Wealth Inequality and Intergenerational Links

By Mariacristina De Nardi Review of Economic Studies, 2004

U.S. wealth and earnings distributions

Percentage held by the top		5%	20%	40%	80%	Percent with
						zero or negative
Wealth	28	49	75	89	99	6-15
Gross Earnings	6	19	48	72	98	7.7

Swedish wealth and earnings distributions

Percentage held by the top		5%	20%	40%	80%	Percent with
						zero or negative
Wealth	17	37	75	99	100	30
Gross Earnings	4	15	42	68	98	7.6

Some more facts

- Earnings and wealth are unequally distributed and concentrated.
- Wealth is much more concentrated than earnings.
- Some of this inequality is due to life-cycle.
- In the aggregate, a large fraction of wealth is transmitted across generations rather than accumulated out of life-cycle savings.
- Rich people (with high lifetime income) keep lots of assets as they age.

Questions

- Are intergenerational links quantitatively important to explain household saving behavior and wealth concentration?
- If yes, which ones? Do voluntary or involuntary bequests matter?
- Is the same saving model valid for other countries?
- Consider Sweden: country in which there is less inequality and the government redistributes more than in the U.S.?

Related Literature

Dynasty models

- Krusell and Smith (1997).
- Castañeda, Díaz-Giménez and Ríos-Rull (1998)
- Quadrini (1997).

OLG models

- Huggett (1996).
- Gokhale et al. (1998)
- Heer (1999)

Elements of the model

- OLG;
- lifetime and income uncertainty;
- parents are altruistic;
- children partially inherit parents' productivity.

Why?

- Age structure generates inequality;
- Motives to save: precautionary, life cycle, bequests. poor people: life—cycle component of savings; rich: inheritance.
- Also differences due to different family backgrounds.

Key elements of the model

Simplified model of the household: 1 parent and children.

- continuum of agents born each period (5 years)
- live up to 90 years of age. Prob. of dying depends on age
- 20 year old people consume, work and pay taxes
- 25 year old people procreate
- exogenous number of children, total population grows at a constant rate over time
- inherit once in a lifetime, at a random date
- exogenous income process
- after retirement the agent does not work and receives social security benefits

Preferences

• Period utility from consumption:

$$u(c_t) = \frac{c_t^{1-\sigma}}{1-\sigma}$$

• Bequest motive: "Warm glow altruism" $\phi(b)$

Technology

- Observe parental productivity when one's parent is 40 and use it to infer expected bequest distribution.
- Workers experience productivity shocks $y_t(s)$.
 - After age 20 it evolves stochastically according to Q_y .
 - Initial level at 20 is inherited from parent's productivity (at 40) according to Q_{yh} .
 - Exogenous age-efficiency profile, ϵ_t , during working years.
- One asset: capital.
- The household faces a borrowing constraint.

Government

The government taxes:

• Labor, capital income and estates

To finance:

- Exogenous public expenditure;
- Social security transfers to the retired agents. Retirees each period receive a lump sum transfer from the government.

Prices

- US: a "closed economy", Cobb-Douglas production function.
- Sweden: an "open economy", the net interest rate is given by the U.S. one.

The Agent's Recursive Problem

State variables:

- age t;
- assets from last period a_t;
- current productivity y_t;
- yp_t : parent's prod. at 40 until child inherits and zero thereafter. $yp_t > 0 \Rightarrow$ make inference on bequests; $yp_t = 0 \Rightarrow$ distinguish orphans.

Life cycle structure

Four subperiods in the agent's life:

- from 20 to 30 years of age;
- from 35 to 55 years old;
- 60 years old;
- from 65 to 85;

Model

(i) 20 to 30 years old: person works, survives for certain until next period and does not expect to inherit soon ($\Rightarrow vp' = vp$).

$$V(t, a, y, yp) = \max_{c,a'} \left\{ u(c) + \beta E_t V(t+1, a', y', yp) \right\}$$
(1)

subject to:

$$c \leq \left[1 + r\left(1 - \tau_{a}\right)\right] a + \left(1 - \tau_{l}\right) \epsilon_{t} y \tag{2}$$

$$a' = \left[1 + r(1 - \tau_a) \right] a - c + (1 - \tau_l) \epsilon_t y \tag{3}$$

