Micro Data and Macro Technology

Ezra Oberfield Devesh Raval

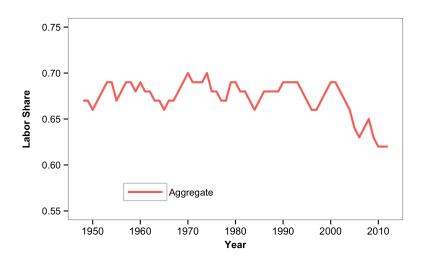
Princeton & NBER

FTC

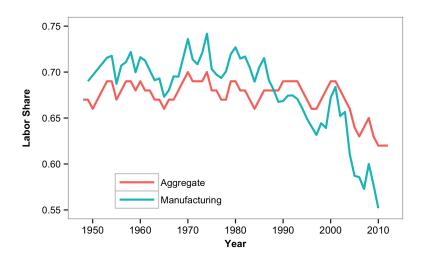
NBER SI: Economic Growth

July, 2014

Labor's Share has Fallen



Labor's Share has Fallen



Why has the labor share fallen?

- Factor Prices
 - ► Fall in Investment Prices: Karabarbounis & Neiman (2014)
 - ► Capital Accumulation: Piketty (2014)
- Biased Technical Change
 - Offshoring/Trade: Elsby, et al (2013)
 - Automation / IT
- Key is the Aggregate Elasticity of Substitution:

$$\sigma \equiv \frac{\partial \ln K/L}{\partial \ln w/r}$$

Aggregate Capital-Labor Elasticity of Substitution

- How do factor prices and technical change affect factor compensation?
- Important for many questions
 - How do tax policies impact investment and welfare?
 - ▶ How does trade affect factor compensation and factor prices?
 - ▶ What are the features of long run growth?

- Impossibility Theorem of Diamond, McFadden, & Rodriguez (1978)
 - \triangleright Cannot identify σ or bias of tech. with time series of quantities and prices
 - Need variation in prices that is independent of technology

Two Approaches to Estimate Elasticity

- Use time series of aggregate data
 - Strong assumptions about technical change
 - Estimates vary
 - * Antras (2004): 0.5-1.0
 - * Klump et al. (2007): 0.5-0.6
 - * Karabarbounis & Neiman (2014): 1.25
 - * Piketty (2014): 1.3-1.6
 - ★ Herrendorf et al. (2014): 0.84
 - ★ Leon-Ledesma et al (2010): Identification difficult even with assumptions.

Two Approaches to Estimate Elasticity

- Use time series of aggregate data
 - Strong assumptions about technical change
 - Estimates vary
 - * Antras (2004): 0.5-1.0
 - * Klump et al. (2007): 0.5-0.6
 - * Karabarbounis & Neiman (2014): 1.25
 - * Piketty (2014): 1.3-1.6
 - * Herrendorf et al. (2014): 0.84
 - ★ Leon-Ledesma et al (2010): Identification difficult even with assumptions.
- Use micro data
 - More plausibly exogenous differences in prices
 - ► Typical estimate: 0.4-0.5
 - Identifies a micro elasticity of substitution

Two Approaches to Estimate Elasticity

- Use time series of aggregate data
 - Strong assumptions about technical change
 - Estimates vary
 - * Antras (2004): 0.5-1.0
 - * Klump et al. (2007): 0.5-0.6
 - * Karabarbounis & Neiman (2014): 1.25
 - * Piketty (2014): 1.3-1.6
 - ★ Herrendorf et al. (2014): 0.84
 - ★ Leon-Ledesma et al (2010): Identification difficult even with assumptions.
- Use micro data
 - More plausibly exogenous differences in prices
 - ► Typical estimate: 0.4-0.5
 - Identifies a micro elasticity of substitution
 - Houthakker (1955): Disconnect between micro and macro elasticities
 - ▶ If macro elasticity is necessary, are estimates of micro elasticity useful?

