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1 Introduction

Macroeconomic models with heterogeneous agents are ideal laboratory economies to quan-

titatively study a large set of issues that include household behavior under uncertainty, in-

equality, and the effects of taxes, transfers, and social insurance reforms. For instance, Scholz,

Seshadri and Khitatrakun (2006) study the adequacy of savings at retirement, Storesletten,

Telmer and Yaron (2004) study the evolution of consumption inequality over the life cycle,

and Conesa, Kitao and Krueger (2009) study the optimal taxation of capital. Many of these

quantitative models adopt earnings processes that imply that the persistence of earnings

shocks is independent of age and earnings histories, and that positive and negative income

changes are equally likely (for instance, a common assumption is that earnings follow a linear

process with normal innovations).

Earnings risk, consumption, and wealth accumulation are tightly linked. The magnitude

and persistence of earnings shocks determine how saving and consumption adjust to buffer

their impact on current and future consumption and the extent to which people can self-insure

by using savings. Appropriately capturing earnings risk is therefore important to understand

consumption and wealth accumulation decisions as well as the welfare implications of income

fluctuations and the potential role for social insurance.

A growing body of empirical work provides evidence that households’ earnings dynamics

feature substantial asymmetries and non-linearities and devises flexible statistical models

that allow for these features. For instance, recent work takes advantage of new methodologies

(Arellano, Blundell and Bonhomme, 2015) or large data sets (Guvenen, Karahan, Ozkan and

Song, 2015) to show that earnings changes display substantial skewness and kurtosis and that

the persistence of shocks depends both on age and current earnings.1

Unfortunately, the complexity of these rich earnings processes makes it computationally

1Guvenen et al. (2015) document these features using Social Security Administration tax earnings (W2)
data for a large panel of individuals, while Arellano et al. (2015) show that similar features hold in the PSID
too.
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very costly to incorporate them in the rich structural models of household’s decision making

that are needed to study consumption and saving decisions and their implications for con-

sumption, wealth, and welfare inequality, both in the cross-section and over the life cycle. For

this reason, rich earnings processes matching a large number of observed conditional and un-

conditional earnings moments have not been introduced in structural models of household’s

decision making over the life cycle so far.

This paper provides multiple contributions. First, it proposes a new, non-parametric, way

to model life-cycle earnings dynamics that is both consistent with the new empirical findings

and easy to estimate and introduce in structural quantitative models of optimal households’

decision making. The method is sufficiently flexible to accommodate non-linearities, het-

eroskedasticity and deviations from normality. While the usual approach involves first esti-

mating a parametric, linear Markov process for (the stochastic component of) earnings

and then discretizing it, our proposed method estimates non-parametrically an age-specific

Markov chain directly from the data. More specifically, in our main case—that assumes

that earnings follow a Markov chain of order one—our method starts by computing the age-

specific transition matrix from the percentile rank of the earnings distribution at age t to

that at age t + 1. Then, it discretizes the marginal distribution of earnings at each age by

replacing the (heterogeneous) values of earnings in each rank percentile with their average.

The result is a non-parametric representation of the earnings process that follows a Markov

chain with an age-dependent transition matrix and a fixed number of age-dependent earnings

states. Our method can be generalized to allow for Markov chains of order higher than one.2

Second, this paper applies our method both to the PSID and to a large synthetic panel

generated simulating the parametric earnings process estimated by Guvenen et al. (2015) on

W2 data.3 The advantage of the PSID is that it is a well known data set, that includes more

information about earners than the W2 data. (For readability, we refer to our“synthetic W2”

2In Section 8 we show that our findings are robust to allowing for a Markov chain of order two.
3Our synthetic data set fits, by construction, all of the moments that these authors use in their estimation

procedure and allows us to sidestep the problem that accessing the W2 tax data is very involved.

3



data simply as“W2”data in the rest of the paper.) Conversely, unlike the PSID, the W2 data

set is extremely large and does not feature top-coding or under-representation of very high

earners. For this reason we apply our non-parametric estimation method to both data sets.

We find that our approximation replicates very well the first four unconditional moments of

log earnings and the conditional moments of log earnings growth in both datasets. In both

cases the estimated earnings process features important non-linearities, heteroskedasticity,

negative skewness and kurtosis. In particular, we find that that our non-linear earnings

process implies much lower persistence at low and high earnings levels and for the young

than implied by the (near-) unit root processes commonly used in the quantitative macro

literature with heterogeneous agents (e.g. Huggett, 1996).

Third, and importantly, this paper studies the implications of these features of earnings

dynamics for consumption and wealth in the context of a standard life cycle model of savings

and consumption with incomplete markets. More specifically, we compare the implications of

our flexible estimated process, featuring an age-specific Markov chain, to those of a discretized

AR(1) process calibrated to match the US earnings Gini and to approximate the life-cycle

profile of earnings inequality.

Our main findings are the following. Unlike the AR(1), our non-linear earnings process

generates an increase in consumption inequality over the life cycle that is in line with the

observed data. We show that approximately half of the improvement in fitting the growth

of the consumption variance between ages 25 and 55 is due to the combination of age-

dependent persistence and innovation variances, as well as skewness and kurtosis. The

remaining fraction is accounted for by the dependence of conditional moments on current

earnings.

In addition, our rich earnings process generates a better fit of the wealth holdings of the

bottom 60% of individuals. Even our process, however, fails to improve on the standard

AR(1) process in terms of fitting the right tail of the wealth distribution. This is a frequent
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drawback of life-cycle models with no entrepreneurs or transmission of bequests (De Nardi,

2004; Cagetti and De Nardi, 2006, 2009).4

Finally, we compare the forecasting performance of our flexible Markov chain to that of

standard AR(1) processes including the random walk process commonly used in the liter-

ature. The first-order Markov chain estimated on the W2 data has a lower forecast error

up 3 to 4 years ahead. Even 5 to 6 years out its forecast error never exceeds that of the

best-performing AR(1) process by more than 10%. We also look at the implications of es-

timating a Markov Chain of order 2 and we find that it outperforms the forecasting ability

of all first-order processes at all horizons. Thus, we conclude that our flexible earnings rep-

resentation of the W2 data implies a good representation of the data even at long horizons.

Furthermore, our main results for consumption and wealth inequality are very similar when

we use a Markov chain of order 1 or 2.

The rest of the paper is organized as follows. Section 2 discusses the related literature.

Section 3 describes the main features of the data on earnings dynamics and inequality in

consumption and wealth that our model seeks to match. Section 4 details our non-parametric

estimation method. Section 5 highlights the implications of our estimated earnings process

over the life cycle and in the cross-section, both for the W2 tax data and the PSID. Section 6

introduces our standard quantitative model of savings and consumption over the life cycle

and its calibration. Section 7 discusses the main implications of various earnings processes in

terms of consumption and savings in the model and decomposes their determinants. Section

8 shows that allowing earnings to follow a second-order Markov chain does not affect our

results. Section 9 concludes. Appendix A discusses key features of both the PSID and our

W2 data set. Appendix B shows how well our non-parametric earnings processes match the

PSID and W2 data.

4In computations available upon request, we verify that this result is not sensitive to increasing the value
of the CRRA coefficient up to a rather high value of 4.
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2 Related literature

Our goal is to take a standard life cycle model with exogenously incomplete markets (as

in Huggett (1996)) and study how the various earnings processes that we consider affect

consumption, wealth, and their inequality, both over the life cycle and in the cross-section.

Thus, our work connects with two branches of the literature. First, it relates to the literature

on quantitative models with heterogeneous agents, which have been used, for instance, to

study inequality and the effects of government policy reforms. Second, it relates to the

literature on earnings dynamics and its effects on consumption choices. Both branches of

the literature are vast.

The literature on quantitative models with heterogeneous agents typically assumes a very

parsimonious specification of the earnings process; namely that the logarithm of earnings fol-

low a linear process with Gaussian innovations. This process is then typically discretized

using some variant of the methods described in Tauchen (1986) or Tauchen and Hussey

(1991). An important set of applications of the literature on quantitative models with het-

erogeneous agents studies consumption (e.g., Storesletten et al., 2004; Krueger and Perri,

2006; Jonathan Heathcote, 2010) and wealth (e.g., Castañeda, Dı́az-Giménez and Ŕıos-Rull,

2003; De Nardi, 2004; Cagetti and De Nardi, 2009) inequality and their evolution over the

life cycle.5

It has been argued, however, that incorporating non-Gaussian shocks is important to

properly capture earnings dynamics. Geweke and Keane (2000) show that allowing for non-

Gaussian innovations to log-earnings results in better accounting of transitions between low

and high earnings states relative to the AR(1) model with Gaussian innovations in Lillard and

Willis (1978).6 Bonhomme and Robin (2009) also adopt a specification of the (marginal)

5See Quadrini and Ŕıos-Rull (2014), Cagetti and De Nardi (2008) and De Nardi (2015) for a discussion
of what features of the wealth data various versions of these models are able to match.

6They find that the distribution of log earnings shocks is leptokurtic, which means that it has fat tails:
there is a small but relevant number of individuals who suffer large short-run earnings shocks. A Gaussian
AR(1) fails to capture this feature of the data, thus overestimating persistence of log earnings.

