂l, where T̂l is the model selected by Lasso:

T̂l = support(β̂lL)= {
j ∈ {1� � � � �p} : |β̂lLj|> 0

}
� l = 1� � � � �ke�

The set Îl can contain additional variables not selected by Lasso, but we re-
quire the number of such variables to be similar to or smaller than the number
selected by Lasso. The post-Lasso estimator β̂lPL is

β̂lPL ∈ arg min
β∈Rp:βÎc

l
=0
Q̂l(β)� l = 1� � � � �ke�(2.8)

7We note that there is not much room to change c. Theoretically, we require c > 1, and finite-
sample experiments show that increasing c away from c = 1 worsens the performance. Hence a
value slightly above unity, namely c = 1�1, is our current recommendation. The simulation ev-
idence suggests that setting c to any value near 1, including c = 1, does not impact the result
noticeably.
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In words, this estimator is ordinary least squares (OLS) using only the instru-
ments/regressors whose coefficients were estimated to be nonzero by Lasso
and any additional variables the researcher feels are important despite having
Lasso coefficient estimates of zero.

Lasso and post-Lasso are motivated by the desire to predict the target func-
tion well without overfitting. Clearly, the OLS estimator is not consistent
for estimating the target function when p > n. Some approaches based on
Bayesian Information Criterion (BIC)-penalization of model size are consis-
tent but computationally infeasible. The Lasso estimator of Tibshirani (1996)
resolves these difficulties by penalizing model size through the sum of absolute
parameter values. The Lasso estimator is computationally attractive because
it minimizes a convex function. Moreover, under suitable conditions, this esti-
mator achieves near-optimal rates in estimating the regression function Dl(xi).
The estimator achieves these rates by adapting to the unknown smoothness or
sparsity of Dl(xi). Nonetheless, the estimator has an important drawback: The
regularization by the �1-norm employed in (2.4) naturally lets the Lasso esti-
mator avoid overfitting the data, but it also shrinks the estimated coefficients
toward zero, causing a potentially significant bias. The post-Lasso estimator
is meant to remove some of this shrinkage bias. If model selection by Lasso
works perfectly, that is, if it selects exactly the “relevant” instruments, then the
resulting post-Lasso estimator is simply the standard OLS estimator using only
the relevant variables. In cases where perfect selection does not occur, post-
Lasso estimates of coefficients will still tend to be less biased than Lasso. We
prove the post-Lasso estimator achieves the same rate of convergence as Lasso,
which is a near-optimal rate, despite imperfect model selection by Lasso.

The introduction of self-normalization via the penalty loadings allows us to
contribute to the broad Lasso literature cited in the Introduction by showing
that, under possibly heteroscedastic and non-Gaussian errors, the Lasso and
post-Lasso estimators obey the following near-oracle performance bounds:

max
1≤l≤ke

‖D̂il −Dil‖2�n �P

√
s log(p∨ n)

n
and(2.9)

max
1≤l≤ke

‖β̂l −βl0‖1 �P

√
s2 log(p∨ n)

n
�

The performance bounds in (2.9) are called near-oracle because they coincide
up to a

√
logp factor with the bounds achievable when the ideal series terms Tl

for each of the ke regression equations in (2.2) are known. Our results extend
those of Bickel, Ritov, and Tsybakov (2009) for Lasso with Gaussian errors
and those of Belloni and Chernozhukov (2012) for post-Lasso with Gaussian
errors. Notably, these bounds are as sharp as the results for the Gaussian case
under the weak condition logp = o(n1/3). They are also the first results in the
literature that allow for data-driven choice of the penalty level.
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It is also useful to contrast the rates given in (2.9) with the rates available
for nonparametrically estimating conditional expectations in the series litera-
ture; see, for example, Newey (1997). Obtaining rates of convergence for se-
ries estimators relies on approximate sparsity just as our results do. Approx-
imate sparsity in the series context is typically motivated by smoothness as-
sumptions, but approximate sparsity is more general than typical smoothness
assumptions.8 The standard series approach postulates that the first K series
terms are the most important for approximating the target regression func-
tion Dil. The Lasso approach postulates that s terms from a large number p
of terms are important but does not require knowledge of the identity of these
terms or the number of terms, s, needed to approximate the target function
well enough that approximation errors are small relative to estimation error.
Lasso methods estimate both the optimal number of series terms s as well as
the identities of these terms, and thus automatically adapt to the unknown
sparsity (or smoothness) of the true optimal instrument (conditional expecta-
tion). This behavior differs sharply from standard series procedures that do
not adapt to the unknown sparsity of the target function unless the number of
series terms is chosen by a model selection method. Lasso-based methods may
also provide enhanced approximation of the optimal instrument by allowing
selection of the most important terms from among a set of very many series
terms, with total number of terms p � K that can be much larger than the
sample size.9 For example, a standard series approach based on K terms will
perform poorly when the terms m+1�m+2� � � � �m+ j are the most important
for approximating the optimal instrument for any K <m. On the other hand,
Lasso-based methods will find the important terms as long as p>m+ j, which
is much less stringent than what is required in usual series approaches since
p can be very large. This point can also be made using the array asymptotics
where the model changes with n in such a way that the important series terms
are always missed by the first K → ∞ terms. Of course, the additional flexibil-
ity allowed for by Lasso-based methods comes with a price, namely slowing the
rate of convergence by

√
logp relative to the usual series rates.

2.4. The Instrumental Variable Estimator Based on Lasso and Post-Lasso
Constructed Optimal Instrument

Given Condition AS, we take advantage of the approximate sparsity by using
Lasso and post-Lasso methods to construct estimates of Dl(xi) of the form

D̂l(xi) = f ′
i β̂l� l = 1� � � � �ke�

8See, for example, Belloni, Chernozhukov, and Hansen (2011a, 2011b) for detailed discussion
of approximate sparsity.

9We can allow for p � n for series formed with orthonormal bases with bounded components,
such as trigonometric bases, but further restrictions on the number of terms apply if bounds on
components of the series are allowed to increase with the sample size. For example, if we work
with B-spline series terms, we can only consider p = o(n) terms.
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and then set

D̂i =
(
D̂1(xi)� � � � � D̂ke(xi)�w

′
i

)′
�

The resulting IV estimator takes the form

α̂= En

[
D̂id

′
i

]−1
En[D̂iyi]�

The main result of this paper is to show that, despite the possibility of p being
very large, Lasso and post-Lasso can select a set of instruments to produce
estimates of the optimal instruments D̂i such that the resulting IV estimator
achieves the efficiency bound asymptotically:

√
n(̂α− α0)=d N

(
0�Λ∗)+ oP(1)�

The estimator matches the performance of the classical/standard series-based
IV estimator of Newey (1990) and has additional advantages mentioned in the
previous subsection. We also show that the IV estimator with Lasso-based op-
timal instruments continues to be root-n consistent and asymptotically normal
in the presence of heteroscedasticity:

√
n(̂α− α0)=d N

(
0�Q−1ΩQ−1

)+ oP(1)�(2.10)

where Ω := Ē[ε2
i D(xi)D(xi)

′] and Q := Ē[D(xi)D(xi)
′]. A consistent estimator

for the asymptotic variance is

Q̂−1Ω̂Q̂−1� Ω̂ := En

[̂
ε2
i D̂(xi)D̂(xi)

′]� Q̂ := En

[
D̂(xi)D̂(xi)

′]�(2.11)

where ε̂i := yi − d′
iα̂, i = 1� � � � � n. Using (2.11), we can perform robust infer-

ence.
We note that our result (2.10) for the IV estimator does not rely on the

Lasso and Lasso-based procedure specifically. We provide the properties of
the IV estimator for any generic sparsity-based procedure that achieves the
near-oracle performance bounds (2.9).

We conclude by stressing that our result (2.10) does not rely on perfect
model selection. Perfect model selection only occurs in extremely limited cir-
cumstances that are unlikely to occur in practice. We show that model selection
mistakes do not affect the asymptotic distribution of the IV estimator α̂ under
mild regularity conditions. The intuition is that the model selection mistakes
are sufficiently small to allow the Lasso or post-Lasso to estimate the first-
stage predictions with a sufficient, near-oracle accuracy, which translates to
the result above. Using analysis like that given in Belloni, Chernozhukov, and
Hansen (2011b), the result (2.10) can be shown to hold uniformly over models
with strong optimal instruments that are uniformly approximately sparse. We
also offer an inference test procedure in Section 4.2 that remains valid in the
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absence of a strong optimal instrument, is robust to many weak instruments,
and can be used even if p � n. This procedure could also be shown to be uni-
formly valid over a large class of models.

3. RESULTS ON LASSO AND POST-LASSO ESTIMATION OF CONDITIONAL
EXPECTATION FUNCTIONS UNDER HETEROSCEDASTIC,

NON-GAUSSIAN ERRORS

In this section, we present our main results on Lasso and post-Lasso estima-
tors of conditional expectation functions under nonclassical assumptions and
data-driven penalty choices. The problem we analyze in this section has many
applications outside the IV framework of the present paper.

3.1. Regularity Conditions for Estimating Conditional Expectations

The key condition concerns the behavior of the empirical Gram matrix
En[fif ′

i ]. This matrix is necessarily singular when p > n, so in principle it is
not well-behaved. However, we only need good behavior of certain moduli of
continuity of the Gram matrix. The first modulus of continuity is called the re-
stricted eigenvalue and is needed for Lasso. The second modulus is called the
sparse eigenvalue and is needed for post-Lasso.

To define the restricted eigenvalue, first define the restricted set:

ΔC�T = {
δ ∈ R

p :‖δTc‖1 ≤ C‖δT‖1� δ �= 0
}
�

The restricted eigenvalue of a Gram matrix M = En[fif ′
i ] takes the form

κ2
C(M) := min

δ∈ΔC�T �|T |≤s
s
δ′Mδ

‖δT‖2
1

�(3.1)

This restricted eigenvalue can depend on n, but we suppress the dependence
in our notation.

In making simplified asymptotic statements involving the Lasso estimator,
we invoke the following condition:

CONDITION RE: For any C > 0, there exists a finite constant κ > 0, which
does not depend on n but may depend on C, such that the restricted eigenvalue
obeys κC(En[fif ′

i ])≥ κ with probability approaching 1 as n→ ∞.

The restricted eigenvalue (3.1) is a variant of the restricted eigenvalues intro-
duced in Bickel, Ritov, and Tsybakov (2009) to analyze the properties of Lasso
in the classical Gaussian regression model. Even though the minimal eigen-
value of the empirical Gram matrix En[fif ′

i ] is zero whenever p ≥ n, Bickel, Ri-
tov, and Tsybakov (2009) showed that its restricted eigenvalues can be bounded
away from zero. Lemmas 1 and 2 below contain sufficient conditions for this.
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Many other sufficient conditions are available from the literature; see Bickel,
Ritov, and Tsybakov (2009). Consequently, we take restricted eigenvalues as
primitive quantities and Condition RE as a primitive condition.

COMMENT 3.1—On Restricted Eigenvalues: To gain intuition about re-
stricted eigenvalues, assume the exactly sparse model, in which there is no
approximation error. In this model, the term δ stands for a generic deviation
between an estimator and the true parameter vector β0. Thus, the restricted
eigenvalue represents a modulus of continuity between a penalty-related term
and the prediction norm, which allows us to derive the rate of convergence.
Indeed, the restricted eigenvalue bounds the minimum change in the predic-
tion norm induced by a deviation δ within the restricted set ΔC�T relative to
the norm of δT , the deviation on the true support. Given a specific choice of
the penalty level, the deviation of the estimator belongs to the restricted set,
making the restricted eigenvalue relevant for deriving rates of convergence.

To define the sparse eigenvalues, let us define the m-sparse subset of a unit
sphere as

Δ(m)= {
δ ∈ R

p :‖δ‖0 ≤m�‖δ‖2 = 1
}
�

and also define the minimal and maximal m-sparse eigenvalue of the Gram
matrix M = En[fif ′

i ] as

φmin(m)(M) = min
δ∈Δ(m)

δ′Mδ and φmax(m)(M) = max
δ∈Δ(m)

δ′Mδ�

To simplify asymptotic statements for post-Lasso, we use the following con-
dition:

CONDITION SE: For any C > 0, there exist constants 0 < κ′ < κ′′ <∞, which
do not depend on n but may depend on C, such that, with probability approach-
ing 1, as n → ∞, κ′ ≤φmin(Cs)(En[fif ′

i ])≤φmax(Cs)(En[fif ′
i ])≤ κ′′.

Condition SE requires only that certain “small” m × m submatrices of the
large p×p empirical Gram matrix are well-behaved, which is a reasonable as-
sumption and will be sufficient for the results that follow. Condition SE implies
Condition RE by the argument given in Bickel, Ritov, and Tsybakov (2009).
The following lemmas show that Conditions RE and SE are plausible for both
many-instrument and many-series-instrument settings. We refer to Belloni and
Chernozhukov (2012) for proofs; the first lemma builds upon results in Zhang
and Huang (2008) and the second builds upon results in Rudelson and Ver-
shynin (2008). The lemmas could also be derived from Rudelson and Zhou
(2011).
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LEMMA 1—Plausibility of Conditions RE and SE Under Many Gaussian In-
struments: Suppose fi, i = 1� � � � � n, are i.i.d. zero-mean Gaussian random vec-
tors. Further suppose that the population Gram matrix E[fif ′

i ] has s logn-sparse
eigenvalues bounded from above and away from zero uniformly in n. Then if
s logn = o(n/ logp), Conditions RE and SE hold.

LEMMA 2—Plausibility of Conditions RE and SE Under Many Series In-
struments: Suppose fi, i = 1� � � � � n, are i.i.d. bounded zero-mean random vectors
with ‖fi‖∞ ≤KB a.s. Further suppose that the population Gram matrix E[fif ′

i ] has
s logn-sparse eigenvalues bounded from above and away from zero uniformly in n.
Then if K2

Bs log2(n) log2(s logn) log(p∨n)= o(n), Conditions RE and SE hold.

In the context of i.i.d. sampling, a standard assumption in econometric re-
search is that the population Gram matrix E[fif ′

i ] has eigenvalues bounded
from above and below; see, for example, Newey (1997). The lemmas above
allow for this and more general behavior, requiring only that the sparse eigen-
values of the population Gram matrix E[fif ′

i ] are bounded from below and
from above. The latter is important for allowing functions fi to be formed as
a combination of elements from different bases, for example, a combination
of B-splines with polynomials. The lemmas above further show that the good
behavior of the population sparse eigenvalues translates into good behavior of
empirical sparse eigenvalues under some restrictions on the growth of s in rela-
tion to the sample size n. For example, if p grows polynomially with n and the
components of technical regressors are uniformly bounded, Lemma 2 holds
provided s = o(n/ log5 n).

We also impose the following moment conditions on the reduced form errors
vil and regressors fi, where we let d̃il := dil − Ē[dil].

