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Abstract

We distinguish between two ways a mechanism can fail to be strategyproof (SP). A mecha-

nism may have profitable manipulations that persist with market size; and, a mechanism may

have profitable manipulations that vanish with market size. We say that a non-SP mechanism

is strategyproof in the large (SP-L) if all of its profitable manipulations vanish with market size.

Our main result is as follows. Suppose we are given some mechanism that has Bayes-Nash

equilibria but is not SP-L; then, under some commonly satisfied conditions (semi-anonymity,

private values, quasi-continuity) we show by construction that there exists another mechanism

that is SP-L, and that implements approximately the same outcomes as the original mechanism,

with the approximation error vanishing in the large-market limit. Thus, while SP often severely

limits what kinds of mechanisms are possible, SP-L is approximately costless, and hence may

be a useful second-best. We illustrate with examples from assignment, matching and auctions.
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1 Introduction

Strategyproofness – i.e., that playing the game truthfully is a dominant strategy – is perhaps the

predominant notion of incentive compatibility in practical market design. There are at least five

important reasons why strategyproofness is so heavily emphasized relative to other forms of incentive

compatibility, such as Bayes-Nash. First, strategyproof mechanisms are detail free for the designer,

in the sense of Wilson (1987); the designer need not know anything about participants’ preferences

or beliefs (cf. Bergemann and Morris (2005)). Second, and relatedly, strategyproof mechanisms are

strategically simple for participants; participants need not form beliefs about others’ preferences or

behavior in order to play the game optimally (Fudenberg and Tirole (1991); Roth (2008)). Third,

with this simplicity comes a measure of fairness; agents’ outcomes do not depend on their ability

to “game the system” (Friedman (1991); Pathak and Sönmez (2008); Abdulkadiroğlu et al. (2006)).

Fourth, strategyproof mechanisms generate information about participants’ true preferences that

may be useful to policy makers (Roth (2008)). Fifth, Bayesian approaches simply have not yet

proved tractable for a number of important market design problems.

However, in a wide variety of economic contexts, impossibility theorems indicate that strategyproof-

ness severely limits what kinds of mechanisms are possible. These range from Gibbard (1973) and

Satterthwaite’s (1975) dictatorship theorem for general social choice problems, to Hurwicz’s (1972)

impossibility theorem for general equilibrium settings, to the Green and Laffont (1977) VCG the-

orem for allocation settings with quasi-linear preferences, to Roth’s (1982) impossibility theorem

for strategyproof stable matching, to Papai’s (2001) dictatorship theorem for multi-unit demand

assignment problems, to Abdulkadiroğlu et al.’s (2009) impossibility theorem for strategyproof and

efficient school assignment.

This creates a conundrum for market designers. Strategyproofness is the only form of incentive

compatibility that the literature finds fully satisfying, yet often there are no good strategyproof

mechanisms.

This paper proposes a criterion of approximate strategyproofness, and suggests that it may be a

useful second-best alternative in environments where strategyproof mechanisms are unattractive.

Our criterion is based on a conceptual distinction between two ways a mechanism might fail to be

strategyproof. First, a mechanism might have profitable manipulations that persist with market size.

Second, a mechanism might have profitable manipulations that vanish with market size. While both

kinds of manipulability are undesirable, we suggest that manipulations that persist with market size
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are especially problematic, and are avoidable. If a mechanism only has manipulations that vanish

with market size, we will say that it is strategyproof in the large (SP-L).

Whether or not a mechanism is SP-L is simple to check, and generates an intuitively appealing

classification of non-strategyproof mechanisms. Many well-known non-strategyproof mechanisms

that are thought to work well in practice are SP-L. Examples include the Walrasian mechanism,

double auctions, uniform-price auctions, and deferred-acceptance algorithms. Many other non-

strategyproof mechanisms that have been shown to have important incentives problems in practice

are not SP-L, i.e., they are manipulable even in large markets. Examples include the pay-as-bid

auction criticized by Friedman (1964, 1991), the Boston mechanism for school choice criticized by

Abdulkadiroğlu and Sönmez (2003), the bidding points auction for course allocation criticized by

Sönmez and Ünver (2010), and the priority-match algorithm for two-sided matching criticized by

Roth (2002). Furthermore, both Friedman’s critique of pay-as-bid auctions and Roth’s critique of

priority-match algorithms explicitly suggested alternative mechanisms that are not strategyproof

but that are SP-L: uniform-price auctions and deferred-acceptance algorithms, respectively. This

too speaks to the intuitive appeal of the criterion.

Our main result is as follows. Suppose we are given some mechanism that has Bayes-Nash equi-

libria. Suppose that the mechanism is (semi-)anonymous, which is a common feature of practical

market-design settings; that agents have private values, in the sense that they know their own

preferences over outcomes without observing other agents’ private information; and that the mech-

anism satisfies a condition called quasi-continuity, which we will describe in more detail below. We

show that there necessarily exists another mechanism that is strategyproof in the large, and that

implements approximately the same outcomes as the original mechanism, with the approximation

error vanishing in the large-market limit. An interpretation of our result is that while restricting

attention to SP mechanisms can be very costly in terms of design objectives, restricting attention

to SP-L mechanisms is approximately costless. This justifies consideration of SP-L as a second-best

alternative to SP.

Our proof is by construction of a specific SP-L mechanism, from a given mechanism that has Bayes-

Nash equilibria. The construction works as follows. Agents report their types to our mechanism.

Our mechanism then calculates the empirical distribution of these types, and then “activates” the

Bayes-Nash equilibrium strategy of the original mechanism associated with this empirical. If agents

all report their preferences truthfully, this construction will yield the same outcome as the original
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mechanism in the large-market limit, because the empirical distribution of reported types converges

to the underlying true distribution. The subtle part of our construction is what happens if some

agents systematically misreport their preferences, e.g., they make mistakes. Suppose the true prior

is µ, but for some reason the agents other than agent i systematically misreport their preferences,

according to distribution m. In a finite market, with sampling error, the empirical distribution of

the other agents’ reports is say m̂. As the market grows large, m̂ is converging to m, and also i’s

influence on the empirical distribution is vanishing. Thus in the limit, our construction will activate

the Bayes-Nash equilibrium strategy associated with m. This is the “wrong” prior – but agent i does

not care. From his perspective, the other agents are reporting according to m, and then playing

the Bayes-Nash equilibrium strategy associated with m, so i too wishes to play the Bayes-Nash

equilibrium strategy associated with m. This is exactly what our constructed mechanism does on

i’s behalf in the limit. Hence, no matter how the other agents play, i wishes to report his own type

truthfully in the limit, i.e., the constructed mechanism is SP-L.

Our construction resembles a revelation principle construction, in that it takes a mechanism in

which agents play the game directly and transforms it into a mechanism in which agents just report

their type, and then let the center play optimally on their behalf. However, we emphasize that our

mechanism is fundamentally distinct. In a traditional revelation mechanism, the mechanism designer

knows the true prior (e.g., µ), and then plays the Bayes-Nash equilibrium strategy associated with

this true prior on agents’ behalf. It is then a Bayes-Nash equilibrium for agents to report their

types truthfully. Our mechanism has two advantages relative to this benchmark. First, it is prior

free: neither the agents nor the mechanism need know the underlying distribution of preferences a

priori, because the mechanism infers the prior from the empirical. Second, our mechanism provides

dominant-strategy incentives in the limit, whereas a traditional revelation mechanism provides just

Bayes-Nash incentives even in the limit.

A difficult technical issue throughout the analysis concerns points of discontinuity in a mechanism.

The argument sketched above relied implicitly on an assumption of continuity local to m: as the

empirical m̂ is converging to m, agent i’s utility is converging to what he would receive in the

Bayes-Nash equilibrium associated with m. However, many familiar mechanisms have points at

which agents’ outcomes are not locally continuous. As an example, consider the uniform-price

auction. Typically, a small change in the distribution of opponents’ bids will have only a small

effect on agent i’s payoff. However, if i is the marginal bidder, a small change could discontinuously
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cause i to change from being a winner of the auction to being a loser of the auction. Or, if prices are

discrete and demand is exactly equal to supply at some price p, then a small decrease in demand

could cause the market clearing price to decrease discontinuously.

Our analysis accommodates discontinuities in two related ways. First, our main result does not

require that a mechanism be everywhere continuous, but rather that it satisfy a condition we call

quasi-continuity. The quasi-continuity condition allows for the kinds of discontinuities that arise in

the uniform-price auction. Roughly, the requirement is that discontinuities be “knife edge”, in the

sense that on either side of a discontinuity is a region where the mechanism is locally continuous.

Second is the way we define SP-L itself. A mechanism is strategyproof if, for any profile of the other

agents’ reports, agent i maximizes his utility by reporting his own preferences truthfully. We say

that a mechanism is SP-L if, in the large-market limit, for any probability distribution of the other

agents’ reports, agent i maximizes expected utility by reporting his preferences truthfully. When a

mechanism is continuous, by a law of large numbers argument, there is no distinction in the limit

between expected utility from a probability distribution of reports and realized utility from a specific

profile of reports. If a mechanism has discontinuities, however, there can be such a distinction. For

instance, in the uniform-price auction, an agent who reports her preferences truthfully might wish

ex post to revise her report, in the event that the empirical realization of reports is exactly the

knife-edge case where she can have a discontinuous influence on price. We classify the uniform-price

auction as SP-L because the likelihood of this event vanishes with market size, for any probability

distribution over the other agents’ reports (cf. Example 1 below).

If we assume a stronger form of continuity, we can get stronger results. Specifically, if we assume

that mechanisms are uniformly continuous as defined by Kalai (2004), then we can show that any

SP-L mechanism has the property that, in a large enough market, no agent ever gains more than

ε in any realization by misreporting her preferences. This is a stronger form of ex post robustness

than that obtained by Kalai (2004) for Bayes-Nash equilibria, both because the likelihood of having

an ε deviation is exactly zero in a large enough finite market rather than converging to zero in the

limit, and because agents need not know the prior, coordinate on a specific equilibrium, etc.

Related Literature Our paper is related to a large literature that has studied how market size

can ease incentive constraints. An early paper in this tradition is Roberts and Postlewaite (1976)

on the Walrasian mechanism, which can be seen as a response to Hurwicz’s (1972) critique that the

Walrasian mechanism is not strategyproof.
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Other papers in this tradition include Jackson and Manelli (1997), Kovalenkov (2002), and Al-Najjar

and Smorodinsky (2007) on the Walrasian mechanism, Rustichini et al. (1994) on double auctions

with private values, Pesendorfer and Swinkels (2000), Cripps and Swinkels (2006), and Reny and

Perry (2006) on double auctions with common-value components, Immorlica and Mahdian (2005),

Kojima and Pathak (2009), and Lee (2011) on deferred acceptance algorithms, and Kojima and

Manea (2010) on the Bogomolnaia and Moulin (2001) probabilistic serial mechanism. Each of these

papers provides a defense of a specific mechanism based on its incentive properties in large markets.

Our paper aims to justify strategyproofness in the large as a general desideratum for practical market

design. Note that in the context of any of the specific mechanisms named above, our analysis is

much less instructive than are previous analyses tailored to the specific mechanism.

Technically, our paper is most closely related to Kalai (2004). Kalai (2004; Theorem 1) shows that

Bayes-Nash equilibria are approximately ex post Nash in a class of large continuous and anonymous

games.1 In words, if a large number of agents with private information about their types play some

BNE, then ex post – i.e., after seeing each agent’s chosen action – agents will have vanishingly

little incentive to revise their play. The difference between our Theorem 1 and Kalai’s Theorem 1

is that Kalai shows that a given BNE is approximately ex post Nash, whereas we use the BNE of

a given mechanism to create a new mechanism that is approximately strategyproof. In our new

mechanism players need not have common knowledge of the prior, or of what equilibrium is being

played, nor need they be strategically sophisticated in any way. There are several other well-known

technical ideas that our paper is related to. First is the revelation principle (Myerson (1979)); see our

discussion of how our main result is related to but distinct from the revelation principle in Section

4.2. Second is the idea that there can be equivalence, in specialized environments, between what is

implementable in Bayes-Nash equilibrium and what is implementable in dominant strategies. The

revenue equivalence theorem in auction theory is an early example of such a result, since there exist

dominant-strategy auctions that maximize revenue. See Manelli and Vincent (2010) for a recent

equivalence result, and Gershkov et al. (2011) for a provocative discussion of these issues. Third is

the idea of using the empirical distribution of agents’ actions to infer the underlying distribution of

preferences; see Segal (2003) for an application of this idea in the context of monopoly pricing.

Next, our paper is related to the literature on the role of strategyproofness in practical market design.

1Recent work by Azrieli and Shmaya (2011) shows that continuity is the crucial assumption in Kalai (2004),
and that anonymity can be relaxed. See also Deb and Kalai (2011) and Carmona and Podczeck (2011) for recent
extensions of aspects of Kalai (2004). Recent work by Bodoh-Creed (2010) shows that Kalai-like assumptions imply
a close relationship between games with a continuum of players and games with a large finite number of players.
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Wilson (1987) famously argued that practical market designs should aim to be detail free, and

Bergemann and Morris (2005) formalized the sense in which strategyproof mechanisms are robust

in the sense of Wilson. Several recent papers have argued that strategyproofness can be viewed

as a design objective and not just as a constraint: papers on this theme include Abdulkadiroğlu

et al. (2006), Abdulkadiroğlu et al. (2009), Pathak and Sönmez (2008), and Roth (2008). Our

paper contributes to this literature by showing that approximate strategyproofness is approximately

costless in large markets, relative to other kinds of incentive compatibility. Also, the distinction

we draw between manipulations that persist and manipulations that vanish highlights that many

mechanisms in practice are manipulable in a preventable way.

Last, our paper is conceptually related to Parkes et al. (2001), Day and Milgrom (2008), and Pathak

and Sönmez (2011), each of which seeks to say something more useful about non-strategyproof

mechanisms than simply that they are not strategyproof.2 Parkes et al. (2001) and Day and Milgrom

(2008) propose cardinal measures of a combinatorial auction’s manipulability, and seek to design an

auction that minimizes manipulability subject to other design objectives. Pathak and Sönmez (2011)

propose a method by which to compare non-strategyproof mechanisms based on their vulnerability

to manipulations. Mechanism a is said to be more manipulable than Mechanism b if, for any

problem instance where b is manipulable by at least one agent, so too is a. This criterion generates

a partial order over mechanisms, and helps to explain several recent policy decisions in which

school authorities switched from one manipulable mechanism to another. We view our approach as

complementary to these prior approaches; see especially our discussion of Pathak and Sönmez (2011)

after Example 1. An advantage of our approach is that it yields an explicit design desideratum,

namely that mechanisms be strategyproof in the large.

Organization of the paper The rest of this paper is organized as follows. Section 2 describes

the environment and some key assumptions. Section 3 defines strategyproof in the large and related

concepts, and presents several examples. Section 4 presents the main theoretical result. Section 5

discusses various extensions. Section 6 concludes. Proofs are in the appendix.