6



earnings distribution that allows for non-Gaussian innovations to the first-order Markov

stochastic component of earnings, with transition probabilities derived from a one-parameter

Plackett copula. They too find evidence against normality in the marginal distribution of

earnings shocks, which is leptokurtic. Our empirical method is closely related to theirs in that

it does not impose Gaussianity and features first-order Markov dynamics. Castañeda et al.

(2003) were the first to study the implications for wealth inequality of an earnings process

that, like ours, does not impose normality and state-independent persistence. Differently

from ours, though, their earnings process is calibrated to match certain moments of the

wealth distribution, rather than only estimated from earnings data, and is age-invariant

while ours is allowed to be age-dependent.7

Meghir and Pistaferri (2004) relax the assumption of i.i.d. log earnings innovations and

model the conditional variance of log earnings shocks by allowing for autoregressive con-

ditional heteroskedasticity (ARCH) in the variance of log earnings. In this context, the

current realizations of the variance are thus informative about future earnings.8 They find

evidence of ARCH-type variances for both the permanent and transitory shocks and for

individual-specific variances. Blundell, Graber and Mogstad (2015) use Norwegian panel

data and find that a better description of earnings dynamics requires allowing for hetero-

geneity by education levels and accounting for non-stationarity. Their preferred specification

for log earnings includes an idiosyncratic constant term, an idiosyncratic experience profile,

an AR(1) persistent shock component and an MA(1) transitory shock component. All com-

ponents considered are allowed to have a skill-dependent distribution and the variances of

shocks are allowed to be age-dependent and hence non-stationary. Our process also allows

for heteroskedasticity, though not of the ARCH type, and non-stationarity.

Arellano et al. (2015) model a log earnings process composed by the sum of a transitory

stochastic component and a first-order Markov process which, like ours, allows for significant

7Age dependence is irrelevant anyway in Castañeda et al. (2003) as their model is infinite horizon.
8They also allow the variance of log earnings innovations to depend on year effects, the education of the

individual, and unobservable individual factors.
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non-linearities in age and previous earnings levels. Guvenen et al. (2015) study the evolution

of male earnings over the life cycle using a large Social Security Administration panel data

set. Using non-parametric methods they find that labor earnings do not conform to the

standard assumptions in most of the empirical literature surveyed in Blundell (2014); namely,

that the stochastic component of earnings is the sum of linear processes with i.i.d, normal

innovations. In particular, they find that earnings shocks display strong negative skewness

and very high kurtosis. They also show that cross-sectional moments change with age and

previous earnings levels. Finally, they estimate a complex set of parametric processes that

match a large number of moments in the data, including higher order moments.

Finally, Browning, Ejrnaes and Álvarez (2010) and Altonji, Smith and Vidangos (2013)

estimate very flexible earnings models. Both models are not tractable for our purpose.

Browning et al. (2010) show that it is necessary to include individual-level heterogeneity in

earnings processes to account for many important features of the data. They compare a

standard unit-root model for log earnings with a more complex ARMA(1,1) process with

large heterogeneity, where individual-specific parameters are derived from three stochastic

latent factors. This richer process significantly improves the fit of the earnings process to

the data. Altonji et al. (2013) consider a multivariate model of earnings and jointly model

log wages, job changes, unemployment transitions and hours worked by explicitly allowing

these processes to interact (for instance, wages depend on job tenure, while job changes

depend on the expected wage should the individual remain in the same job). Their model

provides important insights on the evolution of earnings and job tenure. Furthermore, it

further stresses the importance of allowing for heterogeneity and state dependence when

approximating earnings dynamics.

Recent developments in this literature are discussed in Meghir and Pistaferri (2011). The

consequences of these richer earnings processes on consumption, savings and welfare remain,

however, an important open question. Unfortunately, the number of state variables needed
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to include these kind of processes in a structural model is very large and generates both

computational and modeling issues because it is not obvious how the discretization of each

of these variables should be performed to preserve their relationships and dynamics.

Finally, a recent paper by Civale, Dı́ez-Catalán and Fazilet (2016) adapts Tauchen’s

(1986) method to discretize stationary AR(1) processes with non-Gaussian innovations and

explores the implications for the equilibrium capital stock in an economy à la Aiyagari (1994).

3 Facts about earnings, consumption and wealth

The earnings shocks experienced by US workers display important deviations from the as-

sumptions of log-normality and independence from age and earnings realizations as docu-

mented by Arellano et al. (2015) for the PSID and Guvenen et al. (2015) for W2 tax data.

The top panel of Figure 1 reports our computations for the conditional moments of log earn-

ings growth from the PSID data. The bottom panel reports the same moments estimated

on the panel dataset that we generate by simulating the parametric process estimated by

Guvenen et al. (2015) on W2 data. To capture the non-linearity and asymmetry in the

data, Guvenen et al. (2015) fit a flexible process consisting of a mixture of AR(1) plus a

heterogeneous income profile and estimate it by simulated method of moments.9

The figure shows that the conditional variance of log earnings growth is U-shaped across

all age groups: individuals with the largest and smallest earnings are the ones that suffer from

higher earnings risk. Furthermore, the variance declines until age 35 and starts increasing

after age 45.

The figure also shows that log earnings growth has strong negative skewness and very

high kurtosis, and that these moments depend both on age and previous earnings. A negative

skewness means that individuals face a higher risk of negative relative to positive changes in

9The parameterization is the one denoted “benchmark” or “AR(1)” and reported in column (2) in Table
III of their paper. Further details about this process, as well as the PSID data, are provided in Appendix A.
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earnings. The skewness is more negative for individuals in higher earnings percentiles and

for individuals between 35 and 45 years of age. This indicates that individuals face a larger

downward risk as they approach middle age.10

The kurtosis is a measure of the peakedness of the distribution of log earnings changes. A

high kurtosis means that most of the people experience relatively small earnings shocks in a

given year but that at the same time a small proportion of individuals face very large earnings

shocks. The kurtosis of earnings growth gets as large as 30 (compared to 3 for a standard

normal distribution). Kurtosis is hump-shaped by earnings percentile and increases until age

35-45 to then decrease thereafter. Our graphs thus indicates large deviations between the

moments observed in the data and those implied by the linear earnings processes.

Overall, the moments in the PSID data are both qualitatively and quantitatively very

close to those computed from our W2 panel. However, it should be noted that the W2 panel

is much larger and is not affected by top-coding or differential survey responses, and thus

provides better information on the earnings-rich. For instance, the increase in the variance

of earnings beyond the 95th percentile is more pronounced in the W2 data set. Similarly, the

negative skewness and the kurtosis are much more pronounced for the highest percentiles in

the W2 data set.

The decrease in the conditional variance as individuals get older in the W2 data is also

documented in Sabelhaus and Song (2010), who in addition find a substantial decline over

time, particularly after 1990.

Turning to wealth and consumption inequality, the top line of Table 1 summarizes the

main statistics for the US.11 Overall, wealth is very unequally distributed, with a Gini co-

efficient of 0.72 (the corresponding value for the earnings distribution is 0.51 (Quadrini and

Ŕıos-Rull, 1997)). Using different time periods yields a slightly higher concentration of wealth

10Graber and Lise (2015) account for this kind of earnings behavior in the context of a search and matching
model with a job ladder.

11The data on wealth are from Wolff (1987) and come from the 1983 Survey of Consumer Finances. We
use the consumption data from the CEX sample derived by Heathcote, Perri and Violante (2010), and we
use their sample A and variable definitions.
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in the hands of the richest few.

As discussed by Quadrini and Ŕıos-Rull (2014), Huggett (1996), Cagetti and De Nardi

(2008), and De Nardi (2015), the standard life cycle model with incomplete markets and

discretized AR(1) earnings shock cannot match the large concentration of wealth in the

hands of the richest few and generates too many people at zero (or negative) wealth. An

important question is whether a better representation of earnings risk can help match wealth

inequality and along which dimensions.

Percentage held by the top At negative or

Gini 1% 5% 20% 40% 60% 80% zero

Wealth .72 28 49 75 89 96 99 6%

Non-durable consumption .31 5 15 40 62 79 92 —

Table 1: Wealth and consumption distribution statistics, U.S. data

The second line in Table 1 displays the distribution of equivalized consumption of non

durables and services for the entire US adult population in 1989. The consumption Gini that

we compute is in line with the estimates in the literature (around 0.29 for 1989 in Fisher,

Johnson and Smeeding (2013)) and so is the shape of the distribution (our implied 90/10

and 50/10 ratios are 4.23 and 2.12 respectively, which are in line with those in Meyer and

Sullivan (2010)). Consumption inequality is thus significant, but much lower in magnitude

than both earnings and wealth inequality. Relatedly, Figure 2 reports the estimated age

profile of the cross-sectional variance of log, adult-equivalent consumption from a number

of studies. As is well known from the seminal work of Deaton and Paxson (1994), it is

increasing but flatter than the profile of the variance of log earnings. There are multiple

estimates in the literature of the age profile for the variance of consumption. The steeper

profile in Figure 2 (DP) corresponds to the estimate from CEX data over the the period

1980-90 computed by Deaton and Paxson (1994). As first pointed out by Slesnick and Ulker

(2004) and Heathcote, Storesletten and Violante (2005) (HSV) the rise in inequality by age

is substantially smaller when estimated from CEX data over a longer time period. Heathcote
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Figure 2: Variances of log consumption

et al. (2010) (HPV) and Aguiar and Hurst (2013) (AH) confirm these findings.12

Storesletten et al. (2004) showed that the canonical heterogeneous agent model with a

(near-) unit root in earnings and pay-as-you-go social security generates a rise in consump-

tion dispersion consistent with the estimates from Deaton and Paxson (1994). Yet, such a

model cannot match the much lower increase documented by later studies unless the process

for earnings has an idiosyncratic deterministic time trend, or Heterogeneous Income Profile

(Guvenen, 2007; Primiceri and van Rens, 2009). Huggett, Ventura and Yaron (2011) show

that heterogeneity in earnings growth rates can be explained by the endogenous response of

life-cycle, human-capital investment to heterogeneity in initial human capital levels. Intu-

itively, heterogeneity in individual, life-cycle trend growth generates a substantially smaller

rise in consumption dispersion as the individual-specific trend growth is known to consumers,

though not to the econometrician.