CONDITION RF: (i) maxl≤ke�j≤p Ē[d̃2
il] + Ē[|f 2

ij d̃
2
il|] + 1/Ē[f 2

ij v
2
il] � 1,

(ii) maxl≤ke�j≤pĒ[|f 3
ij v

3
il|] � Kn, (iii) K2

n log3(p ∨ n) = o(n) and s log(p ∨ n) =
o(n), (iv) maxi≤n�j≤p f

2
ij [s log(p∨n)]/n→P 0 and maxl≤ke�j≤p |(En − Ē)[f 2

ij v
2
il]|+

|(En − Ē)[f 2
ij d̃

2
il]| →P 0�

We emphasize that the conditions given above are only one possible set of
sufficient conditions, which are presented in a manner that reduces the com-
plexity of the exposition.

The following lemma shows that the population and empirical moment con-
ditions appearing in Condition RF are plausible for both many-instrument and
many-series-instrument settings. Note that we say that a random variable gi

has uniformly bounded conditional moments of order K if, for some positive
constants 0 <B1 <B2 <∞,

B1 ≤ E
[|gi|k|xi

]≤ B2 with probability 1�

for k= 1� � � � �K� i = 1� � � � � n�
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LEMMA 3 —Plausibility of Condition RF: 1. If the moments Ē[d̃8
il] and

Ē[v8
il] are bounded uniformly in 1 ≤ l ≤ ke and in n, the regressors fi obey

max1≤j≤p En[f 8
ij ] �P 1 and max1≤i≤n�1≤j≤p f

2
ij
s log(p∨n)

n
→P 0, Conditions RF(i)–(iii)

imply Condition RF(iv). 2. Suppose that {(fi� d̃i� vi)� i = 1� � � � � n} are i.i.d. vec-
tors, and that d̃il and vil have uniformly bounded conditional moments of order
4 uniformly in l = 1� � � � �ke. (a) If the regressors fi are Gaussian as in Lemma 1,
Condition RF(iii) holds, and s log2(p ∨ n)/n → 0, then Conditions RF(i), (ii),
and (iv) hold. (b) If the regressors fi have bounded entries as in Lemma 2, then
Conditions RF(i), (ii), and (iv) hold under Condition RF(iii).

3.2. Results on Lasso and Post-Lasso for Estimating Conditional Expectations

We consider Lasso and post-Lasso estimators defined in equations (2.4) and
(2.8) in the system of ke nonparametric regression equations (2.3) with non-
Gaussian and heteroscedastic errors. These results extend the previous results
of Bickel, Ritov, and Tsybakov (2009) for Lasso and of Belloni and Cher-
nozhukov (2012) for post-Lasso with Gaussian i.i.d. errors. In addition, we ac-
count for the fact that we are simultaneously estimating ke regressions, and
account for the dependence of our results on ke.

The following theorem presents the properties of Lasso. Let us call asymp-
totically valid any penalty loadings Υ̂l that obey a.s.

�Υ̂ 0
l ≤ Υ̂l ≤ uΥ̂ 0

l �(3.2)

with 0 < � ≤ 1 ≤ u such that � →P 1 and u →P u′ with u′ ≥ 1. The penalty
loadings constructed by Algorithm A.1 satisfy this condition.

THEOREM 1—Rates for Lasso Under Non-Gaussian and Heteroscedastic
Errors: Suppose that in the regression model (2.3), Conditions AS and RF hold.
Suppose the penalty level is specified as in (2.7), and consider any asymptoti-
cally valid penalty loadings Υ̂ , for example, penalty loadings constructed by Al-
gorithm A.1 stated in Appendix A. Then, the Lasso estimator β̂l = β̂lL and the
Lasso fit D̂il = f ′

i β̂lL, l = 1� � � � �ke, satisfy

max
1≤l≤ke

‖D̂il −Dil‖2�n �P
1
κC̄

√
s log(kep/γ)

n

and

max
1≤l≤ke

‖β̂l −βl0‖1 �P
1

(κ2C̄)2

√
s2 log(kep/γ)

n
�

where C̄ = max1≤l≤ke{‖Υ̂ 0
l ‖∞‖(Υ̂ 0

l )
−1‖∞}(uc + 1)/(�c − 1) and κC̄ =

κC̄(En[fif ′
i ]).
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The theorem provides a rate result for the Lasso estimator constructed
specifically to deal with non-Gaussian errors and heteroscedasticity. The rate
result generalizes, and is as sharp as, the rate results of Bickel, Ritov, and
Tsybakov (2009) obtained for the homoscedastic Gaussian case. This gener-
alization is important for real applications where non-Gaussianity and het-
eroscedasticity are ubiquitous. Note that the obtained rate is near-optimal in
the sense that if we happened to know the model T�, that is, if we knew the
identities of the most important variables, we would only improve the rate by
the logp factor. The theorem also shows that the data-driven penalty loadings
defined in Algorithm A.1 are asymptotically valid.

The following theorem presents the properties of post-Lasso, which re-
quires a mild assumption on the number of additional variables in the set Îl,
l = 1� � � � �ke. We assume that the size of these sets is not substantially larger
than the model selected by Lasso, namely, a.s.

|Îl \ T̂l| � 1 ∨ |T̂l|� l = 1� � � � �ke�(3.3)

THEOREM 2—Rates for Post-Lasso Under Non-Gaussian and Heteroscedas-
tic Errors: Suppose that in the regression model (2.3), Conditions AS and RF
hold. Suppose the penalty level for the Lasso estimator is specified as in (2.7),
that Lasso’s penalty loadings Υ̂ are asymptotically valid, and the sets of additional
variables obey (3.3). Then, the post-Lasso estimator β̂l = β̂lPL and the post-Lasso
fit D̂il = f ′

i β̂lPL, l = 1� � � � �ke, satisfy

max
1≤l≤ke

‖D̂il −Dil‖2�n �P
μ

κC̄

√
s log(kep/γ)

n

and

max
1≤l≤ke

‖β̂l −βl0‖1 �P
μ2

(κC̄)2

√
s2 log(kep/γ)

n
�

where μ2 = mink{φmax(k)(En[fif ′
i ])/φmin(k+ s)(En[fif ′

i ]) :k> 18C̄2sφmax(k)×
(En[fif ′

i ])/(κC̄)
2} for C̄ defined in Theorem 1.

The theorem provides a rate result for the post-Lasso estimator with non-
Gaussian errors and heteroscedasticity. The rate result generalizes the results
of Belloni and Chernozhukov (2012) obtained for the homoscedastic Gaussian
case. The post-Lasso achieves the same near-optimal rate of convergence as
Lasso. As stressed in the introductory sections, our analysis allows Lasso to
make model selection mistakes, which is expected generically. We show that
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these model selection mistakes are small enough to allow the post-Lasso esti-
mator to perform as well as Lasso.10

Rates of convergence in different norms can also be of interest in other ap-
plications. In particular, the �2-rate of convergence can be derived from the
rate of convergence in the prediction norm and Condition SE using a sparsity
result for Lasso established in Appendix D. Below we specialize the previous
theorems to the important case where Condition SE holds.

COROLLARY 1—Rates for Lasso and Post-Lasso Under Condition SE: Un-
der the conditions of Theorem 2 and Condition SE, the Lasso and post-Lasso
estimators satisfy

max
1≤l≤ke

‖D̂il −Dil‖2�n �P

√
s log(p∨ n)

n
�

max
1≤l≤ke

‖β̂l −βl0‖2 �P

√
s log(p∨ n)

n
�

max
1≤l≤ke

‖β̂l −βl0‖1 �P

√
s2 log(p∨ n)

n
�

The rates of convergence in the prediction norm and �2-norm are faster than
the rate of convergence in the �1-norm, which is typical of high-dimensional
settings.

4. MAIN RESULTS ON IV ESTIMATION

In this section, we present our main inferential results on instrumental vari-
able estimators.

4.1. The IV Estimator With Lasso-Based Instruments

We impose the following moment conditions on the instruments, the struc-
tural errors, and regressors.

CONDITION SM: (i) The eigenvalues of Q = Ē[D(xi)D(xi)
′] are bounded

uniformly from above and away from zero, uniformly in n. The conditional
variance E[ε2

i |xi] is bounded uniformly from above and away from zero, uni-
formly in i and n. Given this assumption, without loss of generality, we normal-
ize the instruments so that Ē[f 2

ij ε
2
i ] = 1 for each 1 ≤ j ≤ p and for all n.

10Under further conditions stated in proofs, post-Lasso can sometimes achieve a faster rate of
convergence. In special cases where perfect model selection is possible, post-Lasso becomes the
so-called oracle estimator and can completely remove the logp factor.
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(ii) For some q > 2 and qε > 2, uniformly in n,

max
1≤j≤p

Ē
[|fijεi|3

]+ Ē
[‖Di‖q

2 |εi|2q
]+ Ē

[‖Di‖q
2

]
+ Ē

[|εi|qε]+ Ē
[‖di‖q

2

]
� 1�

(iii) In addition to log3 p = o(n), the following growth conditions hold:

(a)
s log(p∨ n)

n
n2/qε → 0�

(b)
s2 log2(p∨ n)

n
→ 0�

(c) max
1≤j≤p

En

[
f 2
ij ε

2
i

]
�P 1�

COMMENT 4.1—On Condition SM: Condition SM(i) places restrictions on
the variation of the structural errors (ε) and the optimal instruments (D(x)).
The first condition about the variation in the optimal instrument guarantees
that identification is strong; that is, it ensures that the conditional expecta-
tion of the endogenous variables given the instruments is a nontrivial func-
tion of the instruments. This assumption rules out non-identification, in which
case D(x) does not depend on x, and weak-identification, in which case D(x)
would be local to a constant function. We present an inference procedure that
remains valid without this condition in Section 4.2. The remaining restriction
in Condition SM(i) requires that structural errors are boundedly heteroscedas-
tic. Given this, we make a normalization assumption on the instruments. This
entails no loss of generality since this is equivalent to suitably rescaling the pa-
rameter space for coefficients βl0� l = 1� � � � �ke, via an isomorphic transforma-
tion. We use this normalization to simplify notation in the proofs, but do not
use it in the construction of the estimators. Condition SM(ii) imposes some
mild moment assumptions. Condition SM(iii) strengthens the growth require-
ment s logp/n → 0 needed for estimating conditional expectations. However,
the restrictiveness of Condition SM(iii)(a) rapidly decreases as the number of
bounded moments of the structural error increases. Condition SM(iii)(b) indi-
rectly requires the optimal instruments in Condition AS to be smooth enough
that the number of unknown series terms s needed to approximate them well
is not too large. This condition ensures that the impact of the instrument esti-
mation on the IV estimator is asymptotically negligible. This condition can be
relaxed using the sample-splitting method.

The following lemma shows that the moment assumptions in Condi-
tion SM(iii) are plausible for both many-instrument and many-series-instru-
ment settings.



METHODS FOR OPTIMAL INSTRUMENTS 2391

LEMMA 4—Plausibility of Condition SM(iii): Suppose that the structural dis-
turbance εi has uniformly bounded conditional moments of order 4 uniformly in n
and that s2 log2(p∨n) = o(n). Then Condition SM(iii) holds if (a) the regressors
fi are Gaussian as in Lemma 1, or (b) the regressors fi are arbitrary i.i.d. vectors
with bounded entries as in Lemma 2.

The first result describes the properties of the IV estimator with the optimal
IV constructed using Lasso or post-Lasso in the setting of the standard model.
The result also provides a consistent estimator for the asymptotic variance of
this estimator under heteroscedasticity.

THEOREM 3—Inference With Optimal IV Estimated by Lasso or Post-Lasso:
Suppose that data (yi� xi� di) are i.n.i.d. and obey the linear IV model described
in Section 2. Suppose also that Conditions AS, RF, SM, (2.7), and (3.2) hold.
To construct the estimate of the optimal instrument, suppose that Condition RE
holds in the case of using Lasso or that Condition SE and (3.3) hold in the case
of using post-Lasso. Then the IV estimator α̂, based on either Lasso or post-Lasso
estimates of the optimal instrument, is root-n consistent and asymptotically nor-
mal: (

Q−1ΩQ−1
)−1/2√

n(̂α− α0)→d N(0� I)

for Ω := Ē[ε2
i D(xi)D(xi)

′] and Q := Ē[D(xi)D(xi)
′]. Moreover, the result above

continues to hold with Ω replaced by Ω̂ := En[̂ε2
i D̂(xi)D̂(xi)

′] for ε̂i = yi − d′
iα̂,

and Q replaced by Q̂ := En[D̂(xi)D̂(xi)
′]. In the case that the structural error εi

is homoscedastic conditional on xi, that is, E[ε2
i |xi] = σ2 a.s. for all i = 1� � � � � n,

the IV estimator α̂ based on either Lasso or post-Lasso estimates of the optimal
instrument is root-n consistent, asymptotically normal, and achieves the efficiency
bound (Λ∗)−1/2√n(̂α − α0) →d N(0� I), where Λ∗ := σ2Q−1. The result above
continues to hold with Λ∗ replaced by Λ̂∗ := σ̂2Q̂−1, where Q̂ := En[D̂(xi)D̂(xi)

′]
and σ̂2 := En[(yi − d′

iα̂)
2].

In the setting with homoscedastic structural errors, the estimator achieves
the efficiency bound asymptotically. In the case of heteroscedastic structural
errors, the estimator does not achieve the efficiency bound, but we can expect
it to be close to achieving the bound if heteroscedasticity is mild.

The final result of this section extends the previous result to any IV estimator
with a generic sparse estimator of the optimal instruments.

THEOREM 4—Inference With IV Constructed by a Generic Sparsity-Based
Procedure: Suppose that Conditions AS and SM hold, and suppose that the fitted
values of the optimal instrument, D̂il = f ′

i β̂l, are constructed using any estimator
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β̂l such that

max
1≤l≤ke

‖D̂il −Dil‖2�n �P

√
s log(p∨ n)

n
and(4.1)

max
1≤l≤ke

‖β̂l −βl0‖1 �P

√
s2 log(p∨ n)

n
�

Then the conclusions reached in Theorem 3 continue to apply.

This result shows that the previous two theorems apply for any first-stage
estimator that attains near-oracle performance given in (4.1). Examples of
other sparse estimators covered by this theorem are Dantzig and Gauss–
Dantzig (Candes and Tao (2007)),

√
Lasso and post-

√
Lasso (Belloni, Cher-

nozhukov, and Wang (2011a, 2011b)), thresholded Lasso and post-thresholded
Lasso (Belloni and Chernozhukov (2012)), group Lasso and post-group Lasso
(Huang, Horowitz, and Wei (2010), Lounici et al. (2010)), adaptive versions
of the above (Huang, Horowitz, and Wei (2010)), and boosting (Bühlmann
(2006)). Verification of the near-oracle performance (4.1) can be done on a
case by case basis using the best conditions in the literature.11 Our results ex-
tend to Lasso-type estimators under alternative forms of regularity conditions
that fall outside the framework of Conditions RE and RF; all that is required
is the near-oracle performance of the kind (4.1).