(ii) 35 to 55: worker survives into next period, parent may die and leave a bequest.

$$V(t, a, y, yp) = \max_{c, a'} \left\{ u(c) + \beta E_t V(t+1, a', y', yp') \right\}$$
(4)

subject to (2) and:

$$a' = \left[1 + r(1 - \tau_a)\right] a - c + (1 - \tau_I) \epsilon_t y + b' I_{yp>0} I_{yp'=0}$$
(5)

 $I_{yp>0}$ indicator fn: 1 if yp>0.

$$yp' = \begin{cases} yp & \text{with probability } \alpha_{t+5} \\ 0 & \text{with probability } (1 - \alpha_{t+5}) \end{cases}$$
 (6)

 $\mu_b(t, yp)$: cond. distr. of b', bequest net of taxes a person expects if parent dies.

(iii) age 60: next period the agent retires. He faces a positive prob. of dying.

$$b(a') \equiv a' - \tau_b \cdot \max(0, a' - ex_b).$$

$$V(t, a, y, yp) = \max_{c, a'} \left\{ u(c) + \alpha_t \beta E_t V(t+1, a') + (1 - \alpha_t) \phi(b(a')) \right\}$$

$$(7)$$

$$\phi(b) = \phi_1 \left(1 + \frac{b}{\phi_2} \right)^{1 - \sigma} \tag{8}$$

subject to (2, 5 and 6).

(iv) age 65 to 85: the agent is retired and does not expect to inherit.

$$V(t, a) = \max_{c, a'} \left\{ u(c) + \alpha_t \beta V(t+1, a') + (1 - \alpha_t) \phi(b(a')) \right\}$$

$$(9)$$

subject to (5) and:

$$c \leq \left[1 + r\left(1 - \tau_{a}\right)\right] a + p \tag{10}$$

$$a' = \left[1 + r\left(1 - \tau_a\right)\right] a - c + p \tag{11}$$

p: pension payment from the government. $V(T+1,a) = \phi(b(a))$.

Transition Function

- Use agents' policy fns and exogenous Markov processes to
 - get a transition function that maps the time s distribution of the state variables in the population, $m(\cdot; s)$, into the distribution for next period $m(\cdot; s + 1)$.
- Focus on stationary equilibria (constant transition function M^* and its invariant distribution m^*).

A stationary equilibrium (part I) is:

- an interest rate r,
- allocations c(x), a(x),
- government policy, $(\tau_a, \tau_l, \tau_b, ex_b, p)$,
- family of prob. distr. for bequests $\mu_b(x;\cdot)$,
- const. distr. of people over x: $m^*(x)$,

such that, given r, and government policy:

A stationary equilibrium (part II) is:

- c(x) and a(x) solve individual max. problem given bequest distr.
- the gvt b.c. balances at each period

$$g = \int \left[\tau_a \, r \, a + \tau_l \epsilon_t \, y I_{t < t_r} - p \, I_{t \ge t_r} \right.$$

$$\left. + \tau_b (1 - \alpha_{t-1}) \cdot \max(0, a' - e x_b) \right] d m^*(x)$$
(12)

- m^* is an invariant distribution for this economy
- U.S.: $\frac{(r+\delta)K}{(r+\delta)K+wL} = \alpha$. Normalizations: w=1, L is fraction of working age people. Sweden:small open economy, so r is taken as exogenous.
- family of expected beq. distr. $\mu_b(\cdot;t,y_p)$ is consistent with the bequests left by parents

The Algorithm

- Solve backward the agents' value functions, starting from T: next period the agent is dead for sure hence derives utility only from bequests
- compute the invariant distribution
- iterate on the government budget
- iterate on bequests

The model economy for the U.S.

Parameter	Value	US Economy, Source(s)				
α_t	*	Bell Wade Goss (1992)				
ϵ_t	*	Hansen (1993)				
σ	1.5	Attanasio et al (1995)				
n	1.2%	Econ. Rep. Pres. (1998)				
g	19% of GDP	Econ. Rep. Pres. (1998)				
$ au_{a}$	20%	Kotlikoff et Al. (1997)				
r	6%	see text				
p	40% avg inc.	Kotlikoff et al (1997)				
$Q_{\scriptscriptstyle \mathcal{Y}}$	+	Huggett (1996), Lillard et al. (1978)				
Q_{yh}	+	Zimmerman (1992)				

Parameter	Value	US Economy, Source (s)				
$ au_{b}$	10%	see text				
ex_b	40 * median earn.	see text				
eta	.95–.97	capital-output ratio				
ϕ_{1}	-9.5	interg. transfers share				
ϕ_2	11.6	match 1 moment of bequest distr.				