2See also Milgrom (2011) Section IV for a general discussion of these issues.
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2 Environment

2.1 Preliminaries

There is a finite type space, T , and a finite outcome space, X0, with X = ∆X0 denoting the set

of lotteries over outcomes. An outcome might be a consumption bundle, a school assignment, a

match partner, etc. An agent’s type determines her preferences over outcomes; specifically, for each

ti ∈ T there is a von Neumann-Morgenstern expected utility function uti : X → [0, 1]. Preferences

are private values in the sense that an agent’s utility from an outcome depends only on her own

type.

Our interest is in mechanisms that are well defined for various market sizes and various distributions

of types, holding fixed T and X0. The set of possible market sizes is simply N, with n ∈ N denoting

the number of agents in a particular economy. For each n ∈ N, let Y n ⊆ Xn denote the set of

allocations that are feasible. For instance, if outcomes are consumption bundles then Y n is the set

of allocations that satisfy the relevant production and capacity constraints in the n agent economy.

If there is a single social decision to be made, then Y n is the subset of Xn such that each agent gets

exactly the same element of X.

We assume throughout that agents’ types are independently and identically distributed (iid). Hence

the set of possible preference distributions is ∆T , with µ ∈ ∆T denoting the preference distribution

(or “prior”) in a particular economy. We denote the set of priors with full support as ∆̄T .

2.2 Mechanisms

We define a mechanism as follows:

Definition 1. A mechanism Γ = ((Φn)N, A) consists of a finite action space A and a sequence of

allocation functions

Φn : A×An−1 → X

each of which is anonymous and satisfies feasibility.3 The tuple (Φn, A), for a particular size n, is

called an n-mechanism.
3Specifically, letting Φn(ai, a−i) indicate the random bundle received by an agent who plays action ai ∈ A,

when the other agents play a−i ∈ An−1, feasibility requires that, for all n and all a = (a1, . . . , an), the allocation
(Φn(a1, a−1), . . . ,Φn(ai, a−i), . . . ,Φ

n(an, a−n)) is in the feasible set Y n. Anonymity requires that for all n, ai and
a−i, the function Φn(ai, a−i) is invariant to permutations in a−i.
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Built into our definition of a mechanism is the assumption that mechanisms are anonymous,

meaning that each agent’s outcome is a common function of her own action and the distribution

of all actions.4 Anonymity rules out that an agent’s outcome depends on the precise details of

who specifically plays what, and it also rules out that two agents who play the same action get

different random bundles. Anonymity is a natural feature of many large-market settings, with

examples of anonymous mechanisms including the Walrasian mechanism, most well-known single-

object, combinatorial- and double- auction formats, and most of the mechanisms that have been

proposed for single- and multi-unit assignment problems. In Section 5.2 we show that all of our

results obtain if we relax anonymity to semi-anonymity (Kalai (2004)); semi-anonymity accommo-

dates many additional settings in which there are asymmetries amongst classes of participants, e.g.,

in certain kinds of two-sided matching markets (cf. Azevedo and Leshno (2011)).

Also built into our definition of a mechanism is the assumption that mechanisms are detail free

for the designer, in the sense that the function that maps from actions to outcomes does not vary

with the prior µ. Of course, how agents choose to play a mechanism may depend on their prior. For

instance, in the Bayes-Nash equilibria of the pay-as-bid auction (cf. Example 1 below), how much

agents choose to shade their bids will depend on the prior.

2.3 Limit Mechanisms

Suppose there are n agents, and consider a distribution over actions m ∈ ∆A. Let:

φn(ai,m) =
∑
a−i

Φn(ai, a−i) · Pr(a−i|m) (2.1)

where Pr(a−i|m) denotes the probability that the action vector a−i is realized given n− 1 iid draws

from the action distribution m. The object φn(ai,m) is a random bundle in X that describes what

a generic agent i can expect to receive when he plays action ai and the other n − 1 agents play

according to m.

We use the function φn(·) to define limit mechanisms.

Definition 2. The function φ∞ : A×∆A→ X is the limit of mechanism ((Φn)N, A) if, for all

4Anonymity is sometimes called “equal treatment of equals”, after Aristotle’s famous dictum (cf. Moulin (1995);
Thomson (2011)).
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ai, m:

φ∞(ai,m) = lim
n→∞

φn(ai,m)

where φn is as defined in (2.1).

A feature of our method of taking the limit is that each φn in the sequence converging to φ∞

is random, in the sense that the play of the agent’s n − 1 opponents is stochastic (drawn from

distribution m). This is in contrast with, e.g., Debreu and Scarf’s (1963) replicator economy, or

with the approach pioneered by Aumann (1964) that looks directly at a continuum economy without

explicitly modeling finite economies.

Our approach is more convenient than the replicator approach for two reasons. First, it allows each

φn(·, ·) in the sequence, as well as the limit φ∞(·, ·), to be well defined for each possible preference

distribution m ∈ ∆T . This will help us to define persistent versus vanishing deviations (Definition

5) and to define SP-L itself (Definition 6). By contrast, the replicator approach is only well defined

in the limit for rational distributions, and in finite markets of size n the outcome is only well defined

for distributions that consist of multiples of 1
n . Second, if a mechanism has a knife-edge point of

discontinuity, in our limit landing on the knife’s edge becomes vanishingly likely, whereas under the

replicator approach landing on the knife’s edge could be a certain event.5

While most (if not all) practical market design mechanisms we are aware of have limits according

to our definition, we note that it is very easy to construct examples of mechanisms that do not. For

instance, if a mechanism acts differently depending on whether n is even or odd it will not have a

limit. For the remainder of the analysis we limit attention to mechanisms that have limits.

2.4 Standard Equilibrium Concepts

We briefly state the standard concepts of Bayes-Nash equilibrium and strategyproofness.

A strategy is a map σ : T → ∆A from types to distributions over actions. With slight abuse of

notation, we also write σ(µ) for the distribution over actions induced by drawing types iid according

to µ ∈ ∆T and then playing according to σ(·).

5For instance, if a fair coin is tossed 1,000,000 times, the probability that there are exactly 500,000 heads is very
small, but a 500,000 fold replication of {heads, tails} will certainly result in exactly 500,000 heads.
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Definition 3. A µ-Bayes-Nash equilibrium (µ-BNE) of n-mechanism (Φn, A) is a strategy σ∗µ(·)

such that for all ti ∈ T and a′i ∈ A

uti [φ
n(σ∗µ(ti), σ

∗
µ(µ))] ≥ uti [φn(a′i, σ

∗
µ(µ))].

In words, the strategy σ∗µ is a BNE if each agent’s expected utility from playing according to σ∗µ is

higher than that from any other action, given that the other agents’ types are distributed according

to µ and that they also play according to σ∗µ. Notice that there is no guarantee that σ∗µ(ti) is the

best strategy for an agent of type ti if the other agents play differently, which could occur, e.g., if

the other agents make systematic mistakes, or play a different equilibrium, or if their types have a

different distribution than µ.6

Part of the appeal of strategyproof mechanisms is that these informational requirements are no

longer concerns.

Definition 4. An n-mechanism (Φn, A) is strategyproof (SP ) if A = T and, for all ti, t′i ∈ T ,

and all t−i ∈ Tn−1:

uti [Φ
n
i (ti, t−i)] ≥ uti [Φn

i (t′i, t−i)]

In words, a mechanism is strategyproof if the action space is such that agents simply report their

types (i.e., A = T ), and reporting truthfully is a dominant strategy. The definition of strate-

gyproofness can easily be extended to accommodate action spaces that, while not equal to the set

of types, nevertheless capture the idea that agents simply report their preferences. For instance,

it is often the case in matching applications that the appropriate type space is the set of cardinal

preferences, whereas the relevant action space is the set of ordinal preferences (e.g., Abdulkadiroğlu

et al. (2011)).7

6By the standard revelation principle (cf. Fudenberg and Tirole (1991); Section 7.2), for any mechanism with a
Bayes-Nash equilibrium in which agents misreport their preferences, there exists a direct-revelation mechanism in
which telling the truth is a Bayes-Nash equilibrium. This direct-revelation mechanism, however, is no longer detail
free for the designer; the map between types and outcomes will have to vary with the prior. For instance, in the
direct-revelation mechanism version of the first-price sealed bid auction, the amount by which the center will shade
each type’s bid must vary with the prior in order for truthful reporting to be a BNE.

7Formally, say that mechanism ((Φn)N, A) is a preference-reporting mechanism if the action space A partitions
the type space T , and say that a preference-reporting mechanism is strategyproof if it is a dominant strategy to play
the action associated with one’s type. A direct mechanism in which A = T is just a special case of a preference-
reporting mechanism. Any preference-reporting mechanism can be represented as a direct mechanism, by interpreting
the report ti as the action associated with ti.
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3 Strategyproofness in the Large

If a mechanism is not strategyproof, then there exists some type ti who, for some configuration of

the other players’ reports, profits by misreporting his type as t′i. Formally, we say that the pair

{ti, t′i} is a profitable manipulation of mechanism ((Φn)N, T ) if there exists n, t−i, such that

uti [Φ
n
i (t′i, t−i)] > uti [Φ

n
i (ti, t−i)]. Examples of profitable manipulations include demand reduction

in a uniform-price auction (t′i shades the demand of ti), misreporting one’s first choice school in

the Boston mechanism (t′i has a different most-preferred school than ti), truncation strategies in

deferred acceptance algorithms (t′i ranks being unmatched higher than does ti), etc.

We distinguish between two classes of profitable manipulations, based on whether or not they are

present in our limit mechanism as given in Definition 2:

Definition 5. Let {ti, t′i} be a profitable manipulation of mechanism ((Φn)N, T ). We say that the

manipulation {ti, t′i} vanishes with market size if, for all m ∈ ∆̄T :

uti [φ
∞(t′i,m)] ≤ uti [φ∞(ti,m)].

That is, if the payoff to reporting as t′i instead of ti is weakly negative in the limit, for any prior

with full support. Else, we say that the manipulation {ti, t′i} persists with market size.

While both kinds of manipulations are undesirable, we suggest that manipulations that persist with

market size are especially problematic. Heuristically, consider any mechanism in which each agent’s

outcome is a function of her own report ti and a set of statistics, say p, which are themselves a

function of the aggregate distribution of all reports. The statistics p can be thought of as determining

the agent’s budget set.8 If a manipulation vanishes with market size, then it is profitable only to

the extent that by reporting t′i instead of ti an agent is able to influence p, and hence her budget set.

In the limit where agents are “price takers” who regard p and hence their budget sets as exogenous,

the agent no longer benefits from misreporting. By contrast, if a manipulation persists with market

size then it is profitable even for price takers. Intuitively, reporting truthfully simply does not select

the agents’ most preferred outcome from her budget set.
8Formally, suppose there exists a compact set of statistics P , and functions p : ∆T → P and x : T × P → X

such that, for all n, ti, t−i: Φn(ti, t−i) = x(ti, p(emp[ti, t−i]). The agent’s budget set at p is defined as {x(t′i, p)}t′i∈T .
All of the examples discussed in Section 3.1 take this form. In some cases, such as the multi-unit auctions discussed
in Example 1, the statistics p are simply prices. In other cases, such as the Boston mechanism for school choice
discussed in Example 2, the statistics p are not explicitly prices but play an analogous role in determining agents’
budget sets.
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The desiderata that we propose as a second-best alternative to strategyproofness is that a mechanism

avoid manipulations that persist with market size:

Definition 6. Mechanism ((Φn)N, T ) is strategyproof in the large, or SP-L, if, for all ti, t′i,m ∈

∆̄T :

uti [φ
∞(ti,m)] ≥ uti [φ∞(t′i,m)]. (3.1)

Equivalently, a mechanism is SP-L if all finite-economy manipulations vanish with market size. If a

mechanism has manipulations that persist with market size then it is manipulable in the large.9

We emphasize how Definitions 5 and 6 treat manipulations that arise at points of discontinuity in a

mechanism. If the discontinuity is “knife edge”, then, since the probability of landing on the knife’s

edge vanishes to zero with market size for any iid distribution of opponent reports m that has full

support, such a manipulation will be said to vanish with market size.10 The uniform-price auction

is an example of a mechanism that has such knife-edge manipulations – an agent with multi-unit

demand may wish to reduce her quantity demanded if she is the marginal bidder who sets price –

and that we classify as SP-L. Intuitively, we are ruling out the case where an agent knows for sure

that she is pivotal. In the next section we discuss this and several other examples.

3.1 Examples

Our first example considers uniform-price and pay-as-bid auctions, two mechanisms best known for

their use in the allocation of government securities. Neither mechanism is strategyproof. We show

that the uniform-price auction is SP-L, while the pay-as-bid auction is not.

Example 1 (Multi-Unit Auctions). 11 There are kn units of a homogeneous good, with k ∈ Z+.

To simplify notation, we assume that agents’ preferences take the form of linear utility functions,

up to a capacity limit. Specifically, each agent i’s type ti consists of a per-unit value vi and a

maximum capacity qi, with V = {1, . . . , v̄} the set of possible values, Q = {1, . . . , q̄} the set of
9For mechanisms that do not have limits, SP-L can be defined by rewriting (3.1) as lim supn→∞ uti [φ

n(t′i,m)] −
uti [φ

n(ti,m)] ≤ 0.
10Without the full support assumption it is possible to construct examples, e.g., with degenerate priors, in which

landing on the knife edge is a probability one event even in the limit. See Appendix C for a discussion of this issue
in the context of the uniform price and pay-as-bid auctions. In that context, we need an assumption that is weaker
than full support but stronger than just ruling out degenerate priors.

11Appendix C provides additional details on the uniform-price auction and the pay-as-bid auction. In particular,
the appendix shows that the pay-as-bid auction satisfies the quasi-continuity condition defined below in Section 4.1.
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possible capacity limits, and T = V ×Q. We can denote the set of outcomes, X0, by X0 = V ×Q

as well, by modeling an outcome as consisting of a per-unit payment, bounded above by v̄, and a

quantity allocated, bounded above by q̄.

For both uniform-price and pay-as-bid auctions, agents simply report their types (i.e., A = T ),

and a single cutoff price p∗ is calculated as a function of the reports t = ((v1, q1), . . . , (vn, qn)) as

follows:12

p∗(t) = max
p∈V

n∑
i=1

qi · 1{vi ≥ p} ≥ kn

i.e., p∗ is the highest price at which demand weakly exceeds supply. Allocations of the good are

equivalent across the two mechanisms: an agent who reports (vi, qi) is allocated qi units if vi > p∗,

is allocated 0 units if vi < p∗, and is rationed if vi = p∗. Payments differ across the two mechanisms.

In the uniform-price auction, every agent who is allocated units pays the same per-unit price, p∗.

In the pay-as-bid auction, every agent who is allocated units pays a per-unit price equal to her

own reported value. It is easy to see that the pay-as-bid auction is not strategyproof. More subtly,

neither is the uniform-price auction, because in the finite economy an agent may be able to lower

the price p∗(t) by reporting to demand fewer units than she actually does (Ausubel and Cramton

(2002)).

