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Abstract

As multi-hospital kidney exchange consortia have been formed and a national ex-

change is contemplated, the set of “players” has grown from patients and their surgeons

to include hospitals (or directors of transplant centers). Free riding has become possi-

ble, with hospitals having the option of participating in one or more kidney exchange

networks but also of withholding some of their patient-donor pairs, and enrolling only

those who are hardest to match, while conducting more easily arranged exchanges

internally. This behavior has already started to be observed.

We extend and quantify some of the impossibility results for small markets that

illustrate the tension between efficiency and incentives to participate fully, and explore

how these extend to large markets, using the theory of random graphs.

We show that the incentives to free ride by withholding pairs can be substantially

ameliorated by the appropriate choice of mechanisms in large markets. It appears

that achieving (close to) full participation will require some change in existing kidney

exchange mechanisms when multiple hospitals are involved. However the cost of making

it individually rational for hospitals to participate is low in large markets, while the

cost of failing to guarantee individually rational allocations could be large, in terms of

lost transplants, if that causes hospitals to match their own internal pairs.

1 Introduction

Kidney transplantation is the treatment of choice for end stage renal disease, but there

are many more people in need of kidneys than there are kidneys available.1 Kidneys for

1It is illegal for organs for transplantation to be bought or sold in the United States and throughout much

of the world, see Roth (2007) and Lieder and Roth (2010).
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transplantation can come from deceased donors, or from live donors (since healthy people

have two kidneys and can remain healthy with one). However not everyone who is healthy

enough to donate a kidney and wishes to do so can donate a kidney to his or her intended

recipient, since a successful transplant requires that donor and recipient be compatible, in

blood and tissue types. This raises the possibility of kidney exchange, in which two or

more incompatible patient-donor pairs exchange kidneys, with each patient in the exchange

receiving a compatible kidney from another patient’s donor.2

Roth et al. (2004) made an initial proposal for organizing kidney exchange on a large

scale, which included the ability to integrate cycles and chains, and considered the incentives

that well designed allocation mechanisms would give to participating patients and their sur-

geons to reveal relevant information about patients. The surgical infrastructure available in

2004 meant that only pairwise exchanges (between exactly two incompatible patient donor

pairs) could initially be considered, and Roth et al. (2005b) proposed a mechanism for accom-

plishing this, again paying close attention to the incentives for patients and their surgeons to

participate straightforwardly. As kidney exchanges organized around these principles gained

experience, Saidman et al. (2006) and Roth et al. (2007b) showed that efficiency gains could

be achieved with relatively modest additional surgical infrastructure, and today there is

growing use of larger exchanges and longer chains, particularly following the publication of

Rees et al. (2009).3

During the initial startup period, there was some evidence that attention to the incentives

of patients and their surgeons to reveal information was important. But as infrastructure has

developed, the information contained in blood tests has come to be conducted and reported

in a more standard manner (sometimes at a centralized testing facility), reducing some of

the choice about what information to report, with what accuracy. So some strategic issues

have become less important over time (and indeed the current practice at both APD and

NEPKE does not deal with the provision of information that derives from blood tests as an

incentive issue). However, as kidney exchange has become more widespread, and as multi-

2In addition to such cyclic exchanges, chains are also possible, which involve not only incompatible patient

donor pairs, and begin with a deceased donor or an undirected donor (one without a particular intended

recipient), and end with a patient with high priority on the deceased donor waiting list, or with a donor who

will donate at a future time.
3Roth et al. (2005a) describe the formation of the New England Program for Kidney Exchange under

the direction of Dr. Frank Delmonico, and these proposals were also instrumental in helping establish the

Alliance for Paired Donation (APD) under the direction of Dr Mike Rees. Today, in addition to those two

large regional exchanges, kidney exchange is practiced by a growing number of hospitals and formal and

informal consortia, and there is active discussion of a national exchange being organized (see Roth (2008)).

Computer scientists have become involved, and for an interim period an algorithm of Abraham, Blum, and

Sandholm (2007) designed to handle large populations was used in the APD, and algorithms of that sort

may form the basis of a national exchange.
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hospital exchange consortia have been formed and a national exchange is contemplated, the

“players” are not just (and perhaps not even) patients and their surgeons, but hospitals (or

directors of transplant centers). And as kidney exchange is practiced on a wider scale, free

riding has become possible, with hospitals having the option of participating in one or more

kidney exchange networks but also of withholding some of their patient-donor pairs, or some

of their non-directed donors, and enrolling those of their patient-donor pairs who are hardest

to match, while conducting more easily arranged exchanges internally. Some of this behavior

is already observable.

The present paper considers the ‘kidney exchange game’ with hospitals as the players,

to clarify the issues currently facing hospitals in existing multi-hospital exchange consortia,

and those that would face hospitals in a national kidney exchange program.