4.2. Inference When Instruments Are Weak

When instruments are weak individually, Lasso may end up selecting no in-
struments or may produce unreliable estimates of the optimal instruments. To
cover this case, we propose a method for inference based on inverting point-
wise tests performed using a sup-score statistic defined below. The procedure
is similar in spirit to Anderson and Rubin (1949) and Staiger and Stock (1997),
but uses a different statistics that is better suited to cases with very many in-
struments. To describe the approach, we rewrite the main structural equation
as

yi = d′
eiα1 +w′

iα2 + εi� E[εi|xi] = 0�(4.2)

where yi is the response variable, dei is a vector of endogenous variables, wi

is a kw-vector of control variables, xi = (z′
i�w

′
i)

′ is a vector of elementary in-
strumental variables, and εi is a disturbance such that ε1� � � � � εn are i.n.i.d.

11Post-�1-penalized procedures have only been analyzed for the case of Lasso and
√

Lasso;
see Belloni and Chernozhukov (2012) and Belloni, Chernozhukov, and Wang (2011a). We expect
that similar results carry over to other procedures listed above.
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conditional on X = [x′
1� � � � � x

′
n]. We partition di = (dei

′�w′
i)

′. The parameter
of interest is α1 ∈ A1 ⊂ R

ke . We use fi = P(xi), a vector which includes wi, as
technical instruments. In this subsection, we treat X as fixed; that is, we condi-
tion on X .

We would like to use a high-dimensional vector fi of technical instruments
for inference on α1 that is robust to weak identification. To formulate a practi-
cal sup-score statistic, it is useful to partial-out the effect of wi on the key vari-
ables. For an n-vector {ui� i = 1� � � � � n}, define ũi = ui −w′

iEn[wiw
′
i]−1

En[wiui],
that is, the residuals left after regressing this vector on {wi� i = 1� � � � � n}. Hence
ỹi, d̃ei, and f̃ij are residuals obtained by partialling out controls wi. Also, let

f̃i = (f̃i1� � � � � f̃ip)
′�(4.3)

In this formulation, we omit elements of wi from f̃ij since they are eliminated
by partialling out. We then normalize these technical instruments so that

En

[
f̃ 2
ij

]= 1� j = 1� � � � �p�(4.4)

The sup-score statistic for testing the hypothesis α1 = a takes the form

Λa = max
1≤j≤p

∣∣nEn

[(
ỹi − d̃′

eia
)
f̃ij
]∣∣/√En

[(
ỹi − d̃′

eia
)2
f̃ 2
ij

]
�(4.5)

As before, we apply self-normalized moderate deviation theory for self-
normalized sums to obtain

P
(
Λα1 ≤ c

√
n�−1(1 − γ/2p)

)≥ 1 − γ + o(1)�

Therefore, we can employ Λ(1−γ) := c
√
n�−1(1−γ/2p) for c > 1 as a critical

value for testing α1 = a using Λa as the test statistic. The asymptotic (1 − γ)-
confidence region for α1 is then given by C := {a ∈ A1 :Λa ≤ Λ(1 − γ)}�

The construction of confidence regions above can be given the following
Inverse Lasso interpretation. Let

β̂a ∈ arg min
β∈Rp

En

[(
ỹi − d̃′

eia
)− f̃ ′

ijβ
]2 + λ

n

p∑
j=1

γaj|βj|�

γaj =
√

En

[(
ỹi − d̃′

eia
)2
f̃ 2
ij

]
�

If λ = 2Λ(1−γ), then C is equivalent to the region {a ∈ R
ke : β̂a = 0}. In words,

this confidence region collects all potential values of the structural parameter
where the Lasso regression of the potential structural disturbance on the in-
struments yields zero coefficients on the instruments. This idea is akin to the
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Inverse Quantile Regression and Inverse Least Squares ideas in Chernozhukov
and Hansen (2008a, 2008b).

Below, we state the main regularity condition for the validity of inference
using the sup-score statistic as well as the formal inference result.

CONDITION SM2: Suppose that, for each n, the linear model (4.2) holds with
α1 ∈ A1 ⊂ R

ke such that ε1� � � � � εn are i.n.i.d., X is fixed, and f̃1� � � � � f̃n are p-
vectors of technical instruments defined in (4.3) and (4.4). Suppose that (i) the
dimension of wi is kw and ‖wi‖2 ≤ ζw such that

√
kwζw/

√
n → 0, (ii) the eigen-

values of En[wiw
′
i] are bounded away from zero and eigenvalues of Ē[ε2

i wiw
′
i]

are bounded away from above, uniformly in n, (iii) max1≤j≤p Ē[|εi|3|f̃ij|3]1/3/

Ē[ε2
i f̃

2
ij ]1/2 ≤Kn, and (iv) K2

n log(p∨ n) = o(n1/3).

THEOREM 5 —Valid Inference Based on the Sup-Score Statistic: Let γ ∈
(0�1) be fixed or, more generally, such that log(1/γ)� log(p∨ n). Under Condi-
tion SM2, (i) in large samples, the constructed confidence set C contains the true
value α1 with at least the prescribed probability, namely P(α1 ∈ C) ≥ 1−γ−o(1)�
(ii) Moreover, the confidence set C necessarily excludes a sequence of parameter
value a, namely P(a ∈ C)→ 0, if

max
1≤j≤p

√
n/ log(p/γ)|En[(a− α1)

′d̃eif̃ij]|
c
√

En[ε2
i f̃

2
ij ] +

√
En[{(a− α1)′d̃ei}2f̃ 2

ij ]
→P ∞�

The theorem shows that the confidence region C constructed above is valid
in large samples and that the probability of including a false point a in C tends
to zero as long as a is sufficiently distant from α1 and instruments are not too
weak. In particular, if there is a strong instrument, the confidence regions will
eventually exclude points a that are further than

√
log(p∨ n)/n away from α1.

Moreover, if there are instruments whose correlation with the endogenous
variable is of greater order than

√
log(p∨ n)/n, then the confidence regions

will asymptotically be bounded.

5. FURTHER INFERENCE AND ESTIMATION RESULTS FOR THE IV MODEL

In this section, we provide further estimation and inference results. We de-
velop an overidentification test that compares the IV-Lasso based estimates
to estimates obtained using a baseline set of instruments. We also combine
the IV selection using Lasso with a sample-splitting technique from the many-
instruments literature which allows us to relax the growth requirement on the
number of relevant instruments.



METHODS FOR OPTIMAL INSTRUMENTS 2395

5.1. A Specification Test for Validity of Instrumental Variables

Here we develop a Hausman-style specification test for the validity of the
instrumental variables. Let Ai = A(xi) be a baseline set of instruments, with
dim(Ai) ≥ dim(α) = kα bounded. Let α̃ be the baseline instrumental variable
estimator based on these instruments:

α̃= (
En

[
diA

′
i

]
En

[
AiA

′
i

]−1
En

[
Aid

′
i

])−1
En

[
diA

′
i

]
En

[
AiA

′
i

]−1
En[Aiyi]�

If the instrumental variable exclusion restriction is valid, then the unscaled
difference between this estimator and the IV estimator α̂ proposed in the pre-
vious sections should be small. If the exclusion restriction is not valid, the dif-
ference between α̃ and α̂ should be large. Therefore, we can reject the null
hypothesis of instrument validity if the difference is large.

We formalize the test as follows. Suppose we care about R′α for some k×kd

matrix R of rank(R) = k. For instance, we might care only about the first k
components of α, in which case R = [Ik 0] is a k × kd matrix that selects the
first k coefficients of α. Define the estimand for α̃ as

α= (
Ē
[
diA

′
i

]
Ē
[
AiA

′
i

]−1
Ē
[
Aid

′
i

])−1
Ē
[
diA

′
i

]
Ē
[
AiA

′
i

]−1
Ē[Aiyi]�

and define the estimand of α̂ as

αa = Ē
[
D(xi)D(xi)

′]−1
Ē
[
D(xi)yi

]
�

The null hypothesis H0 is R(α − αa) = 0 and the alternative Ha is R(α −
αa) �= 0. We can form a test statistic

J = √
n(α̃− α̂)′R′(RΣ̂R′)−1√

nR(α̃− α̂)

for a matrix Σ̂ defined below and reject H0 if J > cγ , where cγ is the (1 −
γ)-quantile of chi-squared random variable with k degrees of freedom. The
justification for this test is provided by the following theorem, which builds
upon the previous results coupled with conventional results for the baseline
instrumental variable estimator.12

THEOREM 6—Specification Test: (a) Suppose the conditions of Theorem 3
hold, that Ē[‖Ai‖q

2] is bounded uniformly in n for q > 4, and the eigenvalues of

Σ := Ē
[
ε2
i

(
MAi −Q−1D(xi)

)(
MAi −Q−1D(xi)

)′]
are bounded from above and below, uniformly in n, where

M = (
Ē
[
diA

′
i

]
Ē
[
AiA

′
i

]−1
Ē
[
Aid

′
i

])−1
Ē
[
diA

′
i

]
Ē
[
AiA

′
i

]−1
�

12The proof of this result is provided in the Supplemental Material (Belloni, Chen, Cher-
nozhukov, and Hansen (2012)).
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Then
√
nΣ̂−1/2(α̃− α̂)′ →d N(0� I) and J →d χ

2(k)� where

Σ̂= En

[̂
ε2
i

(
M̂−1Ai − Q̂−1D̂(xi)

)(
M̂−1Ai − Q̂−1D̂(xi)

)′]
for ε̂i = yi − d′

iα̂, Q̂ = En[D̂(xi)D̂(xi)
′], and

M̂ = (
En

[
diA

′
i

]
En

[
AiA

′
i

]−1
En

[
Aid

′
i

])−1
En

[
diA

′
i

]
En

[
AiA

′
i

]−1
�

(b) Suppose the conditions of Theorem 3 hold with the exception that
E[Aiεi] = 0 for all i = 1� � � � � n and n, but ‖Ē[D(xi)εi]‖2 is bounded away from
zero. Then J →P ∞.

5.2. Split-Sample IV Estimator

The rate condition s2 log2(p ∨ n) = o(n) can be substantive and cannot be
substantially weakened for the full-sample IV estimator considered above.
However, we can replace this condition with the weaker condition that

s log(p∨ n)= o(n)

by employing a sample-splitting method from the many-instruments literature
(Angrist and Krueger (1995)). Specifically, we consider dividing the sample
randomly into (approximately) equal parts a and b, with sizes na = �n/2�
and nb = n − na. We use superscripts a and b for variables in the first and
second subsample, respectively. The index i will enumerate observations in
both samples, with ranges for the index given by 1 ≤ i ≤ na for sample a and
1 ≤ i ≤ nb for sample b. We can use each of the subsamples to fit the first
stage via Lasso or post-Lasso to obtain the first-stage estimates β̂k

l �k = a�b�

and l = 1� � � � �ke. Then setting D̂a
il = f a

i
′β̂b

l �1 ≤ i ≤ na, D̂b
il = f b

i

′
β̂a

l �1 ≤ i ≤ nb,
D̂k

i = (D̂k
i1� � � � � D̂

k
ike
�wk

i

′
)′�k = a�b, we form the IV estimates in the two sub-

samples:

α̂a = Ena

[
D̂a

i d
a
i

′]−1
Ena

[
D̂a

i y
a
i

]
and α̂b = Enb

[
D̂b

i d
b
i

′]−1
Enb

[
D̂b

i y
b
i

]
�

Then we combine the estimates into one:

α̂ab = (
naEna

[
D̂a

i D̂
a
i
′]+ nbEnb

[
D̂b

i D̂
b
i
′])−1

(5.1)

× (
naEna

[
D̂a

i D̂
a
i
′]̂αa + nbEnb

[
D̂b

i D̂
b
i
′]̂αb

)
�

The following result shows that the split-sample IV estimator α̂ab has the
same large sample properties as the estimator α̂ of the previous section but
requires a weaker growth condition.
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THEOREM 7—Inference With a Split-Sample IV Based on Lasso or Post-
Lasso: Suppose that data (yi� xi� di) are i.n.i.d. and obey the linear IV model de-
scribed in Section 2. Suppose also that Conditions AS, RF, SM, (2.7), (3.2), and
(3.3) hold, except that instead of growth condition s2 log2(p∨ n) = o(n), we now
have a weaker growth condition s log(p ∨ n) = o(n). Suppose also that Condi-
tion SE holds for Mk = Enk[f k

i f
k
i

′] for k= a�b. Let D̂k
il = f k

i
′β̂kc

l , where β̂kc

l is the
Lasso or post-Lasso estimator applied to the subsample {(dkc

li � f
kc

i ) : 1 ≤ i ≤ nkc }
for k = a�b, and kc = {a�b} \ k. Then the split-sample IV estimator based on
equation (5.1) is

√
n-consistent and asymptotically normal, as n → ∞:(

Q−1ΩQ−1
)−1/2√

n(̂αab − α0)→d N(0� I)

for Ω := Ē[ε2
i D(xi)D(xi)

′] and Q := Ē[D(xi)D(xi)
′]. Moreover, the result above

continues to hold with Ω replaced by Ω̂ := En[̂ε2
i D̂(xi)D̂(xi)

′] for ε̂i = yi − d′
iα̂ab,

and Q replaced by Q̂ := En[D̂(xi)D̂(xi)
′].

6. SIMULATION EXPERIMENT

The previous sections’ results suggest that using Lasso for fitting first-stage
regressions should result in IV estimators with good estimation and inference
properties. In this section, we provide simulation evidence regarding these
properties in a situation where there are many possible instruments. We also
compare the performance of the developed Lasso-based estimators to many-
instrument robust estimators that are available in the literature.

Our simulations are based on a simple instrumental variables model data-
generating process (DGP):

yi = βdi + ei�

di = z′
iΠ + vi�

(ei� vi)∼ N

(
0�
(
σ2

e σev

σev σ2
v

))
i.i.d.�

where β = 1 is the parameter of interest, and zi = (zi1� zi2� � � � � zi100)
′ ∼

N(0�ΣZ) is a 100 × 1 vector with E[z2
ih] = σ2

z and Corr(zih� zij) = 0�5|j−h|. In
all simulations, we set σ2

e = 1 and σ2
z = 1. We also set Corr(e� v)= 0�6�

For the other parameters, we consider various settings. We provide results
for sample sizes, n, of 100 and 250. We set σ2

v so that the unconditional vari-
ance of the endogenous variable equals 1; that is, σ2

v = 1 − Π′ΣZΠ. We use
three different settings for the pattern of the first-stage coefficients, Π. In the
first, we set Π = CΠ̃ = C(1�0�7�0�72� � � � �0�798�0�799)′; we term this the “expo-
nential” design. In the second and third case, we set Π = CΠ̃ = C(ιs�0n−s)

′,
where ιs is a 1 × s vector of ones and 0n−s is a 1 × n − s vector of zeros. We
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term this the “cut-off” design and consider two different values of s, s = 5 and
s = 50. In the exponential design, the model is not literally sparse, although
the majority of explanatory power is contained in the first few instruments.
While the model is exactly sparse in the cut-off design, we expect Lasso to per-
form poorly with s = 50 since treating s2 log2 p

n
as vanishingly small seems like a

poor approximation given the sample sizes considered. We consider different
values of the constant C that are chosen to generate target values for the con-
centration parameter, μ2 = nΠ′ΣZΠ

σ2
v

, which plays a key role in the behavior of IV
estimators; see, for example, Stock, Wright, and Yogo (2002) or Hansen, Haus-
man, and Newey (2008).13 Specifically, we choose C to solve μ2 = nC2Π̃ΣZΠ̃

1−C2Π̃ΣZΠ̃
for

μ2 = 30 and for μ2 = 180. These values of the concentration parameter were
chosen by using estimated values from the empirical example reported below
as a benchmark.14

For each setting of the simulation parameter values, we report results from
seven different procedures. A simple possibility, when presented with many
instrumental variables (with p < n), is to just estimate the model using 2SLS
and all of the available instruments. It is well known that this will result in
poor finite-sample properties unless there are many more observations than in-
struments; see, for example, Bekker (1994). The estimator proposed in Fuller
(1977) (FULL) is robust to many instruments (with p < n) as long as the
presence of many instruments is accounted for when constructing standard
errors for the estimators; see Hansen, Hausman, and Newey (2008), for ex-
ample.15 We report results for these estimators in rows labeled 2SLS(100) and
FULL(100), respectively.16 For our variable selection procedures, we use Lasso
to select among the instruments using the refined data-dependent penalty
loadings given in (A.1), described in Appendix A, and consider two post-model
selection estimation procedures. The first, post-Lasso, runs 2SLS using the in-
struments selected by Lasso; and the second, post-Lasso-F, runs FULL using

13The concentration parameter is closely related to the first-stage Wald statistic and first-
stage F-statistic for testing that the coefficients on the instruments are equal to 0. Under ho-
moscedasticity, the first-stage Wald statistic is W = Π̂′(Z′Z)Π̂/σ̂2

v and the first-stage F-statistic is
W/dim(Z).