Now let us consider the limit economy. In the limit, if the measure of agents’ reports is m ∈ ∆̄T ,

then for almost all m the cutoff price can be calculated as

p∗(m) = max
p∈V

∑
(vi,qi)

m(vi, qi) · qi · 1{vi ≥ p} ≥ k (3.2)

The exception is if the cutoff price p∗ that solves (3.2) does so with equality – i.e., there exists a

price p∗ such that
∑

(vi,qi)
m(vi, qi) ·qi ·1{vi ≥ p∗} = k. In this event, the price in the limit will be p∗

with probability one-half and will be p∗ − 1 with probability one-half. This is due to the stochastic

way that we take the limit: as n grows large, the probability that n iid draws from m result in

demand strictly greater than supply at p∗ is converging to one-half, just as is the probability that

n iid draws result in demand strictly less than supply at p∗.

In the limit mechanism, each agent regards price as exogenous to her own report, because they

cannot affect m. Notice in particular that our method of taking the limit ignores the vanishingly
12The notation 1{statement} denotes the indicator function which returns 1 if the statement is true and 0 if the

statement is false.
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likely possibility that an individual agent can affect the price; i.e., it ignores the “knife edge” case

discussed in Section 2.3.13 It is thus easy to see that the uniform-price Auction is SP-L whereas

the pay-as-bid auction is not. In particular, in the pay-as-bid auction an agent of type (vi, qi) with

vi > p∗ + 1 can profitably misreport as (v̂i = p∗ + 1, q̂i = qi) to get the same quantity at a strictly

lower price than if he reports truthfully.�

This example is consistent with Milton Friedman’s (1991) observation that “you do not have to be a

specialist” to participate in the uniform price auction, because you can just indicate “the maximum

amount you are willing to pay for different quantitites ... if you bid a higher price [than the market

clearing price], you do not lose as you do under the current [pay-as-bid] method.” Friedman seems

to be talking about the absence of what we call manipulations that persist, and seems to be less

concerned by the vanishing manipulability of the uniform-price auction.14

Our next example is the Boston mechanism for school choice, a mechanism that does not explicitly

have prices in the description. As mentioned in the introduction, this mechanism was criticized by

Abdulkadiroğlu and Sönmez (2003) and Abdulkadiroğlu et al. (2006) for not being strategyproof.

We show something stronger, which is that it is not even SP-L.

Example 2. Let X0 be the set of schools, each with capacity qn, with q ∈ (0, 1). That is q is the

proportion of the overall student body that each school can accommodate.

Agents’ types take the form of von-Neumann Morgenstern utility functions over the set of schools,

i.e., functions of the form uti : X0 → {0, 1, . . . , ū} for large integer ū. The set of actions A is the

set of ordinal preferences over X0, which is a partition of the type space, i.e., this is an example of

a preference-reporting mechanism as defined in footnote 7.

13To illustrate the knife edge deviation, consider the case where there are n units of the good (i.e., k = 1),
Q = {1, 2}, and V = {L,H}, with H > L. If exactly 50% of the population consists of H-value agents with demand
for two units, and the remainder of agents have value L, then there is a profitable misreport: by reporting to demand
one unit instead of two an H-value agent can lower the price from H to L and hence increase his total profit. This
manipulation is knife edge because if instead the proportion of H-value agents is (50 − ε)%, then it is strictly more
profitable to report truthfully and get two units, and if the proportion is (50 + ε)% then the manipulation neither
increases nor decreases profits. Notice as well that our definition of SP-L ignores knife edge cases caused by degenerate
distributions; e.g., if k = 2 and 100% of the population consists of H-value agents with demand for two units, then
all such agents have a profitable manipulation even in the limit.

14Pathak and Sönmez (2011)provide a complementary perspective on the incentive comparison between the uniform-
price and pay-as-bid auctions. Pathak and Sönmez (2011) show that any agent who can profitably manipulate the
uniform-price auction in a given finite economy can also profitably manipulate the pay-as-bid auction in that same
finite economy. Moreover, the latter manipulation is always larger in utility terms. Thus, Pathak and Sönmez (2011)
suggests that the pay-as-bid auction is more manipulable than the uniform-price auction in any given finite economy,
whereas our analysis highlights that the pay-as-bid auction’s manipulability persists with market size, whereas the
uniform-price auction is strategyproof in the large.
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The Boston mechanism awards as many students as possible their reported first choice school; then,

awards as many students as possible their reported second choice school; etc. To keep the description

concise we focus just on the first choices. Let dj =
∑n

i=1 1{j is ai
′s first choice} denote the number

of students who report that school j ∈ X0 is their first choice. Such students receive school j with

probability min(1, qn
d1j

). Let pj = min(1, qn
d1j

).

The limit is very similar. If the overall measure of agents’ reports is m ∈ ∆̄A, let mj denote the

measure of students who report that school j ∈ X0 is their first choice, i.e., mj =
∑

ai∈Am(ai) ·

(1{j is ai
′s first choice}). The probability that a student who ranks j first gets it can be calculated

as

p∗j = min(1,
q

mj
)

Notice that in the limit mechanism each agent regards the p∗j ’s as exogenous to their own report.

Agent ti will wish to misreport her first choice school if her first choice is j, but there exists j′ where

ranking j′ first gives her strictly greater expected utility, i.e., uti(j′)p∗j′ > uti(j)p
∗
j . Therefore the

mechanism is manipulable in the large.�

There are numerous other examples. For single-unit assignment problems such as in Example 2, Hyl-

land and Zeckhauser’s (1979) pseudomarket mechanism is an example of a price-based mechanism

that is SP-L, while Bogomolnaia and Moulin’s (2001) probabilistic serial mechanism is an example

of a mechanism that does not explicitly use prices in the original description but that is SP-L (cf.

Kojima and Manea (2010)). For multi-unit assignment problems, the mechanisms found in practice

are manipulable in the large, specifically the Bidding Points Auction studied by Sönmez and Ünver

(2010), and the Draft Mechanism studied by Budish and Cantillon (Forthcoming). Mechanisms

recently proposed in theory are SP-L, specifically the Approximate Competitive Equilibrium from

Equal Incomes mechanism proposed by Budish (Forthcoming), and the multi-unit generalization of

Hylland and Zeckhauser’s pseudomarket proposed by Budish et al. (2011).

The concepts can also be applied to two-sided matching mechanisms, if we generalize the class of

mechanisms considered to be the class of semi-anonymous mechanisms (Kalai (2004)), and not just

anonymous mechanisms; cf. Section 5.2. Then, techniques in Kojima and Pathak (2009) or Azevedo

and Leshno (2011) can be used to show that Gale and Shapley’s deferred acceptance algorithm is

SP-L in semi-anonymous environments. It is also easy to see that the priority-match algorithm,

criticized by Roth (2002) and others, is manipulable in the large.
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The following table summarizes this informal discussion.

Table 1. Which Non-SP Market Designs are SP-L?

Problem Manipulable in the Large Strategyproof in the Large

Single-unit Assignment Boston Mechanism Prob Serial, HZ Pseudomarket

Multi-unit Assignment Bidding Points Auction Approximate CEEI

HBS Draft Mechanism Generalized HZ Pseudomarket

Multi-unit Auctions Pay-as-Bid Auctions Uniform-Price Auctions

Two-Sided Matching Priority-Match Algorithm Deferred Acceptance Algorithm

4 Main Result

Strategyproofness often severely limits what kinds of mechanisms are possible. Our main result

identifies a sense in which SP-L does not. The result requires a quasi-continuity assumption, which

we present and discuss in Section 4.1. We then present the main result in Section 4.2, along with

a proof sketch. Since the proof is by construction, we provide an example construction in Section

4.3, using the Boston mechanism for school choice discussed in Example 2.

4.1 Quasi-Continuity of Equilibria

We first need some new notation. Given a market size n and a distribution m̄ ∈ ∆(An−1) over

action profiles, we may extend Φn(·, ·) linearly as:

Φn(a, m̄) =
∑
a−i

Φn(a, a−i) · m̄(a−i).

Now consider an n− 1 vector of types t−i, and a strategy σ : T → ∆A. Together, σ and t−i induce

a probability distribution over action profiles, i.e., an element of ∆(An−1). We will denote this

induced distribution as σ(t−i). We highlight that σ(t−i) denotes a distribution over An−1. We will

then use the notation

Φn(ai, σ(t−i))
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to describe what happens when i plays ai, and the other players have types t−i and play according

to σ.15

Next, we need to define a limit Bayes-Nash equilibrium. Given a mechanism ((Φn)N, A), with limit

φ∞(·, ·), the strategy σ∗µ(·) is a limit µ-BNE if, for all ti ∈ T and a′i ∈ A:

uti [φ
∞(σ∗µ(ti), σ

∗
µ(µ))] ≥ uti [φ∞(a′i, σ

∗
µ(µ))].

Limit equilibria are simply strategy profiles that become arbitrarily close to optimal as the economy

grows large. Last, we need the concept of a family of limit equilibria. Given a mechanism ((Φn)N, A)

with limit φ∞(·, ·), we say that (σ∗µ)µ∈∆T is a family of limit Bayes-Nash equilibria if, for each

µ ∈ ∆T , σ∗µ is a limit µ-BNE.

Our main continuity notion is as follows:

Definition 7. Consider a mechanism ((Φn)N, A) with limit φ∞(·, ·), and a family of limit Bayes-

Nash equilibria (σ∗µ)µ∈∆T . The family of equilibria is quasi-continuous if, for every µ0 ∈ ∆̄T and

ε > 0, there exists a neighborhood N of µ0 such that:

1. N can be decomposed as

N = ∪1≤k≤KAk ∪ B

where the Ak are open sets.

2. limn→∞ Pr{distance(emp[t],B) ≤ 1/n|t ∈ Tn, t ∼ iid(µ0)} = 0, where t ∼ iid(µ0) denotes a

vector of n types t with each component drawn iid according to µ0.16

3. There exists n0 such that for any n > n0, any µ, µ′, emp[ti, t−i], emp[ti, t
′
−i ∈ Ak, and any

ai ∈ A we have:

|Φn(σ∗µ(ti), σ
∗
µ(t−i))− Φn(σ∗µ′(ti), σ

∗
µ′(t
′
−i))| < ε.

15We highlight that we use the notation
φn(ai,m),

where m is a distribution over A to denote the payoff to player i when her opponents’ play is independently and
identically distributed as m. This is a very different object than

Φn(ai, σ(t−i)),

which is i’s payoff when her opponents have types given by the vector t−i and play strategy σ.
16Formally, given type space T = {t1, t2, . . . , t|T |}, and type vector t, emp[t] is a |T |-dimensional vector whose jth

component is (number of occurences of tj in t) divided by (number of elements in t).
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The family of equilibria is continuous at µ0 if, for the prior µ0, Conditions 1 and 3 hold with

K = 1 and B = ∅.

To describe Definition 7, first consider the case where the mechanism is continuous at a given prior

µ0. This means, per Condition 3, that agents’ outcomes are locally continuous with respect to small

changes in the other agents’ types, and to the priors they base their strategies on. For instance, in

an auction in which bidders shade their values, a small change in the distribution of values might

have just a small effect on the amount by which bidders shade their bids.

Quasi-continuity allows for some violations of continuity. Specifically, for each prior µ0, quasi-

continuity requires that a small enough neighborhood N of µ0 can be decomposed into two types

of sets. First, there is a set B in which the empirical realization of types is vanishingly likely to

land (Condition 2). This set B can contain points of discontinuity. Second, are sets of the form Ak,

where, so long as the empirical realization of types and the prior associated with the strategy that

agents use land within the same one of these sets, agents’ outcomes are locally continuous in types

and strategies (Condition 3). Intuitively, in a knife-edge example such as the uniform-price auction

sketched in Section 2.1, think of B as the set m = 1
2 , A1 as the set m < 1

2 , and A2 as the set m > 1
2 .

Many familiar mechanisms have equilibria that are quasi-continuous but not continuous. Examples

include the Boston mechanism as modeled by Abdulkadiroğlu et al. (2011), the deferred acceptance

algorithm as modeled by Azevedo and Leshno (2011), the Bidding Points Auction modeled by

Sönmez and Ünver (2010), and the uniform price auction discussed earlier.17 Appendix C describes

the equilibria of the pay-as-bid auction in detail and shows that they satisfy quasi-continuity.

As of the present writing, we are not aware of practical market design mechanisms that do not

have a quasi-continuous family of equilibria. Note too that if a mechanism’s equilibria are not

quasi-continuous, then the analyst’s prediction of equilibrium outcomes is highly sensitive to small

changes in information about the environment. This itself is arguably an undesirable feature of a

mechanism.
17Here are some additional details for readers familiar with these mechanisms. In the Boston mechanism, the

potential for discontinuity is when a school reaches capacity exactly at the end of some round. It is possible to
construct examples where some student’s probability of obtaining a particular school discontinuously changes from 0
to 1 as the quantity available in some round changes from 0 to something strictly positive. In the college admissions
problem, for any particular distribution of play, most students’ outcomes will be locally continuous, but students who
are right at the cutoff for a particular school may have their outcome change discontinuously. The Bidding Points
Auction is similar to college admissions, in that most students’ outcomes are locally continuous, but students whose
bid is right at the cutoff for a particular course may have their outcome change discontinuously. In the uniform price
auction, the potential for discontinuity is when a small change in the distribution of play discretely changes the price,
e.g. when price discontinuously changes from H to L in the example of footnote 13.
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4.2 Construction of SP-L Mechanisms

Our main result is the following:

Theorem 1. Consider a mechanism Γ = ((Φn)n∈N, A) with a quasi-continuous family of limit

equilibria (σ∗µ)µ∈∆T . Then there exists a direct mechanism ΓD = ((Fn)N, T ) with the following

properties

1. ΓD is strategyproof in the large.

2. If ΓD is continuous at the prior µ0, then in the limit as n → ∞, truthful play of ΓD and

Bayes-Nash equilibrium play of Γ give agents the same utilities. Formally, given µ0 ∈ ∆̄T and

ε > 0, there exists n0 such that for all n > n0 and all ti:

|uti [fn(ti, µ0)]− uti [φn(σ∗µ0(ti), σ
∗
µ0(µk))]| < ε,

where fn(·) is constructed from Fn(·) according to Equation (2.1).

3. If ΓD is not continuous at the true prior µ0, then in the limit as n→∞, truthful play of ΓD

gives agents the same utilities as a convex combination of equilibrium outcomes under Γ, for

priors in a neighborhood of µ0. Formally, for every µ0 ∈ ∆̄T and ε > 0, there exist priors µk

with | emp[µk]−emp[µ0]| < ε, and n0, such that for all n > n0 there exist weights πnk summing

to one such that, for all ti:

|uti [fn(ti, µ0)]−
∑

k=1,...,K

πnk · uti [φn(σ∗µk(ti), σ
∗
µk

(µk))]| < ε.