2 Motivation

The first kidney exchange in the United States was carried out in 2000 at the Rhode Island

Hospital, between two of the hospital’s own incompatible patient-donor pairs.4 Since around

2004, multi-hospital exchange programs have been organized, such as the New England

Program for Kidney Exchange (NEPKE), which organizes the fourteen transplant centers

in New England (cf. Roth et al. (2005a)), and the Alliance for Paired Donation (APD),

which counts as members several dozen hospitals around the country (with varying degrees

of participation). Hospitals participate in a multi-center exchange by reporting a list of in-

compatible donor-patient pairs to a central repository, and a matching mechanism chooses

which exchanges to carry out. At the same time, some hospitals conduct exchanges only

internally among their own patients, and even hospitals participating in multi-center ex-

change programs may conduct some internal exchanges, and may participate in more than

one exchange program.

To examine how much a centralized kidney exchange program can increase the number

of transplants, we ran a simulation to compare the number of transplants that can be done

when each hospital conducts only internal exchanges(consisting of pairs only from the same

hospital) with the number of transplants a centralized mechanism can potentially produce

given that it has access to all incompatible pairs.5. Table 1 shows that the efficiency gains

4For an account of this and other early events in kidney exchange see Roth (2010), ”The first kidney ex-

change in the U.S., and other accounts of early progress,” http://marketdesigner.blogspot.com/2010/04/first-

kidney-exchange-in-us-and-other.html
5We briefly explain here the way we conduct the Monte-Carlo simulations.

To generate incompatible pairs we use a method similar to Saidman et al. (2006). First we create a patient

and donor with blood-types drawn from the national distributions as reported by Roth et al. (2007b). Blood
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from centralization grow as the number of (moderate sized) hospitals increases: Centralized

kidney exchange can potentially increase transplants by more than 300% compared to the

internal exchanges that could be accomplished when we consider 22 hospitals with an average

of 11 pairs each.

Table 1: Centralized vs decentralized kidney exchange. For each k = 2, 3 the average number

of transplants is given under two settings: (i) there is no centralized mechanism, i.e. each

hospital can only match internally, and (ii) there is a centralized mechanism and all pairs

belong to its pool.

However, membership in a kidney exchange network does not mean that a hospital does

not also do some internal exchanges. Mike Rees, the director of the APD, writes (personal

communication):

“...competing matches at home centers is becoming a real problem. Unless

it is mandated, I’m not sure we will be able to create a national system. I

think we need to model this concept to convince people of the value of playing

together”.

This paper attempts to understand the problem raised by the APD director and offers

a new mechanism which provides efficient outcomes. We use both theoretical analysis and

simulations to investigate the problem.

type compatibility is not sufficient for transplantation. Each patient is also assigned a percentage reactive

antibody (PRA) level also drawn from a distribution as in Roth et al. (2007b). Patient PRA is interpreted as

the probability of a positive crossmatch (tissue type incompatibility) with a random donor. If the generated

pair is compatible, i.e. both blood type compatible and have a negative crossmatch, they are discarded (this

captures the fact that compatible pairs go directly to transplantation). Otherwise the population generation

continues until each hospital accumulates a certain number of incompatible pairs. In our simulations the

number of incompatible pairs for each hospital is drawn from a discrete uniform distribution on [8, 14]. For

each generated population we ran 500 trials.

When allowing 3-way exchanges, finding an allocation that maximizes the number of matches is an NP

hard problem (see Abraham et al. (2007) and Biro et al. (2009)). The compatibility graph is generally sparse

enough however that the problem is tractable in reasonably sized populations.
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3 Kidney Exchange - Basic Theory

3.1 Exchange Pools

An exchange pool consists of a set of patient-donor pairs. A patient p and a donor d are

compatible if patient p can receive the kidney of donor d and incompatible otherwise. It

is assumed that every pair in the pool is incompatible.6 Thus a pair is a tuple v = (p, d) in

which donor d is willing to donate his kidney to patient p but p and d are incompatible. We

further assume that each donor and each patient belong to a single pair.

An exchange pool V induces a compatibility graph DV = D(V,E(V )) which captures

the compatibilities between donors and patients as follows: the set of nodes is V , and for

every pair of nodes u, v ∈ V , (u, v) is an edge in the graph if and only if the donor of

node u is compatible with the patient of node v. We will use the terms nodes and pairs

interchangeably.

An exchange can now be described through a cycle in the graph. Thus an exchange in

V is a cycle in DV , i.e. a list v1, v2, . . . , vk for some k ≥ 2 such that for every i, 1 ≤ i < k,

(vi, vi+1) ∈ E(V ) and (vn, v1) ∈ E(V ). The size of an exchange is the number of nodes in the

cycle. An allocation in V is a set of distinct exchanges in DV such that each node belongs

to at most one exchange. Since in practice the size of an exchange is limited (mostly due to

logistical constraints), we assume there is an exogenous maximum size limit k > 0 for any

exchange. Thus if k = 3 only exchanges of size 2 and 3 can be conducted.7

Let M be an allocation in V . We say that node v is matched by M if there exists an

exchange in M that v belongs to. For any set of nodes V ′ ⊆ V let C(V ′,M) be the set of

all nodes in V ′ that are matched (or ”covered”) by M .