14In the empirical example, first-stage Wald statistics based on the selected instruments range
from between 44 and 243. In the cases with constant coefficients, our concentration parameter
choices correspond naturally to “infeasible F-statistics” defined as μ2/s of 6 and 36 with s = 5
and 0.6 and 3.6 with s = 50. In the Supplemental Material (Belloni et al. 2012), we provide addi-
tional simulation results. The results reported in the current section are sufficient to capture the
key patterns.

15FULL requires a user-specified parameter. We set this parameter equal to 1, which produces
a higher-order unbiased estimator. See Hahn, Hausman, and Kuersteiner (2004) for additional
discussion. Limited information maximum likelihood (LIML) is another commonly proposed
estimator that is robust to many instruments. In our designs, its performance was generally similar
to that of FULL, and we report only FULL for brevity.

16With n= 100, estimates are based on a randomly selected 99 instruments.
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the instruments selected by Lasso. In cases where no instruments are selected
by Lasso, we use the point-estimate obtained by running 2SLS with the single
instrument with the highest within sample correlation to the endogenous vari-
able as the point estimate for post-Lasso and post-Lasso-F. In these cases, we
use the sup-score test for performing inference.17 We report inference results
based on the weak-identification robust sup-score testing procedure in rows
labeled “sup-Score.”

The other two procedures, “post-Lasso (Ridge)” and “post-Lasso-F
(Ridge),” use a combination of Ridge regression, Lasso, and sample-splitting.
For these procedures, we randomly split the sample into two equal-sized parts.
Call these subsamples “sample A” and “sample B.” We then use leave-one-out
cross-validation with only the data in sample A to select a ridge penalty pa-
rameter, and then estimate a set of ridge coefficients using this penalty and
the data from sample A. We then use the data from sample B with these co-
efficients estimated using only data from sample A to form first-stage fitted
values for sample B. Then, we take the full set of instruments augmented with
the estimated fitted value just described and perform Lasso variable selection
using only the data from sample B. We use the selected variables to run either
2SLS or Fuller in sample B to obtain estimates of β (and associated standard
errors), say β̂B�2SLS (sB�2SLS) and β̂B�Fuller (sB�Fuller). We then repeat this exercise
switching samples A and B to obtain estimates of β (and associated standard
errors) from sample A, say β̂A�2SLS (sA�2SLS) and β̂A�Fuller (sA�Fuller). Post-Lasso

(Ridge) is then wA�2SLSβ̂A�2SLS + (1 − wA�2SLS)β̂B�2SLS for wA�2SLS = s2
B�2SLS

s2
A�2SLS+s2

B�2SLS
,

and post-Lasso-F (Ridge) is defined similarly. If instruments are selected in
one subsample but not in the other, we put weight 1 on the estimator from the
subsample where instruments were selected. If no instruments are selected in
either subsample, we use the single instrument with the highest correlation to
obtain the point-estimate and use the sup-score test for performing inference.

For each estimator, we report median bias (Med. Bias), median absolute
deviation (MAD), and rejection frequencies for 5% level tests (rp(0.05)).
For computing rejection frequencies, we estimate conventional, homoscedastic
2SLS standard errors for 2SLS(100) and post-Lasso and the many-instrument
robust standard errors of Hansen, Hausman, and Newey (2008), which rely on
homoscedasticity for FULL(100) and post-Lasso-F. We report the number of
cases in which Lasso selected no instruments in the column labeled N(0).

We summarize the simulation results in Table I. It is apparent that the Lasso
procedures are dominant when n = 100� In this case, the Lasso-based proce-
dures outperform 2SLS(100) and FULL(100) on all dimensions considered.
When the concentration parameter is 30 or s = 50, the instruments are rel-
atively weak, and Lasso accordingly selects no instruments in many cases. In

17Inference based on the asymptotic approximation when Lasso selects instruments and based
on the sup-Score test when Lasso fails to select instruments is our preferred procedure.
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TABLE I

SIMULATION RESULTSa

Exponential S = 5 S = 50

Median Median Median

Estimator N(0) Bias MAD rp(0.05) N(0) Bias MAD rp(0.05) N(0) Bias MAD rp(0.05)

A. Concentration Parameter = 30, n = 100
2SLS(100) 0.524 0.524 1.000 0.520 0.520 1.000 0.528 0.528 0.998
FULL(100) 0.373 0.741 0.646 0.476 0.781 0.690 0.285 0.832 0.580
Post-LASSO 483 0.117 0.183 0.012 485 0.128 0.178 0.008 498 0.363 0.368 0.012
Post-LASSO-F 483 0.117 0.184 0.012 485 0.128 0.178 0.008 498 0.363 0.368 0.012
Post-LASSO (Ridge) 500 0.229 0.263 0.000 500 0.212 0.239 0.000 500 0.362 0.364 0.002
Post-LASSO-F (Ridge) 500 0.229 0.263 0.000 500 0.212 0.239 0.000 500 0.362 0.364 0.002
sup-Score 0.006 0.000 0.008

B. Concentration Parameter = 30, n= 250
2SLS(100) 0.493 0.493 1.000 0.485 0.485 1.000 0.486 0.486 1.000
FULL(100) 0.028 0.286 0.076 0.023 0.272 0.056 0.046 0.252 0.072
Post-LASSO 396 0.106 0.163 0.044 423 0.105 0.165 0.042 499 0.358 0.359 0.008
Post-LASSO-F 396 0.107 0.164 0.048 423 0.105 0.166 0.044 499 0.358 0.359 0.008
Post-LASSO (Ridge) 500 0.191 0.223 0.004 500 0.196 0.217 0.006 500 0.353 0.355 0.000
Post-LASSO-F (Ridge) 500 0.191 0.223 0.004 500 0.196 0.217 0.006 500 0.353 0.355 0.000
sup-Score 0.002 0.010 0.006

(Continues)
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TABLE I—Continued

Exponential S = 5 S = 50

Median Median Median

Estimator N(0) Bias MAD rp(0.05) N(0) Bias MAD rp(0.05) N(0) Bias MAD rp(0.05)

C. Concentration Parameter = 180, n= 100
2SLS(100) 0.353 0.353 0.952 0.354 0.354 0.958 0�350 0.350 0.948
FULL(100) 0.063 0.563 0.648 0.096 0.562 0.694 0�148 0.538 0.656
Post-LASSO 120 0.037 0.093 0.078 132 0.035 0.100 0.052 498 0�192 0.211 0.000
Post-LASSO-F 120 0.030 0.093 0.070 132 0.025 0.100 0.046 498 0�192 0.211 0.000
Post-LASSO (Ridge) 500 0.061 0.132 0.002 500 0.063 0.116 0.000 500 0�004 0.119 0.000
Post-LASSO-F (Ridge) 500 0.061 0.132 0.002 500 0.063 0.116 0.000 500 0�004 0.119 0.000
sup-Score 0.002 0.002 0.000

D. Concentration Parameter = 180, n = 250
2SLS(100) 0.289 0.289 0.966 0.281 0.281 0.972 0�280 0.280 0.964
FULL(100) 0.008 0.082 0.058 0.007 0.081 0.044 0�008 0.083 0.048
Post-LASSO 0 0.032 0.073 0.054 0 0.019 0.067 0.060 411 0�233 0.237 0.044
Post-LASSO-F 0 0.024 0.069 0.038 0 0.014 0.068 0.046 411 0�235 0.236 0.040
Post-LASSO (Ridge) 211 0.062 0.095 0.098 225 0.058 0.084 0.082 295 −0�008 0.090 0.030
Post-LASSO-F (Ridge) 211 0.061 0.096 0.082 225 0.056 0.081 0.062 295 −0�004 0.090 0.032
sup-Score 0.012 0.012 0.012

aResults are based on 500 simulation replications and 100 instruments. Column labels indicate the structure of the first-stage coefficients as described in the text. 2SLS(100)
and FULL(100) are respectively the 2SLS and Fuller(1) estimators using all 100 potential instruments. Post-LASSO and Post-LASSO-F respectively correspond to 2SLS and
Fuller(1) using the instruments selected from LASSO variable selection among the 100 instruments, with inference based on the asymptotic normal approximation; in cases where
no instruments are selected, the procedure switches to using the sup-Score test for inference. sup-Score provides the rejection frequency for a weak identification robust procedure
that is suited to situations with more instruments than observations. Post-LASSO (Ridge) and Post-LASSO-F (Ridge) are defined as Post-LASSO and Post-LASSO-F but augment
the instrument set with a fitted value obtained via ridge regression as described in the text. We report the number of replications in which LASSO selected no instruments (N(0)),
median bias (Med. Bias), median absolute deviation (MAD), and rejection frequency for 5% level tests (rp(0.05)). In cases where LASSO selects no instruments, Med. Bias, and
MAD are based on 2SLS using the single instrument with the largest sample correlation to the endogenous variable and rp(0.05) is based on the sup-Score test.
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FIGURE 1.—Size-adjusted power curves for post-Lasso-F (dot–dash), post-Lasso-F (Ridge)
(dotted), FULL(100) (dashed), and sup-Score (solid) from the simulation example with concen-
tration parameter of 180 for n= 100 and n = 250.

these cases, inference switches to the robust sup-score procedure, which con-
trols size. With a concentration parameter of 180, the instruments are relatively
more informative and sparsity provides a good approximation in the exponen-
tial design and s = 5 cut-off design. In these cases, Lasso selects instruments
in the majority of replications and the procedure has good risk and inference
properties relative to the other procedures considered. In the n = 100 case, the
simple Lasso procedures also clearly dominate Lasso augmented with Ridge,
as this procedure often results in no instruments being selected and relatively
low power; see Figure 1. We also see that the sup-score procedure controls size
across the designs considered.

In the n = 250 case, the conventional many-instrument asymptotic sequence,
which has p proportional to n but p/n < 1, provides a reasonable approxima-
tion to the DGP, and one would expect FULL to perform well. In this case,
2SLS(100) is clearly dominated by the other procedures. However, there is no
obvious ranking between FULL(100) and the Lasso-based procedures. With
s = 50, sparsity is a poor approximation in that there is signal in the combina-
tion of the 50 relevant instruments, but no small set of instruments has much
explanatory power. In this setting, FULL(100) has lower estimation risk than
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the Lasso procedure, which is not effectively able to capture the diffuse sig-
nal though both inference procedures have size close to the prescribed level.
Lasso augmented with the Ridge fit also does relatively well in this setting,
being roughly on par with FULL(100). In the exponential and cut-off with
s = 5 designs, sparsity is a much better approximation. In these cases, the sim-
ple Lasso-based estimators have smaller risk than FULL(100) or Lasso with
Ridge, and produce tests that have size close to the nominal 5% level. Finally,
we see that the sup-score procedure continues to control size with n= 250.

Given that the sup-score procedure uniformly controls size across the de-
signs considered but is actually substantially undersized, it is worth presenting
additional results regarding power. We plot size-adjusted power curves for the
sup-score test, post-Lasso-F, post-Lasso-F (Ridge), and FULL(100) across the
different designs in the μ2 = 180 cases in Figure 1. We focus on μ2 = 180 since
we expect it is when identification is relatively strong that differences in power
curves will be most pronounced. From these curves, it is apparent that the ro-
bustness of the sup-score test comes with a substantial loss of power in cases
where identification is strong. Exploring other procedures that are robust to
weak identification, allow for p � n, and do not suffer from such power losses
may be interesting for future research.

6.1. Conclusions From Simulation Experiments

The evidence from the simulations is supportive of the derived theory and
favorable to Lasso-based IV methods. The Lasso-IV estimators clearly dom-
inate on all metrics considered when p = n and s � n. The Lasso-based IV
estimators generally have relatively small median bias and estimator risk and
do well in terms of testing properties, though they do not dominate FULL in
these dimensions across all designs with p < n. The simulation results verify
that FULL becomes more appealing as the sparsity assumption breaks down.
This breakdown of sparsity is likely in situations with weak instruments, be
they many or few, where none of the first-stage coefficients are well-separated
from zero relative to sampling variation. Overall, the simulation results show
that simple Lasso-based procedures can usefully complement other many-
instrument methods.

7. THE IMPACT OF EMINENT DOMAIN ON ECONOMIC OUTCOMES

As an example of the potential application of Lasso to select instruments,
we consider IV estimation of the effects of federal appellate court decisions
regarding eminent domain on a variety of economic outcomes.18 To try to un-

18See Chen and Yeh (2010) for a detailed discussion of the economics of takings law (or em-
inent domain), relevant institutional features of the legal system, and a careful discussion of en-
dogeneity concerns and the instrumental variables strategy in this context.
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cover the relationship between takings law and economic outcomes, we esti-
mate structural models of the form

yct = αc + αt + γct +βTakings Lawct +W ′
ctδ+ εct�

where yct is an economic outcome for circuit c at time t; Takings Lawct rep-
resents the number of pro-plaintiff appellate takings decisions in circuit c and
year t; Wct are judicial pool characteristics,19 a dummy for whether there were
no cases in that circuit-year, and the number of takings appellate decisions;
and αc , αt , and γct are respectively circuit-specific effects, time-specific effects,
and circuit-specific time trends. An appellate court decision is coded as pro-
plaintiff if the court ruled that a taking was unlawful, thus overturning the gov-
ernment’s seizure of the property in favor of the private owner. We construe
pro-plaintiff decisions to indicate a regime that is more protective of individ-
ual property rights. The parameter of interest, β, thus represents the effect
of an additional decision upholding individual property rights on an economic
outcome.