The proof of Theorem 1 is by construction. We provide a sketch as follows (the full details are in

Appendix A). Suppose in a market of size n agents report t = (t1, . . . , tn). Let:

Fn(t) = Φn(σ∗emp[t](t)) (4.1)

In words, Fn plays action σ∗emp[t](ti) for agent i who reports ti, where emp[t] is not the true distribu-

tion of agents’ types µ0 (which is not known to the mechanism) but rather the empirical distribution

of agents’ reports. We will show that the direct mechanism ΓD = ((Fn)N, T ) is strategyproof in the

large and gives agents the same utilities in the limit as the original mechanism.
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First, suppose that agents report their preferences truthfully, according to the true prior µ0. In a

finite market of size n there will be sampling error, so the realized empirical will be, say, µ̂. Agent

i who reports ti receives Fn(ti, t−i) = Φn(σ∗µ̂(ti), σ
∗
µ̂(t−i)). As the market grows large, the realized

empirical µ̂ converges to the true distribution µ0, by the law of large numbers. Hence, assum-

ing for now that the original mechanism is continuous at µ0, agent i’s allocation is converging to

Φn(σ∗µ0(ti), σ
∗
µ0(t−i)), exactly what he receives under Bayes-Nash equilibrium of the original mech-

anism. Thus, if all agents report truthfully, our mechanism coincides with the original mechanism

in the limit, as required.

Now, suppose that the agents other than imisreport their preferences, according to some distribution

m ∈ ∆T . As before, in a finite market of size n, there will be sampling error, so the realized empirical

will be, say, m̂. Agent i will thus receive Fn(ti, t
′
−i) = Φn(σ∗m̂(ti), σ

∗
m̂(t′−i)). As the market grows

large, the realized empirical m̂ will converge towards m, so, assuming continuity at m, agent i’s

allocation is converging to Φn(σ∗m(ti), σ
∗
m(t′−i)). This is what agent i would receive under the

original mechanism in the Bayes-Nash equilibrium corresponding to prior m. Even though the

other agents are systematically misreporting their preferences, our agent i remains happy to tell the

truth, because the other agents are acting as if their preferences are distributed according to m,

and then playing a strategy that is converging to the Bayes-Nash equilibrium corresponding to m.

Thus agent i also wants to play the Bayes-Nash equilibrium strategy corresponding to m – which

is exactly what happens when he reports his preferences truthfully to ((Fn)N, T ).18 Hence, in the

limit, we get dominant-strategy incentives, i.e., our constructed mechanism is SP-L.

The last step of the proof sketch is to describe what happens in the event that the equilibrium of

the original mechanism is not continuous at µ0 – e.g., the uniform-price auction example described

in Section 2.3, for the case where µ0 = 1
2 . This requires a technical lemma (Lemma 1 in the

appendix) which says that, for any arbitrary prior m ∈ ∆T , the allocation an agent receives under

((Fn)N, T ) can be approximated by a convex combination of the allocations he would receive in the

limit Bayes-Nash equilibria of ((Φn)N, A), for priors close to m. The key to the proof of the lemma

is that, in a large enough market, a single agent cannot appreciably change the probability that the

aggregate profile lands in each region Ak, as defined in Definition 7. This allows us to exploit the

continuity within each region Ak, and the vanishing likelihood that the aggregate profile lands near

the discontinuity region B.
18Observe that this step of the argument requires the private values assumption. It is important that i does not

care per se about the other players’ true types.
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It is important to emphasize how our constructed mechanism ((Fn)N, T ) differs from a traditional

Bayes-Nash direct revelation mechanism (cf. Fudenberg and Tirole (1991); Section 7.2). In a

traditional Bayes-Nash DRM, the mechanism needs to know the prior µ0, i.e., it is not detail free.

The mechanism then announces a BNE strategy σ∗µ0(·), and plays σ∗µ0(ti) on behalf of an agent who

reports ti. Our mechanism infers a prior from the empirical distribution of agents’ play. If agents

indeed play truthfully, this inference is exactly correct in the limit, and our detail-free mechanism

coincides with the traditional Bayes-Nash DRM. But if the agents other than i misreport, so that

the empirical m̂ is very different from the prior µ0, then our mechanism automatically adjusts each

agent’s play to be the Bayes-Nash equilibrium play in a world where the prior was in fact m̂. As

a result, an agent who reports his preferences truthfully remains happy to have done so even if the

other agents misreport, which is not the case in a traditional Bayes-Nash DRM. To summarize,

the two key differences between our mechanism and a traditional Bayes-Nash DRM are: (1) our

mechanism is detail free; (2) our mechanism is strategyproof in the large.

4.3 Example of the Construction

We describe our main result in the context of a specific example, the Boston mechanism for school

choice (cf. Example 2 above). Abdulkadiroğlu and Sönmez (2003) and Abdulkadiroğlu et al.

(2006) criticized the Boston mechanism on the grounds that it is not strategyproof, and proposed

that the strategyproof Gale-Shapley deferred acceptance algorithm be used instead. Indeed, the

Gale-Shapley algorithm was eventually adopted for use in practice (cf. Roth (2008)). However,

a second generation of papers on the Boston mechanism has argued that it has a Bayes-Nash

equilibrium that yields greater student welfare than does the dominant strategy equilibrium of the

Gale-Shapley procedure (Abdulkadiroğlu et al. (2011); Miralles (2009); Featherstone and Niederle

(2008)). Perhaps, these papers argue, the earlier papers were too quick to dismiss the Boston

mechanism in favor of strategyproof deferred acceptance.

Of course, the Bayes-Nash equilibria these second-generation papers construct rely on students

having common knowledge of the distribution of other students’ preferences; on students being

able to coordinate on a specific equilibrium; on students being able to make very precise strategic

calculations to determine whether to risk asking for a popular school; etc. Our Theorem 1 says that

all of this complexity and non-robustness is unnecessary in a large market. Specifically, there must

exist yet another mechanism that implements the same outcomes as these desirable Bayes-Nash
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equilibria of the Boston mechanism, but that is SP-L.

Interestingly, in the simplified version of the Boston Mechanism that we discussed in Example 2

above, the SP-L mechanism that we construct according to (4.1) closely resembles the Hylland and

Zeckhauser (1979) pseudo-market mechanism for single-unit assignment. Specifically, write agent

i’s type as a vector of von-Neumann Morgenstern utilities, one for each school: vi1, . . . , vi|X0|. The

limit Bayes-Nash equilibria of the Boston mechanism are characterized by a set of probabilities

p∗j , one for each school j, such that when each student i asks for the school that maximizes his

expected utility – i.e., maximizes his expectation of p∗j · vij - these probabilities are in fact correct.

Thus our mechanism works as follows. First, students report their types. Next, the mechanism

calculates the Bayes-Nash equilibrium associated with the empirical distribution of the reported

types, i.e., calculates the market-clearing probabilities. Last, each student is given the appropriate

lottery. This is just like Hylland and Zeckhauser (1979), except that in that paper the p∗j ’s are

called “prices”.19

We emphasize the two advantages of our constructed mechanism as compared to the Bayes-Nash

equilibria of the original Boston mechanism. First, students need not estimate the distribution of

other students’ preferences, the associated market-clearing probabilities, etc. Second, our mecha-

nism is robust to systematic mistakes by the other students, or miscoordination over which equilib-

rium to play, etc., because in the limit it provides dominant-strategy incentives.

5 Extensions

5.1 Ex post Robustness of SP-L Mechanisms in Large Finite Markets

Kalai (2004) studies the ex post robustness of Bayes-Nash equilibria in large games. Under an

equicontinuity assumption that we provide below, he shows that Bayes-Nash equilibria are ex post

robust in the following sense: For any ε > 0, the probability that any player will have an ex post

deviation that yields a gain of more than ε converges to 0 exponentially in market size n.20

19Miralles (2009) contains a nice description of the connection between the Boston mechanism’s Bayes-Nash equi-
libria and Hylland Zeckhauser.

20More specifically, Kalai (2004) considers a sequence of (semi-)anonymous games, with an increasing number of
players, that satisfies an equicontinuity condition. He defines an ε-ex post Nash equilibrium profile as a profile of
types and actions such that no player may gain more than ε by changing her action. He defines a profile of (possibly
mixed) strategies to be an (ε, ρ) ex post strategy profile if with probability at least 1− ρ the realized profile of types
and strategies is an ε ex post Nash equilibrium. Kalai’s Theorem 1 shows that, for any sequence of Bayes Nash
equilibria (σn)n∈N of the games, and any ε > 0, there exist constants α > 0, β < 1 such that σn is an (ε, αβn) ex post
strategy profile. We refer the interested reader to Kalai (2004) for more details.
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Here we show that, under Kalai’s equicontinuity assumption, SP-L mechanisms satisfy a stronger

robustness property: For any ε > 0, in a large enough market, no player has an ex post deviation

which increases her payoff by more than ε. This is a stronger ex post robustness property for two

reasons. First, in a large enough market, the probability of an ε deviation is exactly zero rather

than converging to zero. Second, the fact that the ex post gain from any deviation is small does not

depend on a player knowing the distribution of opponent types, nor on agents playing in equilibrium.

Formally, we follow Kalai and define an equicontinuous mechanism as follows.

Definition 8. A mechanism Γ = ((Φn)n∈N, A) is equicontinuous if, for all ε > 0 there exists δ > 0

such that for all n, n′, a−i ∈ An−1, a′−i ∈ An
′−1 with

| emp[a−i]− emp[a′−i]| < δ

we have that for all ai

|Φn(ai, a−i)− Φn′(ai, a
′
−i)| < ε.

We then define ε-Strategyproofness as follows.

Definition 9. A direct mechanism Γ = ((Φn)n∈N, t) is (ε, n)-strategyproof if for all t ∈ Tn, t′i ∈ T

uti [Φ
n(t)] ≥ uti [Φn(t′i, t−i)]− ε.

It is then possible to prove the following result.

Proposition 1. If Γ = ((Φn)n∈N, T ) is SP-L and equicontinuous, then given ε > 0 there exists n0

such that for all n > n0, we have that Γ is (ε, n) strategyproof.

5.2 Semi-Anonymity

Our main analysis considers anonymous mechanisms, where agents’ outcomes depend on their own

report and the distribution of all reports. The analysis generalizes straightforwardly (though at

some notational burden) to the case of semi-anonymous mechanisms, as defined by Kalai (2004).

Assume that agents belong to groups g in a finite set G. Each group has a different set of possible
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types and actions, so that

T = Tg1 ∪ Tg2 ∪ · · · ∪ TgG

A = Ag1 ∪Ag2 ∪ · · · ∪AgG .

A semi-anonymous mechanism is defined as ((Φn)n∈N, (Ag)g∈G). As before, the Φn are functions

Φn : A×An−1 → X.

The difference with respect to anonymous mechanisms is that strategies are restricted, so that an

agent cannot misreport her group, that is, if ti ∈ Tg then the support of σ(ti) ∈ Ag.

Consider the case where there is a distribution µ over the set of types T . In this case, the number

of agents belonging to each group is random.21 An example of such a mechanism follows.

Example 3. (Two-Sided Matching) This example shows that semi-anonymous mechanisms can

cover matching mechanisms in two-sided markets (Gale and Shapley, 1962).

There are men and women, who differ on a set of characteristics. Groups g index both sex and the

characteristics, so that the set of groups is

G = {m1,m2, · · · ,mM} ∪ {w1, w2, · · · , wW }.

That is, there are M groups of men and W groups of women. Men and women within each group

have the same characteristics, and hence are equally good marriage partners. However, within each

group, agents may differ in their preferences over the other groups.

Formally, agent i’s type is

ti = (gti , uti),

where gti is the agent’s characteristics, and uti is a strictly positive utility function over the groups

of the other sex. The set of outcomes X0 = G∪ ∅. That is, each agent only cares about which type

of man (woman) she (he) is matched to, or whether she (he) is unmatched. Utilities of each type ti

are given by uti(g) if she is matched to someone of the opposite sex. We extend uti so that it is 0

if the agent is unmatched or matched to a group of the same sex.
21The argument below can be extended to the case where in a market of size n there is a fixed number of players

ng within each group.
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Consider now the direct mechanism where A = T . Men and women report a vector of types t, and

therefore characteristics. This implies a weak preference ordering of each man over each woman and

vice versa. Given these preferences, at least one stable matching exists. If there are multiple stable

matchings, choose one uniform randomly. For each type ti we let

Φn(ti, t−i)

denote the resulting probability distribution over match partners. �

The only difference between the semi-anonymous case and the original anonymous case is that the

set of strategies σ is restricted so that agents of a given group g cannot play actions not in Ag. This

would alter the restrictions imposed on equilibrium and SP-L, as the set of available deviations

would be larger without this additional structure. However, we show below that, given a semi-

anonymous mechanism, it is always possible to construct an anonymous mechanism that (i) has

the same payoffs when all agents play actions that belong to their groups, and (ii) it is strictly

dominated for agents to play actions outside their groups. This guarantees that our analysis would

generalize straightforwardly if at extra notational burden to the semi-anonymous case.

The construction is as follows. Suppose we are given a semi-anonymous mechanism, as defined in

this section. We construct an anonymous mechanism where it is strictly dominated for any agent in

group g to play a strategy outside Ag. Denote the original semi-anonymous mechanism by Φ̄n, with

type and action spaces as above, outcome space X̄0, and utility functions ūti such that ūti(·) > 0.

We now define the new mechanism Φ such that it is a dominated strategy for an agent in group g to

play an action outside Ag. The bundles of the new mechanism are of the form x0 = (x̄0, g) ∈ X̄0×G.

Let

Φn(ai, a−i) = (Φ̄(ai, a−i), group of ai).

If ti ∈ Tg, then for all x̄0 ∈ X̄0, let

uti(x̄0, g
′) = 0 if g′ 6= g

uti(x̄0, g
′) = ūti(x̄0) if g′ = g.

Thus, it is strictly dominated for an agent of type within group Tg to play an action that is not in

Ag. This construction demonstrates that any semi-anonymous mechanism can be embedded in our
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framework, with the same set of strictly undominated strategies. Formally, we may state this as

follows.

Proposition 2. For any semi-anonymous mechanism ((Φn)n∈N, (Ag)g∈G), there exists an anony-

mous mechanism that gives agents with types in Tg playing actions within Ag the same utility as the

original mechanism, and where it is a strictly dominated strategy to play strategies outside of Ag.

5.3 Finite-Economy Bayes-Nash Equilibria

Theorem 1 starts from a family of limit equilibria (σ∗µ)µ∈∆T , and constructs a direct SP-L mechanism

that implements approximately the same outcome. This construction could also be obtained based

on a sequence of families of finite-economy equilibria, (σnµ)µ∈∆T,n∈N∪∞. In this section, we provide

such a construction. The reason why we focus on limit equilibria for the statement of the main

result is that finite-economy equilibria are often analytically less tractable. In multi-unit auctions,

for example, closed form solutions for equilibria are often unavailable, and even showing basic

properties of equilibria is a difficult problem (Swinkels (2001); Engelbrecht-Wiggans et al. (2006)).