We will be interested in finding “large” or efficient allocations, to have as many trans-

plants as possible. Two types of efficiency will be considered. M is called k-efficient if it

matches the maximum number of transplants possible for exchanges of size no more than

k, i.e. there exists no other allocation M ′ such that |C(V,M ′)| > |C(V,M)|. M is called

k-Pareto efficient if there exists no allocation M ′ such that C(V,M ′) ) C(V,M). A

matching will be called efficient (or Pareto efficient) if it is k-efficient (or k-Pareto ef-

ficient) for unbounded k, i.e. for no limit on how many transplants can be included in an

exchange.8 Note that every k-efficient allocation is also k-Pareto efficient. The converse is

not true. However for k = 2, both types of efficiency coincide, since the collection of sets of

simultaneously matched nodes in allocations forms a matroid (see Edmonds et al. (1971)).

6Pairs that are compatible would go directly to transplantation and not join the exchange pool.
7In APD and NEPKE k was originally set to 2, was increased to 3, and now optimization is conducted

over even larger exchanges and chains.
8In graph theory efficient and Pareto efficient are referred to as maximum and maximal respectively.
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A Kidney Exchange Program (or simply a Kidney Exchange) consists of a set of

hospitals H = {1, . . . , n} and a set of incompatible pairs Vh for each hospital h. The

compatibility graph induced by ∪h∈HVh is called the underlying graph. We will take

the hospitals (e.g. the director of transplantation at each hospital) as the active decision

makers in the Kidney Exchange, whose choices are which incompatible pairs to reveal to the

Exchange. We will approximate the preferences of hospitals as being concerned only with

their own patients. Mostly we will assume hospitals are concerned only with the number

of their patients who receive transplants, although, as will be apparent, we do not rule out

hospitals having preferences over which of their patients are transplanted.

An exchange that matches only pairs from the same hospital is called internal. Hospital

h can match a set of pairs Bh ⊆ Vh internally if there exists an allocation in Bh such that

all nodes in Bh are matched.

3.2 Participation Constraints: Individual Rationality for Hospi-

tals

The kidney exchange setting invites discussions of various types of individual rationality

(IR). In this paper an allocation is not individually rational if some hospital can match

internally more pairs than the number of its pairs matched in the allocation. Formally, an

allocation M in V = ∪h∈HVh is not individually rational if there exists a hospital h and

an allocation Mh in Vh such that |C(Vh,M)| < |C(Vh,Mh)|.9

To illustrate this, consider the compatibility graph in Figure 1, where nodes a1 and a2

belong to hospital a and b1 and b2 belong to hospital b. The only individually rational

allocation is the one that matches a1 and a2.

Remark : Throughout this paper, undirected edges represent two directed edges, one in each

direction.

In the next section we give some basic results regarding efficiency and individual ratio-

nality.

3.3 Basic Results: IR and Efficiency

The first result is a negative one:

9Other formulations of individual rationality may be appropriate under some circumstances. Consider

the following situation were hospital a has three pairs, a1, a2 and a3 and can match internally only a1 and

a2. Suppose hospital a informed a1 and a2 that their patients can each get a transplant. According to our

proposed definition an individually rational allocation might match only a2 and a3 for hospital a leaving a1

unmatched. Thus an alternative definition would be the following: an allocation is IR if for every hospital

the allocation matches a specific set which it can match on its own.
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Figure 1: abc

Proposition 3.1. For every k ≥ 3, there exist a compatibility graph such that no k-efficient

allocation is individually rational.

Proof. The proof is given for k = 3 and follows from Figure 1. A similar proof holds for

any k > 3. Formally, if there are two hospitals a and b where Va = {a1, a2}, Vb = {b1, b2},
and the compatibility graph be as in Figure 1 then the only 3-efficient exchange is the cycle

a2, b1, b2, which violates individual rationality.

By requiring only Pareto efficiency (rather than efficiency), one can also obtain individual

rationality:

Proposition 3.2. For every k ≥ 2, and every compatibility graph there exists a k-Pareto

efficient allocation that is individually rational.

The proof of Lemma 3.2 is by construction using the following simple augmenting al-

gorithm which is based on the augmenting matching algorithm by Edmonds (1965). The

algorithm begins by finding an IR allocation in each hospital and searches for allocations

that only enlarge the set of matched nodes:

Augmenting Algorithm:

1. Input: Vh for every h.

2. Find a k-efficient allocation in Vh for every h.

3. Repeat: (i) search for an allocation that increases the total number of matched pairs

without unmatching a pair that was previously matched. (ii) if an allocation was found

in (i) then replace the existing allocation with the new one. Otherwise terminate.

Choosing an individually rational allocation rather than an efficient allocation in the

graph in Figure 1 costs one transplant. A slight extension of the example in Figure 1, yields

a higher “price” of individually rationality:
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Proposition 3.3. For every k ≥ 3, there exist a compatibility graph such that no k-Pareto

efficient allocation which is also individually rational matches more than 1
k−1

of the number

of nodes matched by a k-efficient allocation. Furthermore in every compatibility graph the

size of a k-Pareto efficient allocation is at least 1
k−1

times the size of a k-efficient allocation.