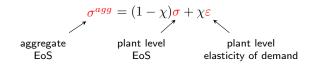
Construct aggregate elasticity using theory and microdata

$$\sigma^{agg} \equiv \frac{\partial \ln K/L}{\partial \ln w/r}$$

Construct aggregate elasticity using theory and microdata

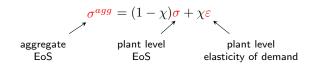


Construct aggregate elasticity using theory and microdata



- \triangleright σ : substitution within plants
- ε: substitution across plants
- χ: heterogeneity in capital intensity
 - * proportional to variance of capital shares

Construct aggregate elasticity using theory and microdata



- \triangleright σ : substitution within plants
- \triangleright ε : substitution across plants
- χ: heterogeneity in capital intensity
 - * proportional to variance of capital shares
- Our approach
 - **E**stimate σ and ε
 - Compute χ from the cross-section
 - $ightharpoonup \sigma^{agg}$ not a structural parameter

Cross-section in 1987 $\Rightarrow \sigma^{agg}$ in 1987

Roadmap

- Model
- US Manufacturing Sector
 - ► Micro Parameters
 - Aggregate Elasticity
 - ► Decline in Labor Share

• Industries (indexed by $n \in N$) composed of plants (indexed by $i \in I_n$).

$$Y^{agg} = \left(\sum_{n \in N} D_n Y_n^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}} \qquad Y_n = \left(\sum_{i \in I_n} D_i Y_i^{\frac{\varepsilon_n-1}{\varepsilon_n}}\right)^{\frac{\varepsilon_n}{\varepsilon_n-1}}$$

• Plant i in n produces with CES production function with EoS σ_n :

$$Y_{ni} = \left[\left(A_{ni} K_{ni} \right)^{\frac{\sigma_n - 1}{\sigma_n}} + \left(B_{ni} L_{ni} \right)^{\frac{\sigma_n - 1}{\sigma_n}} \right]^{\frac{\sigma_n}{\sigma_n - 1}}$$

• For now, ignore adjustment costs, returns to scale, and extensive margin

• Industry-level elasticity of substitution for industry n:

$$\sigma_n^N \equiv \frac{\partial \ln K_n / L_n}{\partial \ln w / r}$$

• Industry-level elasticity of substitution for industry n:

$$\sigma_n^N \equiv \frac{\partial \ln K_n / L_n}{\partial \ln w / r}$$

$$\underbrace{\frac{\alpha_n}{rK_n}}_{K_n+wL_n} = \sum_{i \in I_n} \underbrace{\frac{\alpha_{ni}}{rK_{ni}}}_{K_{ni}+wL_{ni}} \times \underbrace{\frac{\theta_{ni}}{rK_{ni}+wL_{ni}}}_{\frac{rK_{ni}+wL_{ni}}{rK_n+wL_n}}$$

• Industry-level elasticity of substitution for industry n:

$$\sigma_{n}^{N} \equiv \frac{\partial \ln K_{n}/L_{n}}{\partial \ln w/r} = (1 - \chi_{n})\sigma_{n} + \chi_{n}\varepsilon_{n}$$

$$\frac{\alpha_{n}}{rK_{n}} = \sum_{i \in I_{n}} \frac{\alpha_{ni}}{rK_{ni} + wL_{ni}} \times \frac{\theta_{ni}}{rK_{ni} + wL_{ni}}$$

• Industry-level elasticity of substitution for industry n:

$$\sigma_{n}^{N} \equiv \frac{\partial \ln K_{n}/L_{n}}{\partial \ln w/r} = (1 - \chi_{n})\sigma_{n} + \chi_{n}\varepsilon_{n}$$

$$\alpha_{n} = \sum_{i \in I_{n}} \alpha_{ni} \times \theta_{ni}$$

$$\frac{rK_{n}}{rK_{n} + wL_{n}} \times \frac{rK_{ni} + wL_{ni}}{rK_{ni} + wL_{ni}}$$

Heterogeneity Index

$$\chi_n \equiv \frac{\sum_{i \in I_n} (\alpha_{ni} - \alpha_n)^2 \theta_{ni}}{\alpha_n (1 - \alpha_n)}$$