We provide results using four different economic outcomes: the log of three
home price indices and log(GDP). The three different home price indices
we consider are the quarterly, weighted, repeat-sales FHFA/OFHEO house
price index that tracks single-family house prices at the state level for metro
(FHFA) and non-metro (Non-Metro) areas and the Case–Shiller home price
index (Case–Shiller) by month for 20 metropolitan areas based on repeat-sales
residential housing prices. We also use state-level GDP from the Bureau of
Economic Analysis to form log(GDP). For simplicity and since all of the con-
trols, instruments, and the endogenous variable vary only at the circuit-year
level, we use the within-circuit-year average of each of these variables as the
dependent variables in our models. Due to the different coverage and time se-
ries lengths available for each of these series, the sample sizes and sets of avail-
able controls differ somewhat across the outcomes. These differences lead to
different first stages across the outcomes as well. The total sample sizes are
312 for FHFA and GDP, which have identical first stages. For Non-Metro and
Case–Shiller, the sample sizes are 110 and 183, respectively.

The analysis of the effects of takings law is complicated by the possible endo-
geneity between governmental takings and takings law decisions and economic
variables. To address the potential endogeneity of takings law, we employ an
instrumental variables strategy based on the identification argument of Chen
and Sethi (2010) and Chen and Yeh (2010) that relies on the random assign-
ment of judges to federal appellate panels. Since judges are randomly assigned
to three-judge panels to decide appellate cases, the exact identity of the judges

19The judicial pool characteristics are the probability of a panel being assigned with the char-
acteristics used to construct the instruments. There are 30, 33, 32, and 30 controls available for
FHFA house prices, non-metro house prices, Case–Shiller house prices, and GDP, respectively.
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and, more importantly, their demographics are randomly assigned conditional
on the distribution of characteristics of federal circuit court judges in a given
circuit-year. Thus, once the distribution of characteristics is controlled for, the
realized characteristics of the randomly assigned three-judge panel should be
unrelated to other factors besides judicial decisions that may be related to eco-
nomic outcomes.

There are many potential characteristics of three-judge panels that may be
used as instruments. While the basic identification argument suggests any set of
characteristics of the three-judge panel will be uncorrelated with the structural
unobservable, there will clearly be some instruments that are more worthwhile
than others in obtaining precise second-stage estimates. For simplicity, we con-
sider only the following demographics: gender, race, religion, political affilia-
tion, whether the judge’s bachelor’s degree was obtained in-state, whether the
bachelor’s degree is from a public university, whether the JD was obtained
from a public university, and whether the judge was elevated from a district
court, along with various interactions. In total, we have 138, 143, 147, and 138
potential instruments for FHFA prices, non-metro prices, Case–Shiller, and
GDP, respectively, that we select among using Lasso.20

Table II contains estimation results for β. We report OLS estimates and
results based on three different sets of instruments. The first set of instru-
ments, used in the rows labeled 2SLS, are the instruments adopted in Chen
and Yeh (2010).21 We consider this the baseline. The second set of instruments
are those selected through Lasso using the refined data-driven penalty.22 The
number of instruments selected by Lasso is reported in the row “S.” We use
the post-Lasso 2SLS estimator and report these results in the rows labeled
“post-Lasso.” The third set of instruments is simply the union of the first two
instrument sets. Results for this set of instruments are in the rows labeled
“post-Lasso+.” In this case, “S” is the total number of instruments used. In all
cases, we use heteroscedasticity consistent standard error estimators. Finally,
we report the value of the test statistic discussed in Section 5.1, comparing es-

20Given the sample sizes and numbers of variables, estimators using all the instruments without
shrinkage are only defined in the GDP and FHFA data. For these outcomes, the Fuller (1977)
point-estimate (standard error) is −0�0020 (3.123) for FHFA and 0.0120 (0.1758) for GDP.

21Chen and Yeh (2010) used two variables motivated on intuitive grounds, whether a panel was
assigned an appointee who did not report a religious affiliation and whether a panel was assigned
an appointee who earned his or her first law degree from a public university, as instruments.

22Lasso selects the number of panels with at least one appointee whose law degree is from
a public university (Public) cubed for GDP and FHFA. In the Case–Shiller data, Lasso selects
Public and Public squared. For non-metro prices, Lasso selects Public interacted with the number
of panels with at least one member who reports belonging to a mainline protestant religion,
Public interacted with the number of panels with at least one appointee whose BA was obtained
in-state (In-State), In-State interacted with the number of panels with at least one non-white
appointee, and the interaction of the number of panels with at least one Democrat appointee
with the number of panels with at least one Jewish appointee.
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TABLE II

EFFECT OF FEDERAL APPELLATE TAKINGS LAW DECISIONS ON ECONOMIC OUTCOMESa

Home Prices GDP

log(FHFA) log(Non-Metro) log(Case–Shiller) log(GDP)

Sample Size 312 110 183 312

OLS 0�0114 0�0108 0�0152 0�0099
s.e. 0�0132 0�0066 0�0132 0�0048

2SLS 0�0262 0�0480 0�0604 0�0165
s.e. 0�0441 0�0212 0�0296 0�0162
FS-W 28�0859 82�9647 67�7452 28�0859

Post-LASSO 0�0369 0�0357 0�0631 0�0133
s.e. 0�0465 0�0132 0�0249 0�0161
FS-W 44�5337 243�1946 89�5950 44�5337
S 1 4 2 1

Post-LASSO+ 0�0314 0�0348 0�0628 0�0144
s.e. 0�0366 0�0127 0�0245 0�0131
FS-W 73�3010 260�9823 105�3206 73�3010
S 3 6 3 3

Spec. Test −0�2064 0�5753 −0�0985 0�1754

aThis table reports the estimated effect of an additional pro-plaintiff takings decision, a decision that goes against
the government and leaves the property in the hands of the private owner, on various economic outcomes using two-
stage least squares (2SLS). The characteristics of randomly assigned judges serving on the panel that decides the case
are used as instruments for the decision variable. All estimates include circuit effects, circuit-specific time trends, time
effects, controls for the number of cases in each circuit-year, and controls for the demographics of judges available
within each circuit-year. Each column corresponds to a different dependent variable. log(FHFA), log(Non-Metro), and
log(Case–Shiller) are within-circuit averages of log-house-price-indexes, and log(GDP) is the within-circuit average
of log of state-level GDP. OLS are ordinary least squares estimates. 2SLS is the 2SLS estimator with the original
instruments in Chen and Yeh (2010). Post-LASSO provides 2SLS estimates obtained using instruments selected by
LASSO with the refined data-dependent penalty choice. Post-LASSO+ uses the union of the instruments selected
by Lasso and the instruments of Chen and Yeh (2010). Rows labeled s.e. provide the estimated standard errors of
the associated estimator. All standard errors are computed with clustering at the circuit-year level. FS-W is the value
of the first-stage Wald statistic using the selected instrument. S is the number of instruments used in obtaining the
2SLS estimates. Hausman test is the value of a Hausman test statistic comparing the 2SLS estimate of the effect of
takings law decisions using the Chen and Yeh (2010) instruments to the estimated effect using the LASSO-selected
instruments.

timates using the first and second sets of instruments in the row labeled “Spec.
Test.”

The most interesting results from the standpoint of the present paper are
found by comparing first-stage Wald statistics and estimated standard errors
across the instrument sets. The Lasso instruments are clearly much better first-
stage predictors as measured by the first-stage Wald statistic compared to the
Chen and Yeh (2010) benchmark. Given the degrees of freedom, this increase
obviously corresponds to Lasso-based IV providing a stronger first-stage rela-
tionship for FHFA prices, GDP, and the Case–Shiller prices. In the non-metro
case, the p-value from the Wald test with the baseline instruments of Chen
and Yeh (2010) is larger than that of the Lasso-selected instruments. This im-
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proved first-stage prediction is associated with the resulting 2SLS estimator
having smaller estimated standard errors than the benchmark case for non-
metro prices, Case–Shiller prices, and GDP. The reduction in standard errors
is sizable for both non-metro and Case–Shiller. The standard error estimate is
somewhat larger in the FHFA case despite the improvement in first-stage pre-
diction. Given that the post-Lasso first-stage produces a larger first-stage Wald
statistic while choosing fewer instruments than the benchmark suggests that
we might prefer the post-Lasso results in any case. We also see that the test
statistics for testing that the difference between the estimate using the Chen
and Yeh (2010) instruments and the post-Lasso estimate are uniformly small.
Given the small differences between estimates using the first two sets of instru-
ments, it is unsurprising that the results using the union of the two instrument
sets are similar to those already discussed.

The results are also economically interesting. The point-estimates for the
effect of an additional pro-plaintiff decision, a decision in favor of individual
property holders, are positive, suggesting that these decisions are associated
with increases in property prices and GDP. These point-estimates are all small,
and it is hard to draw any conclusion about the likely effect on GDP or the
FHFA index given their estimated standard errors. On the other hand, con-
fidence intervals for non-metro and Case–Shiller constructed at usual confi-
dence levels exclude zero. Overall, the results do suggest that the causal effect
of decisions reinforcing individual property rights is an increase in the value
of holding property, at least in the short term. The results are also consistent
with the developed asymptotic theory in that the 2SLS point-estimates based
on the benchmark instruments are similar to the estimates based on the Lasso-
selected instruments, while Lasso produces a stronger first-stage relationship
and the post-Lasso estimates are more precise in three of the four cases. The
example suggests that there is the potential for Lasso to be fruitfully employed
to choose instruments in economic applications.

APPENDIX A: IMPLEMENTATION ALGORITHMS

It is useful to organize the precise implementation details into the following
algorithm. Feasible options for setting the penalty level and the loadings for
j = 1� � � � �p, and l = 1� � � � �ke are

initial γ̂lj =
√

En

[
f 2
ij (dil − d̄l)2

]
� λ= 2c

√
n�−1

(
1 − γ/(2kep)

)
�(A.1)

refined γ̂lj =
√

En

[
f 2
ij v̂

2
il

]
� λ = 2c

√
n�−1

(
1 − γ/(2kep)

)
�

where c > 1 is a constant, γ ∈ (0�1), d̄l := En[dil], and v̂il is an estimate
of vil. Let K ≥ 1 denote a bounded number of iterations. We used c = 1�1,
γ = 0�1/ log(p∨n), and K = 15 in the simulations. In what follows, Lasso/post-
Lasso estimator indicates that the practitioner can apply either the Lasso
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or post-Lasso estimator. Our preferred approach uses post-Lasso at every
stage.

ALGORITHM A.1—Lasso/Post-Lasso Estimators: (a) For each l = 1� � � � �ke,
specify penalty loadings according to the initial option in (A.1). Use these
penalty loadings in computing the Lasso/post-Lasso estimator β̂l via equations
(2.4) or (2.8). Then compute residuals v̂il = dli − f ′

i β̂l, i = 1� � � � � n. (b) For
each l = 1� � � � �ke, update the penalty loadings according to the refined option
in (A.1) and update the Lasso/post-Lasso estimator β̂l. Then compute a new
set of residuals using the updated Lasso/post-Lasso coefficients v̂il = dli − f ′

i β̂l,
i = 1� � � � � n. (c) Repeat the previous step K times.

If Algorithm A.1 selected no instruments other than intercepts, or, more
generally, if En[D̂ilD̂

′
il] is near-singular, proceed to Algorithm A.3; otherwise,

we recommend the following algorithm.

ALGORITHM A.2 —IV Inference Using Estimates of Optimal Instrument:
(a) Compute the estimates of the optimal instrument, D̂il = f ′

i β̂l, for i =
1� � � � � n and each l = 1� � � � �ke, where β̂l is computed by Algorithm A.1. Com-
pute the IV estimator α̂ = En[D̂id

′
i]−1

En[D̂iyi]. (b) Compute estimates of the
asymptotic variance matrix Q̂−1Ω̂Q̂−1, where Ω̂ := En[̂ε2

i D̂iD̂
′
i] for ε̂i = yi −d′

iα̂,
and Q̂ := En[D̂iD̂

′
i]. (c) Proceed to perform conventional inference using the

normality result (2.10).

The following algorithm is only invoked if the weak-instruments problem
has been diagnosed, for example, using the methods of Stock and Yogo (2005).
In the algorithm below, A1 is the parameter space, and G1 ⊂ A1 is a grid of
potential values for α1. Choose the confidence level 1 − γ of the interval, and
set Λ(1 − γ)= c

√
n�−1(1 − γ/2p).

ALGORITHM A.3—IV Inference Robust to Weak Identification: (a) Set
C = ∅. (b) For each a ∈ G1, compute Λa as in (4.5). If Λa ≤ Λ(1 − γ), add a
to C . (c) Report C .

APPENDIX B: TOOLS

The following useful lemma is a consequence of moderate deviations theo-
rems for self-normalized sums in Jing, Shao, and Wang (2003) and de la Peña,
Lai, and Shao (2009).

We use the following result—Theorem 7.4 in de la Peña, Lai, and Shao
(2009). Let X1� � � � �Xn be independent, zero-mean variables, and Sn =∑n

i=1 Xi,
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V 2
n =∑n

i=1 X
2
i � For 0 <μ ≤ 1, set B2

n =∑n

i=1 EX2
i �Ln�μ =∑n

i=1 E|Xi|2+μ�dn�μ =
Bn/L

1/(2+μ)
n�μ � Then uniformly in 0 ≤ x ≤ dn�μ,

P(Sn/Vn ≥ x)

�̄(x)
= 1 +O(1)

(
1 + x

dn�μ

)2+μ

�

P(Sn/Vn ≤ −x)

�(−x)
= 1 +O(1)

(
1 + x

dn�μ

)2+μ

�

where the terms O(1) are bounded in absolute value by a universal constant
A, �̄ := 1 − �, and � is the cumulative distribution function of a standard
Gaussian random variable.

LEMMA 5—Moderate Deviation Inequality for Maximum of a Vector: Sup-
pose that for each j

Sj =

n∑
i=1

Uij√√√√ n∑
i=1

U2
ij

�

where Uij are independent variables across i with mean zero. We have that

P
(

max
1≤j≤p

|Sj|>�−1(1 − γ/2p)
)

≤ γ

(
1 + A

�3
n

)
�

where A is an absolute constant, provided that, for �n > 0,

0 ≤ �−1
(
1 − γ/(2p)

)≤ n1/6

�n
min
1≤j≤p

M[Uj] − 1�

M[Uj] :=

(
1
n

n∑
i=1

EU2
ij

)1/2

(
1
n

n∑
i=1

E|U3
ij|
)1/3 �

PROOF: Step 1. We first note the following simple consequence of the result
of Theorem 7.4 in de la Peña, Lai, and Shao (2009). Let X1�n� � � � �Xn�n be the
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triangular array of i.n.i.d., zero-mean random variables. Suppose that

n1/6Mn/�n ≥ 1� Mn :=

(
1
n

n∑
i=1

EX2
i�n

)1/2

(
1
n

n∑
i=1

E|Xi�n|3

)1/3 �

Then uniformly on 0 ≤ x ≤ n1/6Mn/�n − 1, the quantities Sn�n = ∑n

i=1 Xi�n and
V 2
n�n =∑n

i=1 X
2
i�n obey∣∣∣∣P(|Sn�n/Vn�n| ≥ x)

2�̄(x)
− 1

∣∣∣∣≤ A

�3
n

�

This corollary follows by the application of the quoted theorem to the case with
μ= 1. The calculated error bound follows from the triangular inequalities and
conditions on �n and Mn.