Proof. Fix some hospital a with k vertices, and suppose that a has a single internal exchange

consisting of all of its pairs. The lower bound 1
k−1

is obtained by letting the k-efficient

allocation in the underlying graph consists of exactly k − 1 exchanges each of size k, at

which a single pair of a is part of each such exchange. Let V be a set of nodes and let M

and M ′ be k-efficient and k-Pareto efficient allocations in V respectively. Fix an exchange

c with size 1 ≤ l ≤ k in M ′ and suppose not all of the nodes in c are covered by M . Each

node in c that is covered by M ′ is either not covered by M or part of an exchange of at most

size k in M . Therefore at most (l − 1)k more nodes are covered by M in exchanges that at

least one of their nodes belong to c. Since (l − 1)k/l is maximized at l = k we obtain the

result.

For the case of k = 2, the sets of simultaneous matched nodes in an arbitrary graph form

a matroid (see Edmonds et al. (1971)). Thus, by applying the augmenting algorithm we

obtain:

Proposition 3.4. If k = 2 there exists an individually rational allocation that is also k-

efficient in every compatibility graph.

Proposition 3.3 gives a worst-case result. But it appears that the expected efficiency loss

from requiring individual rationality can be very small. Indeed our simulations show that

if all incompatible pairs are in the same exchange pool, the average number of

patients who do not get a kidney due to requiring IR is less than 1 (see Table

2). So the cost of guaranteeing individual rationality is low, while (as we saw in Table 1)

the cost of failing to guarantee it could be large if that causes hospitals to match their own

internal pairs.

We will also prove this formally for large compatibility graphs in Section 6.1. This small

efficiency loss motivates our concentration on IR and Pareto efficient allocations. In the next

section we study mechanisms for Kidney Exchange Programs.

4 Kidney Exchange Mechanisms and Internal Hospital

Allocations

A kidney exchange mechanism, ϕ, maps a profile of incompatible pairs V = (Vh1 , Vh2 , . . . , Vhn)

to an allocation, denoted by ϕ((Vh)h∈H). With a slight abuse of notation we will denote by
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Table 2: Number of transplants achieved using individually rational allocations vs. using

efficient (and not necessarily individually rational) allocations.

V both the profile and the union of its elements, V = ∪h∈HVh. A mechanism ϕ is IR if for

every V , ϕ(V ) is IR. Efficient and Pareto efficient mechanisms are defined similarly.

Every kidney exchange mechanism ϕ induces a game of incomplete information Γ(ϕ) in

which the players are the hospitals. The type of each hospital h is its set of incompatible

pairs. The realized type will be denoted by Vh and at this point we assume no prior over

the set of types. At strategy σh hospital h reports a subset of its incompatible pairs σh(Vh).

For any strategy profile σ let σ(V ) = (σ1(V1), . . . , σn(Vn)) the profile of subsets of pairs each

hospital submits under σ given V . Therefore, for any profile V = (V1, . . . , Vn), at strategy

profile σ mechanism ϕ chooses the allocation ϕ(σ(V )).

A kidney exchange mechanism does not necessarily match all pairs in V = ∪h∈HVh,
either because it didn’t match all reported pairs or because hospitals did not report all pairs.

Therefore we assume that each hospital also chooses an allocation in the set of its pairs that

are not matched by the mechanism. Formally, let ϕ be a kidney exchange mechanism and

let σ be a strategy profile and Vh be the type of each hospital. After the mechanism chooses

ϕ(σ(V )), h finds an allocation in Vh \ C(Vh, ϕ(σ(V ))). In particular every hospital h ∈ H
has an allocation function ϕh that maps any set of pairs Xh to an allocation ϕh(Xh).

Since each hospital wishes to maximizes the number of its own matched pairs, the utility

of hospital h at strategy profile σ is defined by the number of h’s pairs who are covered

by the centralized match, plus the number of its remaining pairs that it can cover with an

internal match:

uh(σh(Vh), σ−h(V−h)) = |C(Vh, ϕ(σ(V )))|+ |C(Vh, ϕh(Vh \ C(Vh, ϕ(σ(V )))))|. (1)

In the next section we study incentives of hospitals in the games induced by kidney

exchange mechanisms.
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5 Incentives

Loosely speaking, most of the kidney exchange mechanisms presently employed choose an

efficient allocation in the (reported) exchange pool.10 But maximizing the number (or the

weighted number) of transplants in the pool of patient-donor pairs reported by hospitals is

not the same as maximizing the number of transplants in the whole pool, unless the whole

pool is reported. We next consider the tensions between achieving efficiency, and making

reporting of the whole pool a dominant strategy for each hospital.

5.1 Incentives - Strategyproofness

A mechanism ϕ is strategyproof if it makes it a dominant strategy for every hospital to

report all of its incompatible pairs in the game Γ(ϕ); Formally, ϕ is strategyproof if for

every hospital h, every Vh, every strategy σ′h, and every V−h

uh(ϕ(Vh, V−h)) ≥ uh(ϕ(σ′h(Vh), V−h)). (2)

Roth et al. (2007a) showed:

Theorem 5.1 (Roth et al. (2007a)). No IR mechanism is both Pareto-efficient and strate-

gyproof.