A particular analyst might thus find it more convenient to work with limit equilibria. Moreover, an

analyst might even find limit equilibria more compelling in their own right. One argument in favor

of limit equilibria is that in a game where exact Nash equilibria are cognitively and computationally

very complex, it may be more likely that players reason through an approximate model. Compelling

arguments favoring the concept of limit equilibria are developed in detail in Bodoh-Creed (2010).

On the other hand, depending on the application, an analyst might see exact Nash equilibria of

finite economies as a more appropriate solution concept. For these reasons, we do not take a view

on which solution concept is in general more appropriate and useful, and provide versions of our

main result for either solution concept.

In order to modify Theorem 1 to accommodate a sequence of families of finite-economy equilibria,

we need the following alternative to Definition 7.

Definition 10. Consider a mechanism ((Φn)N, A) with limit φ∞(·, ·), and a sequence of families of

Bayes-Nash equilibria (σnµ)µ∈∆T,n∈N∪∞. The sequence of families of equilibria is quasi-continuous

if, for every µ0 ∈ ∆T and ε > 0, there exists a neighborhood N of µ0 such that:

1. N can be decomposed as

N = ∪1≤k≤KAk ∪ B
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where the Ak are open sets.

2. limn→∞ Pr{distance(emp[t],B) ≤ 1/n|t ∈ Tn, t ∼ iid(µ0)} = 0, where t ∼ iid(µ0) denotes a

vector of n types t with each component drawn iid according to µ0.

3. There exists n0 such that for any n > n0, any µ, µ′, emp[ti, t−i], emp[ti, t
′
−i] ∈ Ak we have:

|Φn(σnµ(ti), σ
n
µ(t−i))− Φn(σnµ′(ti), σ

n
µ′(t
′
−i))| < ε.

4. In addition, for all µ ∈ ∆T, ti ∈ T

lim
n→∞

φn(σnµ(ti), σ
n
µ(µ)) = φ∞(σ∞µ (ti), σ

∞
µ (µ)).

Under this modified definition, the appropriately stated analogue of Theorem 1 holds. The specific

n-mechanisms we use in the construction are

Fn(t) = Φn(σnemp[t](t)). (5.1)

This is as in Equation (4.1), but using the finite-economy equilibria instead of the limit equilibria.

The proof is a variation of the proof of Theorem 1. The Appendix contains the formal statement

of the result and discusses the differences between the proofs.

5.4 Complete Information Nash Equilibria

Our construction in Section 4 takes as input a mechanism that has a family of Bayes-Nash equilibria.

The same idea can be applied to a mechanism that has a family of complete-information Nash

equilibria. In this case, our constructed mechanism takes the same form as (5.1). That is

Fn(t) = Φn(σnemp[t](t)). (5.2)

The difference is that now σnemp[t](·) is a complete-information Nash equilibrium strategy, in an

economy in which the type profile is t (or any permutation thereof). In words, agents report their

types to the mechanism, which then computes a symmetric complete information Nash equilibrium

strategy in the economy induced by the reports. Note that in general it is not a Nash equilibrium
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for each player to report their preferences truthfully to this mechanism in finite markets. The reason

is that, by changing one’s report from say ti to t′i, one changes the profile of reported types from say

t to t′, and this in turn changes the strategy that is activated from σnemp[t](·) to σnemp[t′](·). Thus,

i changing his report can have the effect of the mechanism changing j’s action. As the market

grows large, i’s influence on emp[t] grows small, so under a continuity assumption analogous to

those stated above, mechanism (5.2) is SP-L. An interesting feature of this construction (5.2) is

that if agents tell the truth in finite markets, then (5.2) produces outcomes that are identical to

the outcomes under the Nash equilibria of the original mechanism. By contrast, with Bayes-Nash

equilibria our constructed mechanism only approximates the finite market outcomes.

We illustrate the construction (5.2) with the Generalized Second Price (GSP) auction for search-

engine advertising slots, as modeled by Edelman et al. (2007) (EOS). EOS showed that the GSP has

complete-information Nash equilibria that coincide with the Vickrey-Clarke-Groves mechanism on

the equilibrium path. Interestingly, our constructed mechanism coincides with VCG both on and

off the equilibrium path and hence actually provides dominant strategy incentives in finite markets.

As emphasized above, however, this is not generally the case; typically we will need to consider a

large-market limit for (5.2) to provide exact incentives.

Example 4 (Generalized Second Price Auction). Consider the Generalized Second Price (GSP)

auction for search-engine advertising slots, as modeled by EOS. There are k advertising slots, with

click-through rates α1 > α2 > · · · > αk. There are n > k bidders, with per-click values of

v1 > v2 > · · · > vn. The GSP works as follows. Each bidder i submits a bid bi; next, the bids

are ranked in descending order, with the highest bidder awarded the first advertising slot, the

second-highest bidder awarded the second slot, etc.; last, each successful bidder pays a per-click

amount equal to the next highest bid after their own. EOS construct a complete information Nash

equilibrium of GSP in which bidder 1 bids her value and bidder i > 1 bids pV CG,i−1

αi−1
, where pV CG,i−1

is the Vickrey-Clarke-Groves payment of advertiser i − 1 in the dominant strategy equilibrium

where all bidders bid truthfully. Notice that in this equilibrium bidders do not bid their values,

and that such manipulations persist with market size (cf. EOS’s Remark 3). Additionally, note

that it requires each bidder to know enough information about other bidders’ values that they can

calculate the VCG payments that are an input into their own bids.

Our mechanism constructed according to (5.2) works as follows. First, bidders report their values;

call the reported profile v̂ = (v̂1, . . . , v̂n), sorted so that v̂1 > v̂2 > · · · > v̂n. Next, execute the EOS
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complete information Nash equilibrium bids associated with v̂; that is, bidder v̂1 bids his value,

and bidder v̂i, i > 1, bids p
ˆV CG,i−1

αi−1
, where p ˆV CG,i−1 is the VCG payment of bidder i − 1 in an

economy where bidders submit the bids v̂. Since the ith highest bidder’s total payment is the ith

click-through rate αi multiplied by the (i+ 1)th bid p
ˆV CG,i

αi
her total payment is simply p ˆV CG,i, i.e.,

our constructed mechanism exactly coincides with VCG. �

5.5 Aggregate Uncertainty

Throughout the analysis, we have assumed that agents have an independent prior over opponents’

types. This is a restrictive assumption, as in practice we might expect there to be uncertainty

in the aggregate about the distribution of types in the economy. In this section we note that

additional uncertainty only makes manipulations more difficult to find. If agents were given strictly

less information, in the Blackwell sense, then it is still approximately optimal to report truthfully

in a SP-L mechanism.

Consider the gain from misreporting for an agent who knows that other agents’ actions are dis-

tributed according to m. If ((Φn)N, T ) is a SP-L mechanism, then this gain must be vanishingly

small. That is, given ε, ti, t′i, there exists n0 such that, for all n ≥ n0,

uti [φ
n(t′i,m)]− uti [φn(ti,m)] ≤ ε.

Now consider an agent who knows strictly less than agents with any iid beliefs. Following Blackwell,

we define a garbling of iid beliefs as a measure ν ∈ ∆(∆A). The agent assigns probability ν(m)

that opponents’ types are iid according to m.

For an agent with such beliefs, the gain from deviating is

ˆ
uti [φ

n(t′i,m)]− uti [φn(ti,m)]dν(m).

We now show it is approximately optimal for such an agent to report truthfully. Given ε > 0, from

the definition of SP-L, we know that for each m ∈ ∆T there must exist n0(m) such that

uti [φ
n(t′i,m)]− uti [φn(ti,m)] < ε/2

for all n ≥ n0(m). Now take n1 such that n1 ≥ n0(m) for all m in a set M ⊆ ∆T with measure
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ν(M) at least 1− ε/2. We then have

ˆ
uti [φ

n(t′i,m)]− uti [φn(ti,m)]dν(m) =
ˆ
M
uti [φ

n(t′i,m)]− uti [φn(ti,m)]dν(m) +

ˆ
Mc

uti [φ
n(t′i,m)]− uti [φn(ti,m)]dν(m) <

ε/2 + ε/2 = ε.

This result may be formally stated as follows.

Proposition 3. Consider an SP-L mechanism Γ = ((Φn)n∈N, T ). For any garbling ν of iid beliefs

over opponents’ types, and any ε > 0, there exists n0 such that an agent with beliefs ν in a market

of size n ≥ n0 cannot gain more than ε > 0 by misreporting her type.

6 Conclusion

This paper proposes strategyproofness in the large (SP-L) as a second-best alternative to strate-

gyproofness (SP). Our main results show that, while it is well known that SP often severely limits

what kinds of mechanisms are possible, there is a sense in which SP-L does not. Specifically, in our

class of environments, SP-L is approximately costless to satisfy relative to other forms of incentive

compatibility such as Bayes-Nash equilibrium or complete information Nash equilibrium, with the

approximation error vanishing to zero in the large-market limit.

We view our results as providing formal justification for focusing on SP-L mechanisms when con-

fronting a new market design problem for which there are no good SP solutions. Additionally, in

some environments our proxy-like method of constructing an SP-L mechanism from a given non

SP-L mechanism may be of direct use.

We conclude the paper with a few informal arguments in support of SP-L as a desideratum for

market design, as well as some caveats.

Empirical Evidence on SP-L There are several empirical studies of mechanisms which are

manipulable in the large, and which have been shown to have important incentives problems in

practice. These include Jegadeesh (1993) and others on the 1991 pay-as-bid auction scandals, Ab-

dulkadiroğlu et al. (2006, 2009) on the Boston mechanism for school choice, Budish and Cantillon
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(Forthcoming) on Harvard Business School’s course-allocation draft mechanism, Sönmez and Ün-

ver (2010), Krishna and Ünver (2008) and Budish (Forthcoming) on the Bidding Points Auction,

Edelman and Ostrovsky (2007) on pay-as-bid keyword auctions, Cramton and Katzman (2010) and

Merlob et al. (2010) on a proposed Medicare auction for durable equipment, Roth (2002) and others

on non-stable matching algorithms such as the priority match, and potentially others. By contrast,

to the best of our knowledge, there are no empirical examples of market designs that are SP-L but

which have been shown to be harmfully manipulated in large finite markets.

To the extent that this pattern is indeed true, it suggests that perhaps the relevant distinction for

practice, in contexts with a large number of participants, is not “SP vs. not SP”, but rather “SP-L

vs. not SP-L.” Or, more conservatively, “SP vs. SP-L vs. not SP-L.”

Several Arguments for SP Design are also Arguments for SP-L Design In traditional

mechanism design, incentives are viewed as a constraint, not an objective. A number of recent papers

in the market design literature have suggested, either formally or informally, that strategyproofness

be viewed as an explicit design objective. Many of these arguments can be interpreted as supporting

SP-L design as well.

One such argument is that strategyproof mechanisms eliminate any unmodeled costs of calculat-

ing an optimal response; e.g., Roth (2008) argues that good markets are “sufficiently simple to

participate in” and make it “safe to participate straightforwardly”. Any SP-L mechanism has the

following property: for any conjecture m about the distribution of opponents’ play, and any cost

c > 0 associated with calculating an optimal response, there exists n0 such that in markets with

n > n0 participants, each agent maximizes her expected utility by simply reporting her preferences

truthfully, and avoiding the cost c of strategizing.

A second such argument is that strategyproof mechanisms are fair, in the sense that they do not

penalize participants who are strategically unsophisticated (Abdulkadiroğlu et al. (2006); Pathak

and Sönmez (2008)). By an analogous argument to that in the previous paragraph, in a large enough

market SP-L mechanisms are approximately fair, in the sense that the cost of being strategically

unsophisticated can be bounded above by c.

Last, strategyproof mechanisms are prior free for the designer, and hence satisfy what has come

to be known as the Wilson doctrine (Bergemann and Morris (2005)). SP-L mechanisms share this

feature with SP mechanisms.



AZEVEDO AND BUDISH 32

Caveats

We conclude with two important caveats on SP-L. First, there is no simple answer to the question of

how large a market is large enough to ignore vanishing deviations.22 We view the limit representation

of a mechanism as a useful if imperfect abstraction for many interesting market design problems,

just as the assumption of price-taking behavior is a useful abstraction in other parts of economics.

In any specific context, the analyst’s case for using an SP-L mechanism can be strengthened with

empirical, experimental, or computational evidence suggesting that the gains from misreporting are

small and/or rare; see, for instance, Roth and Peranson (1999).

Our second caveat relates to the difficulty of determining and reporting one’s type. Many of the

mechanisms that we have criticized as being manipulable in the large, and hence strategically compli-

cated for participants, have the virtue that their message spaces are quite simple. For instance, in the

Boston mechanism, it may be unrealistic to expect that a student will be able to accurately estimate

the equilibrium p∗j ’s (cf. Example 2), but it seems realistic to expect that a student could determine

which school to ask for as her first choice given the p∗j ’s. SP-L mechanisms are strategically simple,

but require agents to report a potentially unrealistic amount of information about their preferences:

for instance, in the SP-L mechanism we construct based on the Boston mechanism’s equilibria (cf.

Section 4.3), students’ reports of their types consist of their von Neumann-Morgenstern utilities

for each possible school, including schools to which they are highly unlikely to be assigned. An

interesting question that we leave for future research is how to define SP-L, or a criterion that is

similar in spirit, in environments where reporting one’s type is unrealistic.

22Indeed, even in analyses of the convergence properties of specific mechanisms, rarely is the analysis sufficient
to answer the question of, e.g., “is 1000 participants large?” Convergence is often slow, or includes a large constant
term. A notable exception is Rustichini et al. (1994), who are able to show, in the context of a double auction with
unit demand and uniformly distributed values, that 6 buyers and sellers is large enough to approximate efficiency to
within one percent.
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A Proof of Theorem 1

As described in (4.1), let

Fn(t) = Φn(σ∗emp[t](t))

and define fn(ti,m) from Fn(ti, t−i) as in (2.1). The core of the proof is the following approximation

result.

Lemma 1. Fix a prior µ0 and ε > 0. Let N be a neighborhood as in Definition 7. Let µk be priors

µk ∈ Ak for each k = 1, . . . ,K, with |µk − µ0| < ε. Then there exists n0, and positive weights πnk
with

∑
1≤k≤K π

n
k = 1, such that for all ti

|fn(ti, µ0)−
K∑
k=1

πnk · zk(ti)| < 6ε,

where

zk(ti) = φ∞(σ∗µk(ti), σ
∗
µk

(µk)).

The Lemma states that the bundle received by an agent playing ti in the mechanism ΓD can be

approximated by a convex combination of the bundles received when playing the original equilibrium

within each region Ak. Each zk(ti) is defined as the bundle an agent receives when playing ti when

opponents’ types and the prior on which equilibrium is selected are each withinAk. The key assertion

that the approximation Lemma makes is that the πnk do not depend on ti. That is, irrespective of

the type an agent reports, the approximation weights can be taken to be the same. This reflects

the fact that a single agent has a very small effect on the probability of the distribution of types

falling within each region Ak.

We now prove the Lemma, and then use it to prove Theorem 1.

Proof of Lemma 1.