12All the estimates reported in Figure 2 control for cohort effects, with the exception of Aguiar and Hurst
(2013) that control for cohort and normalized time effects. Heathcote et al. (2005) and Heathcote et al.
(2010) find a marginally smaller increase when controlling for time effects.
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4 The discretized earnings processes

The most common earnings process used in quantitative models of consumption and saving

is a discrete approximation (based on Tauchen, 1986, and its variants) to an AR(1) process

for the logarithm of earnings (e.g. Huggett, 1996). We are going to compare the implications

of such a process with those of two alternative earnings processes estimated by applying our

non-parametric methodology on the PSID and the W2 data. In a nutshell, our methodology

estimates a discrete Markov chain directly from the data and is much more flexible; i.e., it

does not impose symmetry or linearity.

4.1 Benchmark earnings process

The benchmark earnings process is based on Huggett (1996)’s calibration, where the labor

endowment process is an AR(1) with persistence parameter γ = 0.96 and Gaussian shocks

with variance σ2
ε = 0.045. The initial endowment of the first cohort of agents is also normally

distributed, with variance σ2
y0 = 0.38. Huggett’s choice of value for the variance of shocks σ2

ε

is based on similar estimates in previous literature (e.g. Lillard and Willis (1978) or Carroll,

Hall and Zeldes (1992)). The variance of the initial condition σ2
y1 is chosen to match the

earnings Gini for young agents (Lillard (1977), Shorrocks (1980)). Given both variances, γ

is calibrated to match an overall earnings Gini for US males of 0.42.

We then follow the discretization strategy applied by Huggett (1996), which is based

on Tauchen (1986): The state space for log earnings is divided in 18 equidistant points,

that range between −4σy1 and 4σy1 . To better approximate the upper tail of the earnings

distribution, a further point is included ad hoc, situated at 6σy1 . The small number of

individuals that are situated in this upper point earn about 40 times median earnings. The

rest of the grid ranges between 8% of median earnings and 11 times median earnings. The

computation of the transition matrix relies on the fact that, conditional on earnings at age

h−1, earnings at age h are drawn from a normal distribution with mean γyh−1 and standard
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deviation σε.

There are two main differences between our benchmark earnings process and the original

one in Huggett (1996). First, Huggett studies agents from age 20 to 65, while we define

working the life as spanning from age 25 to 60 for comparability with our W2 data. Second,

we borrow the life-earnings profile from Hansen (1993), since the exact values used by Huggett

into his model are not readily available.

4.1.1 Non-parametrically estimated processes for the PSID and W2 earnings

data

We estimate two non-parametric earnings processes, one from the PSID data and one from

the Social Security W2 panel that we generate from the empirical processes estimated by

Guvenen et al. (2015). Appendix A discusses the PSID data and our W2 data. The main

difference with respect to the discretization method in the previous section is that the al-

ternative discretization we propose is very flexible and therefore capable of matching the

asymmetries and non-linearities in the PSID and W2 data.

We first purge the original earnings data from time and age effects and then discretize

the residual stochastic component of earnings. Let yiht denote the logarithm of labor earnings

for an individual i at time h and age t. We assume the process for yiht takes the following

form

(1) yiht = dh + f(θ, t) + ηiht,

where dh is a dummy for year h and f(θ, t) is a quartic function of age. The term ηiht captures

the stochastic component of earnings.13

We assume that the distribution of the stochastic component of earnings ηiht is i.i.d.

across individuals but do not impose any additional restriction other than assuming that

13We do not need to include yearly dummies when using W2 data because they are already extracted in
the original estimation procedure.
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conditionally on age t, ηiht follows a Markov chain of order one, with age-dependent state

space Zt = {z̄1, . . . , z̄N}, t = 1, . . . , T and an age dependent transition matrix Πt, which has

size (N ×N). That is, we assume that the dimension N of the state space is constant across

ages but we allow its possible realizations and its transition matrix to be age-dependent.

We determine the points of the state-space and the transition matrices at each age in the

following way.

1. We recover the stochastic component of earnings as the residual of running the regres-

sion associated with equation (1).

2. Fix the number of bins, N, at each age. At each age, we order the realized log earnings

residuals by their size and we group them into bins, each of which contains 1/N of the

number of observations at that age.

Because the PSID and the our W2 data greatly differ in their sample size, we choose

N in the two data sets as follows.

• Due to the limited sample size of the PSID data, we have to strike a balance

between a rich approximation of the actual earnings dynamics by earnings level

(that is, a large number of bins) and keeping the sample size in each bin sufficiently

large. We have thus evaluated many possibilities. In our main specification we

report the results for bins representing deciles, with the exception of the top and

bottom deciles, that we split in 5. Therefore, bins 1 to 5 and 14 to 18 include 2%

of the agents at any given age, while bins n = 6, . . . , 13 include 10 % of the agents

at any given age. This implies a total of 18 bins.

• Our W2 dataset is simulated to contain 18 million observations (500,000 individ-

uals over 36 years), which implies that we are not constrained by issues of insuf-

ficient sample size. For this data set, we thus report results for a discretization

with 103 gridpoints, which aims at accurately capturing the earnings dynamics
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of the earnings-rich. The bottom 99 gridpoints correspond to the bottom 99 per-

centiles of the earnings distribution, while the top 1% is divided into 4 bins. More

specifically, we separate in a special bin the top 0.01%, we create another bin for

the rest of the top 0.05% and we divide the remaining people of the top percentile

in two bins.

3. The points of the state space at each age t are chosen so that point znt is the mean

in bin n at age t. We have considered specifications in which the summary statistic of

each bin is the median instead of the mean, with no impact on the results.

4. The initial distribution at model age 0, is the empirical distribution at the first age we

consider.

5. The elements πtmn of the transition matrix Πt between age t and t+1 are the proportion

of individuals in bin m at age t that are in bin n at age t + 1. The use of transition

matrices is well established in the study of income mobility (e.g. Jäntti and Jenkins

(2015)). The main difference is that while studies of income mobility are usually

concerned about intra- or inter-generational mobility across relative rankings in the

earnings distribution, we are interested in capturing mobility across earnings levels.

For this procedure to provide consistent estimates of the population earnings distribution

over the life cycle, we need a large enough number of individuals in the sample for every age

group. This is not a problem for our W2 data, that we simulate, but is an issue for PSID

data. To solve this problem, we assume that age t actually includes people aged t − 1, t

and t+ 1. Specifically, we create, for every age t in the sample, a fictitious t-year-old cohort

which is formed of all individuals in the sample who are t − 1, t and t + 1 years old. We

then apply the method described above to this fictitious cohort to derive the state space for

agents of age t. Since we repeat this for every age, most observations in the original data

base are used three times.
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To keep comparability between the AR(1) earnings process and our estimated processes,

we use the same age-efficiency profile in all cases. Hence, we discard the age-efficiency profile

that we extract from the PSID and W2 data and we use those data sets to estimate earnings

mobility. Furthermore, average earnings in each of the three economies are normalized to 1

so that the total amount of resources that are exogenously entering the economies are the

same.

Appendix B extensively discusses how well our non-parametric estimation method matches

the observed moments both in the PSID and the W2 data, including for the same number

of earnings bin. The main conclusion from that comparison is that our method does a very

good job of matching the vast majority of moments in the data, and especially so for the

earnings process with 103 bins.

5 What are the implications of our earnings processes?

5.1 Moments across the life-cycle

Figure 3 shows the average earnings profile that we assume for all three processes, calibrated

using the age-efficiency profile in Hansen (1993). The earnings process is calibrated so that

average earnings across all agents (including retired individuals) are normalized to 1.

Table 2 reports the cross-sectional Gini coefficient of earnings for the overall working

population, and the Gini coefficients for the first and last age group of the simulated processes

(25 and 60 years old).
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Figure 3: Average earnings by age

Process Overall Gini Gini at 25 Gini at 60

Benchmark AR(1) 0.4160 0.3371 0.4398

PSID Process 0.3307 0.2637 0.3870

W2 Process 0.4120 0.3456 0.4980

Table 2: Earnings process statistics

The table shows that, compared to the benchmark AR(1) economy, whose earnings pro-

cess is chosen to match the level and the rise of the Gini coefficient by age, our earnings

process estimated on the PSID generates a significantly lower Gini coefficient both in the

whole cross-section of working ages and at younger and older ages. This is likely due to the

features of the PSID data we discussed earlier (lack of over-sampling of high earners, lower

response rate of high earners, etc.). The W2 process, instead, is much more successful in

terms of replicating the actual level of overall inequality and generates earnings inequality

around the age of retirement that is higher than that generated by the other two processes.