Proof. Consider two hospitals, a and b such that Va = {a1, a2, a3, a4} and Vb = {b1, b2, b3}
and let V = Va∪Vb. Further assume the compatibility graph induced by V is given in Figure

2.

Figure 2

Note that every Pareto efficient allocation leaves exactly one node unmatched. Suppose

ϕ is both Pareto efficient and IR. We show that if a and b submit Va and Vb respectively,

at least one hospital strictly benefits from withholding a subset of its nodes. Let v ∈ V be

10The mechanisms often maximize a weighted sum of transplants rather than a simple sum, to implement

priorities, such as for children and for how difficult it is to match a patient (due to high PRA levels)..
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unmatched in ϕ(V ). If v ∈ Va then ua(ϕ(V )) = 3. However, by withholding a1 and a2, a’s

utility is 4 since the Pareto efficient allocation in V \ {a1, a2} matches both a3 and a4, and a

can match both a1 and a2 via an internal exchange. If v ∈ Vb then by a symmetric argument

hospital b would benefit by withholding b2 and b3.

Strategyproof mechanisms do exist, e.g. a mechanism that chooses allocations that max-

imize the number of matched nodes using only internal exchanges. Unfortunately, no such

mechanism is “close” to be efficient:

Theorem 5.2. No IR strategyproof mechanism can guarantee more than 1
2

of the efficient

allocation in every V .

Proof. Consider the same setting as in the proof of Theorem 5.1 (see Figure 2) and suppose ϕ

is an IR strategyproof mechanism which guarantees more than 1/2 of the efficient allocation

in every possible V . Note that either ua(ϕ(Va, Vb)) ≤ 3 or ub(ϕ(Va, Vb)) ≤ 2. Suppose

ua(ϕ(Va, Vb)) ≤ 3. As in the proof of Theorem 5.1, in order for it not to be beneficial for

a to withhold a1 and a2, the mechanism cannot match all pairs in {a3, a4} ∪ Vb. Thus ϕ

can choose at most a single exchange of size 2 in {a3, a4} ∪ Vb, which is only half of the

maximum (efficient) number, and not more, as required by assumption. The case in which

ub(ϕ(Va, Vb)) ≤ 2 is similar.

By allowing randomizing between allocations (in particular allowing inefficient allocations

to be chosen with positive probability) one can hope to improve efficiency in expectation.

Strategyproofness in this case means that, for any reports of other hospitals, no hospital h is

better off in expectation reporting anything other than its type Vh. However, even random

mechanisms do not reconcile individual rationality, strategyproofness and efficiency:

Theorem 5.3. No IR strategyproof (in expectation) randomized mechanism can guarantee

more than 7
8

of the efficient allocation in every V .

Proof. Consider the same setting as in the proof of Theorem 5.1 (Figure 2) and assume

there exists a randomized IR strategyproof mechanism ϕ that guarantees more than 7/8

of the efficient allocation in every possible V . Any allocation leaves at least one node

unmatched. Therefore either E[ua(ϕ(Va, Vb))] ≤ 3.5 or E[ub(ϕ(Va, Vb))] ≤ 2.5. Suppose

E[ua(ϕ(Va, Vb))] ≤ 3.5. We argue that under the mechanism ϕ, hospital a benefits from

withholding a1 and a2. Since ϕ guarantees more than 7/8 of the efficient allocation in

{a3, a4, b1, b2, b3}, ϕ will choose the allocation containing exchanges a3, b2 and b3, a4 with

probability more than 3/4. Therefore a’s expected utility from reserving 2 transplants to do

internally will be 2+c for some c > 1.5. A similar argument holds if E[ub(ϕ(Va, Vb))] ≤ 2.5

11



Ashlagi et al. (2010) study dominant strategy mechanisms for k = 2 and provide a

strategyproof (in expectation) randomized mechanism which guarantees 0.5 of the 2-efficient

allocation.11 Strategyproofness is independent of any probability distribution of the under-

lying compatibility graphs. However, in the case of compatibility of kidneys, a lot is known

about the (approximate) distribution of compatibility graphs, that may be useful for finding

mechanisms that can achieve (almost) efficient allocations as Bayesian equilibria.12 We pro-

ceed by studying the Bayesian setting in a large random kidney exchange program (in the

spirit of recent advances in the study of two sided matching in large markets, cf. Immorlica

and Mahdian (2005) and Kojima and Pathak (2009)). First we study more carefully the

structure of compatibility graphs.