The proof of the Lemma involves three steps. Throughout the proof we use the shorthand µ̂ =

emp[ti, t−i]. The first step shows that the appoximation formula holds within each region Ak.

Step 1.

There exists n0 such that, for all n > n0 and t ∈ Ak we have

|Φn(σ∗µ̂(ti), σ
∗
µ̂(t−i))− φ∞(σ∗µk(ti), σ

∗
µk

(µk))| < 4ε.
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Using the zk(ti) notation, this is

|Φn(σ∗µ̂(ti), σ
∗
µ̂(t−i)− zk(ti)| < 4ε.

Proof. First note that, by Condition 3 of Definition 7 we may take n1 such that for n ≥ n1

|Φn(σ∗µ̂(ti), σ
∗
µ̂(t−i))− Φn(σ∗µk(ti), σ

∗
µk

(t−i))| < ε. (A.1)

Note that the left term Φn(σ∗µ̂(ti), σµ̂
∗(t−i)) is the term whose distance to zk(ti) we wish to bound.

We will do so by showing that Φn(σ∗µk(ti), σ
∗
µk

(t−i)) is close to φn(σ∗µk(ti), σ
∗
µk

(µk)), and then showing

that φn(σ∗µk(ti), σ
∗
µk

(µk)) is close to zk(ti).

By definition we have that

φn(σ∗µk(ti), σ
∗
µk

(µk)) =
∑
t′−i

Pr(t′−i|t′−i ∼ µk) · Φn(σ∗µk(ti), σ
∗
µk

(t′−i)). (A.2)

We will now bound the distance between φn(σ∗µk(ti), σ
∗
µk

(µk)) and Φn(σ∗µk(ti), σ
∗
µk

(t−i)). For all

t ∈ Ak we have

|Φn(σ∗µk(ti), σ
∗
µk

(t−i))− φn(σ∗µk(ti), σ
∗
µk

(µk))|

= |Φn(σ∗µk(ti), σ
∗
µk

(t−i))−
∑

t−i
Pr(t′−i|t′−i ∼ µk) · Φn(σ∗µk(ti), σ

∗
µk

(t′−i))|

≤
∑

t′−i
Pr(t′−i|t′−i ∼ µk) · |Φn(σ∗µk(ti), σ

∗
µk

(t−i))− Φn(σ∗µk(ti), σ
∗
µk

(t′−i))|

=
∑

t′−i:emp[ti,t′−i]∈Ak
Pr(t′−i|t′−i ∼ µk) · |Φn(σ∗µk(ti), σ

∗
µk

(t−i))− Φn(σ∗µk(ti), σ
∗
µk

(t′−i))|

+
∑

t′−i:emp[ti,t′−i]/∈Ak
Pr(t′−i|t′−i ∼ µk) · |Φn(σ∗µk(ti), σ

∗
µk

(t−i))− Φn(σ∗µk(ti), σ
∗
µk

(t′−i))|. (A.3)

The first equality follows by substituting the definition of φn from Equation (A.2). The inequality

follows from the triangle inequality and the fact that the probabilities must sum to 1. The last

equality simply breaks the sum into two parts, the t′−i such that for which emp[ti, t
′
−i] is in Ak, and

the ones for which it is not. Consider now the expression on the right side of the last equality. Note

that we may take n1 such that the first term is bounded by

∑
t′−i:emp[ti,t′−i]∈Ak

Pr(t′−i|t′−i ∼ µk) · |Φn(σ∗µk(ti), σ
∗
µk

(t−i))− Φn(σ∗µk(ti), σ
∗
µk

(t′−i))| < ε,
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which follows from Condition 3 in Definition 7. As for the second term, by the law of large numbers,

we may take n2 large enough such that the total probability mass that emp[ti, t
′
−i] ∈ Ak is greater

than 1− ε. This bounds the second term by

∑
t′−i:emp[ti,t′−i] 6/∈Ak

Pr(t′−i|t′−i ∼ µk) · |Φn(σ∗µk(ti), σ
∗
µk

(t−i))− Φn(σ∗µk(ti), σ
∗
µk

(t′−i)) < ε,

Substituting these bounds in inequality (A.3) then yields

|Φn(σ∗µk(ti), σ
∗
µk

(t−i))− φn(σ∗µk(ti), σ
∗
µk

(µk))| < ε+ ε = 2ε. (A.4)

Finally, by the definition of the limit we may take n3 such that for all n > n3

|φn(σ∗µk(ti), σ
∗
µk

(µk))− φ∞(σ∗µk(ti), σ
∗
µk

(µk))| < ε. (A.5)

If we take n0 = max{n1, n2, n3} the Lemma then follows from Inequalities (A.1), (A.4) and (A.5).

The next step shows that the probability that a vector (ti, t−i) falls within region Ak, when t−i

is distributed randomly, does not vary too much with ti in large markets. This is a key step in

our argument, as it says an individual agent cannot appreciably change the probability that t falls

within each Ak, and therefore cannot have a large effect on the aggregate allocation.

Step 2.

There exists n0 such that, for all n > n0 there exist weights πn1 , . . . , πnK such that
∑

k π
n
k = 1 and

|Pr((ti, t−i) ∈ Ak|t−i ∼ µ0)− πnk | < ε/K

for all k and all ti.

Proof. We begin by constructing numbers which will be approximately equal to the πnk in the

statement of this step. Let

π̄nk = Pr(t′ ∈ Ak|t′ ∈ Tn, t′ ∼ µk)

be the probability that a vector of n types drawn independently according to µk is in Ak. We will

show that for large n these π̄nk are very close to the probabilities Pr{(ti, t−i) ∈ Ak|t−i ∼ µ0}. For
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any type ti, the difference between the probability of a vector of types falling within region Ak when

i’s type is fixed as ti, versus when i’s type is drawn randomly, is

Pr((ti, t
′
−i) ∈ Ak|t′−i ∈ Tn−1, t′−i ∼ µ0)− π̄nk =

Pr((ti, t
′
−i) ∈ Ak, t′ /∈ Ak|t′ ∈ Tn, t′ ∼ µk)

−Pr((ti, t
′
−i) /∈ Ak, t′ ∈ Ak|t′ ∈ Tn, t′ ∼ µk). (A.6)

This is just the difference between the probability of choosing a vector t′ where changing a single

type (i’s) from t′i to ti moves the vector of types from inside Ak to outside Ak, and the probability

of choosing a vector where changing i’s type from t′i to ti moves the vector from outside Ak to inside

Ak. We now show that the probability of such vectors being drawn can be taken to be very small.

Consider the case where (ti, t
′
−i) /∈ Ak, but (t′i, t

′
−i) ∈ Ak. One possibility is that (ti, t

′
−i) /∈ N . By

the law of large numbers, we may take n0 large enough such that for n > n0 the probability of this

happening is less than ε/8. The other possibility is that (ti, t
′
−i) ∈ N , but (ti, t

′
−i) /∈ Ak. In that

case, the segment [(ti, t
′
−i), t

′] must have a point that lies in B, as we assumed N to be convex. This

means that the distance between t′ and B is at most 1/n. By Condition 2 of Definition 7, we may

take n0 such that this probability is less than ε/8. This argument then yields that

Pr((ti, t
′
−i) /∈ Ak, t′ ∈ Ak|t′ ∈ Tn, t′ ∼ µk) < ε/8 + ε/8 = ε/4.

An analogous argument proves that we may assume that for n > n0

Pr((ti, t
′
−i) ∈ Ak, t′ /∈ Ak|t′ ∈ Tn, t′ ∼ µk) < ε/4.

Substituting these two inequalities in Equation (A.6) yields that

|Pr((ti, t
′
−i) ∈ Ak|t′−i ∈ Tn−1, t′−i ∼ µ0)− π̄nk | < ε/4 + ε/4 = ε/2. (A.7)

Note, however, that the π̄nk do not necessarily sum to 1, as it may the the case that t′ /∈ ∪kAk. To

complete the proof, we define

πnk = π̄nk/
∑
k′

π̄nk′ . (A.8)
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We have that the probability that t′ /∈ ∪kAk converges to 0. Therefore, we may take n0 such that

for n > n0

|1− 1/
∑
k′

π̄nk′ | < ε/2. (A.9)

Putting this together, we may finish the proof of Step 2.

|Pr((ti, t
′
−i) ∈ Ak|t′−i ∈ Tn−1, t′−i ∼ µ0)− πnk | ≤

|Pr((ti, t
′
−i) ∈ Ak|t′−i ∈ Tn−1, t′−i ∼ µ0)− π̄nk |+ |πnk − π̄nk | <

ε/2 + |πnk − π̄nk | =

ε/2 + |π̄nk/
∑
k′

π̄nk′ − π̄nk | =

ε/2 + |1− 1/
∑
k′

π̄nk′ | · |π̄nk | <

ε/2 + ε/2 < ε.

The series of steps in the above derivation were as follows. The second line derives from the triangle

inequality. The third line uses the bound from Inequality (A.7). The fourth line uses the definition

of πnk from equation (A.8). Finally, the fifth line is algebra, and the sixth line comes from the bound

in inequality (A.9).

Step 3.

Finally, we apply the results from steps 1 and 2 to prove the Lemma, obtaining the desired approx-

imation formula. That is, there exists n0 such that for all n ≥ n0

|fn(ti, µ0)−
K∑
k=1

πnk · zk(ti)| < 6ε.

Proof. We may write

fn(ti, µ0)−
∑
k

πnk · zk(ti) =
∑
t−i

Pr(t−i|t−i ∼ µ0) · Φn(σ∗µ̂(ti), σ
∗
µ̂(t−i))−

∑
k

πnk · zk(ti).
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This sum can be decomposed depending on whether µ̂ is in each of the Ak sets or not. We have

fn(ti, µ0) −
∑

k π
n
k · zk(ti) =

∑
k

(
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0) · Φn(σ∗µ̂(ti), σ
∗
µ̂(t−i))− πnk · znk (ti))

+
∑

t−i:µ̂/∈∪kAk

Pr(t−i|t−i ∼ µ0) · Φn(σ∗µ̂(ti), σ
∗
µ̂(t−i)). (A.10)

We begin by looking at the terms where µ̂ is in one of the Ak. We will show that for each k these

terms are small. We have that, for each k,

|
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0) · Φn(σ∗µ̂(ti), σ
∗
µ̂(t−i))− πnk · zk(ti)|

≤
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0) · |Φn(σ∗µ̂(ti), σ
∗
µ̂(t−i))− zk(ti)|

+|
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0)− πnk | · |zk(ti)|

≤ max
t−i:µ̂∈Ak

|Φn(σ∗µ̂(ti), σ
∗
µ̂(t−i))− zk(ti)| ·

∑
t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0)

+|
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0)− πnk | (A.11)

The first inequality follows from the triangle inequality. The second inequality bounds each term

|Φn(σ∗µ̂(ti), σ
∗
µ̂(t−i))− znk (ti)| by the maximum value of these terms, and it bounds |zk(ti)| by 1.

Consider now the right side of the last inequality. By step 1, we may take n0 such that for all

n ≥ n0,

max
t−i:µ̂∈Ak

|Φn(σ∗µ̂(ti), σ
∗
µ̂(t−i))− zk(ti)| < 4ε.

By step 2, for n ≥ n0 for a suitable n0 the second term is bounded by

|
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0)− πnk | <
ε

K
.

Substituting these two bounds in inequality (A.11) we have that for all n ≥ n0

|
∑

t−i:µ̂∈Ak Pr(t−i|t−i ∼ µ0) · Φn(σ∗µ̂(ti), σ
∗
µ̂(t−i))− πnk · znk (ti)|

≤ 4ε ·
∑

t−i:µ̂∈Ak Pr(t−i|t−i ∼ µ0) + ε
K .
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Summing over all k we get

∑
k

|
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0) · Φn(σ∗µ̂(ti), σ
∗
µ̂(t−i))− πnk · znk (ti)| ≤ 5ε

and then using the triangle inequality we can bring the summation inside to get

|
∑
k

∑
t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0) · Φn(σ∗µ̂(ti), σ
∗
µ̂(t−i))− πnk · znk (ti)| ≤ 5ε. (A.12)

The argument above bounds the terms in equation (A.10) that correspond to t within the sets Ak.

To bound the other term, note that we may take n0 to be large enough so that for all n ≥ n0 the

total probability that t /∈ ∪kAk is strictly less than ε. That is,

∑
t−i:µ̂/∈∪kAk

Pr(t−i|t−i ∼ µ0) < ε. (A.13)

Plugging in equations (A.12) and (A.13) in equation (A.10) we obtain

|fn(ti, µ0)−
K∑
k=1

πnk · zk(ti)| < 6ε,

completing the proof of Step 3, and hence the Lemma.

With the Lemma in hand, it is a simple matter to establish Theorem 1.

Proof. (Theorem 1)

Part 1.

To see that ΓD is SP-L, consider the gain for type ti from deviating to t̂i when opponents play µ0.

That is,

uti [f
n(t̂i, µ0)]− uti [fn(ti, µ0)].

By the approximation Lemma, and the boundedness of u, given ε > 0, there exists n0, π
n
k , µk, and
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zk as in the statement of the Lemma such that, for all n > n0 :

|uti [fn(t̂i, µ0)]−
∑
k

πnk · uti [zk(t̂i)]| < ε/2 (A.14)

|uti [fn(ti, µ0)]−
∑
k

πnk · uti [zk(ti)]| < ε/2. (A.15)

Also, by the definition of zk(·), we have that

uti [zk(ti)] ≥ uti [zk(t̂i)]. (A.16)

Therefore, we may bound the gain from deviating for n > n0 by

uti [f
n(t̂i, µ0)]− uti [f(ti, µ0)] ≤∑

k

πnk · {uti [zk(t̂i)]− uti [zk(ti)]}

+|uti [fn(t̂i, µ0)]−
∑
k

πnk · uti [zk(t̂i)]|

+|uti [fn(ti, µ0)]−
∑
k

πnk · uti [zk(ti)]| <

0 + ε/2 + ε/2 = ε.

The first inequality follows from the triangle inequality, and the second inequality from the bounds

in inequalities (A.14), (A.15), (A.16).

Part 3.

Part 3 follows from the approximation Lemma. Given µ0 ∈ ∆T, ε > 0, by the Lemma we may take

n0, µk such that all |µk − µ| < ε, and for all n ≥ n0

|fn(ti, µ0)−
∑
k

πnk · φ∞(σ∗µk(ti), σ
∗
µk

(µk))| < ε/2. (A.17)

By the definition of the limit, we may take n0 such that for all k, ti, and n > n0

|φ∞(σ∗µk(ti), σ
∗
µk

(µk))− φn(σ∗µk(ti), σ
∗
µk

(µk))| < ε/2. (A.18)
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By the triangle inequality and inequalities (A.17) and (A.18) we have that

|fn(ti, µ0)−
∑
k

πnk · φn(σ∗µk(ti), σ
∗
µk

(µk))| < ε/2 + ε/2 = ε. (A.19)

The result then follows from the fact that u is bounded above by 1 and takes the expected utility

form.

Part 2.