Figure 4 reports the earnings Gini by age computed in our W2 and the 1989 Survey of

Consumer Finances (SCF). The SCF oversamples and re-weights the rich and thus provides

a more accurate representation of inequality (Bricker, Krimmel, Henriques and Sabelhaus

(2016)) than many survey data sets. The graph shows that the earnings Gini by age generated
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by our W2 data set is consistent with the one in the SCF data set.

25 30 35 40 45 50 55 60 65 70
age group

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ea
rn

in
gs

 g
in

i

1989 data
W2 process

Figure 4: Earnings Gini by age, W2 data and SCF data

Figure 5 reports the variances of log earnings by age for the 25-60 years old workers. This

figure confirms the findings implied by the Gini coefficients. The PSID process generates

less inequality than the benchmark, but displays, consistently with the data, a significant

variance increase across the life-cycle. It should be noted, in fact, that in the benchmark

AR(1), the variance of shocks during the lifetime is constant and that the realized increase in

the variance of the earnings process over the life cycle is driven by the fact that the variance

of initial conditions is assumed to be smaller than the variance of the process itself. The W2

process generates a higher amount of inequality at every age and a very significant variance

growth towards later ages (which is consistent with the one in our W2 data, see Appendix B).

This explains the large Gini coefficient of earnings at age 60 that we observed earlier.
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Figure 5: Variance of log earnings by age

5.2 Earnings persistence and mobility

Despite showing a level of overall earnings inequality similar to the benchmark AR(1), the

W2 earnings process displays lower persistence and higher levels of mobility, particularly at

earlier ages. The PSID, which is less unequal and known to be affected by measurement

error (Meghir and Pistaferri, 2004), generates even less persistent earnings.
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Figure 6: Autocorrelation coefficient by age (left panel) and previous earnings decile (right panel)

The left panel in Figure 6 plots the autocorrelation coefficient of earnings by age. In

the AR(1) this coefficient is constant across the life-cycle by construction, while our flexible

earnings processes capture significant changes in persistence as individuals get older. Namely,

both PSID and W2 point to a lower level of persistence when individuals are young. In
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addition, earnings become less persistent at later ages in the W2 process.

Our processes also allow persistence to depend on the level of previous earnings. In both

the PSID and W2 processes, persistence is significantly lower for earnings in the lowest decile

(right panel in Figure 6) and largest for earners between the median and the 90th percentile.

The interaction between age and previous earnings decile is reported in Figure 7.14
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Figure 7: Autoregressive coefficient by previous earnings decile and age (top left: W2; top right:
PSID; bottom: AR(1))

The lower persistence displayed by the PSID is consistent with previous studies that

point to the existence of both a transitory component and noticeable measurement error in

PSID data (for example, Bound, Brown, Duncan and Rodgers (1994) find that measurement

error explains 22 percent of the variance of the rate of growth of earnings). Figure 8 shows

14Given that in our process there is no within-bin variation of earnings, persistence parameters condi-
tional on earnings are very imprecisely estimated and parameters conditional on age and earnings cannot be
computed.

We overcome this by fitting a polynomial yt ' f(yt−1, t) and approximating the persistence parameter
ρ = ∂yt

∂yt−1
with its derivative f ′(yt−1, t) evaluated at average earnings for each decile. We use a 6-degree

Hermitian polynomial when conditioning only on yt−1, and tensor products of a (3,2)-degree Hermitian
polynomial on earnings and age when conditioning on both.
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Figure 8: Autoregressive coefficient by age (left panel) and by previous earnings decile (right panel),
including large ME process

that the implied persistence by age of the PSID process can be reconciled with a W2 process

with a transitory shock/measurement error i.i.d. component of standard deviation equal to

0.25 (8 times larger than the one in our standard data set), which is the estimate reported

by Storesletten et al. (2004). Section 8 relaxes the assumption that earnings follow a first-

order Markov process and shows that allowing for a second-order Markov structure does not

significantly alter our findings.

5.3 Skewness

An important feature of earnings risk in the data is that it is not symmetrically distributed.

As we have seen earlier, earnings shocks display substantial negative skewness, implying that

large earnings drops are more likely than large earnings increases. Instead, a standard AR(1)

with Gaussian innovations has constant, zero, skewness over the life cycle. This is reflected

in Figure 9, which plots the conditional distributions of earnings faced by a person with

average earnings at age 25 as this person ages. For instance, the top left panel shows the

future distributions of earnings that a 25-year-old individual will face throughout his lifetime,

conditional on being born with average earnings. At any given age, by construction, there is

a 90% probability that this individual will have earnings between both prediction bands, and

therefore also a 5% probability of earning more than the upper bound and a 5% probability
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of earning less than the lower bound. As the figure illustrates, the probability of getting a

very low earnings realization is larger in the W2 economy, while the probability of drawing

a very high earnings realization is similar in both economies.

Skewness is significantly higher, in absolute value, before age 50.
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6 The model

The model is based on Huggett (1996)’s paper. There is an infinitely lived government and

overlapping generations of individuals who are equal at birth but receive idiosyncratic shocks

to labor income throughout their working lives. The model period is one year.

6.1 Demographics

Each year, a positive measure of agents is born. Agents start working life at age 25 with no

assets and a random productivity draw. At 30, each agent has (1 +n) children. Working life

ends at 60 when agents retire.

Agents face a positive probability of dying throughout their lifetimes. This probability

grows with age and is 1 at age 85; i.e., agents die for sure before turning 86 years old.

We restrict attention to stationary equilibria, hence variables are only indexed by age t.

6.2 Preferences and technology

Preferences are time separable, with a constant discount factor. The intra-period utility is

CRRA: u(ct) = c1−σ
t /(1− σ).

Agents are endowed with one indivisible unit of labor which they supply inelastically at

zero disutility. The efficiency of their labor supply is subject to random shocks and follows a

Markov chain of order 1 with (possibly) age-dependent state spaces and transition matrices.

We consider an open economy where prices (the risk free rate of return r and the wage

per efficiency unit of labor w) are fixed.15

15We also computed the results for the general equilibrium closed economy, with a standard Cobb-Douglas
production function, where the discount rate is calibrated to match a capital-income ratio of 3 in each
economy. The general equilibrium effects are minor. For this reason, we report only partial equilibrium
results.
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6.3 Markets and the government

Asset markets are incomplete. Agents can only invest in the risk-free asset and cannot

borrow. Since, there are no annuity markets to insure against the risk of premature death,

there is a positive flow of accidental bequests in each period. These are distributed in equal

amount b among all agents alive in the economy.

The government taxes labor earnings and capital income to finance an exogenous stream

of public expenditure and a pension system. Income from capital and labor income are taxed

at flat rates τk and τl respectively. Retired agents receive a lump-sum pension p from the

government until they die.

6.4 The household’s problem

For any given period, a t-year old agent chooses consumption c and risk-free asset holdings

for the next period a′, as a function of the state variables x = (t, a, y). The term t indicates

the agent’s age, a indicates current asset holdings of the agent, and y stands for the earnings

process realization. For given prices, the optimal decision rules are functions (c(x) and a′(x))

that solve the dynamic programming problem described below.

(i) From age t = 1 to age t = 36 (from 25 to 60 years of age), the agent is working and

has a probability of dying before the next period 1− st. The problem he solves is:

V (t, a, y) = max
c,a′

{
u(c) + βstEtV (t+ 1, a′, y′)

}
(2)

s.t. a′ =
[
1 + r (1− τk)

]
a− c+ (1− τl)wy + b, a′ ≥ 0.

The evolution of y′ follows the stochastic process described above. At every age t, y

can lie in an age-specific grid yt and its evolution towards yt+1 is determined by an

age-specific transition matrix Qyt .

(ii) From tr to T (from 61 to 86) agents no longer work and live off pensions and interest.
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Their value function satisfies:

W (t, a) = max
c,a′

{
u(c) + stβW (t+ 1, a′)

}
(3)

s.t. a′ =
[
1 + r (1− τa)

]
a− c+ p+ b, a′ ≥ 0.

The terminal period value function W (T + 1, a) is set to equal 0 (agents do not derive

utility from bequeathing).

The definition of equilibrium is standard.

6.5 The model calibration

A model period is one year. The coefficient of relative risk aversion is set to 1.5. The discount

factor β is calibrated as the average of the discount factors that match a capital to income

ratio of 3 in each of the three economies.

The fixed interest rate is 6% and the wage per efficiency unit of labor is normalized to 1.

The population growth rate n is set to 1.2% per year. The survival probabilities st are

from Bell, Wade and Goss (1992). Government spending is 19% of GDP (g) (as in the the

Council of Economic Advisors (1998) data), while capital tax rate τk is taken from Kotlikoff,

Smetters and Walliser (1999), (see Table 3). The labor tax rate adjusts to balance the

government budget constraint.