6 Incentives - Bayesian Setting

6.1 Random Compatibility Graphs

To discuss the Bayesian setting it is useful to consider random compatibility graphs. Each

person in the population has one of 4 blood types A,B, AB. and O, according to whether

their blood contains the proteins A, B, both A and B, or neither. The probability that a

random person’s blood type is X is given by µX > 0. We will assume that (as in the U.S.

population) µO > µA > µB > µAB. For any two blood types X and Y , we write Y B X if a

donor of blood type Y and a patient with blood type X are blood type compatible, which

occurs if X includes whatever blood proteins A and B are contained in Y.13

A patient-donor pair have pair type (or just type, whenever it is clear from the context

) X-Y if the patient has blood type X and the donor has blood type Y . The set of pair

types will be denoted by P . In order that a donor and a patient will be compatible they

should be both blood type compatible and tissue-type compatible. To test tissue type

compatibility a crossmatch test is performed. In practice each patient has a different level of

percentage reactive antibodies (PRA) which determines the likelihood that the patient will

11The mechanism randomly partitions hospitals into two sets and chooses randomly an allocation with

maximum number of matched nodes among allocations that satisfy (i) there are no edges between the nodes

of two hospitals within each set, and (ii) are 2-efficient within each hospital.
12Showing an efficiency approximation gap between the Bayesian approach and prior free approach has

been shown for example by Babaioff et al. (2010) in an online supply problem.
13Thus type O patients can receive kidneys only from type O donors, while type O donors can give kidneys

to patients of any blood type. Note that since only incompatible pairs are present in the kidney exchange

pool, donors of blood type O will be underrepresented, since most such donors will be compatible with their

intended recipients; the only incompatible pairs with an O donor will be tissue-type incompatible. (Roth et

al. 2005 showed that a significant increase in the number of kidney exchanges could be achieved by allowing

compatible pairs to participate, but this has not become common practice.)
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be compatible with a random donor. The lower the PRA of a patient, the more likely the

patient is compatible with a random donor. In this paper we simplify the PRA characteristics

and assume there exist two levels of PRA, L and H; the probability that a patient p with

PRA Q ∈ {H,L} and a donor are tissue type incompatible is given by γQ. Furthermore the

probability that a random patient has PRA L is given by τ > 0. Let γ̄ denote the expected

PRA level of a random patient, that is γ̄ = τγL + (1− τ)γH .

Definition 6.1 (Random Compatibility Graph). A random (directed) compatibility

graph of size m, denoted by D(m), consists of m incompatible pairs, and a random edge is

generated between every donor and each one of her compatible patients. Hence, such a graph

is generated in two phases:

1. Each node/incompatible pair in the graph is randomized as follows. A patient p and

a potential donor d are created with blood types chosen independently according to the

probability distribution µ = (µX)X∈{A,B,AB,O}. The PRA of p, denoted by γp is also

randomized (L with probability τ and H with probability 1− τ).

A number z is drawn uniformly from [0, 1] and (p, d) forms a new node if and only if

p and d are blood type incompatible or p and d are blood type compatible but z ≤ γp.

Each realized node is assigned randomly to one of the hospitals in H.

2. For any two pairs v1 = (p1, d1) and v2 = (p2, d2), d1 is tissue type compatible with p2

with probability 1− γp2 and there is an edge from v1 to v2 if and only if d1 and p2 are

both ABO compatible and tissue type compatible.

To analyze random compatibility graphs we will use results and methods from random

graphs based on the Erdos-Renyi model (see e.g. Erdös and Rényi (1959) and Erdös and

Rényi (1966)). A random graph G(m, p) is an undirected graph with m nodes such that

between each two different nodes an edge exist with probability p (where p can be a function

of m). A bipartite random graph B(m, p) consists of two disjoint sets of nodes V and

W each of size m and an undirected edge between any two nodes v ∈ V and w ∈ W exists

with probability p (no two edges within the same set V or W have an edge between them).

It will be useful to think of an undirected edge as two directed edges, one in each direction.

A matching in an undirected graph is a set of edges for which no two edges have a node in

common.

Erdos-Renyi Theorem Let ε > 0.

1. Let G(m, p) be a random graph where p(m) ≥ (1+ε)lnm
m

. The probability that there exists

a matching that matches all nodes but at most one approaches 1 as m tends to infinity.
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2. Let B(m, p) be a random graph where p ≥ 2 (1+ε)lnm
m

. The probability that there exists

a matching that matches all nodes approaches 1 as m tends to infinity.

For simplicity we adopt the following formalism from random graph theory: if the prob-

ability that a given property Q (e.g. a perfect matching) exists in G(m, p) (B(m, p)) tends

to 1, when m→∞ we say that Q holds in almost every graph G(m, p) (B(m, p)).

We will be interested in properties of the random compatibility graph D(m). Thus, we

say that a property Q holds for almost every D(m) if Q is satisfied almost surely when

m→∞. Since we study large graphs we let γ (the probability for tissue type incompatibility)

be a non-decreasing function of m, with the special interesting case at which γ is a constant.

One property that is immediate to derive will give a better idea on the relation between

different pair types in D(m). We will use the following notations. The (posterior) probability

that an incompatible pair (p, d) has type X-Y be µX-Y. In particular there exists ρ > 1 such

that if X and Y are two blood types such that Y B X then µX-Y = ρµXµY γ̄ and otherwise

µX-Y = ρµXµY . The number of incompatible pairs of type X-Y in D(m) is a random variable

denoted by ZX-Y(m) (or just ZX-Y when it is clear form the context).