• Nests nicely: Similar to go from industry to aggregate Details

Materials

$$Y_{ni} = \left[F_{ni}(K_{ni}, L_{ni})^{\frac{\zeta_n - 1}{\zeta_n}} + C_{ni}M_{ni}^{\frac{\zeta_n - 1}{\zeta_n}}\right]^{\frac{\zeta_n}{\zeta_n - 1}}$$

• Industry elasticity of substitution:

$$\sigma_n^N = (1 - \chi_n)\sigma_n + \chi_n \left[(1 - \bar{s}_n^M)\varepsilon_n + \bar{s}_n^M \zeta_n \right]$$

- \bullet \bar{s}_n^M is weighted average of plants' materials shares
- Intuition:
 - $\qquad \qquad \bar{s}_n^M \searrow 0 \qquad \Rightarrow \qquad \text{plants grow/shrink}$
 - $lackbox{} \bar{s}_n^M \nearrow 1 \qquad \Rightarrow \qquad \text{substitute towards/away from materials}$

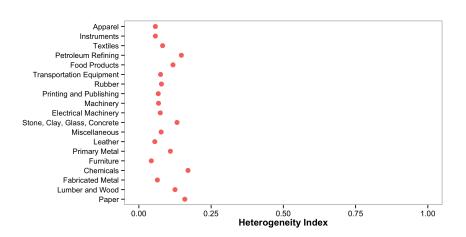
Data from US manufacturing censuses

- US Census of Manufactures
 - Every five years we use 1987 and 1997
 - We exclude small plants with less than five employees: no capital data
 - ► Each census: More than 180,000 plants

- Annual Survey of Manufactures (ASM)
 - Survey of 50,000 plants every year in a limited panel
 - Allows us to construct perpetual inventory measures of capital
 - Includes benefits, payroll taxes

Heterogeneity Indices

$$(1 - \chi_n)\sigma_n + \chi_n[(1 - \bar{s}_n^M)\varepsilon_n + \bar{s}_n^M\zeta]$$



Plant capital-labor elasticity of substitution

$$(1 - \chi_n) \sigma_n + \chi_n \left[(1 - \bar{s}_n^M) \varepsilon_n + \bar{s}_n^M \zeta \right]$$

Approach (Raval, 2014): Exploit geographic variation in wages

$$\ln\left(\frac{rK}{wL}\right)_{ni} = (\sigma_n - 1)\ln w_{ni}^{MSA} + CONTROLS + \epsilon_{ni}$$

- w_{ni}^{MSA} : wage in i's MSA from Population Censuses 5% sample
 - ▶ MSA wage controlling for education, experience, and occupation
- Wage differences are persistent \Rightarrow σ is long-run elasticity

Plant capital-labor elasticity of substitution

$$\ln\left(\frac{rK}{wL}\right)_{ni} = (\sigma_n - 1)\ln w_{ni}^{MSA} + CONTROLS + \epsilon_{ni}$$

			Bartik	Equipment	
	Separate OLS	Single OLS	Instrument	Capital	Firm FE
1987	0.52	0.52 (0.04)	0.49 (0.05)	0.53 (0.03)	0.49 (0.05)
1997	0.52	0.46 (0.03)	0.52 (0.08)		0.48 (0.08)

- Wages driven by local productivity, skills?
- Capital produced locally?
- Credit constraints?
- Chirinko et al. (2011): $\sigma = 0.4$

Scale Elasticity

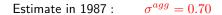
$$(1-\chi_n)\sigma_n + \chi_n[(1-\bar{s}_n^M)\varepsilon_n + \bar{s}_n^M\zeta_n]$$

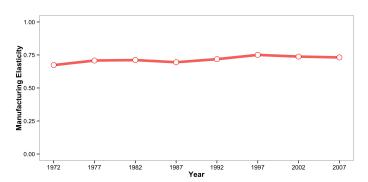
- Demand Elasticity, ε_n : Average estimate: 3.9. Range: 3-5.
 - ► Back out from average revenue-cost ratio (Alternative Strategy)

$$\frac{P_i Y_i}{w L_i + r K_i + q M_i} = \frac{\varepsilon_n}{\varepsilon_n - 1}$$