The model economy for Sweden

Sweden has:

- less income inequality
 - \Rightarrow less idiosyncratic earnings uncertainty
- more generous social security system
- higher average tax rates on earnings, capital income and estates.

Parameter	Value	Sweden, Chosen to Match					
α_t	*	Stat. Yearbook Sweden (1997)					
ϵ_{t}	*	as U.S.					
eta	.95–.97	as U.S.					
σ	1.5	as U.S.					
ϕ_{1}	-9.5	as U.S.					
n	.8%	OECD Ec. Surveys, Sweden (1998)					
g	25% GDP	OECD Ec. Surveys, Sweden (1998)					
$ au_{\sf a}$	30%	OECD Ec. Surveys, Sweden (1998)					
r	6.86%	see text					
p	50% avg inc.	OECD Ec. Surveys, Sweden (1998)					
$Q_{\scriptscriptstyle \mathcal{Y}}$	+	see text					
Q_{yh}	+	Zimmerman (1992)					

Parameter	Value	Sweden, Chosen to Match
$ au_{b}$	15%	see text
ex_b	10 * avg earn.	see text
ϕ_2	3.3	"altruism", see text

Experiments

Add sequentially key elements to model economies:

- Age structure and income uncertainty OLG, no intergenerational links. Accidental bequests:
 - redistributed equally to people alive
 - given to the deceased's children
- Add bequest motive:
 OLG + bequest motive
- Add productivity link:
 OLG + bequest motive + productivity inheritance

Beq/Wealth	Wealth	Per	Percentage wealth in the top $~~\% \leq 0$						
Ratio	Gini	1%	5%	20%	40%	60%	Wealth		
U.S. data									
.60	.78	29	53	80	93	98	5.8-15.0		
No intergener	No intergenerational links, equal bequests to all								
.67	.67	7	27	69	90	98	17		
No intergenerational links, unequal bequests to children									
.38	.68	7	27	69	91	99	17		
One link: productivity inheritance									
.38	.69	8	29	70	92	99	17		
One link: parent's bequest motive									
.55	.74	14	37	76	95	100	19		
Both links: pa	Both links: parent's bequest motive and productivity inheritance								
.60	.76	18	42	79	95	100	19		

U.S. wealth .1, .3, .5, .7, .9, .95 quantiles, by age

No links, equal bequests to all.

U.S. wealth .1, .3, .5, .7, .9, .95 quantiles, by age.

Bequest motive only.

Cumulative distribution of estates

Solid=model, dash-dot=AHEAD data.

Expected bequest distribution at 40, model

Figure: U.S. Figure: Sweden

Saving rate conditional on inheritance expectation

U.S. calibration. Bequest motive only.

Figure: Conditional on not having inherited.

Figure: Conditional on having inherited.

		00000		0000	000			
Beq/Wealth	Wealth	Per	centag	ge wealt	h in th	e top	% ≤ 0	
Ratio	Gini	1%	5%	20%	40%	60%	Wealth	
Swedish data								
> .51	.73	17	37	75	99	100	30	
No intergener	No intergenerational links, equal bequests to all							
.73	.64	5	23	64	89	100	24	
No intergener	ational lin	ks, un	equal	bequest	ts to ch	ildren		
.38	.67	6	25	67	91	100	26	
One link: beq	One link: bequest motive							
.76	.71	8	29	73	95	100	30	
Both links: bequest motive and productivity inheritance								
.77	.73	9	31	75	95	100	30	

Conclusions

- Accidental bequests do not help explain wealth concentration.
 Voluntary bequests do.
- Transmission of productivity across generations increases some more the concentration.
- Bequest motive \rightarrow life–cycle accumulation profile more consistent with the U.S. data.
- U.S.-Sweden comparison → intergenerational links important also in economies where redistribution programs are more prominent and there is less inequality. Disincentives to save.