σ n g τk
1.5 0.012 0.19 0.2

Table 3: Calibration parameters

The social security pension benefit p equals 40% of the average earnings of a person in

the economy (as in De Nardi (2004)).
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Figure 10: Average consumption profiles

7 The results from the model

7.1 Consumption

7.1.1 The consumption implications

The model generates a hump shaped pattern of average consumption over the lifetime

(Figure 10), as in the data for the US (Carroll and Summers, 1991) and the UK (Attanasio

and Weber, 2010). Given that we have imposed a common average income profile for the three

earnings processes, any differences in the average consumption profiles stem from differences

in precautionary saving due to differences in the riskiness of the respective processes. The

average consumption profile has a higher initial level, grows at a slower rate and peaks at

a lower level for the benchmark AR(1) process, reflecting the lower riskiness of the process

and therefore lower precautionary saving. Precautionary saving in middle life (between age

45 and 60) is also more important for the W2 process, likely reflecting the much higher level

and rate of growth of earnings uncertainty it implies over those ages (see Figure 5).

Figure 11 plots the evolution the variance of log consumption over the working

life implied by our three earnings processes and structural model, compared with the more
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Figure 11: Variances of log consumption

recent estimates from the literature reported in Figure 2. The rate of increase of consumption

inequality over the working life is informative about agents’ ability to insure against earnings

risk. For this reason, it provides a useful benchmark against which to assess the ability of

the model to capture the degree of insurability of earnings shocks in the data.

The benchmark AR(1) earnings process fails to generate a realistic age profile of con-

sumption dispersion. Its growth rate is roughly double that implied by most of the estimates

in the literature. At the other extreme, the PSID process fails to generate a sufficient increase

in dispersion over the life-cycle. The W2 process, on the other hand, accurately replicates

the increase in consumption dispersion over the life cycle. In particular, it matches very

closely the overall increase in the data reported by Aguiar and Hurst (2013) (AH) and is

very similar to that from the other sources.

The finding that estimated richer earnings processes imply a profile of consumption dis-

persion in line with the data is quite remarkable. As we have discussed in Section 3, standard

models with linear earnings processes generate a profile similar to the one for the benchmark

AR(1) in Figure 11 in the absence of heterogeneity in life cycle earnings profiles. Our findings

reveal that the age profile of the variance of consumption can alternatively be accounted for

by the response of saving to a richer earnings dynamics.
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Percentage held by the top

Gini 1% 5% 20% 40% 60% 80%

U.S. Data (Non-durable consumption)

.31 5 15 40 62 79 92

Benchmark AR(1)

.35 5 17 43 65 81 93

W2 Process

.33 4 15 41 64 80 92

PSID Process

.25 4 13 35 57 75 90

Table 4: Consumption distribution, data vs model

Finally, Table 4 reports the cross-sectional consumption distribution both in the data

and generated by the model for different earnings processes. The distribution generated by

the W2 process is remarkably close to that in the data. On the other hand, the distribu-

tions generated by the benchmark AR(1) and the PSID process respectively overstate and

understate the extent of overall inequality in the data.

7.1.2 Accounting for consumption inequality

Our rich earnings process deviates from the standard linear process for earnings, such as

the benchmark AR(1), commonly used in the heterogeneous-agents literature in a number

of ways. In particular, it has:

1. Lower persistence—ρ = 0.87 versus 0.96 for the benchmark AR(1)—if one were to

estimate an AR(1) process on the W2 data;

2. Age-dependent persistence;

3. Age-dependent variance of innovations;

4. Non-normal innovations (negative skewness and high kurtosis);

5. Earnings-dependent conditional moments.
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In order to understand the contribution of each of these factors to the substantially lower

growth in consumption variance over the life cycle we conduct a series of counterfactual ex-

periments, simulating the model under progressively richer stochastic processes for earnings.

More specifically, we implement our series of experiments in the following way. First, we

estimate a parametric AR(1) process

(4) ηi,t = ρtηi,t−1 + εi,t, εi,t
i.i.d.∼ (0, σt)

for residual earnings on our W2 data, incrementally introducing properties 1 to 4 above.

Namely, we start by assuming that ρt and σt are constant with εi,t normally distributed and

progressively relax each of these assumptions. Second, we use each of these estimated AR(1)

processes to simulate a large panel of individual earnings histories. This panel constitutes

our counterfactual dataset for the experiment in question. Third, we apply our method and

estimate a first-order, age-dependent Markov chain on the panel thus generated to obtain

a discretized process that matches the features of the data. Finally, we feed the estimated

Markov chain to the model. In all cases, we recalibrate the discount factor to maintain the

wealth-income ratio at its target value of 3. Figure 12 plots the consumption variance profile

for the various experiments.

Note, that features 1 to 4 can be introduced while maintaining the AR(1) structure

as they do not imply any non-linearity in previous earnings (properties 2 and 3 introduce

non-linearities only in age/time). Conversely, property 5 cannot be accounted for within an

AR(1) framework. So, the contribution of property 5 obtains as the residual of our findings

for our W2 process and a generalized AR(1) process encompassing properties 1 to 4.

For our first experiment we estimate a standard AR(1) process with normal initial con-

dition and innovations on our W2 dataset and constant ρt and σt in equation (4). The only

difference compared to our benchmark AR(1) is thus due to different estimated parameter

values; namely, the parameter estimates are σ2
y0 = 0.48, γ = 0.87 and σ2

ε = 0.19 against
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Figure 12: Age profile of consumption inequality for different specifications of the earnings process
– W2.

σ2
y0 = 0.38, γ = 0.96 and σ2

ε = 0.045 for the benchmark AR(1). The black solid line in Figure

12 plots the consumption variance profile for this experiment. Comparing it to the profile

for the benchmark AR(1) (black solid line with circles) and for our flexible case (dashed line)

shows that the different evolution of the consumption variance cannot be accounted for by

the differences in the values of persistence we use for the same parametric functional form.

In fact, the parameter values estimated on our W2 dataset imply an even higher growth in

the consumption variance until age 45 relative to the benchmark AR(1).

In our second experiment, we estimate an AR(1) process with age-dependent ρt but age-

independent variance. Figure 6 plots the age-dependent ρt. The red line in Figure 12 displays

the consumption variance profile for this case. While the below-average persistence early in

life flattens the profile until about age 30, the above-average persistence between age 30 and

50 implies a dramatically higher rate of growth in that age bracket.

The third experiment allows also the variance of innovations σt in equation (4) to be age-

dependent while maintaining normality. The green line in Figure 12 plots the consumption

variance profile for this case. Relative to the previous experiment, allowing for heteroskedas-

ticity dramatically reduces the rate of growth of the consumption variance. Intuitively, the

standard permanent income mechanism implies that the variance of consumption is an in-
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Figure 13: Age-dependent values of ρ (solid line) and σ2
ε (dashed line).

creasing function of earnings persistence—which affects the response of consumption to an

earnings innovation—and the variance of earnings innovations itself. In the data, earnings

persistence and the variance of earnings innovations are negatively correlated over the life

cycle, as illustrated by Figure 13 that plots the estimated autoregressive coefficient and the

innovation variances at the different ages. Comparing the red and green lines in Figure 12

reveals that, until age 57, the effect of the U-shaped pattern of the innovation variance over

the life cycle more than offsets the effect of the hump-shaped pattern of earnings persistence.

As a result, the rate of growth of consumption dispersion between age 25 and its peak at age

55 falls by about 3 log points relative to the benchmark AR(1) case.

Finally, our fourth experiment relaxes the assumption that the innovations εi,t in equation

(4) are normally distributed. It does so by assuming that εi,t is a mixture of two independent

normal shocks. After normalizing the mixture probability, the means and variances of the

two normal distributions are exactly identified by the first four centered moments of εi,t, as

shown in Civale et al. (2016). Under the assumption that skewness and kurtosis are age-

invariant, our estimates are respectively -1.13 and 11.3116 . The blue line in Figure 12 plots

the associated consumption variance profile. The fact that shocks have negative skewness and

16The corresponding numbers for the PSID data are very close: -1.12 and 13.18.
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high kurtosis induces individuals to increase their precautionary saving and further reduces

the rate of growth of the consumption variance. Relative to the benchmark AR(1) the overall

rate of growth between age 25 and 55 falls by about 8 percentage points. This accounts for

half of the difference between our flexible process and the benchmark AR(1). Allowing for

age-varying skewness and kurtosis does not change this pattern in a meaningful way. For

this reason we do not report results for that case.17

The remaining difference in the rate of growth between age 25 and 55 is due to the

fact that our flexible process allows conditional moments to vary with the previous earnings

realization, as documented in Figure 1.

We check the robustness of our results by conducting the same accounting exercise in

the PSID data. Figure 14—the counterpart of Figure 12 for the W2 process—plots the age

profile of consumption dispersion for the various cases. Comparing the two figures reveals

that the qualitative implications of each of the extra features of the earnings process are the

same in the W2 and the PSID data. The main quantitative difference is that a larger fraction

of the difference in the growth rate of consumption dispersion between the benchmark AR(1)

and the PSID is due to the difference in estimated persistence in earnings. This is because

estimating a standard AR(1) process on the PSID data returns an estimate for ρ of 0.8,

compared to 0.87 for the W2 data. This much lower persistence in the PSID data is due to

the fact that transitory shocks/measurement error are much larger in the PSID than in the

W2 data. The difference in earnings persistence implies a much lower (and counterfactual)

rate of growth of consumption dispersion of 5 log points (black solid line in Figure 14).18

Nonetheless, the qualitative similarity with the W2 data is reassuring about our findings.