Step 2. It follows that

P
(

max
1≤j≤p

|Sj|>�−1(1 − γ/2p)
)

≤(1) p max
1≤j≤p

P
(|Sj|>�−1(1 − γ/2p)

)
=(2) pP

(|Sjn |>�−1(1 − γ/2p)
)

≤(3) p2�̄
(
�−1(1 − γ/2p)

)(
1 + A

�3
n

)
≤ 2pγ/(2p)

(
1 + A

�3
n

)
≤ γ

(
1 + A

�3
n

)
�

on the set 0 ≤ �−1(1 − γ/(2p)) ≤ n1/6

�n
Mjn − 1� where inequality (1) follows

by the union bound, equality (2) is the maximum taken over finite set, so the
maximum is attained at some jn ∈ {1� � � � �p}, and the last inequality follows by
the application of Step 1, by setting Xi�n =Ui�jn . Q.E.D.

APPENDIX C: PROOF OF THEOREM 1

The proof of Theorem 1 has four steps. The most important steps are
Steps 1–3. One half of Step 1 for bounding the ‖ · ‖2�n-rate follows the strategy
of Bickel, Ritov, and Tsybakov (2009), but accommodates data-driven penalty
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loadings. The other half of Step 1 for bounding the ‖ · ‖1-rate is new for the
nonparametric case. Step 2 innovatively uses the moderate deviation theory
for self-normalized sums, which allows us to obtain sharp results for non-
Gaussian and heteroscedastic errors as well as handle data-driven penalty load-
ings. Step 3 relates the ideal penalty loadings and the feasible penalty loadings.
Step 4 puts the results together to reach the conclusions.

Step 1. For C > 0 and each l = 1� � � � �ke, consider the weighted restricted
eigenvalue

κl
C = min

δ∈Rp:‖Υ̂ 0
l
δTc

l
‖1≤C‖Υ̂ 0

l
δTl

‖1�‖δ‖2 �=0

√
s‖f ′

i δ‖2�n

‖Υ̂ 0
l δTl‖1

�

This quantity controls the modulus of continuity between the prediction norm
‖f ′

i δ‖2�n and the �1-norm ‖δ‖1 within a restricted region that depends on
l = 1� � � � �ke. Note that if a= min1≤l≤ke min1≤j≤p Υ̂

0
lj ≤ max1≤l≤ke ‖Υ̂ 0

l ‖∞ = b� for
every C > 0, because {δ ∈ R

p :‖Υ̂ 0
l δTc

l
‖1 ≤ C‖Υ̂ 0

l δTl‖1} ⊆ {δ ∈ R
p :a‖δTc

l
‖1 ≤

bC‖δTl‖1} and ‖Υ̂ 0
l δTl‖1 ≤ b‖δTl‖1, we have

min
1≤l≤ke

κl
C ≥ (1/b)κ(bC/a)

(
En

[
fif

′
i

])
�

where the latter is the restricted eigenvalue defined in (3.1). If C = c0 = (uc +
1)/(�c − 1), we have min1≤l≤ke κ

l
c0

≥ (1/b)κC̄(En[fif ′
i ]). By Condition RF and

by Step 3 of Appendix C below, we have a bounded away from zero and b
bounded from above with probability approaching 1 as n increases.

The main result of this step is the following lemma.

LEMMA 6: Under Condition AS, if λ/n ≥ c‖Sl‖∞, and Υ̂l satisfies (3.2) with
u≥ 1 ≥ � > 1/c, then

∥∥f ′
i (β̂l −βl0)

∥∥
2�n

≤
(
u+ 1

c

)
λ
√
s

nκl
c0

+ 2cs�

∥∥Υ̂ 0
l (β̂l −βl0)

∥∥
1
≤ 3c0

√
s

κl
2c0

((
u+ [1/c])λ√

s

nκl
c0

+ 2cs

)
+ 3c0n

λ
c2
s �

where c0 = (uc + 1)/(�c − 1).

PROOF: Let δl := β̂l −βl0. By optimality of β̂l, we have

Q̂l(β̂l)− Q̂l(βl0)≤ λ

n

(‖Υ̂lβl0‖1 − ‖Υ̂lβ̂l‖1

)
�(C.1)



2412 BELLONI, CHEN, CHERNOZHUKOV, AND HANSEN

Expanding the quadratic function Q̂l, and using that Sl = 2(Υ̂ 0
l )

−1
En[vilfi], we

have ∣∣Q̂l(β̂l)− Q̂l(βl0)− ∥∥f ′
i δl

∥∥2

2�n

∣∣= ∣∣2En

[
vilf

′
i δl

]+ 2En

[
ailf

′
i δl

]∣∣(C.2)

≤ ‖Sl‖∞
∥∥Υ̂ 0

l δl

∥∥
1
+ 2cs

∥∥f ′
i δl

∥∥
2�n
�

So combining (C.1) and (C.2) with λ/n ≥ c‖Sl‖∞ and the conditions imposed
on Υ̂l in the statement of the theorem,

∥∥f ′
i δl

∥∥2

2�n
≤ λ

n

(‖Υ̂lδlTl
‖1 − ‖Υ̂lδlTc

l
‖1

)+ ‖Sl‖∞
∥∥Υ̂ 0

l δl

∥∥
1

(C.3)

+ 2cs
∥∥f ′

i δl

∥∥
2�n

≤
(
u+ 1

c

)
λ

n

∥∥Υ̂ 0
l δlTl

∥∥
1
−
(
�− 1

c

)
λ

n

∥∥Υ̂ 0
l δlT c

l

∥∥
1

+ 2cs
∥∥f ′

i δl

∥∥
2�n
�

To show the first statement of the lemma, we can assume ‖f ′
i δl‖2�n ≥ 2cs; oth-

erwise we are done. This condition together with relation (C.3) implies that, for
c0 = (uc + 1)/(�c − 1), we have ‖Υ̂ 0

l δlT c
l
‖1 ≤ c0‖Υ̂ 0

l δlTl
‖1� Therefore, by defini-

tion of κl
c0

, we have ‖Υ̂ 0
l δlTl‖1 ≤ √

s‖f ′
i δl‖2�n/κ

l
c0
� Thus, relation (C.3) implies

‖f ′
i δl‖2

2�n ≤ (u+ 1
c
) λ

√
s

nκlc0
‖f ′

i δl‖2�n + 2cs‖f ′
i δl‖2�n and the result follows.

To establish the second statement of the lemma, we consider two cases. First,
assume ‖Υ̂ 0

l δlT c
l
‖1 ≤ 2c0‖Υ̂ 0

l δlTl
‖1� In this case, by definition of κl

2c0
, we have∥∥Υ̂ 0

l δl

∥∥
1
≤ (1 + 2c0)

∥∥Υ̂ 0
l δlT

∥∥
1
≤ (1 + 2c0)

√
s
∥∥f ′

i δl

∥∥
2�n
/κl

2c0
�

and the result follows by applying the first bound to ‖f ′
i δl‖2�n. On the other

hand, consider the case that∥∥Υ̂ 0
l δlT c

l

∥∥
1
> 2c0

∥∥Υ̂ 0
l δlTl

∥∥
1
�(C.4)

which would already imply ‖f ′
i δl‖2�n ≤ 2cs by (C.3). Moreover,∥∥Υ̂ 0

l δlT c
l

∥∥
1
≤(1) c0

∥∥Υ̂ 0
l δlTl

∥∥
1
+ c

�c − 1
n

λ

∥∥f ′
i δl

∥∥
2�n

(
2cs − ∥∥f ′

i δl

∥∥
2�n

)
≤(2) c0

∥∥Υ̂ 0
l δlTl

∥∥
1
+ c

�c − 1
n

λ
c2
s

≤(3)
1
2

∥∥Υ̂ 0
l δlT c

l

∥∥
1
+ c

�c − 1
n

λ
c2
s �
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where (1) holds by (C.3), (2) holds since ‖f ′
i δl‖2�n(2cs − ‖f ′

i δl‖2�n) ≤
maxx≥0 x(2cs − x) ≤ c2

s , and (3) follows from (C.4). Thus,∥∥Υ̂ 0
l δl

∥∥
1
≤
(

1 + 1
2c0

)∥∥Υ̂ 0
l δlT c

l

∥∥
1
≤
(

1 + 1
2c0

)
2c

�c − 1
n

λ
c2
s �

and the result follows from noting that c/(�c − 1) ≤ c0/u ≤ c0 and 1 + 1/2c0 ≤
3/2. Q.E.D.

Step 2. In this step, we prove a lemma about the quantiles of the maximum
of the scores Sl = 2En[(Υ̂ 0

l )
−1fivil]� and use it to pin down the level of the

penalty. For λ = c2
√
n�−1(1 − γ/(2kep))� we have that as γ → 0 and n → ∞,

P(cmax1≤l≤ke n‖Sl‖∞ > λ) = o(1)� provided that, for some bn → ∞,

2�−1
(
1 − γ/(2kep)

)≤ n1/6

bn

min
1≤j≤p�1≤l≤ke

Mjl� Mjl :=
Ē[f 2

ij v
2
il]1/2

Ē[|fij|3|vil|3]1/3
�

Note that the last condition is satisfied under our conditions for large n for
some bn → ∞, since ke is fixed, log(1/γ) � log(p∨ n), K2

n log3(p∨ n) = o(n),
and min1≤j≤p�1≤l≤ke Mjl � 1/K1/3

n . This result follows from the bounds on mod-
erate deviations of a maximum of a vector provided in Lemma 5, by �̄(t) ≤
φ(t)/t, maxj≤p�l≤ke 1/Mjl � K1/3

n , and K2/3
n log(p∨n)= o(n1/3) holding by Con-

dition RF.
Step 3. The main result of this step is the following: Define the expected

“ideal” penalty loadings Υ 0
l := diag(

√
Ē[f 2

i1v
2
il]� � � � �

√
Ē[f 2

ipv
2
il])� where the en-

tries of Υ 0
l are bounded away from zero and from above uniformly in n by

Condition RF. Then the empirical “ideal” loadings converge to the expected
“ideal” loadings: max1≤l≤ke ‖Υ̂ 0

l −Υ 0
l ‖∞ →P 0� This is assumed in Condition RF.

Step 4. Combining the results of all the steps above, given that λ =
2c

√
n�−1(1 − γ/(2pke)) � c

√
n log(pke/γ), ke fixed, and asymptotic valid

penalty loadings Υ̂l, and using the bound cs �P
√
s/n from Condition AS, we

obtain the conclusion that∥∥f ′
i (β̂l −βl0)

∥∥
2�n

�P
1
κl
c0

√
s log(kep/γ)

n
+
√

s

n
�

which gives, by the triangular inequality and by ‖Dil − f ′
i βl0‖2�n ≤ cs �P

√
s/n

holding by Condition AS,

‖D̂il −Dil‖2�n �P
1
κl
c0

√
s log(kep/γ)

n
�

The first result follows since κC̄ �P κ
l
c0

by Step 1.
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To derive the �1-rate, we apply the second result in Lemma 6 as follows:

‖β̂l −βl0‖1 ≤ ∥∥(Υ̂ 0
l

)−1∥∥
∞
∥∥Υ̂ 0

l (β̂l −βl0)
∥∥

1

�P

∥∥(Υ̂ 0
l

)−1∥∥
∞

( √
s

κl
2c0

(
1
κl
c0

√
s log(kep/γ)

n
+
√

s

n

)

+ 1√
log(p/γ)

s√
n

)

�P
1

(κl
2c0
)2

√
s2 log(kep/γ)

n
�

That yields the result since κ2C̄ �P κ
l
2c0

by Step 1. Q.E.D.

APPENDIX D: PROOF OF THEOREM 2

The proof proceeds in three steps. The general strategy of Step 1 follows
Belloni and Chernozhukov (2011a, 2012), but a major difference is the use of
moderate deviation theory for self-normalized sums, which allows us to ob-
tain the results for non-Gaussian and heteroscedastic errors as well as handle
data-driven penalty loadings. The sparsity proofs are motivated by Belloni and
Chernozhukov (2012) but adjusted for the data-driven penalty loadings that
contain self-normalizing factors.

Step 1. Here we derive a general performance bound for post-Lasso, that
actually contains more information than the statement of the theorem. This
lemma will be invoked in Step 3 below.

Let F = [f1; � � � ; fn]′ denote an n by p matrix and, for a set of indices S ⊂
{1� � � � �p}, we define PS = F[S](F[S]′F[S])−1F[S]′ as the projection matrix on
the columns associated with the indices in S.

LEMMA 7—Performance of the Post-Lasso: Under Conditions AS and RF,
let T̂l denote the support selected by β̂l = β̂lL, T̂l ⊆ Îl, m̃l = |Îl \ Tl|, and let β̂lPL

be the post-Lasso estimator based on Îl, l = 1� � � � �ke. Then we have

max
l≤ke

∥∥Dil − f ′
i β̂lPL

∥∥
2�n

�P

√
s

n

√
ke ∧ log(ske)

φmin(s)
+ max

l≤ke

√
m̃l log(pke)√
nφmin(m̃l)

+ ∥∥(Dl − PÎl
Dl)/

√
n
∥∥

2
�

max
1≤l≤ke

∥∥Υ̂l(β̂lPL −βl0)
∥∥

1
≤ max

1≤l≤ke

(‖Υ̂ 0
l ‖∞ + ‖Υ̂l − Υ̂ 0

l ‖∞)
√
m̃l + s√

φmin(m̃l + s)

× ∥∥f ′
i (β̂lPL −βl0)

∥∥
2�n
�
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If, in addition, λ/n ≥ c‖Sl‖∞, and Υ̂l satisfies (3.2) with u≥ 1 ≥ � > 1/c in the
first stage for Lasso for every l = 1� � � � �ke, then we have

max
l≤ke

∥∥(Dl − PÎl
Dl)/

√
n
∥∥

2
≤ max

l≤ke

(
u+ 1

c

)
λ
√
s

nκl
c0

+ 3cs�

PROOF: We have that Dl−Fβ̂lPL = (I−PÎl
)Dl−PÎl

vl, where I is the identity
operator. Therefore, for every l = 1� � � � �ke, we have

‖Dl − Fβ̂lPL‖2 ≤ ∥∥(I − PÎl
)Dl

∥∥
2
+ ‖PTlvl‖2 + ‖PÎl\Tlvl‖2�(D.1)

Since ‖F[Îl \ Tl]/√n(F[Îl \ Tl]′F[Îl \ Tl]/n)−1‖ ≤ √
1/φmin(m̃l), m̃l = |Îl \ Tl|,

the last term in (D.1) satisfies

‖PÎl\Tlvl‖2 ≤√
1/φmin(m̃l)

∥∥F[Îl \ Tl]′vl/
√
n
∥∥

2

≤√
m̃l/φmin(m̃l)

∥∥F ′vl/
√
n
∥∥

∞�

Under Condition RF, by Lemma 5 we have

max
l=1�����ke

∥∥F ′vl/
√
n
∥∥

∞ �P

√
log(pke) max

l≤ke�j≤p

√
En

[
f 2
ij v

2
il

]
�

Note that Condition RF also implies maxl≤ke�j≤p

√
En[f 2

ij v
2
il] �P 1 since

max
l≤ke�j≤p

∣∣(En − Ē)
[
f 2
ij v

2
il

]∣∣→P 0

and

max
l≤ke�j≤p

Ē
[
f 2
ij v

2
il

]≤ max
l≤ke�j≤p

Ē
[
f 2
ij d̃

2
il

]
� 1�

We bound the second term in (D.1) in two ways. First, proceeding as above,
we have

max
l=1�����ke

‖PTlvl‖2 �P

√
log(kes)

√
s/φmin(s) max

l≤ke�j≤p

√
En

[
f 2
ij v

2
il

]
�

Second, since E[‖F[Tl]′vl‖2
2] = E[∑j∈Tl (

∑n

i=1 fijvil)
2] = ∑

j∈Tl
∑n

i=1 E[f 2
ij v

2
il],

we have

max
l=1�����ke

‖PTlvl‖2 �P

√
ske/φmin(s) max

l≤ke�j≤p

√
Ē
[
f 2
ij v

2
il

]
�

These relations yield the first result.
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Letting δl = β̂lPL −βl0, the statement regarding the �1-norm of the theorem
follows from

‖Υ̂lδl‖1 ≤ ‖Υ̂l‖∞‖δl‖1

≤ ‖Υ̂l‖∞
√‖δl‖0‖δl‖2

≤ ‖Υ̂l‖∞
√‖δl‖0

∥∥f ′
i δl

∥∥
2�n
/
√
φmin

(‖δl‖0

)
�

and noting that ‖δl‖0 ≤ m̃l + s and ‖Υ̂l‖∞ ≤ ‖Υ̂ 0
l ‖∞ + ‖Υ̂l − Υ̂ 0

l ‖∞.
The last statement follows from noting that the Lasso solution provides an

upper bound to the approximation of the best model based on Îl, since T̂l ⊆ Îl,
and the application of Lemma 6. Q.E.D.