Finally for Part 2, note that we may take N = A1 and µ1 = µ0 in the continuous case. Therefore

πnk = 1, and equation (A.19) becomes

|fn(ti, µ0)− φn(σ∗µ0(ti), σ
∗
µ0(µ0)|<ε.

The desired formula then follows from the boundedness of u as above.

B Other Omitted proofs

B.1 Proof of Proposition 1

Step 1.

Given ε > 0, there exists n0 such that for all n, n′ ≥ n0, ti, t−i we have

|Φn(ti, t−i)− φn
′
(ti, emp t−i)| < ε.

Proof. Let µ̂ = emp t−i. We may write

φn
′
(ti, µ̂) =

∑
t′−i

Pr(t′−i|t′−i ∈ Tn
′−1, t′−i ∼ µ̂) · Φn′(ti, t

′
−i). (B.1)

By the definition of equicontinuity, we may take δ > 0 such that for all t′−i with

| emp t′−i − µ̂| < δ
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we have

|Φn(ti, t−i)− Φn′(ti, t
′
−i)| < ε/2. (B.2)

Moreover, we may take n0 such that for all n ≥ n0, by the law of large numbers,

∑
| emp t′−i−µ̂|≥δ,t′−i∈Tn

′−1

Pr(t′−i|t′−i ∈ Tn
′−1, t′−i ∼ µ̂) < ε/2. (B.3)

Consider now the difference

|Φn(ti, t−i)− φn
′
(ti, µ̂)|.

From Equation (B.1), we have that

|Φn(ti, t−i)− φn
′
(ti, µ̂)| =

|Φn(ti, t−i)−
∑
t′−i

Pr(t′−i|t′−i ∈ Tn
′−1, t′−i ∼ µ̂) · Φn′(ti, t

′
−i)|.

By the triangle inequality we have that

|Φn(ti, t−i)− φn
′
(ti, µ̂)|

≤
∑

| emp t′−i−µ̂|<δ,t′−i∈Tn
′−1

Pr(t′−i|t′−i ∈ Tn
′−1, t′−i ∼ µ̂) · |Φn(ti, t−i)− Φn′(ti, t

′
−i)|

+
∑

| emp t′−i−µ̂|≥δ,t′−i∈Tn
′−1

Pr(t′−i|t′−i ∈ Tn
′−1, t′−i ∼ µ̂) · |Φn(ti, t−i)− Φn′(ti, t

′
−i)|.

Plugging in Inequalities (B.2) and (B.3) we have

|Φn(ti, t−i)− φn
′
(ti, µ̂)| <

ε/2 + ε/2 = ε.

Moreover, note that the above bounds in Inequalities (B.2) and (B.3) may be taken uniform in

ti, t−i. Therefore the overall bound is uniform. This completes this step.

Step 2.
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Given ε > 0, there exists n0 such that for all n ≥ n0, ti, t−i we have

|Φn(ti, t−i)− φ∞(ti, emp t−i)| < ε. (B.4)

Proof. By Step 1, we may take n0 such that for all n, n′ ≥ n0, ti, t−i we have

|Φn(ti, t−i)− φn
′
(ti, emp t−i)| < ε/2.

Taking the limit as n′ →∞ we have

|Φn(ti, t−i)− φ∞(ti, emp t−i)| ≤ ε/2 < ε.

Step 3.

Use Step 2 to complete the proof of the Proposition.

Proof. By Step 2, we may take n0 large enough such that for all n ≥ n0, t:

|Φn(ti, t−i)− φ∞(ti, emp t−i)| < ε/2. (B.5)

Consider now the gain for agent i to, given t−i, perfom an ex post deviation to t̂i. We have

uti [Φ
n(t̂i, t−i)]− uti [Φn(t)] ≤ |uti [Φn(t̂i, t−i)]− uti [φ∞(t̂i, emp t−i)]|

+ |uti [φ∞(ti, emp t−i)]− uti [Φn(ti, t−i)]|

+ (uti [φ
∞(t̂i, emp t−i)]− uti [φ∞(ti, emp t−i)]).

By the boundedness of u we have

uti [Φ
n(t̂i, t−i)]− uti [Φn(t)] ≤ |Φn(t̂i, t−i)− φ∞(t̂i, emp t−i)|

+ |φ∞(ti, emp t−i)− Φn(ti, t−i)|

+ (uti [φ
∞(t̂i, emp t−i)]− uti [φ∞(ti, emp t−i)]).



AZEVEDO AND BUDISH 44

Plugging in Inequality (B.5), we have

uti [Φ
n(t̂i, t−i)]− uti [Φn(t)] < ε/2 + ε/2

+ (uti [φ
∞(t̂i, emp t−i)]− uti [φ∞(ti, emp t−i)]).

Since Γ is SP-L, we have that the last term is nonpositive. Therefore,

uti [Φ
n(t̂i, t−i)]− uti [Φn(t)] < ε.

This completes the proof.

B.2 Finite-Economy Bayes-Nash Equilibria

As described in Section 5.4, the main Theorem could have been stated using exact Nash equilib-

rium. Following the definition of a quasi-continuous sequence of families of equilibria, the Theorem

statement is as follows.

Theorem (Alternative Statement of Theorem 1). Consider a mechanism Γ = ((Φn)n∈N, A) with

a quasi-continuous sequence of families of limit equilibria (σnµ)µ∈∆T,n∈N∪{∞}. Then there exists a

direct mechanism ΓD = ((Fn)N, T ) with the following properties

1. ΓD is strategyproof in the large.

2. If ΓD is continuous at the true prior µ0, then in the limit as n→∞, truthful play of ΓD and

Bayes-Nash equilibrium play of Γ give agents the same utilities. Formally, given µ0 ∈ ∆T and

ε > 0, there exists n0 such that for all n > n0 and all ti:

|uti [fn(ti, µ0)]− uti [φn(σnµ0(ti), σ
n
µ0(µ0))]| < ε.

3. If ΓD is not continuous at µ0, then in the limit as n → ∞, truthful play of ΓD gives agents

the same utilities as a convex combination of equilibrium outcomes under Γ and priors in a

neighborhood of µ0. Formally, for every µ0 ∈ ∆T , ε > 0 there exist priors µk with | emp[µk]−

emp[µ0]| < ε, and n0, such that for all n > n0 there are weights πnk summing to one such that,

for all ti:

|uti [fn(ti, µ0)]−
∑

k=1,...,K

πnk · uti [φn(σnµk(ti), σ
n
µk

(µk))]| < ε.
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Note that, unlike Theorem 1 in the text, the SP-L mechanism we construct in this case is

Fn(t) = Φn(σnemp[t](t))

The proof of this Theorem is largely analogous to that of the Theorem for limit Nash equilibria.

For conciseness, we will discuss the points where the proofs diverge, and how to adjust the proof

of Theorem 1, instead of giving a complete proof. The proof is also based on an approximation

Lemma.

The statement of the Lemma differs slightly.

Lemma 2. Fix a prior µ0 and ε > 0. Let N be a neighborhood as in Definition 10. Let µk be priors

µk ∈ Ak for each k = 1, . . . ,K, with |µk − µ0| < ε. Then there exists n0, and positive weights πnk
with

∑
1≤k≤K π

n
k = 1, such that for all ti

|fn(ti, µ0)−
K∑
k=1

πnk · zk(ti)| < 5ε,

where

zk(ti) = φ∞(σ∞µk(ti), σ
∞
µk

(µk)).

The proof of the alternate Lemma is largely similar to the proof of Lemma 1. In fact, the steps are

basically the same, but replacing σ∗by σn or σ∞ as appropriate. The only step of the proof that

differs significantly is deriving the analogue of Inequality (A.5). Mutatis mutandis, this inequality

would be showing that we may take n3 large enough such that

|φn(σnµk(ti), σ
n
µk

(µk))− φ∞(σ∞µk(ti), σ
∞
µk

(µk))| < ε. (B.6)

This is still true. However, it does not follow from the definition of the limit, as in the proof of Lemma

(1). Instead, it is a consequence of Condition 4 in the definition of a quasi-continuous sequence of

families of equilibria. The rest of the proof follows straightforwardly, with the modifications we

described.
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C Multi-Unit Auctions

This section provides further detail on the uniform-price and pay-as-bid multi-unit auctions de-

scribed above in Example 1. We will derive the limit of these mechanisms, show that uniform price

auctions are SP-L, derive a particular family of limit equilibria of the pay-as-bid auction, and show

that it satisfies our quasi-continuity condition.

C.1 The Mechanisms

As discussed in the text, there are kn units of a homogeneous good, with k ∈ Z+. Agents’ preferences

take the form of linear utility functions, up to a capacity limit. Specifically, each agent i’s type ti

consists of a per-unit value vi and a maximum capacity qi, with V = {0, 1, . . . , v̄} the set of possible

values, Q = {0, 1, . . . , q̄} the set of possible capacity limits, and T = V × Q. We can denote the

set of outcomes, X0, by X0 = V × Q as well, by modeling an outcome as consisting of a per-unit

payment, bounded above by v̄, and a quantity allocated, bounded above by q̄. Utility is then given

by

uti [(v, q)] = vi ·min{q, qi} − v · q.

In both auctions, agents simply report their types, A = T . To define the market clearing price given

a vector of reports t = ((v1, q1), . . . , (vn, qn)), let

D(p|t) =
∑
i:vi≥p

qi.

The market clearing price is defined then as

p∗(t) = max{p ∈ V : D(p|t) ≥ k}.

i.e., p∗ is the highest price at which demand weakly exceeds supply. The market clearing price is

defined as 0 if there is always excess supply. Allocations of the good are equivalent across the two

mechanisms: an agent who reports (vi, qi) is allocated qi units if vi > p∗, is allocated 0 units if

vi < p∗, and is rationed if vi = p∗. Agents bidding p∗ will be rationed if

D(p∗(t)|t) > kn.
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In that case, we define the rationing probability as

π∗(t) =
D(p∗(t)|t)−D(p∗(t) + 1|t)

kn−D(p∗(t) + 1|t)
. (C.1)

The exact form of the rationing will be immaterial, as long as no agent receives more than qi units,

and the expected number of units each agent receives is π∗(t) · qi. For concreteness, we assume

that agents are rationed by random serial dictatorship, where they are randomly put in a line, and

sequentially take qi units, or as many as there are left, until there are no units left.

Payments differ across the two mechanisms. In the uniform-price auction, every agent who is

allocated units pays the same per-unit price, p∗. In the pay-as-bid auction, every winner pays her

bid. So, for the pay-as-bid auction, for example,

Φn
d (ti, t−i) = (vi, qi) if vi > p∗(t)

Φn
d (ti, t−i) = (0, 0) if vi > p∗(t).

If vi = p∗(t), the agent will be rationed. In this case the expected bundle she receives is

EΦn
d (ti, t−i) = (vi, π

∗(t) · qi) if vi = p∗(t).

The exact lottery over deterministic bundles is of course a more complicated object, given by the

serial dictatorship procedure.

For the uniform price auction, the allocations are similar, but with agents paying the bid of the

marginal winner:

Φn
u(ti, t−i) = (p∗(t), qi) if vi > p∗(t)

Φn
u(ti, t−i) = (0, 0) if vi > p∗(t).

EΦn
u(ti, t−i) = (p∗(t), π∗(t) · qi) if vi = p∗(t).

C.2 Large Economies

For a given measure m, the lottery φn(ti|m) can be quite complicated. It must take into account a

probability distribution over market clearing prices, and the possibility that a bid of vi is rationed
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when p∗(t) = vi. Fortunatelly, the limit allocation φ∞(ti|m) is quite simple. To describe it, given

m ∈ ∆T , define the demand function

D(p|m) =
∑

ti:vi(ti)≥p

qi(ti) ·m(ti).

That is, the average mass of agents with values of at least p. We define the market clearing price

as the highest price at which demand weakly exceeds supply.

p∗(m) = max{p ∈ V : D(p|m) ≥ k}.

Throughout this section we will concentrate on distributions of actions within the set

M = {m ∈ ∆A : p∗(m) = 0 or ∃qi : (p∗(m)− 1, qi) ∈ support[m]}.

We focus on this set because equilibrium analysis will only depend on such distributions.

There are two cases to consider. If

D(p∗(m)|m) > k,

then by the law of large numbers the probability that the marginal winning bidder will have a bid

vi = p∗(m) is converging to 1. In this case, some of these agents will be rationed. Define the

rationing probability as

π∗(m) =
D(p∗(m)|m)−D(p∗(m) + 1|m)

k −D(p∗(m) + 1|m)
.

With the assumption that rationing is by random serial dictatorship, it is very unlikely, in a large

economy, that any individual agent will be the last one to receive the good. All other rationed

agents either receive qi units or 0. So, in the limit, rationed agents receive qi units of the good with

probability π∗(m), and 0 units with probability 1− π∗(m).

We highlight that we have defined D(p|t), p∗(t), π∗(t) for a given profile of types or actions, and

D(p|m), p∗(m), π∗(m) for distributions over actions. The definitions of these objects differ. We used

the same symbols for the functions as they are analogous, to save on notation. In what follows, the

argument of the functions makes clear whether we are considering for example D(p|t) for a profile

of types t or D(p|m) for a distribution over actions m.
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Consider now the case where average demand exactly equals supply

D(p∗(m)|m) = k.

This is the case where, in a continuum, there is enough of the object to exactly give the goods to

the agents with value p∗(m). In a large economy, this means that about half the time the marginal

winning bidder will have a bid of p∗(m), and about half the time a lower value. Define the next

lowest bid after p∗(m) as

p∗−1(m) = max{p∗(m)− 1, 0}.

That is, p∗−1(m) is the highest price that (i) is lower than p∗(m), and (ii) there are bids of p in the

support of m. In case p∗(m) = 0, we have p∗−1(m) defined as 0 also.

In large economies, the marginal winning bid will be p∗(m) with probability close to 50%, and the

next lowest bid p∗−1(m) with remaining probability of about 50%. Note also that, in either case,

almost all agents with bids vi = p∗(m) will not be rationed. On the other hand, almost all agents

with bids vi = p∗−1(m) will be rationed (unless 0 = p∗(m) = p∗−1(m)).23

Note that, in either case, the limit allocation can be described in the same way. Bids higher than

p∗(m) are never rationed, and bids lower than p∗(m) almost never win any objects. Bids of exactly

p∗(m) are rationed with probability π∗(m), which can be 1 in the second case where demand exactly

clears supply.

The limit mechanisms are as follows. For the pay-as-bid auction,

Eφ∞d (ti|m) = (vi, qi) if vi > p∗(m) (C.2)

(vi, π
∗(m) · qi) if vi = p∗(m)

0 if vi < p∗(m).

This is just the allocation we described above, where bids of exactly p∗(m) are possibly rationed,

and higher (lower) bids always win (lose) .