17The results are available upon request.
18These findings are consistent with those in Storesletten et al. (2004) (see their Figure 5), who show that

changes in persistence in the range of 0.87 to 0.96 have little effect on the rate of growth of consumption
dispersion over the life cycle, while reductions in persistence below those values have a larger effect.
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Figure 14: Age profile of consumption inequality for different specifications of the earnings process
– PSID.

7.2 Wealth

7.2.1 The wealth implications

We now compare the key statistics of the wealth distributions generated by our benchmark

AR(1) earnings process with those of our non-parametrically estimated earnings processes19.

The benchmark AR(1) calibration suffers from the limitations that have already been

analyzed in the literature. Although it matches the wealth Gini coefficient we observe in the

data, it does so by generating too many people with zero assets (the left tail is too fat) and

not enough concentration at the top (the right tail is too thin). For instance, the number

of people with zero assets20 is 14%, while the richest 1% only hold 12% of total wealth,

compared with 28% in the data.

Both the PSID process and the W2 better match the left tail of the distribution. They

generate a substantially smaller fraction of agents with zero assets (3% and 5% respectively)

and better fit the holdings of the poorest 60% of people: in the distribution generated by the

W2 process, the poorest 60% hold 12% of total net worth, which is very close to the actual

19Source for US data: De Nardi (2004), except for bequest-output ratio, which is taken from Villanueva
(2005)

20Given that all newborns in the model start life with zero wealth by assumption, we do not include them
in any of the model computations of the fraction of agents with zero wealth.
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Capital- Bequests- Percentage wealth in the top Percentage with

output output Wealth negative or

ratio ratio Gini 1% 5% 20% 40% 60% 80% zero wealth

U.S. data

3.0 2.6% .72 28 49 75 89 96 99 6

Benchmark AR(1)

2.9 2.8% .72 12 35 74 93 99 100 14

W2 Process

3.1 2.7% .65 10 30 67 88 96 99.58 5

PSID Process

2.9 2.6% .62 9 28 63 85 96 99.4 3

Table 5: Wealth distribution statistics

data. In the distribution derived from the PSID process they hold 15%, compared to only

7% implied by the benchmark AR(1) earnings process.

However, our computations show that even our more flexible earnings processes do not

improve the fit of the right tail of the distribution. Although Castañeda et al. (2003) have

shown that a highly skewed earnings process can generate a long right tail for the wealth

distribution, it turns out that even the W2 process, which as shown earlier has a higher

degree of earnings inequality and negative skewness than our PSID process, generates too

little wealth concentration among top earners.

Summarizing, our empirical method, applied to W2 data, performs approximately as

well as the benchmark AR(1) in the right tail, outperforming it in the left tail. This is

remarkable given that neither of our empirical processes have been calibrated to match any

particular moments of the wealth distribution. The inclusion of inter-generational links and

bequest transmission, as in De Nardi (2004), is likely to take these results closer to the actual

data, particularly by improving the fit of the right tail of the distribution. It should also be

considered that we are not taking inter-vivos transfers into account, which may represent an

additional source of wealth, particularly at earlier ages.

The absence of these important mechanisms in our model can also explain why the W2
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Figure 15: Wealth Gini by age

process underestimates the actual level of inequality at each age (Figure 15). In this case, it

is the AR(1) benchmark which delivers the largest wealth Gini at every age, but, as argued

earlier, this is generated by pushing too many agents towards zero. Besides, it implies a

conterfactually large drop in wealth Gini from ages 20 to 60.

7.2.2 Accounting for the wealth distribution

As for consumption, one wants to understand the contribution of the various novel features of

the earnings process to the differences in the wealth distributions relative to the benchmark

AR(1) process. For this reason, we conduct the same set of experiments as in Section 7.1.2.

Table 6 reports wealth distribution statistics for each of these counterfactual simulations

using the W2 data. For ease of comparison, the first three rows in the table are the same as

in Table 5.

The better fit of the the bottom 60% of the wealth distribution by the W2 is due to

the following factors. Three percentage points of the fall in wealth holdings by the top 40%

(from 93 to 90 percent) are due to the lower average persistence; i.e., ρ = 0.87 instead

of ρ = 0.96 for the benchmark AR(1). Introducing both age-dependent persistence and
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Capital- Bequests- Percentage wealth in the top Percentage with

output output Wealth negative or

ratio ratio Gini 1% 5% 20% 40% 60% 80% zero wealth

U.S. data

3.0 2.6% .72 28 49 75 89 96 99 6

Benchmark AR(1), ρ = 0.96
2.9 2.8% .72 12 35 74 93 99 100 14

W2 Process

3.1 2.7% .65 10 30 67 88 96 99.58 5

AR(1) with ρ=0.87

3.0 2.5% .68 10 32 70 90 98 99.99 9

AR(1) with age-varying ρ and σ

3.0 2.5% .68 10 32 70 90 98 99.97 10

AR(1) with age-varying ρ, σ, skewness and kurtosis

3.0 2.5% .68 11 33 70 90 98 99.99 10

Table 6: Wealth distribution decompositions, W2 earnings.

heteroskedasticity of the innovations does not change these findings, nor does introducing a

constant level of skewness and kurtosis. The remaining difference is accounted for by the

fact that our flexible process allows moments to vary with the previous earnings realization.

While this feature accounts for only 2 percentage point in the share of wealth held by the

top 40%, it generates a large reduction—from 10 to 5 per cent—in the share of individuals

with zero wealth.

As for consumption, the implications of non-linearities in earnings are not confined to

the process estimated on the W2 data but carry out to the process estimated on the PSID

data. Table 7—the counterpart of Table 6—reports the key statistics of wealth distributions

under progressively richer earnings processes estimated on the PSID. Comparing the two

tables shows that the implications of non-linearities for the wealth distribution are extremely

similar across the two datasets.
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Capital- Bequests- Percentage wealth in the top Percentage with

output output Wealth negative or

ratio ratio Gini 1% 5% 20% 40% 60% 80% zero wealth

U.S. data

3.0 2.6% .72 28 49 75 89 96 99 6

Benchmark AR(1), ρ = 0.96
2.9 2.8% .72 12 35 74 93 99 100 14

PSID Process

2.9 2.6% .62 9 28 63 85 96 99.4 3

AR(1) with ρ=0.8

3.0 2.6% .62 7 25 62 86 97 99.75 6

AR(1) with age-varying ρ and σ

3.0 2.7% .62 7 25 62 86 97 99.74 7

AR(1) with age-varying ρ, σ, skewness and kurtosis

3.0 2.6% .61 7 25 62 85 96 99.65 5

Table 7: Wealth distribution decompositions, PSID earnings.

7.2.3 Saving functions

In order to disentangle the effects of the mechanics of the earnings processes from their

endogenous effects on savings, we switch the policy functions in our simulated economies.

More specifically, we simulate artificial economies using the AR(1) earnings process and the

saving policy functions that solve the W2 dynamic programming problem (and vice versa).

We still impose that these simulations respect no-borrowing and the budget constraints.

Table 8 shows that the number of individuals at the borrowing constraint varies very

little as we change the earnings process but not the policy function. On the other hand,

the share of borrowing constrained individuals does change significantly when changing the

savings function for a given earnings process. Individuals engage in more precautionary

saving under the W2 earnings process, which implies that fewer households are close to the

borrowing constraint.

To provide some insight on the changes in saving behavior at the individual level gen-

erating these results, Figure 16 shows the saving rates of a 30-year-old individual with zero

wealth conditional on his last earnings realization. Under both earnings processes, agents
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AR(1) earnings process W2 earnings process

AR(1) savings function 15% 12%

W2 savings function 5% 3%

Table 8: Proportion of working-age individuals with zero wealth
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Figure 16: Saving rate by previous earnings for a 30-year-old with no wealth.

with zero wealth that receive a low earnings realization do not save as they expect their

earnings will be higher next period. In contrast, agents with larger earnings realizations

save significantly more in the W2 than in the AR(1) economy (an individual with average

earnings, for example, saves 16% of his earnings in the former and 7% in the latter). This

differential behavior is due to the earnings implications that the W2 and AR(1) individuals

face when they receive a positive earnings shock and, in particular, to the large negative

skewness and high kurtosis of the W2 process (see Figure 1 and the discussion in Section

5.3).
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8 Second-order Markov process for earnings

8.1 Relative persistence

The main limitation of our approach is that it does not allow for a purely transitory shock,

while MaCurdy (1982) and Abowd and Card (1989) document, using survey data sets, that

the process for earnings is well approximated as a linear combination of a unit-root and a

transitory process. Following this result, several papers in the heterogeneous-agent literature

on consumption inequality (starting with Storesletten et al. (2004)) model earnings as the

sum of a permanent and a transitory component, or use a (near unit-root) AR(1) process

whose persistence comes from an estimated process that allows for a purely transitory shock

(while the transitory component is ignored in the model).

