Addiction and Illegal Markets

Shingo Ishiguro (Osaka) Sultan Mehmood (NES) Avner Seror (Aix-Marseille) Daniel Chen (TSE)

2025

What we do

We develop a theory to understand *illegal* markets where

- ► Addiction preference: Buyers are addicted to consuming goods over time.
- ▶ No formal laws: Buyers default on payments, and instruments to punish defaults are limited.

Our focus: illegal gambling market

- Horse race betting, sports betting, etc.
- Huge market: USD 1.7 trillion wagered globally (United Nations Office on Drugs and Crime (2021))

Evidence: Illegal Gambling in Pakistan

Mehmood and Chen (2024), "Contract Enforcement in a Stateless Economy":

▶ Illegal horse race betting in Pakistan

Key facts:

- 1 Book-bet: 55% of initial gamblers are allowed to place bets by "credit" but not "cash" (they can defer payments).
- 2 Default: 35% of gamblers do not repay debts in full.
- 3 Few violence: only 0.5% of gamblers reported any apprehension of encountering violence in case of non-payment situations.

Questions

- Why do bookmakers use "book-bet" rather than "cash-bet" even though the former results in gamblers' defaults?
- Why do bookmakers allow gamblers to default?
- Why is violence so rare to punish defaulting gamblers?

Relevant not only in illegal gambling but also other illegal markets (e.g., illicit drug markets).

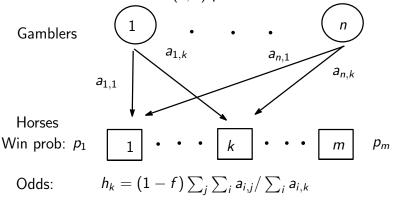
Main Insights: What we show

In dynamic illegal markets with addiction preferences,

- 1 'Free-first-dose' strategy becomes optimal for sellers.
 - ► Sellers initially offer to new buyers goods for free or cheap prices, cultivate their addiction preferences, and then exploit their willingness to pay later on.
- 2 It becomes optimal for sellers to let new buyers owe indebtedness initially (book-bet rather than cash-bet).
- 3 Buyers default but are never punished (no violence).
- 4 Equilibrium odds in gambling market have "long-shot bias," known as an empirical puzzle.
- 5 Buyers' addictions are socially excessive.

Model: Gambling Market of Horse Racing

(i) Gamblers bet on which horse to come first. (ii) Bookmaker collects "house-take" $f \in (0,1)$ per \$1 bet.



Payout: $h_j a_{i,j}$ conditional on horse j wining the race.

Addiction Preference: Gamblers' Payoffs

Time: t = 1, 2 (can be extended)

▶ In period 1

$$\underbrace{v(A_{i,1})}_{\text{utility from gambling}} + \underbrace{c_{i,1}}_{\text{gambling returns}}$$

► In period 2

$$u(A_{i,2}, S_i) + c_{i,2}$$
utility from gambling gambling returns

- ► $A_{i,t} \equiv \sum_{i \in J} a_{i,j,t}$: amounts bet in total in period t.
- Addiction stock in period 2: $S_i = \beta A_{i,1}$ where $\beta > 0$ (Rational Addiction (Becker and Murphy, 1988)).

Equilibrium in Gambling Market

"Parimutuel" Betting:

- ▶ In each period t = 1, 2 gamblers decide how much to place bets on horses *before* knowing odds.
- ▶ Gambling (rational expectations) equilibrium in period t = 1, 2: (i) Gamblers optimally place bets $\{a_{i,j}\}_{j\in J}$ given expectations about odds $\{h_j\}_{j\in J}$, and (ii) odds $\{h_j\}_{j\in J}$ are determined to be consistent with gamblers' bets.
- Odds of horse j:

$$h_j \equiv rac{\left(1-f
ight)\sum_{i\in I}\sum_{\ell\in J}a_{i,\ell}}{\sum_{i\in I}a_{i,j}}$$

Gambling Formats

In period 1 bookmaker chooses either one of

- ► Cash-bet: gamblers must pay immediately when they place bets.
 - ▶ Book-bet: gamblers can defer payments to the next period.
 - Default can be punished in period 2.