- Materials / K-L Elasticity, $\zeta_n = 0.90$:
 - Exploit geographic variation in wages
 - ► How does $\frac{qM_i}{rK_i + wL_i}$ vary with local wage? Details
- Materials shares, \bar{s}_n^M : Average 0.59
 - ...
- Cross-industry substitution, η : 1.0 Estimate

Aggregate Elasticity of Substitution





Robustness

- ► Extensive margin Details, Sorting Details
- ► Returns to scale Details, Non-CES production Details
- ► Adjustment costs Details, Misallocation Details
- ► Demand elasticity (Alternative Strategy), Demand System (Details)

Decomposition of Labor Share Decline

$$ds^{v,L} = \underbrace{\frac{\partial s^{v,L}}{\partial \ln w/r} d \ln w/r}_{\text{prices}} + \underbrace{ds^{v,L} - \frac{\partial s^{v,L}}{\partial \ln w/r} d \ln w/r}_{\text{"bias of tech. change"}}$$

- Use σ^{agg} to measure contribution of factor prices
- "Bias of technical change" is residual
- Factor Prices Details
 - w: from NIPA, use Jorgenson to control for changes in skill
 - ▶ r: price indices from NIPA, tax rates/depreciation allowances from Jorgenson

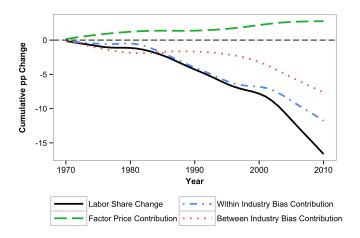
Biased Technical Change Drives Labor Share Decline

		Contributions from:	
Period	Labor Share Change	Factor Prices	Bias
1970-1999	-0.25%	0.07%	-0.32%
2000-2010	-0.79%	0.05%	-0.84%

- Contribution of factor prices approximately constant and small
 - Casts doubt on explanations that work solely through factor prices
- Stagnant wages?
 - ▶ Before 1970, real wage growth 1.9pp higher
 - Can only explain 1/6 of decline
- Candidates: offshoring, automation, IT investment, decline of unions...

Within and Between Contributions to Labor Share Decline

$$s^{v,L} = \sum_{n} \frac{VA_n}{VA} s_n^{v,L}$$



Conclusion

- We develop approach to estimate aggregate elasticity
 - Function of micro parameters and statistics of micro heterogeneity
- Aggregate elasticity of substitution in US Manufacturing sector
 - σ^{agg} has been relatively stable since $1970 \approx 0.7$
- We used estimate to assess decline of labor share
 - Little role for factor prices
 - Within-industry bias of technical change most important
 - Shift in industry composition played role since 2000
- Future work
 - Assess causes of decline in labor share
 - Decompose increase in skill premium

Manufacturing Sector

Assume nested CES demand

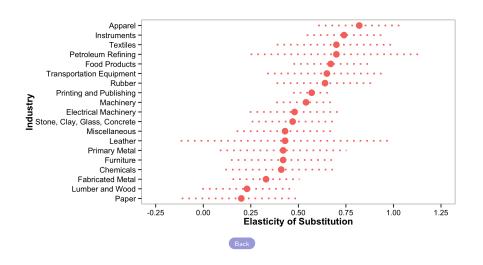
$$Y^{agg} = \left(\sum_{n \in N} D_n Y_n^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}} \qquad \qquad Y_n = \left(\sum_{i \in I_n} D_i Y_i^{\frac{\varepsilon_n-1}{\varepsilon_n}}\right)^{\frac{\varepsilon_n}{\varepsilon_n-1}}$$

• Aggregate elasticity of substitution

$$\sigma^{agg} = (1 - \chi^{agg}) \,\bar{\sigma}^N + \chi^{agg} \eta$$

$$\bar{\sigma}^N = \sum_{n \in N} \omega_n^N \sigma_n^N \qquad \qquad \chi^{agg} = \sum_{n \in N} \frac{(\alpha_n - \alpha)^2}{\alpha (1 - \alpha)} \theta_n$$

Plant-level elasticities range between 1/4 and 3/4



Endogeneity of wages?