Lemma 6.2. Let 0 < δ < 1. In almost every D(m):

Pr(∀ X-Y ∈ P (1− δ)mpµX-Y < ZX-Y < (1 + δ)mµX-Y) = 1− o(m−1).14

Lemma 6.2 implies that in almost every D(m) the number of O-X pairs is strictly larger

than the number of X −O pairs for X ∈ {A,B,AB}. Similarly is relation between X −AB
and AB −X for X ∈ {A,B}.

In general Lemma 6.2 motivates the following partition of pair types (see also Roth et al.

(2007b) and Ünver (2010)):

PO = {X-Y ∈ P : Y B X and X 6= Y }

be the set of over demanded types.

Let

PU = {X-Y ∈ P : X B Y and X 6= Y}

be the set of under demanded types.

14For any two functions f and g we write f = o(g) if the limit of the ratio f(n)
g(n) tends to zero when n tends

to infinity.
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Let

PS = {X-X ∈ P}

be the set of self demanded types, and finally let PR the set of reciprocally demanded

types which consists of types A-B and B-A.

Intuitively, an over-demanded pair is offering a kidney in greater demand than the one

they are seeking. For example a patient whose blood type is A and a donor whose blood type

is O form an over demanded pair. Under-demanded types have the reverse property: they

are seeking a kidney that is in greater demand than the one they are offering in exchange.

The donor and a patient with a self demanded type have the same blood type.

We will next study efficient allocations in random compatibility graphs.

6.2 Efficient Allocations

We will make the following assumption which is compatible with real life tissue-type (sensi-

tivity) frequencies. Zenios et al. (2001) reported that for non-related blood type donors and

recipients γ̄ = 0.11. 15

Assumption A [Non-highly-sensitized patients] γ̄ < 1
2
.16

Theorem 6.3. Almost every D(m) has an efficient allocation that requires exchanges of no

more than size 3 with the following properties:

1. Every self demanded pair X-X is matched in a 2-way or 3-way exchange with other self

demanded pairs (with no more than one 3-way exchange is needed in the case of an

odd number of X-X pairs).

2. Either every B-A pair is matched in a 2-way exchange with a A-B pair or every A-B

pair is matched in a two way exchange with a B-A pair.

3. Every AB-O is matched in a 3-way exchange with a O-A pair and a A-AB pair.

4. Let X, Y ∈ {A,B} and X 6= Y . If there are more Y-X than X-Y then every Y-X pair

that is not matched to a X-Y pair is matched in 3-way exchanges with a O-Y pair and

a X-O pair.

5. Every over demanded pair X-O (X 6= O) that is not matched above is matched to a

O-X pair.

15One can extend our results for larger tissue-type incompatibility probability.
16This assumption is also used for avoiding case-by-case analysis; one can extend the results to the opposite

inequality.
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The proof of Theorem 6.3 is deferred to the Appendix. Roth Sonmez and Unver (2007)

show a similar result to Theorem 6.3 and a with a bit of effort a similar result can be derived

also from Unver (2009). Both these works assumed that there are no tissue type incompati-

bilities between patients and other patients’ donors in order to approximate a large market.

Our result provides a mathematical foundation to essentially justify their assumption. In

addition, both works show that at most 4-way exchange are needed to find an efficient al-

location (Unver (2009) analyzes a dynamic world). The difference from our result (we need

at most 3-way exchanges) follows from the fact that they assume that there are more A-B

pairs than B-A pairs (Unver assumes that the probability for a pair to be of type A-B is

greater than the probability that it will be of type B-A). In fact simulations by Roth Son-

mez and Unver (2007) support our findings. It is important to note in our model although

µA-B = µB-A the probability that the number of each of such pairs is different is positive, but

the difference will almost always be sufficiently small to make 4-way exchange unproductive.

Sketch of proof of Theorem 6.3: We will use a simple extension of the Erdos-Renyi

Theorem (Lemma 8.3) to l-partite graphs (l ≥ 2) which asserts that if at most one of the l

sets (parts of the graph) does not grow to infinity then almost every such graph consists of

a perfect allocation (an allocation which matches all the pairs in the smallest “part” of the

graph).

Since µA-B = µB-A one can show that with high probability (follows from Lemma 6.2) the

difference between the number of A-B pairs and the number of B-A pairs is small. Suppose

that the number of A-B pairs is a least the number of B-A pairs (the converse is symmetric).

An application of the Erdos-Renyi Theorem provides that all self demanded pairs can be

matched using 2-way or 3-way exchanges to each other with high probability. Similarly

all B-A pairs can be matched to A-B pairs through 2-way exchanges. We choose such an

allocation at random, say M1.