COMMENT D.1—Comparison Between Lasso and Post-Lasso Performance:
Under mild conditions on the empirical Gram matrix and on the number of
additional variables, Lemma 10 below derives sparsity bounds on the model
selected by Lasso, which establishes that

|T̂l \ Tl| = m̂l �P s�

Under this condition, we have that the rate of post-Lasso is no worse than
Lasso’s rate. This occurs despite the fact that Lasso may, in general, fail to
correctly select the oracle model Tl as a subset, that is, Tl �⊆ T̂l. However, if the
oracle model has well-separated coefficients and the approximation error does
not dominate the estimation error, then the post-Lasso rate improves upon
Lasso’s rate. Specifically, this occurs if Condition AS holds, m̂l = oP(s) and
Tl ⊆ T̂l w.p. → 1, or if T = T̂ w.p. → 1 as under the conditions of Wainwright
(2009). In such cases, the rates found for Lasso are sharp, and they cannot be
faster than

√
s logp/n. Thus, the improvement in the rate of convergence of

post-Lasso over Lasso is strict in these cases. Note that, as shown in the proof
of Lemma 8, a higher penalty level will tend to reduce m̂l but will increase the
likelihood of Tl �⊆ T̂l. On the other hand, a lower penalty level will decrease the
likelihood of Tl �⊆ T̂l (bias) but will tend to increase m̂l (variance). The impact
in the estimation of this trade-off is captured by the last term of the bound in
Lemma 7.

Step 2. In this step, we provide a sparsity bound for Lasso, which is important
for establishing various rate results and fundamental to the analysis of post-
Lasso. It relies on the following lemmas.

LEMMA 8—Empirical Pre-Sparsity for Lasso: Let T̂l denote the support se-
lected by the Lasso estimator, m̂l = |T̂l \ Tl|, and assume that λ/n ≥ c‖Sl‖∞ and
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u≥ 1 ≥ � > 1/c as in Lemma 6. Then, for c0 = (uc + 1)/(�c − 1), we have√
m̂l ≤

√
φmax(m̂l)

∥∥(Υ̂ 0
l

)−1∥∥
∞c0

[
2
√
s

κl
c0

+ 6ncs
λ

]
�

PROOF: We have from the optimality conditions that the Lasso estimator
β̂l = β̂lL satisfies

2En

[
Υ̂−1

lj fij
(
yi − f ′

i β̂l

)]= sign(β̂lj)λ/n for each j ∈ T̂l \ Tl�

Therefore, noting that ‖Υ̂−1
l Υ̂ 0

l ‖∞ ≤ 1/�, we have, for R = (al1� � � � � aln)
′ and

F denoting the n×p matrix with rows f ′
i , i = 1� � � � � n,√

m̂lλ = 2
∥∥(Υ̂−1

l F ′(Y − Fβ̂l)
)
T̂l\Tl

∥∥
2

≤ 2
∥∥(Υ̂−1

l F ′(Y −R− Fβl0)
)
T̂l\Tl

∥∥
2
+ 2

∥∥(Υ̂−1
l F ′R

)
T̂l\Tl

∥∥
2

+ 2
∥∥(Υ̂−1

l F ′F(βl0 − β̂l)
)
T̂l\Tl

∥∥
2

≤ √
m̂ln

∥∥Υ̂−1
l Υ̂ 0

l

∥∥
∞‖Sl‖∞ + 2n

√
φmax(m̂l)

∥∥Υ̂−1
l

∥∥
∞cs

+ 2n
√
φmax(m̂l)

∥∥Υ̂−1
l

∥∥
∞
∥∥f ′

i (β̂l −βl0)
∥∥

2�n

≤ √
m̂l(1/�)n‖Sl‖∞ + 2n

√
φmax(m̂l)

‖(Υ̂ 0
l )

−1‖∞
�

cs

+ 2n
√
φmax(m̂l)

‖(Υ̂ 0
l )

−1‖∞
�

∥∥f ′
i (β̂l −βl0)

∥∥
2�n
�

where we used that∥∥(F ′F(βl0 − β̂l)
)
T̂l\Tl

∥∥
2
= sup

‖δ‖0≤m̂l�‖δ‖2≤1

∣∣δ′F ′F(βl0 − β̂l)
∣∣

≤ sup
‖δ‖0≤m̂l�‖δ‖2≤1

∥∥δ′F ′∥∥
2

∥∥F(βl0 − β̂l)
∥∥

2

≤ sup
‖δ‖0≤m̂l�‖δ‖2≤1

√∣∣δ′F ′Fδ
∣∣∥∥F(βl0 − β̂l)

∥∥
2

≤ n
√
φmax(m̂l)

∥∥f ′
i (βl0 − β̂l)

∥∥
2�n
�

and similarly,∥∥(F ′R
)
T̂l\Tl

∥∥
2
= sup

‖δ‖0≤m̂l�‖δ‖2≤1

∣∣δ′F ′R
∣∣≤ sup

‖δ‖0≤m̂l�‖δ‖2≤1

∥∥δ′F ′∥∥
2
‖R‖2

= sup
‖δ‖0≤m̂l�‖δ‖2≤1

√∣∣δ′F ′Fδ
∣∣‖R‖2 ≤ n

√
φmax(m̂l)cs�
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Since λ/c ≥ n‖Sl‖∞, and by Lemma 6, ‖f ′
i (β̂l −βl0)‖2�n ≤ (u+ 1

c
) λ

√
s

nκlc0
+ 2cs, we

have

√
m̂l ≤

2
√
φmax(m̂l)

‖(Υ̂ 0
l )

−1‖∞
�

[(
u+ 1

c

)√
s

κl
c0

+ 3ncs
λ

]
(

1 − 1
c�

) �

The result follows by noting that (u+ [1/c])/(1 − 1/[�c])= c0� by definition
of c0. Q.E.D.

LEMMA 9 —Sublinearity of Maximal Sparse Eigenvalues: Let M be a
semidefinite positive matrix. For any integer k ≥ 0 and constant � ≥ 1, we have
φmax(��k�)(M) ≤ ���φmax(k)(M)�

PROOF: Denote φM(k) = φmax(k)(M), and let ᾱ achieve φM(�k). More-
over let

∑���
i=1 αi = ᾱ such that

∑���
i=1 ‖αi‖0 = ‖ᾱ‖0. We can choose αi’s such that

‖αi‖0 ≤ k since ���k ≥ �k. Since M is positive semidefinite, for any i� j we have
α′
iMαi + α′

jMαj ≥ 2|α′
iMαj|� Therefore,

φM(�k) = ᾱ′Mᾱ=
���∑
i=1

α′
iMαi +

���∑
i=1

∑
j �=i

α′
iMαj

≤
���∑
i=1

{
α′
iMαi +

(��� − 1
)
α′
iMαi

}≤ ���
���∑
i=1

‖αi‖2φM

(‖αi‖0

)
≤ ��� max

i=1��������
φM

(‖αi‖0

)≤ ���φM(k)�

where we used that
∑���

i=1 ‖αi‖2
2 = 1. Q.E.D.

LEMMA 10—Sparsity Bound for Lasso Under Data-Driven Penalty: Con-
sider the Lasso estimator β̂l = β̂lL with λ/n ≥ c‖Sl‖∞, and let m̂l = |T̂l \ Tl|.
Consider the set

M =
{
m ∈ N :m> s2φmax(m)

∥∥(Υ̂ 0
l

)−1∥∥2

∞

[
2c0

κl
c0

+ 6c0ncs

λ
√
s

]2}
�

Then,

m̂l ≤ s
(

min
m∈M

φmax(m∧ n)
)∥∥(Υ̂ 0

l

)−1∥∥2

∞

(
2c0

κl
c0

+ 6c0ncs

λ
√
s

)2

�
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COMMENT D.2 —Sparsity Bound: Provided that the regularization event
λ/n ≥ c‖Sl‖∞ occurs, Lemma 10 bounds the number of components m̂l in-
correctly selected by Lasso. Essentially, the bound depends on s and on the
ratio between the maximum sparse eigenvalues and the restricted eigenvalues.
Thus, the empirical Gram matrix can impact the sparsity bound substantially.
However, under Condition SE, the ratio mentioned is bounded from above
uniformly in n. As expected, the bound improves and the regularization event
is more likely to occur if a larger value of the penalty parameter λ is used.

PROOF OF LEMMA 10: Rewriting the conclusion in Lemma 8, we have

m̂l ≤ sφmax(m̂l)
∥∥(Υ̂ 0

l

)−1∥∥2

∞

[
2c0

κl
c0

+ 6c0ncs

λ
√
s

]2

�(D.2)

Note that m̂l ≤ n by optimality conditions. Consider any M ∈ M, and suppose
m̂l >M . Therefore, by Lemma 9 on sublinearity of sparse eigenvalues,

m̂l ≤ s

⌈
m̂l

M

⌉
φmax(M)

∥∥(Υ̂ 0
l

)−1∥∥2

∞

[
2c0

κl
c0

+ 6c0ncs

λ
√
s

]2

�

Thus, since �k� ≤ 2k for any k≥ 1, we have

M ≤ s2φmax(M)
∥∥(Υ̂ 0

l

)−1∥∥2

∞

[
2c0

κl
c0

+ 6c0ncs

λ
√
s

]2

�

which violates the condition that M ∈ M. Therefore, we have m̂l ≤M .
In turn, applying (D.2) once more with m̂l ≤ (M ∧ n), we obtain

m̂l ≤ sφmax(M ∧ n)
∥∥(Υ̂ 0

l

)−1∥∥2

∞

[
2c0

κl
c0

+ 6c0ncs

λ
√
s

]2

�

The result follows by minimizing the bound over M ∈ M. Q.E.D.

Step 3. Next we combine the previous steps to establish Theorem 2. As in
Step 3 of Appendix C, recall that max1≤l≤ke ‖Υ̂ 0

l −Υ 0
l ‖∞ →P 0�

Let k̄ be the integer that achieves the minimum in the definition of μ2. Since
cs �P

√
s/n leads to ncs/[λ√

s] →P 0, we have that k̄ ∈ M with high probability
as n→ ∞. Moreover, as long as λ/n ≥ cmax1≤l≤ke ‖Sl‖∞, �→P 1, and c > 1, by
Lemma 10 we have, for every l = 1� � � � �ke, that

m̂l �P sμ
2φmin(k̄+ s)/κ2

C̄
�P sμ

2φmin(m̂l + s)/κ2
C̄
�(D.3)

since k̄ ∈ M implies k̄≥ m̂l.
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By the choice of λ= 2c
√
n�−1(1−γ/(2pke)) in (2.7), since γ → 0, the event

λ/n ≥ cmax1≤l≤ke ‖Sl‖∞ holds with probability approaching 1. Therefore, by
the first and last results in Lemma 7, we have

max
1≤l≤ke

∥∥Dil − f ′
i β̂lPL

∥∥
2�n

�P
μ

κC̄

√
s logp

n
+ cs + max

1≤l≤ke

λ
√
s

nκl
c0

�

Because max1≤l≤ke 1/κl
c0

≤ max1≤l≤ke ‖Γ̂ 0
l ‖∞/κC̄ �P 1/κC̄ by Step 1 of Theo-

rem 1, we have

max
1≤l≤ke

∥∥Dil − f ′
i β̂lPL

∥∥
2�n

�P
μ

κC̄

√
s log(kep/γ)

n
�(D.4)

since ke � p and cs �P
√
s/n. That establishes the first inequality of Theorem 2.

To establish the second inequality of Theorem 2, since ‖β̂lPL −βl0‖0 ≤ m̂l + s,
we have

‖β̂lPL −βl0‖1 ≤
√

‖β̂lPL −βl0‖0‖β̂lPL −βl0‖2

≤√
m̂l + s

‖f ′
i (β̂lPL −βl0)‖2�n√
φmin(m̂l + s)

�

The sparsity bound (D.3), the prediction norm bound (D.4), and the relation
‖Dil − f ′

i β̂lPL‖2�n ≤ cs + ‖f ′
i (β̂lPL − βl0)‖2�n yield the result with the relation

above. Q.E.D.

LEMMA 11—Asymptotic Validity of the Data-Driven Penalty Loadings: Un-
der the conditions of Theorem 1 and Condition RF or the conditions of Theorem 2
and Condition SE, the penalty loadings Υ̂ constructed by the K-step Algorithm A.1
are asymptotically valid. In particular, for K ≥ 2, we have u′ = 1.

For proof of Lemma 11, see the Supplemental Material (Belloni et al.
(2012)).

APPENDIX E: PROOFS OF LEMMAS 1–4

For proof of Lemma 1, see Belloni and Chernozhukov (2011a, Supplement).
For proof of Lemma 2, see Belloni and Chernozhukov (2012). For proofs of
Lemmas 3 and 4, see the Supplemental Material (Belloni et al. (2012)).

APPENDIX F: PROOFS OF THEOREMS 3–7

F.1. Proofs of Theorems 3 and 4

The proofs are original and they rely on the consistency of the sparsity-
based estimators with respect to both the L2(Pn) norm ‖ · ‖2�n and the �1-norm
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‖ · ‖1. These proofs also exploit the use of moderate deviation theory for self-
normalized sums.