In period 2 only Cash-Bet is available (period 2 is the last period).

Bookmaker's Payoffs

Bookmaker's payoffs over two periods:

$$\sum_{i \in I} \left\{ f \sum_{j \in J} a_{i,j,1} - D_i \right\} + f \sum_{i \in I_2} \sum_{j \in J} a_{i,j,2}.$$

- \triangleright D_i : amount defaulted by gambler i in period 1.
- Bookmaker collects commission fees minus defaulted amounts.
- ▶ $I_2 \subseteq I$: set of gamblers participating in the gambling in period 2.

Book-bet: Timing

Bookmaker chooses book-bet in period 1.

Period 1 (Book-bet):

- 1. Bookmaker offers a punishment policy (given below).
- 2. Gamblers place bets and odds are determined in gambling equilibrium.

Period 2 (Cash-bet):

- 1. Gamblers decide how much to default.
- 2. Punishment policy is implemented.
- 3. Gamblers place bets and pay under cash-bet.
- 4. Odds are determined in gambling equilibrium.

Punishment Policy under Book-Bet

Punishments $\{q, \xi\}$:

1 Exclusion from gambling in period 2 with prob q.

$$q(D, z, A) \in [0, 1]$$

contingent on how much to owe debt $z \ge 0$, how much to default $D \in [0, z]$ and how much to bet $A \ge 0$ in total in period 1.

2 Utility-based penalty (e.g., violence) ξ :

$$\xi(D,z,A)\in[0,H]$$

for an exogenous upper bound $H \ge 0$.

Remarks on Punishment Policy

- ► Limited instruments of punishment: (i) exclusion and (ii) utility-based penalty (violence):
 - ► Relevant in illegal markets
 - Exclusion: Loss of future gain from gambling (linked to addiction stock S_i)
 - ► Violence: direct penalty but may be limited by exogenous reasons (e.g. crime prevention policies).
- ▶ Bookmaker can commit to punishment policy $\{q, \xi\}$ and payouts to gamblers (can be extended).
 - \Rightarrow interpreted as a short-cut of dynamic equilibrium.

(jump to illegal market)

Gambling Equilibrium under Cash-Bet in Period 2

► Gambler *i* places bets $\{\hat{a}_{i,1},...,\hat{a}_{i,m}\}$ to maximize

$$\underbrace{u(A_i, S_i)}_{\text{gambling utility}} + \underbrace{\sum_{j \in J} p_j \hat{h}_j a_{i,j} - A_i}_{\text{expected returns}}$$

where $A_i = \sum_{j \in J} a_{i,j}$, given equilibrium odds $\{\hat{h}_j\}_{j \in J}$.

- ▶ Equilibrium odds: $\hat{h}_j = (1 f) \sum_i \sum_{\ell} \hat{a}_{i,\ell} / \sum_i \hat{a}_{i,j}$.
- Equilibrium payoff:

$$\hat{U}(S_i) \equiv \max_{\{a_{i,j}\}} u(A_i, \underline{S_i}) + \sum_{i \in J} p_j \hat{h}_j a_{i,j} - A_i$$

Equilibrium under Book-bet in Period 1

In period 1

- ▶ Gambler *i* places bet $\{a_{i,j}\}_{j\in J}$ with $A_i \equiv \sum_{i\in J} a_{i,j}$.
- ▶ Gambler i's net return when horse j wins the race:

$$h_j a_{i,j} - A_i$$
.

► Gambler *i*'s debt:

$$z_{i,j} \equiv \max\{0, A_i - h_j a_{i,j}\}$$

▶ Gambler *i*'s default $D_{i,j}$ s.t. $0 \le D_{i,j} \le z_{i,j}$.