- Instrument using shock to local labor demand (Bartik (1991))
- Interaction between:
 - ▶ 10 year change in national employment of 4-digit service industry
 - local MSA exposure to the industry

$$Z_j = \sum_{n \in N^{service}} \ \underbrace{\omega_{j,n}(t-10)}_{\text{share of } L_j} \ \times \underbrace{g_{n(t)}}_{\text{national growth in in industry } n}$$

• Estimate: 0.49 (compared to 0.52 in baseline)

Alternative Estimate of Demand Elasticity

- Adapt method of Foster, Haltiwanger, Syverson (2008)
 - ► For some products, Census provides prices and quantities
 - ► Homogenous products only: units are meaningful
- Trace out demand curve
 - Regress quantity on price
 - Use average cost as instrument
- Average of Industry-level elasticities:

$$\bar{\sigma}^N = .54$$
 (Baseline), $\bar{\sigma}^N = .52$ (IV), $\bar{\sigma}^N = .54$ (FHS)

▶ Back to Micro ▶ Back to Macro

Elasticity of Substitution between M and K-L bundle

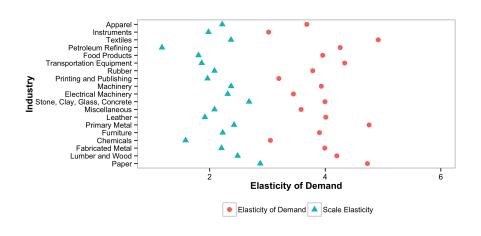
$$\ln \frac{qM_i}{rK_i + wL_i} = (\zeta - 1)(1 - \alpha_i) \ln w_j + \epsilon_{ij}$$

	No Local Content	Local Content	
1987	0.90 <i>(0.06)</i>	0.87 (0.07)	
1997	0.67 (0.04)	0.63 (0.05)	
N	$\approx 140,000$		

- No local content: implicit assumption that materials market is national
- Local content: some materials are sourced locally affected
 - Materials price would be affected by local wage
 - ► Local content: fraction of materials produced within 100 miles
 - Use Commodity Flow Survey and I/O tables to proxy for local content

Scale Elasticity

$$(1 - \chi_n)\sigma_n + \chi_n[(1 - \bar{s}_n^M)\varepsilon_n + \bar{s}_n^M\zeta_n]$$



Industry elasticity of demand

$$\sigma^{agg} = (1 - \chi^{agg})\,\bar{\sigma}^N + \chi^{agg} \mathbf{\eta}$$

Panel of two-digit manufacturing industries

$$\log y_n = -\eta \log p_n + CONTROLS + \epsilon$$

Instrument for price using average cost per unit produced for industry

(0.03) 0.37 (0.05)
(0.04) 1.05 (0.06)
(0.03) 0.77 (0.05)
one Trends

Returns to Scale

- i produces with $Y_i = G_i(K, L, M)^{\gamma}$
 - G_i is constant returns to scale, $\gamma < \frac{\varepsilon}{\varepsilon 1}$

Returns to Scale

- i produces with $Y_i = G_i(K, L, M)^{\gamma}$
 - G_i is constant returns to scale, $\gamma < \frac{\varepsilon}{\varepsilon 1}$
- Aggregate elasticity of substitution:

$$\sigma^N = (1 - \chi)\sigma + \chi[\bar{s}^M\zeta + (1 - \bar{s}^M)\mathbf{x}]$$

where x satisfies $\frac{x}{x-1} = \frac{1}{\gamma} \frac{\varepsilon}{\varepsilon - 1}$.

Returns to Scale

- i produces with $Y_i = G_i(K, L, M)^{\gamma}$
 - G_i is constant returns to scale, $\gamma < \frac{\varepsilon}{\varepsilon 1}$
- Aggregate elasticity of substitution:

$$\sigma^N = (1 - \chi)\sigma + \chi[\bar{s}^M\zeta + (1 - \bar{s}^M)\mathbf{x}]$$

where \underline{x} satisfies $\frac{x}{x-1} = \frac{1}{\gamma} \frac{\varepsilon}{\varepsilon - 1}$.