By construction the forecasting performance of our non-linear, first-order Markov process

is better than that of a linear AR(1) at one-period horizon. Yet, by not allowing for a

purely transitory component, our process may underestimate earnings persistence, raising

the question of how well it forecasts at longer horizons. In this section, we examine this

question and compare the forecasting ability of the unit-root AR(1) process that is commonly

used in the literature with those of our Markov chain of order one and with a Markov chain

of order 2.

Apart from the longer memory, our method is unchanged when we allow for a Markov

chain of order 2. Namely, denoting by N the number of quantiles partitioning the marginal

earnings distribution at each age, the age-dependent transition probability matrices have

dimension (N2×N). Their elements are constructed as the proportion of individuals moving

from any possible two-period history sequence of quantiles into a quantile next period. For

tractability, we partition the marginal earnings distribution into N=18 quantiles, namely the

top and bottom five 2% percentiles and the 9 intermediate deciles (this is the same partition

we adopted for the PSID). As before, we attribute to each individual in a particular bin the
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Figure 17: Root Mean Squared Forecast Error by process and horizon

average earnings level in that bin.

Figure 17 shows the root mean forecast errors for log earnings at different horizons for

the various processes we consider; namely, (1) a random walk; (2) an AR(1) estimated on

our W2 dataset with ρ = 0.88; (3) our discretized first-order process with 103 grid points

(Markov 1); (4) a discretized second-order Markov process with 18 grid points (Markov 2).

The AR(1) with ρ = 0.88 has by far the worse performance. The discretized first-

order process perform better than the AR(1) with ρ = 0.96 and the random walk up to

respectively 3 and 4 periods ahead. Even 5 to 6 years out its performance is never worse

that 10% compared to the best of the other two processes. Finally, the Markov 2 process

outperforms all others processes at all horizons.

8.2 Model simulation

This section reports the implications of the second-order Markov process for consumption

and wealth and compares them to their counterpart for the first-order process.
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Figure 18: Life-cycle growth of the variance of log consumption

8.2.1 The consumption and implications

Figure 18 plots the age profile of log consumption inequality for the M2(18) process against

the profile for the M1(103) and the empirical estimates in Figure 2. The growth rate of

consumption dispersion over the life-cycle is similar for both processes and in line with the

literature.

Finally, Table 9 compares the implications of the two alternative discretizations for the

wealth distributions. Again, the differences between the first and second-order Markov pro-

cess are negligible.

Due to these findings on consumption and wealth and to the one that our proposed

discretization method performs well also at longer horizons (on the W2 data set), we conclude

that the differences in the consumption and wealth distributions implied by our estimated

non-linear earnings process relative to the benchmark AR(1) are driven mainly by its non-

linearity and asymmetry and not by a misspecified autocorrelation structure.

9 Conclusions

Our main findings are the following. First, allowing for non-linearity and asymmetry in

earnings reveals that earnings are significantly less persistent at low and high earnings levels
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Capital- Bequests- Percentage wealth in the top Percentage with

output output Wealth negative or

ratio ratio Gini 1% 5% 20% 40% 60% 80% zero wealth

U.S. data

3.0 2.6% .72 28 49 75 89 96 99 6

W2 Process (Markov 1, 103)

3.1 2.7% .65 10 30 67 88 96 99.58 5

Markov 2 with 18 gridpoints

2.8 2.6% .66 10 31 68 88 96 99.65 6

Table 9: Wealth distribution statistics

relative to an AR(1) process, like the one used by Huggett (1996), which is rather typical of

the quantitative macro literature with heterogeneous agents. Second, our flexible earnings

process, when introduced in a standard quantitative model of consumption and savings over

the life cycle, generates a much better fit of the growth in consumption dispersion as a

function of age and of the wealth holdings of the bottom 60% of people. On the other hand,

the model still generates too little wealth concentration at the top of the wealth distribution,

just as the the model with AR(1) earnings process. This is a frequent drawback of life-cycle

models with no entrepreneurship or transmission of bequests (De Nardi, 2004), (Cagetti and

De Nardi, 2006), and (Cagetti and De Nardi, 2009).

Finally, and importantly, our proposed discretization method also performs well at longer

horizons. In addition, our results are robust to allowing for a second order Markov chain

that outperforms, both in the short and the long run, the earnings predictive ability of all

other earnings processes typically used in quantitative macro models.
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Browning, Martin, Ejrnaes, Mette and Álvarez, Javier (2010), ‘Modelling income processes

with lots of heterogeneity’, Review of Economic Studies 77, 1353–1381.

Budria, Santiago, Diaz-Gimenez, Javier, Quadrini, Vincenzo and Rios-Rull, Jose-Victor

(2002), ‘New facts on the distribution of earnings, income and wealth in the U.S.’, Federal

Reserve Bank of Minneapolis Quarterly Review 26, 2–35.

Cagetti, Marco and De Nardi, Mariacristina (2006), ‘Entrepreneurship, frictions and wealth’,

Journal of Political Economy 114(5), 835–870.

Cagetti, Marco and De Nardi, Mariacristina (2008), ‘Wealth inequality: Data and models’,

Macroeconomic Dynamics 12(S2), 285–313.

Cagetti, Marco and De Nardi, Mariacristina (2009), ‘Estate taxation, entrepreneurship, and

wealth’, American Economic Review 99(1), 85–111.

Carroll, Christopher D. and Summers, Lawrence H. (1991), Consumption growth parallels

income growth: Some new evidence, in B. DouglasBernheim and John B.Shoven, eds,

‘National Saving and Economic Performance’, University of Chicago Press, pp. 305–348.

Carroll, Christopher D, Hall, Robert E and Zeldes, Stephen P (1992), ‘The buffer-stock

46



theory of saving: Some macroeconomic evidence’, Brookings papers on economic activity

pp. 61–156.
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Quadrini, Vincenzo and Ŕıos-Rull, José-Vı́ctor (2014), Inequality in macroeconomics, in

A.B.Atkinson and F.Bourguignon, eds, ‘Handbook of Income Distribution, vol. 2B’, Else-

vier, chapter 15.

Sabelhaus, John and Song, Jae (2010), ‘The great moderation in micro labor earnings’,

Journal of Monetary Economics 57(4), 391–403.

Scholz, John Karl, Seshadri, Ananth and Khitatrakun, Surachai (2006), ‘Are americans

saving optimally for retirement?’, Journal of Political Economy 114, 607–643.

Shorrocks, Antony F. (1980), Income stability in the United States, in N.Klevmarken and

J.Lybeck, eds, ‘The statics and dynamics of income’, Tieto Ltd.

Slesnick, Daniel T. and Ulker, Aydogan (2004), Inequality and the life cycle: Age, cohort

effects and consumption. Mimeo.

Storesletten, Kjetil, Telmer, Christopher I. and Yaron, Amir (2004), ‘Consumption and risk

sharing over the life cycle’, Journal of Monetary Economics 51(3), 609–633.

Tauchen, George (1986), ‘Finite State Markov-Chain Approximations to Univariate and

Vector Autoregressions’, Economics Letters 20(2), 177–181.

Tauchen, George and Hussey, Robert (1991), ‘Quadrature-Based Methods for Obtaining

Approximate Solutions to Nonlinear Asset Pricing Models’, Econometrica 59(2), 371–96.

Villanueva, Ernesto (2005), ‘Inter vivos transfers and bequests in three OECD countries.’,

Economic Policy 20(43), 506–565.

50



Wolff, Edward N. (1987), ‘Estimates of household wealth inequality in the u.s., 1962-1983’,

Review of Income and Wealth 33(3), 251–257.

A Appendix: The PSID and W2 data

A.0.1 PSID data

The Panel Study of Income Dynamics (PSID) follows a large number of US households

over time and reports information about their demographic characteristics and sources of

income. The PSID was initially composed of two major subsamples. The first of them,

the SRC (Survey Research Center) or core subsample, was designed to be representative

of the US population and is a random sample itself. The second, the SEO (Survey of

Economic Opportunity) subsample, was created to study the characteristics of the most

deprived households. Later, Immigrant and Latino subsamples were also added to the PSID.

From 1968 to 1997, the survey was yearly. After 1997, it started having a biennial

structure. Since the model period is one year, we restrict ourselves to the yearly part of

the survey (1968-1997). We only consider the SRC or core subsample because the SEO

oversamples the poor. After dropping the SEO and Latino samples we are left with a random

sample, which makes computations simpler since weights are not needed Haider (2001) 21.

Because our binning strategy requires a large amount of data per age group, we drop

individuals still working after age 60 and we assume that people retire at 60. For compara-

bility with the W2 dataset that we derive from the econometric processes in Guvenen et al.

(2015), that start age age 25, we also drop individuals below age 25.

In line with previous literature, we restrict our study to male heads of household. A

valid observation is formed by two values for individual labor income: this year’s and next

21In our case, we are creating a dataset of pairs of income observations from the PSID panel. It must be
taken into account that the weighting of our final dataset can be affected by attrition and by the fact that
we are neglecting observations of yearly income under 900 $ (expressed in 1982 dollars)
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year’s. Neither of the two income values can be missing. We deflate labor income by CPI-

U (taken from FRED economic data, where index 100=1982-1984). We do not consider

earnings observations with values under 900$. This avoids the problem of taking logs of very

small numbers and is in line with usual practice in previous literature (De Nardi (2004) or

Guvenen et al. (2015), for instance).