Equilibrium under Book-Bet in Period 1

Given a punishment policy $\{q,\xi\}$ and book-bet in period 1,

▶ Gambler *i* places bets $\{a_{i,j}\}_{j\in J}$ and decides how much to default $\{D_{i,j}\}_{j\in J}$ so as to maximize

$$v(A_{i}) + \sum_{j \in J} p_{j} \{h_{j} a_{i,j} - A_{i} + D_{i,j} - \xi(A_{i}, z_{i,j}, D_{i,j})\}$$

$$+ \sum_{j \in J} p_{j} (1 - q(A_{i}, z_{i,j}, D_{i,j})) \hat{U}(S_{i})$$

where $0 \le D_{i,j} \le z_{i,j}$, and

- ▶ $z_{i,j} \equiv \max\{0, A_i h_j a_{i,j}\}$: debt owed conditional on horse j wining the race.
- ▶ $A_i \equiv \sum_{j \in J} a_{i,j}$: amounts bet in total by gambler i. (jump to equi under book-bet)

Bang-Bang Punishment Policy

Expected loss of default:

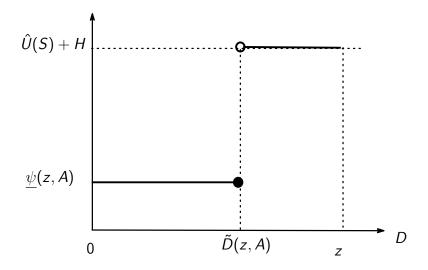
$$\psi(A,D,z) \equiv \underbrace{q(A,D,z)\hat{U}(S)}_{\text{loss of 2nd period payoff}} + \underbrace{\xi(A,D,z)}_{\text{utility-based penalty}}$$

- ▶ Punishment policy: ψ instead of q and ξ .
- Bang-bang punishment policy:

$$ilde{\psi}(A,D,z) \equiv \left\{ egin{array}{ll} extstyle \underline{\psi}(z,A) & ext{if } D \leq ilde{D}(z,A) \ \\ \hat{U}(S) + H & ext{otherwise} \end{array}
ight.$$

 $ightharpoonup \tilde{D}(z,A)$: maximum forgiveness.

Bang-Bang Punishment Policy

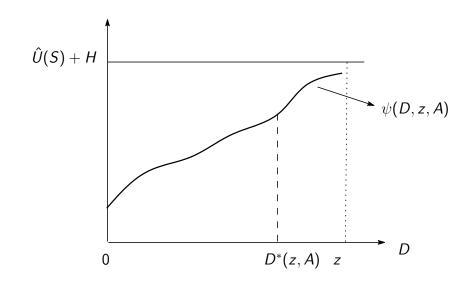


Optimality of Bang-Bang Punishment Policy

Equilibrium outcome given a punishment policy ψ :

- ▶ $\mathbf{a}^* = \{a_{i,j}^*\}_{i \in I, j \in J}$: equilibrium bets in period 1.
- ▶ $\mathbf{h}^* = \{h_i^*\}_{j \in J}$: equilibrium odds in period 1.
- ▶ $\hat{\mathbf{a}}(\mathbf{S}^*) = {\hat{a}_{i,j}(S_i^*)}_{j \in J, i \in I}$: equilibrium bets in period 2.

Proposition 1. Suppose that a punishment policy ψ implements an equilibrium outcome $\{\mathbf{a}^*, \mathbf{h}^*, \mathbf{\hat{a}}(\mathbf{S}^*)\}$. Then the same outcome is implemented by a bang-bang punishment policy $\tilde{\psi}$. Furthermore, the bookmaker can be weakly better off by $\tilde{\psi}$.



• Gambler's equilibrium default $D^*(z,A)$ under ψ :

$$\max_{D} D - \psi(D, z, A)$$

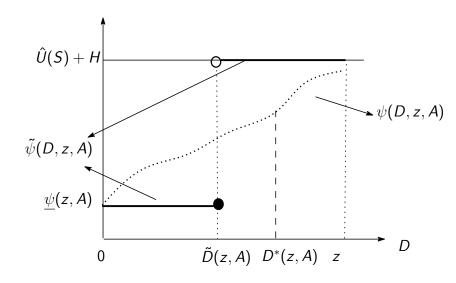
subject to $0 \le D \le z$ where $z \ge 0$ is the debt owed.