• Revenue-cost no longer gives markup:

$$\frac{P_iY_i}{rK_i+wL_i+qM_i}=\frac{1}{\gamma}\frac{\varepsilon}{\varepsilon-1}=\frac{x}{x-1}$$

Misallocation

- lacksquare Suppose i pays idiosyncratic factor prices $r_i = T_{Ki}r$ and $w_i = T_{Li}w$
 - If σ^{agg} is defined to satisfy

$$\sigma^{agg} - 1 = \frac{d \ln \left(\sum r_i K_i / \sum w_i L_i \right)}{d \ln w / r}$$

Then formulas are unchanged as long as we define

$$\alpha_i = \frac{r_i K_i}{r_i K_i + w_i L_i} \qquad \theta_i = \frac{r_i K_i + w_i L_i}{\sum_j r_j K_j + w_j L_j}$$

② If prices differ from shadow costs, need alternative

Adjustment Costs

- ullet Target capital K_i^* and target L_i^*
- Deviations do not affect estimate of micro elasticity
 - ▶ Need deviations from K_i^*, L_i^* to be uncorrelated with MSA wage
 - Satisfied if MSA wage is persistent
- Deviations matter for impact of heterogeneity
 - Likely less important for large plants
- What if all heterogeneity reflected adjustment costs?
 - ▶ 1987: $\sigma^{agg} = 0.70$ (baseline 0.70)
 - ▶ 1997: $\sigma^{agg} = 0.93$ (baseline 0.77)

Demand System

ullet Industry Demand Y satisfies

$$1 = \sum_{i} H_i \left(\frac{Y_i}{Y} \right)$$

- Homothetic
- Arbitrary demand elasticities
- Imperfect pass-through
- Industry elasticity

$$\sigma^N = (1 - \chi)\sigma + \chi[\bar{s}^M\zeta + (1 - \bar{s}^M)x]$$

- ullet x is weighted average of $b_i arepsilon_i$
 - $ightharpoonup arepsilon_i$: local demand elasticity
 - $ightharpoonup b_i$: local pass-through rate

Relax CES Assumption

- ullet Plant i produces using CRS production function $F_i(K,L)$
- σ_i is i's local elasticity of substitution

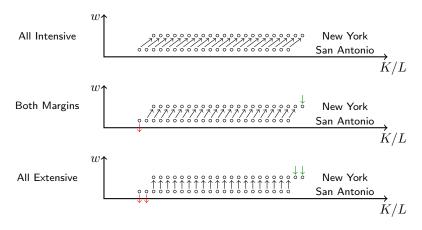
Relax CES Assumption

- Plant i produces using CRS production function $F_i(K, L)$
- σ_i is i's local elasticity of substitution
- Industry elasticity of substitution is

$$\sigma_n^N = (1 - \chi_n) \bar{\sigma}_n + \chi_n \varepsilon_n$$

$$\bar{\sigma}_n \equiv \sum_{i \in I_n} \omega_i \sigma_i$$
 $\qquad \qquad \omega_i \equiv \frac{\alpha_i (1 - \alpha_i) \theta_i}{\sum_{i' \in I_n} \alpha_{i'} (1 - \alpha_{i'}) \theta_{i'}}$

Extensive Margin



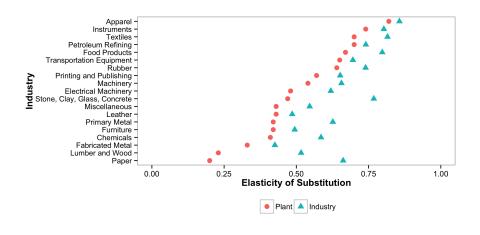
- ullet Our estimate of σ is combination of intensive and extensive margin
 - ► Can't distinguish between extensive and intensive margins
 - ▶ But do not need to

Micro Elasticities

- Raval (2013): On average, $\sigma \approx 0.5$
- Potential problem:
 - If plants sort across locations \Rightarrow we overstate true σ
 - ▶ But, industries where moving is difficult (e.g., concrete) look similar to others