Step 0. Using data-driven penalty satisfying (2.7) and (3.2), we have, by The-
orem 1 and Condition RE that the Lasso estimator, and by Theorem 2 and
Condition SE that the post-Lasso estimator, obey

max
1≤l≤ke

‖D̂il −Dil‖2�n �P

√
s log(p∨ n)

n
→ 0�(F.1)

√
logp‖β̂l −βl0‖1 �P

√
s2 log2(p∨ n)

n
→ 0�(F.2)

To prove Theorem 3, we need also the condition

max
1≤l≤ke

‖D̂il −Dil‖2
2�nn

2/qε �P
s log(p∨ n)

n
n2/qε → 0�

with the last statement holding by Condition SM. Note that Theorem 4 as-
sumes (F.1) and (F.2) as high-level conditions.

Step 1. We have that, by E[εi|Di] = 0,

√
n(̂α− α0) = En

[
D̂id

′
i

]−1√
nEn[D̂iεi]

= {
En

[
D̂id

′
i

]}−1(
Gn[Diεi] + oP(1)

)
= {

Ē
[
Did

′
i

]+ oP(1)
}−1(

Gn[Diεi] + oP(1)
)
�

where, by Steps 2 and 3 below,

En

[
D̂id

′
i

]= Ē
[
Did

′
i

]+ oP(1)�(F.3)
√
nEn[D̂iεi] = Gn[Diεi] + oP(1)�(F.4)

where Ē[Did
′
i] = Ē[DiD

′
i] = Q is bounded away from zero and bounded from

above in the matrix sense, uniformly in n. Moreover, Var(Gn[Diεi]) = Ω,
where Ω = σ2Ē[DiD

′
i] under homoscedasticity and Ω = Ē[ε2

i DiD
′
i] under het-

eroscedasticity. In either case, we have that Ω is bounded away from zero and
from above in the matrix sense, uniformly in n, by the assumptions in the the-
orems. (Note that matrices Ω and Q are implicitly indexed by n, but we omit
the index to simplify notations.) Therefore,

√
n(̂α− α0)=Q−1

Gn[Diεi] + oP(1)�

and Zn = (Q−1ΩQ−1)−1/2√n(̂α − α0) = Gn[zi�n] + oP(1)� where zi�n =
(Q−1ΩQ−1)−1/2Q−1Diεi are i.n.i.d. with mean zero and variance I. We have
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that, for some small enough δ > 0, Ē‖zi�n‖2+δ
2 � Ē[‖Di‖2+δ

2 |εi|2+δ] � 1� by Con-
dition SM. This condition verifies the Lyapunov condition, and the application
of the Lyapunov CLT for i.n.i.d. triangular arrays and the Cramer–Wold device
implies that Zn →d N(0� I).

Step 2. To show (F.3), note that∥∥En

[
(D̂i −Di)d

′
i

]∥∥ ≤ En

[‖D̂i −Di‖2‖di‖2

]
≤
√

En

[‖D̂i −Di‖2
2

]
En

[‖di‖2
2

]
=
√√√√

En

[
ke∑
l=1

|D̂il −Dil|2

]
En

[‖di‖2
2

]
≤
√
ke max

1≤l≤ke
‖D̂il −Dil‖2�n

√
En

[‖di‖2
2

]
�P max

1≤l≤ke
‖D̂il −Dil‖2�n = oP(1)�

where
√

En[‖di‖2
2] �P 1 by Ē‖di‖2

2 � 1 and Chebyshev inequality, and the last
assertion holds by Step 0.

Moreover, En[DiD
′
i] − Ē[DiD

′
i] →P 0 by von Bahr–Essen inequality (von

Bahr and Esseen (1965)), using that Ē[‖Di‖q
2] for a fixed q > 2 is bounded

uniformly in n by Condition SM.
Step 3. To show (F.4), let ail := al(xi), note that E[fijεi] = 0, E[εi|Dil] = 0,

and E[εil|ail] = 0, and

max
1≤l≤ke

∣∣√nEn

[
(D̂il −Dil)εi

]∣∣
= max

1≤l≤ke

∣∣√nEn

{
f ′
i (β̂l −βl0)εi

}− Gn{ailεi}
∣∣

= max
1≤l≤ke

∣∣∣∣∣
p∑

j=1

Gn{fijεi}′(β̂lj −βl0j)− Gn{ailεi}
∣∣∣∣∣

≤ max
1≤j≤p

∣∣∣∣ Gn[fijεi]√
En[f 2

ij ε
2
i ]

∣∣∣∣ max
1≤j≤p

√
En

[
f 2
ij ε

2
i

]
max

1≤l≤ke
‖β̂l −βl0‖1

+ max
1≤l≤ke

∣∣Gn{ailεi}
∣∣�

Next we note that, for each l = 1� � � � �ke, |Gn{ailεi}| �P [Ena
2
il]1/2 �P√

s/n→ 0� by Condition AS on [Ena
2
il]1/2 and by Chebyshev inequality, since in

the homoscedastic case of Theorem 3, Var[Gn{ailεi}|x1� � � � � xn] ≤ σ2
Ena

2
il� and

in the bounded heteroscedastic case of Theorem 3, Var[Gn{ailεi}|x1� � � � � xn] �
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Ena
2
il� Next we can bound max1≤j≤p |Gn[fijεi]/

√
En[f 2

ij ε
2
i ]| �P

√
logp provided

that p obeys the growth condition logp= o(n1/3), and

min
1≤j≤p

Mj0 := Ē[f 2
ij ε

2
i ]1/2

Ē[|fij|3|εi|3]1/3
� 1�(F.5)

This result follows by the bound on moderate deviations of a maximum of
a self-normalized vector stated in Lemma 5, and by (F.5) holding by Condi-
tion SM. Finally, max1≤j≤p En[f 2

ij ε
2
i ] �P 1� by Condition SM. Thus, combining

bounds above with bounds in (F.1) and (F.2),

max
1≤l≤ke

∣∣√nEn

[
(D̂il −Dil)εi

]∣∣�P

√
s2 log2(p∨ n)

n
+
√

s

n
→ 0�

where the conclusion holds by Condition SM(iii).
Step 4. This step establishes consistency of the variance estimator in the ho-

moscedastic case of Theorem 3.
Since σ2 and Q = Ē[DiD

′
i] are bounded away from zero and from above

uniformly in n, it suffices to show σ̂2 −σ2 →P 0 and En[D̂iD̂
′
i]− Ē[DiD

′
i] →P 0.

Indeed, σ̂2 = En[(εi −d′
i(̂α−α0))

2] = En[ε2
i ] + 2En[εid′

i(α0 − α̂)] + En[(d′
i(α0 −

α̂))2], so that En[ε2
i ] − σ2 →P 0 by Chebyshev inequality since Ē[|εi|4] is

bounded uniformly in n, and the remaining terms converge to zero in prob-
ability since α̂ − α0 →P 0 by Step 3, ‖En[diεi]‖2 �P 1 by Markov, and since

Ē‖diεi‖2 ≤
√

Ē‖di‖2
2

√
Ē|εi|2 is uniformly bounded in n by Condition SM, and

En‖di‖2
2 �P 1 by Markov, and Ē‖di‖2

2 bounded uniformly in n by Condition SM.
Next, note that∥∥En

[
D̂iD̂

′
i

]− En

[
DiD

′
i

]∥∥= ∥∥En

[
Di(D̂i −Di)

′ + (D̂i −Di)D
′
i

]
+ En

[
(D̂i −Di)(D̂i −Di)

′]∥∥�
which is bounded up to a constant by√

ke max
1≤l≤ke

‖D̂il −Dil‖2�n

∥∥‖Di‖2

∥∥
2�n

+ ke max
1≤l≤ke

‖D̂il −Dil‖2
2�n →P 0

by (F.1) and by ‖‖Di‖2‖2�n �P 1 holding by Markov inequality. Moreover,
En[DiD

′
i] − Ē[DiD

′
i] →P 0 by Step 2.

Step 5. This step establishes consistency of the variance estimator in the
boundedly heteroscedastic case of Theorem 3.

Recall that Ω̂ := En[̂ε2
i D̂(xi)D̂(xi)

′] and Ω := Ē[ε2
i D(xi)D(xi)

′], where the
latter is bounded away from zero and from above uniformly in n. Also, Q =
Ē[DiD

′
i] is bounded away from zero and from above uniformly in n. Therefore,
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it suffices to show that Ω̂−Ω →P 0 and that En[D̂iD̂
′
i]− Ē[DiD

′
i] →P 0. The lat-

ter has been shown in the previous step, and we only need to show the former.
In what follows, we shall repeatedly use the following elementary inequality:

for arbitrary nonnegative random variables W1� � � � �Wn and q > 1,

max
i≤n

Wi � n1/q if Ē
[
W

q
i

]
� 1�(F.6)

which follows by Markov inequality from E[maxi≤n Wi] ≤ n1/qE( 1
n

∑n

i=1 W
q
i )

1/q ≤
n1/q(Ē[W q

i ])1/q� which follows from the trivial bound maxi≤n |wi| ≤ ∑n

i=1 |wi|
and Jensen’s inequality.

First, we note∥∥En

[(̂
ε2
i − ε2

i

)
D̂iD̂

′
i

]∥∥ ≤ ∥∥En

[{
d′
i(̂α− α0)

}2
D̂iD̂

′
i

]∥∥
+ 2

∥∥En

[
εid

′
i(̂α− α0)D̂iD̂

′
i

]∥∥
�P max

i≤n
‖di‖2

2n
−1
∥∥En

[
D̂iD̂

′
i

]∥∥
+ max

i≤n
|εi|‖di‖2n

−1/2
∥∥En

[
D̂iD̂

′
i

]∥∥
→P 0�

since ‖α̂ − α0‖2
2 �P 1/n, ‖EnD̂iD̂

′
i‖ �P 1 by Step 4, and maxi≤n ‖di‖2

2n
−1 →P 0

(by maxi≤n ‖di‖2 �P n
1/q for q > 2, holding by Ē[‖di‖q

2] � 1 and inequality (F.6))
and maxi≤n[‖di‖2|εi|]n−1/2 →P 0 (by maxi≤n[‖di‖2|εi|] �P n

1/q for q > 2 holding
by Ē[(‖di‖2|εi|2)q] � 1 and inequality (F.6)).

Next we note that∥∥En

[
ε2
i D̂iD̂

′
i

]− En

[
ε2
i DiD

′
i

]∥∥= ∥∥En

[
ε2
i Di(D̂i −Di)

′ + ε2
i (D̂i −Di)D

′
i

]
+ En

[
ε2
i (D̂i −Di)(D̂i −Di)

′]∥∥�
which is bounded up to a constant by√

ke max
1≤l≤ke

‖D̂il −Dil‖2�n

∥∥ε2
i ‖Di‖2

∥∥
2�n

+ ke max
1≤l≤ke

‖D̂il −Dil‖2
2�n max

i≤n
ε2
i →P 0�

The latter occurs because ‖ε2
i ‖Di‖2‖2�n =√

En[ε4
i ‖Di‖2

2] �P 1 by Ē[ε4
i ‖Di‖2

2] uni-
formly bounded in n by Condition SM and by Markov inequality, and

max
1≤l≤ke

‖D̂il −Dil‖2
2�n max

i≤n
ε2
i �P

s log(p∨ n)

n
n2/qε → 0�

where the latter step holds by Step 0 and by maxi≤n ε
2
i �P n2/qε holding

by Ē[εqεi ] � 1 and inequality (F.6). Finally, En[ε2
i DiD

′
i] − Ē[ε2

i DiD
′
i] →P 0
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by the von Bahr–Essen inequality (von Bahr and Esseen (1965)) and by
Ē[|εi|2+μ‖Di‖2+μ

2 ] bounded uniformly in n for small enough μ > 0 by Condi-
tion SM.

We conclude that En[̂ε2
i D̂iD̂

′
i] − Ē[ε2

i DiD
′
i] →P 0. Q.E.D.

F.2. Proof of Theorem 5

Step 1. To establish claim (i), using the properties of projection, we note that

nEn[ε̃if̃ij] = nEn[εif̃ij]�(F.7)

Since for μ̂ε = (En[wiw
′
i])−1

En[wiεi], we have ‖μ̂ε‖2 ≤ ‖En[wiw
′
i]−1‖‖En[wiεi]‖2,

where ‖En[wiw
′
i]−1‖ is bounded by Condition SM2(ii) and ‖En[wiεi]‖2 is of

stochastic order
√
kw/n by Chebyshev inequality and Condition SM2(ii).

Hence ‖μ̂ε‖2 �P

√
kw/n. Since ‖wi‖2 ≤ ζw by Condition SM2(i), we conclude

that maxi≤n |w′
iμ̂ε| �P ζw

√
kw/

√
n → 0. Hence, uniformly in j ∈ {1� � � � �p},

∣∣√En

[
ε̃2
i f̃

2
ij

]−
√

En

[
ε2
i f̃

2
ij

]∣∣ (a)≤
√

En

[(
w′

iμ̂ε

)2
f̃ 2
ij

]
(F.8)

(b)= oP(1)
√

En

[
f̃ 2
ij

] (c)= oP(1)�

where (a) is by the triangular inequality and the decomposition ε̃i = εi −w′
iμ̂ε,

(b) is by the Holder inequality, and (c) is by the normalization
√

En[f̃ 2
ij ] = 1 for

each j. Hence, for c > 1, by (F.7) and (F.8) w.p. → 1,

Λα1 ≤ cΛ̄α1� Λ̄α1 := max
1≤j≤p

n
∣∣En[εif̃ij]

∣∣/√En

[
ε2
i f̃

2
ij

]
�

Since Λ̄α1 is a maximum of self-normalized sum of i.n.i.d. terms conditional
on X , application of Condition SM2(iii)–(iv) and the moderate deviation
bound from Lemma 5 for the self-normalized sum with Uij = εif̃ij , conditional
on X , implies that P(cΛ̄α1 ≤ Λ(1 − γ))≥ 1 − γ − o(1). This verifies claim (i).

Step 2. To show claim (ii) we note that, using triangular and other elementary
inequalities,

Λa = max
1≤j≤p

∣∣∣∣ nEn[(ε̃i − (a− α1)
′d̃ei)f̃ij]√

En[(ε̃i − (a− α1)′d̃ei)2f̃ 2
ij ]

∣∣∣∣
≥ max

1≤j≤p

∣∣∣∣ n|En[(a− α1)
′d̃eif̃ij]|√

En[ε̃2
i f̃

2
ij ] +

√
En[{(a− α1)′d̃ei}2f̃ 2

ij ]

∣∣∣∣−Λα1 �
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The first term on the right side is bounded below by, w.p. → 1,

max
1≤j≤p

n|En[(a− α1)
′d̃eif̃ij]|

c
√

En[ε2
i f̃

2
ij ] +

√
En[{(a− α1)′d̃ei}2f̃ 2

ij ]
�

by Step 1 for some c > 1, and Λα1 �P

√
n log(p/γ) also by Step 1. Hence for

any constant C, by the last condition in the statement of the theorem, with
probability converging to 1, Λa −C

√
n log(p/γ) → +∞� so that claim (ii) im-

mediately follows, since Λ(1 − γ)�
√
n log(p/γ). Q.E.D.

F.3. Proof of Theorems 6 and 7

See the Supplemental Material (Belloni et al. (2012)).
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