Define the lowest penalty as

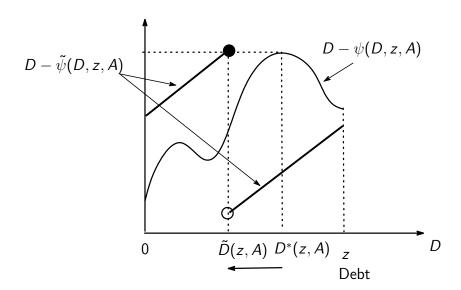
$$\underline{\psi}(z,A) \equiv \inf_{0 \leq D \leq z} \psi(D,z,A).$$

Define maximum forgiveness as

$$\tilde{D}(z,A) \equiv D^*(z,A) - \{\psi(D^*(z,A),z,A) - \underline{\psi}(z,A)\}$$



Intuition: Gambler's Ex Post Payoffs

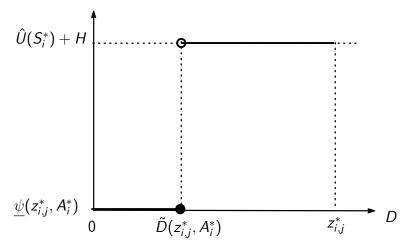


Under the newly defined punishment policy $\tilde{\psi}$

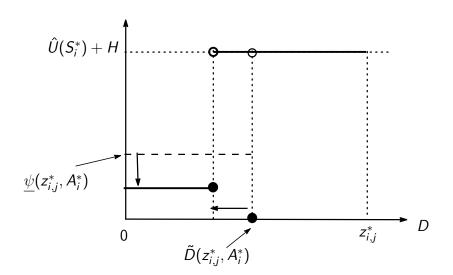
- ▶ Gamblers default $\tilde{D}(z, A)$ and obtain the same expected payoffs as those under original ψ .
- ▶ Gamblers choose the same amounts bet $\{\mathbf{a}^*, \mathbf{\hat{a}}(\mathbf{S}^*)\}$ as those in equilibrium under original ψ .
- ► Gamblers default less: $\tilde{D}(z,A) \leq D^*(z,A)$.
 - ⇒ Bookmaker can be better off.

"Free-First-Dose" Strategy

Optimal $\tilde{\psi}$ maximizing bookmaker's payoff:



"Free-First-Dose" Strategy



Symmetric Equilibrium

Symmetric equilibrium induced by a bang-bang punishment policy $\tilde{\psi}$:

- Period 1: $a_{i,i}^* = a_i^*$ and $A_i^* = A^*$ for all $i \in I$.
- Period 2: $a_{i,j} = \hat{a}_j(S^*)$ and $\hat{A}(S^*) \equiv \sum_j \hat{a}_j(S^*)$ for all $i \in I$ where $S^* = \beta A^*$.
- ▶ Equilibrium odds in period 1: $h_i^* \equiv (1 f)A^*/a_i^*$ for $j \in J$.

Best (symmetric) equilibrium: $\tilde{\psi}$ and induced $\{\mathbf{a}^*, \mathbf{h}^*, \hat{\mathbf{a}}^*(S^*)\}$ maximize the bookmaker's payoff per gambler:

$$\Pi(\tilde{\psi}) \equiv \{fA^* - \tilde{D}^*\} + f\hat{A}(S^*)$$

where gamblers default $ilde{D}^* \geq 0$ without penalties $\xi = q = 0$ under $ilde{\psi}.$

Equilibrium Feature #1: Long-Shot Bias

Equilibrium odds have

- ► Long-shot bias: gamblers bet more on the horses less likely to win the race.
- Observed in the data about horse race betting
- Empirical puzzle (Chiappori et al, 2019; Ottaviani and Sørensen, 2008).

Long-Shot Bias

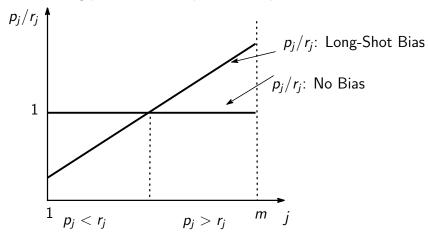
 \triangleright Support rate of horse j (how much j attracts bets):

$$r_{j} \equiv \frac{\sum_{i \in I} a_{i,j}}{\sum_{i \in I} \sum_{\ell \in J} a_{i,\ell}}$$

- ▶ Odds: $h_j = (1 f)/r_j$ inversely related to r_j .
- No Bias: $r_j = p_j$ for all $j \in J$. \Rightarrow Support rates of horses completely offset their winning probabilities!