23Note that these conclusions rely on our restriction that m ∈M. If for example we had m placing all of its mass
on a single action such as (vi, qi) = (5, 10), and demand being satisfied exactly, then it would no longer be the case
that the marginal winning bid would be random. This is immaterial for our equilibrium analysis, where only action
distributions m ∈M will arise.
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For the uniform price auction, the allocation of the objects is the same, but payments differ. If

D(p∗(m)|m) > k,

then the marginal price is almost certainly p∗(m) and we have

Eφ∞u (ti|m) = (p∗(m), qi) if vi > p∗(m)

(p∗(m), π∗(m) · qi) if vi = p∗(m)

0 if vi < p∗(m). (C.3)

In the case where demand exactly equals supply, the marginal price will be either p∗−1 or p∗ with

probability 50%. That is, if

D(p∗(m)|m) = k

we have

φ∞u (ti|m) =
1

2
(p∗(m), qi) +

1

2
(p∗(m)− 1, qi) if vi ≥ p∗(m) (C.4)

0 if vi < p∗(m).

C.3 The Uniform Price Auction is SP-L

Recall that for SP-L we restrict attention to priors µ with full support. In particular, under truth-

telling, it will always be the case that the distribution of actions satisfies m = µ ∈ M, so that the

formulae for the limit mechanisms in the previous section may be used.

It is immediate from Equations (C.3) and (C.4) for φ∞u that the uniform price auction is strate-

gyproof. Whatever µ ∈ ∆̄T is, it is always weakly optimal for an agent of type ti to report truthfully.

Note that this is true even though we know that this mechanism isn’t exactly strategyproof. It has

vanishing ex ante deviations, as an agent might have ex ante incentives to reduce capacity in a

small economy. And it has ex post deviations in knife edge cases in large economies, where an agent

happens to know it is pivotal. But it is still SP-L, as no matter what µ is, reporting truthfully is

always optimal under φ∞u .
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C.4 Equilibria of the Pay-as-Bid Auction

We now derive one family of equilibria (σµ)µ∈∆̄T of the uniform price auction. There are other

families of equilibria, but we focus on this particular family for concreteness, and because it is

similar to equilibria of a model where types and bids are distributed according to a continuous

distribution over an interval. Since we are only interested in establishing quasi-continuity of this

family, we restrict attention to priors µ ∈ ∆̄T .

Given a prior µ over types, define

p̄ = p∗(µ)

π̄ = π∗(µ)

p̄−1 = max{p̄− 1, 0}.

That is, p̄ would be the market clearing price under truthfull reporting, and π̄ the associated

rationing probability. Consider the strategy σµ where for p̄ > 0:

• Agents with vi > p̄ play (p̄, qi).

• Agents with vi = p̄ play (p̄, qi) with probability π̄, and (p̄−1, qi) with probability 1− π̄.

• Agents with vi < p̄ play (p̄−1, qi).

That is, all agents report their capacities truthfully. With respect to the price, the agents with

values above p̄ bid p̄. Those with values exactly equal to p̄ mix between bidding p̄ and the lower

value p̄−1. And the ones with values lower than p̄ simply play p̄−1. We highlight that, under the

assumption that µ ∈ ∆̄T , whenever p̄ > 0 there exists a positive mass of agents bidding p̄−1.

For p̄ = 0 strategies are slightly different:

• Agents with vi > 0 play (0, qi).

• Agents with vi = 0 play (0, qi) with probability π̄, and (0, 0) with probability 1− π̄.

We now argue that these strategies constitute a limit equilibrium. Consider the case p̄ > 0. First

note that, if agents follow these reports, the resulting measure of bids m = σµ(µ) clears the market
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exactly at prices p̄ in the limit. That is

D(p̄|m) = k.

Therefore, in a large finite economy, the realized market clearing price p∗(t) will be p̄ or p̄−1 with

probability roughly equal to 50%. Moreover, an agent bidding p̄−1 will be rationed almost certainly,

while an agent bidding p̄ will almost certainly receive the quantity he asked for. From Equation

(C.2) we have that the limit allocation received by an agent bidding ti is simply

φ∞d (ti|m) = (vi, qi) if vi ≥ p̄

0 if vi < p̄. (C.5)

The case p̄ = 0 is similar. It is also the case that agents with valuations vi = 0 mix so that the

probability of being rationed with a bid of p̄ = 0 is negligible. Therefore, Equation (C.5) also

describes the equilibrium allocation when p̄ = 0.

From Equation (C.5), it follows that σµ is a limit equilibrium. No agent will ever want to bid more

than p̄, as bidding p̄ is enough to win qi objects with near certainty. The agents with vi > p̄ are

best responding, as they are willing to pay p̄ to win the object. Likewise, the agents with vi = p̄

are indifferent between winning or not, so they are best responding too. Finally, the agents with

vi < p̄ would not be willing to pay p̄ to win, so they are best responding.

C.5 Quasi-Continuity

To prove that the family of equilibria (σµ)µ∈∆̄T is quasi-continuous, we will establish two useful

Lemmas.

The first Lemma considers a distribution of actions m where all agents bid one of two prices, p∗(m)

and p∗(m)− 1. We consider this case because all distributions of actions m = σµ(µ) in equilibrium

have this form. The Lemma shows that whatever the realized profile of actions a, as long as its

empirical distribution is close to m, the allocation does not vary too much.
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Lemma 3. Consider m ∈ ∆T such that:

support(m) ⊆ {(v, q) : v = p∗(m) or p∗(m)− 1}

D(p∗(m)|m) = k

D(p∗(m)− 1|m) > k,

Given ε > 0, there exists δ > 0 such that for all a ∈ An with

| emp[a]−m| < δ

then

|Φn(ai, a−i)− φ∞(ai,m)| < ε.

Proof. First note that under such m, by the formulae for φ∞, we have

φ∞(ai,m) = (vi, qi) for vi ≥ p∗(m)

0 for vi < p∗(m). (C.6)

We must show that this allocation is close to Φn(ai, a−i). Denote ai = (vi, qi).

Note that, by our definition of demand,24

D(p|a) = D(p| emp[a]) · n.

Consider the case where 0 < p∗(m) < v̄. Since

D(p∗(m) + 1,m) < D(p∗(m)|m) = k < D(p∗(m)− 1,m),

we may take δ to be small enough such that

D(p∗(m) + 1, a) < k < D(p∗(m)− 1, a).

24Recall that we defined D(p|a) for a vector of actions differently than D(p|m) for a distribution over actions. We
refer the reader to the first two Subsections of this Section for these definitions.
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This guarantees that p∗(a) is either p∗(m) or p∗(m)− 1. In particular, if an agent bids vi > p∗(m)

she receives the good for sure, and if she bids vi < p∗(m) − 1 she never receives the good. This

proves Equation (C.6) in all cases, except vi = p∗(m)− 1 and p∗(m).

Consider the case where vi = p∗(m). We have to show that

|Φn(ai, a−i)− (vi, qi)| < ε, (C.7)

that is, that the probability that such agent i is rationed is sufficiently small. In case the market

clearing price p∗(a) = p∗(m) − 1, this is evidently true, as i is rationed with 0 probability. In the

case where p∗(a) = p∗(m), the rationing probability π∗(a) is given by Equation (C.1). Since this

varies continuously with the empirical distribution of a, and equals 0 for emp[a] = m, we may take

δ small enough such that Inequality (C.7) is satisfied. The case vi = p∗(m)− 1 is analogous. This

completes the proof in the case where 0 < p∗(m) < v̄.

The case p∗(m) = v̄ follows basically the same argument. It is also the case that for small enough δ

we have p∗(a) = p∗(m) or p∗(m)−1, and the rest of the argument is analogous. The case p∗(m) = 0

is even simpler, as for δ small enough we always have that p∗(a) = 0. The argument above carries

over easily to this case.

The second Lemma is a key step to establishing quasi-continuity. It shows that, given a prior µ, if

the empirical distribution of a vector of types t is close to µ, and agents play strategies σ′ which

are close to σµ(µ), then in large markets the outcome is approximately the same as in the limit

equilibrium with prior µ.

Lemma 4. Consider µ ∈ ∆̄T, ε > 0. There exists δ and n0 such that for any ti, t−i and σ′ with

| emp[t]− µ| < δ

|σµ − σ′| < δ

we have that for all n ≥ n0

|Φn(σ′(ti), σ
′(t−i))− φ∞(σµ(ti), σµ(µ))| < ε.

Proof. Let m = σµ(µ). Therefore, m satisfies the assumptions of the previous Lemma. Therefore
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there exists δ1 such that for all a ∈ An with

| emp[a]−m| < δ1

we have

|Φn(a)− φ∞(ai,m)| < ε/3. (C.8)

Fix now ai, and consider the probability that a vector a = [ai, a−i], with a−i ∈ An−1 drawn

according to σ′(t) satisfies | emp[a]−m| > δ1. That is

∑
a−i∈An−1

Pr{| emp[a]−m| > δ1|a−i ∼ σ′(t−i)}.

If we take δ small enough so that σ′ is sufficiently close to σµ, and emp[t] sufficiently close to µ, we

can apply the law of large numbers, and take n0 such that for all n ≥ n0 this probability is bounded

by ∑
a−i∈An−1

Pr{| emp[a]−m| > δ1|a−i ∼ σ′(t−i)} < ε/3. (C.9)

Consider now the expression

|Φn(ai, σ
′(t−i))− φ∞(ai, σµ(µ))|

which we wish to bound. We may decompose it as

|Φn(ai, σ
′(t−i))− φ∞(ai, σµ(µ))|

= |
∑

a−i∈An−1 Pr{a−i|a−i ∼ σ′(t−i)}Φn(a)− φ∞(ai, σµ(µ))|

≤
∑

a−i∈An−1 Pr{a−i|a−i ∼ σ′(t−i)} · |Φn(a)− φ∞(ai, σµ(µ))|

=
∑
| emp[a]−m|<δ1 Pr{a−i|a−i ∼ σ′(t−i)} · |Φn(a)− φ∞(ai, σµ(µ))|

+
∑
| emp[a]−m|≥δ1 Pr{a−i|a−i ∼ σ′(t−i)} · |Φn(a)− φ∞(ai, σµ(µ))|

The second line follows from simply writing down the left term Φn(σ′(ti), σ
′(t−i)) as a sum over

realized profiles of actions a. The third line follows from the triangle inequality. The fourth and fith

lines break this sum into profiles of actions a that have an empirical close or far from m. Finally,
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substituting Inequalities (C.8) and (C.9) we get that

|Φn(ai, σ
′(t−i))− φ∞(ai, σµ(µ))| < ε/3 + ε/3 = 2ε/3. (C.10)

Moreover, we may take these bound to be uniform over all ai. To complete the proof, note that we

can take δ small enough such that

|φ∞(σ′(ti), σµ(µ))− φ∞(σµ(ti), σµ(µ))| < ε/3. (C.11)

Using these last two bounds we have that

|Φn(σ′(ti), σ
′(t−i))− φ∞(σµ(ti), σµ(µ))|

≤ |Φn(σ′(ti), σ
′(t−i))− φ∞(σ′(ti), σµ(µ))|

+ |φ∞(σ′(ti), σµ(µ))− φ∞(σµ(ti), σµ(µ))|

< 2ε/3 + ε/3 = ε.

The first inequality follows from the triangle inequality, and the second inequality follows from

Inequalities (C.10) and (C.11).

We are now ready to show that the family σµ is quasi-continuous. Fix µ0 ∈ ∆̄T and ε > 0. Let

N = {µ ∈ ∆T : |µ− µ0| < δ},

where δ will be determined to satisfy the requirements of Definition (7). Throughout, we take δ to

be small enough such that N ⊆ ∆̄T .

We begin with the simplest case where

D(p∗(µ0)|µ0) > k.

In this case, p∗(µ) = p∗(µ0) for all µ ∈ N , as long as we take δ to be small enough. That is, small

changes in µ do not change the market clearing price. We may simply take A1 = N . Given ε and
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µ0, take δ1 and n0 as per Lemma 4. We then have that for all ti, t−i and σ′ with

| emp[t]− µ| < δ1

|σµ0 − σ′| < δ1

we have that for all n ≥ n0

|Φn(σ′(ti), σ
′(t−i))− φ∞(σµ0(ti), σµ0(µ0))| < ε/2. (C.12)

Note that since p∗(µ) is constant in N , and therefore the rationing probability π∗(µ) varies contin-

uously with µ in N by Equation (C.1). Consequently, we may take δ small enough such that

|σµ0 − σµ| < δ1

for all µ ∈ N . If we take δ ≤ δ1, then Inequality (C.12) is satisfied for any t, µ ∈ N . This implies

that for any ti and [ti, t−i], [ti, t
′
−i] ∈ N , µ, µ′ ∈ N we have that

|Φn(σµ(ti), σµ(t−i))− Φn(σµ′(ti), σµ′(t
′
−i))| < ε.

This completes the proof in the case D(p∗(µ0)|µ0) > k.

Consider now the case where

D(p∗(µ0)|µ0) = k.

In this case, σµ may change discontinuosuly with µ. Assume for now that p∗(µ) > 0. Note that,

due to the assumption that µ ∈ P, we have that

D(p∗(µ0) + 1|µ0) < D(p∗(µ0)|µ0) = k < D(p∗(µ0)− 1|µ0).

In particular, we may take δ small enough such that for all µ ∈ N we have

D(p∗(µ0) + 1|µ) < k < D(p∗(µ0)− 1|µ).
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Therefore, for any such µ either p∗(µ) = p∗(µ0) or p∗(µ) = p∗(µ0)− 1. We then define the two sets

A1 = {µ ∈ N : p∗(µ) = p∗(µ0)− 1, D(p∗(µ0)− 1 6= k}

A2 = {µ ∈ N : p∗(µ) = p∗(µ0), D(p∗(µ0) 6= k}.

By the argument used for the case where D(p∗(µ0)|µ0) > k, we have that strategies σµ vary

continuously within each Ak. As before, we may take δ small enough such that the quasi-continuity

condition 3 of Definition (7) holds within each Ak. The last step is to show that the set

B = N\ ∪p Ap

satisfies condition 2 of Definition (7). That is

lim
n→∞

Pr{distance(emp[t],B) ≤ 1/n|t ∈ Tn, t ∼ iid(µ0)} = 0.

Note that, if distance(emp[t],B) < 1/n, then there must be p such that

|D(p|t)− kn| < q̄.

Otherwise, no agent would be pivotal in moving the aggregate distribution of types enough to

change the equilibrium. However, given our assumption that µ0 has full support, if t is drawn iid

according to µ0 then for any p ∈ V \{0} D(p|t) follows a multinomial distribution. By standard

arguments, the variance of this distribution is of the order of
√
n. Therefore, the probability that

|D(p|t) − kn| < q̄ for a fixed k is converging to 0 as n grows. For p = 0, this probability is also

small as we assumed p∗(m) > 0.

Finally, we have yet to consider the case where

p∗(µ0) = 0

D(p∗(µ0)|µ0) = k.

This case is quite simple, as for δ small enough the strategies σµ with µ ∈ N are very similar to

σµ0 . For any such µ we have p∗(µ) = 0. The strategies σµ then only change in the probability of

agents bidding (0, qi) versus (0, 0), which varies continuously with µ, and we omit the details.
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