Labor income does not include unemployment or workers’ compensation, nor earnings of

the spouse, because adding them would reduce the sample period to 1977-1992, due to data

availability issues.

The major shortcomings the PSID data are that the sample size is not very large (and the

earnings-rich are not oversampled), that they are less likely to respond to surveys, and that

earnings are top-coded. As a result, our right tail of the income distribution from this data

set is not accurately estimated (Budria, Diaz-Gimenez, Quadrini and Rios-Rull (2002)). This

is an important limitation because the earnings risk faced by the high earners is potentially

an important determinant of their saving behavior and wealth concentration in the upper

tail (Castañeda et al. (2003)).

A.0.2 W2 data

The original data used by Guvenen et al. (2015) come from the Master Earnings File (MEF)

of the U.S. Social Security Administration (SSA) records and contain information for every

individual in the US who has ever been issued a Social Security number. They also include

some demographic information (sex, race, date of birth...) and earnings from the employee’s

W2 forms, that U.S. employers are legally required to report to the SSA since 1978. Labor

earnings are measured annually, and they include all wages, salaries, bonuses and exercised

stock options. The data are uncapped. Therefore, due to their very nature, the W2 tax

data, in contrast to the PSID data, does not suffer from small sample size, under-sampling

of the rich, differential survey response, or top-coding. It does not, however, contain good
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information on the earnings of the self-employed, due to both the nature of the W2 data

(that caps the recorded amount of wages that the self-employed pays to himself) and the fact

that Guvenen et al. (2015) drop all observations that derive more than 10% of their earnings

from self-employment.

Unfortunately, the original W2 data are not publicly available, but Guvenen et al. (2015)

have estimated a flexible, and rather complex, parametric process using the simulated method

of moments and shown that it fits the data well. We use their estimates to simulate a

W2 data set. More specifically, the parameterization that we simulate is their “benchmark

model” reported in column (2) of Table III in their paper. The model assumes that the

stochastic component of earnings is the sum of: (i) an individual-specific linear time trend

(heterogeneous income profile); (ii) a mixture of AR(1) processes where each component

receives an innovation in a given year with age-dependent probability; and (iii) an i.i.d.

transitory shock.

Let ỹit denote the stochastic component of earnings for individual i at age t = 1, 2, . . . .

The specification of the parametric model is:

ỹit = (αi + βit) + yit

yit = zit + xit + νit + εit

zit = .259zit−1 + ηizt, zi0 ∼ N(0, .133)

xit = .425xit−1 + ηixt, xi0 ∼ N(0, .089)

νit = νit−1 + ηiνt, νi0 = 0

εit ∼ N(0, .029).

The vector (α, β) has a bivariate normal distribution with zero mean and the covariance

matrix implied by σα = .552, σβ×10 = .13 and corrαβ×100 = −.49. The innovations ηijt, j =

z, x, v to the three AR(1) components are mutually exclusive with respective probabilities

pj. More formally, ηijt = η∗ijt × I{sit ∈ Ipj} with sit a standard uniform random variable.
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The indicator function I{sit ∈ Ipj} takes value one if sit falls in the interval Ipj , with Ipz =

[0, pz], Ipx = (pz, pz + px], Ipν = (pz + px, 1], where pz + px ≤ 1 and pν = 1 − pz − px.

The (mixing) probabilities depend on age and on the previous realization of the stochastic

component of earnings according to

pj(yit−1, t) = .067 + .038× t

10 − .203× yit−1 + .071× t

10 × y
i
t−1

and are truncated when they fall outside the [0, 1] interval.

Finally, the innovations to the AR(1) components have distribution η∗ijt ∼ N(µj, σij), with

individual-specific standard deviation distributed according to log σij ∼ N(σ̄j −
σ2
jj

2 , σjj), j =

z, x and σiν = σν . The parameter values are µz = −.426, µx = .021, µν = .060, σ̄z = .847,

σ̄x = .361, σzz = .107, σxx = 1.94 and σν = .087.

Our W2 panel is obtained by simulating the above process to generate a panel of 500,000

individuals histories between ages 25 and 60.

B Appendix: How well does our non-parametric esti-

mation of earnings processes fit the PSID and W2

data?

In this section we analyze the fit of our process of several features of the data. We start

by analyzing how well we approximate one-year empirical moments and then discuss the

consequences of our binning procedure and our one-step Markov chain assumption in presence

of measurement error and when considering longer time horizons.
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Figure 19: W2: Unconditional moments of log earnings

B.1 Fit of empirical moments

Because we allowed for a different number of earnings bins for the two data sets (18 for the

PSID and 103 for the W2 data set), here we also report results for the case in which we allow

for a smaller bin size in the W2 data set (18 points) so that the results across the two data

sets can be compared keeping the coarseness of the earnings binning constant.

We first show results for the unconditional moments of log earnings by age and then for

conditional moments of earnings growth, also by age.

We do not report results for the unconditional first moment because, since the data is

detrended, it is an average of OLS residuals and therefore mean zero by definition.

Both the 18-gridpoint and 103-gridpoint discretizations successfully replicate uncondi-

tional variances over the life cycle and generate a negative skew and high kurtosis for log earn-

ings (Figure 19). The 18-gridpoint discretization underestimates both the negative skew and
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the kurtosis of the log earnings distribution, while the 103-gridpoint discretization matches

very closely the kurtosis profile, but overestimates the negative skew. The comparison of our

PSID process with PSID data yields very similar results (see Figure 20).
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Figure 20: PSID: unconditional moments of log earnings

In order to analyze the conditional moments of log earnings and for comparability with

Guvenen et al. (2015), we group individuals in 5-year cohorts. Still, our graphs are not fully

comparable to Section 3 of their paper, since we condition on the earnings of the previous

year instead of the earnings of the previous 5 years. As in their paper, log earnings growth

is defined as the difference between detrended earnings in two consecutive years.

Now the division in quantiles now serves two purposes. As earlier, it defines the size

of the bins, but now it also determines the conditioning variable for the computation of

the moments. In the “103-gridpoint discretization”, we compute all moments conditional on

each of the 103 bins in which we divide the overall population, while in the “18-gridpoint

discretization” they are conditional on the 18 bins.

We first consider the conditional mean (Figures 21, 22 and 23). Both discretizations

replicate the fact that individuals who are situated in a low earnings quintile can expect
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Figure 21: 18-gridpoint discretization: conditional mean of earnings growth
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Figure 22: 103-gridpoint discretization: conditional mean of earnings growth
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larger earnings increases.

With respect to the conditional variance (Figures 24, 25 and 27), the empirical process

is also successful. For clearer illustration, we have included how our processes replicate the

standard deviation we observe for individuals at ages 35-40 (Figure 26).

With respect to the third standardized moment, all discretizations closely match the

negative skew that we observe in the data and the fact that it is larger for individual with

higher previous earnings (Figures 28 29, 31). This can also be seen in the example in Figure

30.

Finally, both synthetic processes (see Figures 32, 33, 34, 35) match the high kurtosis in

the data, with just a slight underestimation in the 18-gridpoint case.
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Figure 23: PSID: conditional mean of earnings growth
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Figure 24: 18-gridpoint discretization: conditional standard deviation of earnings growth
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Figure 25: 103-gridpoint discretization: conditional standard deviation of earnings growth
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Figure 26: Conditional standard deviation for 35-40 year-old age group
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Figure 27: PSID: conditional standard deviation of earnings growth
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Figure 28: 18-gridpoint discretization: conditional third moment of earnings growth

0 20 40 60 80 100
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Percentile of previous earnings

S
k
e
w

n
e
s
s
 o

f 
lo

g
 e

a
rn

in
g
s
 c

h
a
n
g
e

W−2 synthetic data

 

 

25−29

30−34

35−39

40−44

45−49

50−54

55−59

0 20 40 60 80 100
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Binned synthetic W−2 process

Percentile of previous earnings

S
k
e
w

n
e
s
s
 o

f 
lo

g
 e

a
rn

in
g
s
 c

h
a
n
g
e

59



Figure 29: 103-gridpoint discretization: conditional third moment of earnings growth
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Figure 30: Conditional third moment for 35-40 year-old age group
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Figure 31: PSID: conditional third moment of earnings growth
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Figure 32: 18-gridpoint discretization: conditional fourth moment of earnings growth
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Figure 33: 103-gridpoint discretization: conditional fourth moment of earnings growth
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Figure 34: Conditional fourth moment for 35-40 year-old age group
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Figure 35: PSID: conditional fourth moment of earnings growth
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Therefore, we conclude that our procedure generates a reasonably good approximation

up to the fourth moment of the actual earnings process, particularly for discretizations with

a large number of gridpoints, when applied to a sufficiently large dataset. This represents a

significant improvement with respect to the use of a Gaussian AR(1) process, and is one of

the key contributions of this empirical method.

When we refer to “W2 process”, unless specifically mentioned, we imply the 103-gridpoint

discretization. Using the 18-gridpoint discretization instead has no significant impact on the

results (not reported).
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