Long-Shot Bias

▶ Wining prob of horses: $p_1 < \cdots < p_m$.



Why Long-Shot Bias in our Equilibrium?

Expected return to bet \$1 on horse *j*:

$$\underbrace{p_j(h_j^*-1)}_{\mathsf{win}} + \underbrace{(1-p_j) \times 0}_{\mathsf{lose and default}} = p_j(h_j^*-1)$$

- **Default gain**: gamblers have more chances to default by betting more on horses with lower p_j .
- No long-shot bias exists when gamblers cannot default.
- Implication: Long-shot bias is more likely in illegal markets where gamblers often default.

Equilibrium Feature #2: Optimality of Book-Bet

▶ Which book-bet or cash-bet the bookmaker chooses in period 1? Consider the game with cash-bet in both periods (without defaults):

Period 1 (Cash-bet):

- 1. Gamblers place bets and pay.
- 2. Odds are determined.

Period 2 (Cash-bet):

- 1. Gamblers place bets and pay.
- 2. Odds are determined.

Cash-Bet or Book-Bet?

Proposition 4. Suppose that gamblers have so strong addiction preference (with large β). Then the bookmaker prefers book-bet to cash-bet: she optimally allows gamblers to bet by credit (not cash) and default in period 1.

Intuition: Consider a bang-bang punishment $\tilde{\psi}$ where

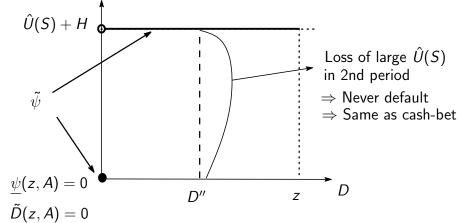
- Maximum forgiveness: $\tilde{D}(z,A) = 0$ for all $z \geq 0$ and all $A \geq 0$.
- ▶ Gamblers are most harshly punished for any default D > 0.

Then

- ▶ Gamblers never default (otherwise they lose large addicted gains in t = 2).
- lacksquare $ilde{\psi}$ can replicate the same outcome as that under cash-bet.

Optimality of Book-bet

 $ilde{\psi}$ can replicate the same outcome as that under cash-bet.



Equilibrium Feature #3: Excessive Addiction

▶ Social welfare: $W = n\{v(A_1) + u(A_2, S)\}$ where $S = \beta A$.

Proposition 5. Suppose that gamblers' addiction preference is sufficiently strong, and that the commission fee $f \in (0,1)$ is sufficiently small. Then the equilibrium amounts bet in both periods are larger than those maximizing the social welfare.

Intuition: Under large β and small f the bookmaker

- optimally adopts book-bet in period 1
- excessively cultivates gamblers' addiction by allowing them to bet larger while allowing defaults in period 1.
- ▶ induces them to bet aggressively in period 2.

Applications to Other Markets

We apply our theory to understand the 'free-first-dose' strategy in several environments:

- ► Illicit drug dealers
 - offer new users "genuine" drugs without diluting 'purity' and cultivate their addiction preferences
 - offer high prices later as they are addicted to using drugs.
- Religious sects
 - initially offer new members a sense of belonging, community, and tangible benefits such as meals, social support, or even housing
 - increase their feelings of obligations to contribute to the groups, resulting in financial and spiritual "debts."

Endogenous Commitment

- ► Time: t = 1, 2, ...
- Bookmaker infinitely lives and faces a sequence of short-lived gamblers over time.
- **Dynamic enforcement (DE)**: bookmaker self-enforces punishment policy $\tilde{\psi}$ and payout $(1-f)\sum_{i}\hat{a}_{j\in J}(S^*)$ under cash-bet if

$$\underbrace{\frac{\delta}{1-\delta}\Pi(\tilde{\psi})}_{\text{Discounted Future Payoff}} \geq \underbrace{(1-f)\sum_{j}\hat{a}_{j\in J}(S^*)}_{\text{Payout under Cash-Bet}}.$$

- ▶ Complementarity between addiction and relational contracts: higher β makes DE easier to satisfy.
 - ⇒ Answer to why Illegal markets work even without formal contracts when people have addiction preferences.