- Chirinko, Fazzari, Meyer (2011): $\sigma \approx 0.4$
 - ▶ Focuses on long run elasticity
 - Variation in cost of capital
 - Only includes intensive margin

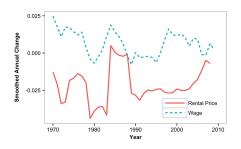
Industry-level Elasticity of Substitution



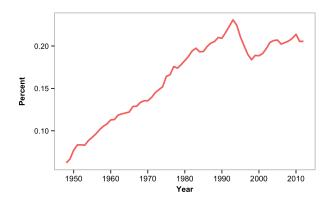
Factor Prices

- Wages
 - ► NIPA: Labor compensation Final opens for manufacturing sector, includes Labor to benefits Adjust for changes in skill using series from Jorgenson

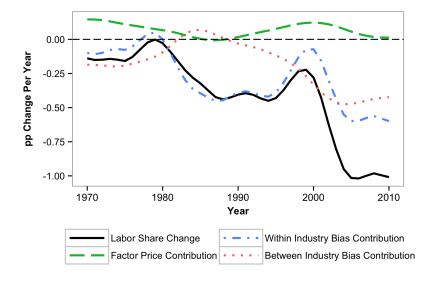
- User cost of capital
 - Capital prices from NIPA by type
 - Real rental rate of 3.5%
 - Tax rates and depreciation allowances from Jorgenson



Benefits



Within and Between Contributions to Labor Share Decline



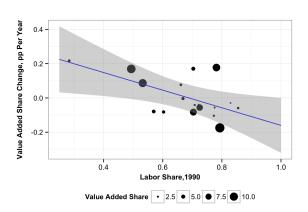
Related Literature

- Micro vs. Macro elasticity
 - ► Houthakker (1955): Pareto distributed productivities
 - Jones (2005); Lagos (2006); Luttmer (2012)
 - Levhari (1968): Distributional assumptions are critical
 - Our approach builds on two good case of Sato (1967)

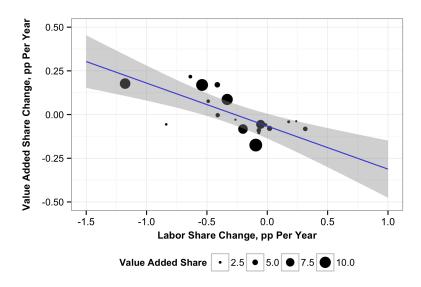
- Impact of factor prices, accumulation on distribution of income
 - Karabarbounis & Neiman (2014); Piketty (2014); Elsby, et al (2013)
 - ► Krusell, et al (2000); Acemoglu (2002,2003,2010); Burstein, et al (2014); Autor, et al (2003); Autor, et al (2014)

Shift in Composition Across Industries?

$$s^{v,L} = \sum_{n} \frac{VA_n}{VA} s_n^{v,L}$$



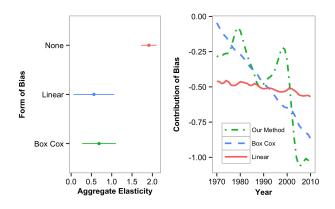
Decline of the Labor Share



The Aggregate Time Series Approach

• How does our approach compare to literature?

$$\frac{s_l}{1 - s_l} = \beta_0 + (\sigma^{agg} - 1) \ln \frac{r}{w} + \ln \phi + \epsilon$$



Preview of Results

- 1987: plant-level elasticity 0.5, aggregate elasticity 0.7
- Aggregate elasticity relatively stable since 1972, close to 0.7

Preview of Results

- 1987: plant-level elasticity 0.5, aggregate elasticity 0.7
- Aggregate elasticity relatively stable since 1972, close to 0.7
- Decline of labor share: Small role for factor prices
 - ▶ Not consistent with: investment specific tech. change, capital accumulation
 - Consistent with: changes in automation, offshoring, collective bargaining
- Biased technical change within industries? Shift in composition?
 - ▶ 1970-2000: within-industry more important
 - ▶ Since 2000: both within and between are important