Appendix

Bookmaker's Commitment

Even in the two-period model the bookmaker can commit to punishment policy and payouts by

- hiring "agents" who are paid "fixed" wages (independent of race outcomes)
- letting them run betting stations and implement punishment policy and payouts

(jump to Remarks)

Equilibrium under Book-Bet

Period 1 (Book-bet):

- 1. Bookmaker offers and commits to punishment policy $\{q, \xi\}$.
- 2. Gamblers place bets and odds are determined.
- 3. Gamblers decide how much to default.

Period 2 (Cash-bet):

► Gambler *i* bets $\hat{A}(S_i)$ in total:

$$\hat{U}(S_i) \equiv \max_{A_i > 0} u(A, S_i) - fA_i.$$

▶ Gambler *i*'s equilibrium payoff: $\hat{U}(S_i)$.

(jump to Equilibrium under Book-Bet)

Best Equilibrium: Constraints

Gambler's equilibrium payoff:

$$V^* \equiv v(A^*) - fA^* + \tilde{D}(z^*, A^*) + \hat{U}(S^*)$$

► Incentive Compatibility (IC):

$$V^* \geq \max_{\mathbf{a}_{i}, \{D_{i,j}\}_{j \in J}} v(A_{i}) \\ + \sum_{j \in J} p_{j} \{h_{j}^{*} a_{i,j} - A_{i} + D_{i,j} - \tilde{\psi}(D_{i,j}, z_{i,j}, A_{i})\} \\ + \hat{U}(S_{i}).$$

subject to $0 \le D_{i,j} \le z_{i,j} \equiv \max\{0, A_i - h_j^* a_{i,j}\}$, and $S_i = \alpha + \beta A_i$.

Best Equilibrium: Constraints

▶ Equilibrium odds (EO): $\{h_j^*\}_{j\in J}$ satisfy

$$\sum_{j \in J} (1/h_j^*) = 1/(1-f).$$

(jump to definition of equi odds)

► Feasibility (F):

$$0 \leq \tilde{D}(z, A) \leq z$$

and

$$0 \leq \tilde{\psi}(D, z, A) \leq \hat{U}(S) + H$$

for all $D \in [0, z]$, all $z \ge 0$ and all $A \ge 0$.

Best Equilibrium

Best equilibrium $\{\mathbf{a}^*, \mathbf{h}^*, \hat{A}(S^*)\}$:

- (symmetric) equilibrium bets in period 1: $\mathbf{a}^* = \{a_j^*\}_{j \in J}$.
- equilibrium odds in period 1: $h_j^* = (1-f)A^*/a_j^*$ where $A^* = \sum_j a_j^*$.
- equilibrium amounts bet in total in period 2: $\hat{A}(S^*)$ where $S^* = \alpha + \beta A^*$.
- Maximize the bookmaker's payoff

$$\Pi(ilde{\psi}) \equiv fA^* - ilde{D}(z^*, A^*) + f\hat{A}(S^*)$$

subject to IC, EO and F.

Equilibrium under Cash-Bet in t = 1, 2

Under cash-bet in period 1 (no defaults are allowed),

▶ Gamblers place bets $\{\tilde{a}_j\}_{j\in J}$ without defaults in period 1:

$$\max_{a_{i,j}} v(A_i) + \sum_{j \in J} p_j h_j a_{i,j} - A_i + \hat{U}(S_i)$$

where $A_i = \sum_{j \in J} a_{i,j}$ and $S_i = \alpha + \beta A_i$.

► Bookmaker's payoff per gambler:

$$\Pi_c \equiv f \sum_{j \in J} \tilde{a}_j + f \sum_{j \in J} \hat{a}_j (\tilde{S})$$

where
$$\tilde{S} \equiv \alpha + \beta \sum_{j} \tilde{a}_{j}$$
.