Let VA-B be the set of A-B pairs that are not matched so far by M1 (see Figure 3). With

high probability the size of VA-B is smaller than both the size of the set of B-O pairs and

the size of the set of O-A pairs. Again using an application of the Erdos-Renyi Theorem

this graph almost always contains a perfect allocation, implying that all A-B pairs can be

matched. Similarly one can show match with high probability all AB-O pairs using 3-way

exchanges which contain B-AB pairs and O-B pairs. Using our assumptions on γ one can

show that there are more (and a non trivial amount) O-B pairs and O-A pairs than B-O and

A-O pairs respectively that are not yet matched. Therefore all remaining over demanded

pairs can be matched to under demanded pairs (again by considering the bipartite graphs

they induce).

By construction every pair whose type is colored in Figure 3 (as well as all self demanded

pairs) is matched implying that we obtained a 3-efficient allocation. To see that that k ≥ 4
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Figure 3: The graph D(m) (excluding all self demanded pairs) is partitioned either condi-

tionally on previous found allocations (scribbled lines) or independently (bold lines) in order

to find exchanges. All pairs in colored regions will get transplants.

cannot increase the number of transplants we consider only the 4-way exchange with pairs

AB-O,O-A,A-B and B-AB (see Figure 4). Such an exchange uses an AB-O pair and a A-B

pair that is not matched to a B-A pair. But both of these pairs are all matched in k = 3 in

3-way exchanges implying that using such a 4-way will result in fewer transplants.

From Theorem 6.3 and its proof one can derive the efficiency loss between different k’s

in large graphs. Let Z(k,m) be the expected size of a k-efficient allocation in D(m).

Corollary 6.4. 1. For every k ≥ 2, limm→∞ Pr(Z(3,m) ≥ Z(k,m)) = 1.

2. For every ε > 0, limm→∞ Pr{Z(3,m)− Z(2,m) ≤ (1 + ε)(µAB−O)m+ εµA−Bm} = 1.

3. In almost every graph D(m), in all efficient allocations all over demanded pairs are

matched.

To this point nothing is said about incentives in the Bayesian setting. In the next section

we study the efficiency loss when requiring individual rationality.

6.3 Individually Rational Allocations

Throughout the remainder of the paper we will make following assumption:17

Assumption B: Each hospital can conduct exchanges of size at most 3.

17This assumption used to simplify our arguments and all our theorems hold without it.
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Figure 4: The possible 4-way exchange uses the bottlenecks of the 3-way exchanges - AB-O

pairs and A-B pairs.

One way to bound the efficiency loss is by attempting to construct an efficient allocation

as in Theorem 6.3, while making sure that the pairs each hospital can internally match are

part of the efficient allocation. In such an efficient allocation only under demanded pairs are

not matched. Unfortunately guaranteeing that all those under demanded pairs are part of

the relevant allocation while matching all other types of pairs is not always feasible.

Consider the two types of 3-way exchanges (i) A-O,O-B and B-A, (ii) B-O,O-A and A-

B which we will refer to by special 3-way exchanges. The first type, (i), contributes to a

“wrong” asymmetry between the number of matched A-O and O-A pairs (“wrong” - since

all A-O pairs will be easy to match in a large exchange pool), and similarly the second type,

(ii), contributes to a “wrong” asymmetry between the number of matched B-O and O-B

pairs. If there are many 3-way exchanges of type (i) as well as other exchanges that include

O-B pairs but not B-O pairs (see e.g. Figure , we might run into a situation that more O-B

pairs need to be matched than the total number of B-O pairs.

The next definition captures this extreme asymmetry. Let c > 0 and let D(c) be a random

compatibility graph. Denote by Rc
O-A (Rc

O-B) the expected maximum number of O-A (O-B)

pairs that can be matched through Pareto efficient allocations, where each chosen exchange

in which a O-A (O-B) pair is part of contains also an A-O or a B-O pair. Similarly let

Rc
A-AB (Rc

B-AB) the expected maximum number of A-AB (B-AB) pairs that can be matched

through Pareto efficient allocations, where each chosen exchange a A-AB (B-AB) pair is part

of contains also a AB-A pair or a AB-B pair.

Definition 6.5. We say that c is a critical size if for some under demanded pair X-Y∈
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Figure 5: Example of exchanges that increase the number of B-O matched pairs and not the

O-B matched pairs.

PU \ {AB-O}, Rc
X-Y > Zc

Y-X where Zc
Y-X is the expected number of Y-X pairs in D(c).

Calculating critical c’s is difficult. Intuitively, for small c’s are not critical since a hospital

of such size will rarely have exchanges at all. Large enough c’s are not critical since efficient

matchings will have properties similar to those in Theorem 6.3. We ran simulations using

approximated distributions and found that only for c ≥ 70 it is critical.

In the next theorem we show that the efficiency loss is small given that hospitals are of

a non-critical size.

Theorem 6.6. If every hospital h ∈ H is of a non-critical size c, then in almost every D(m)

the maximum size of an individually rational allocation is at most (1 + ε)(µAB−O)m smaller

than the efficient allocation for any ε > 0.

The proof of Theorem 6.3 is constructive and appears in the appendix.

Remarks: (a) The efficiency loss follows since some O-AB pairs will need to matched using

AB-O which could have been used in 3-way exchanges. (b) Note that the lower bound we

obtained in Theorem 6.6 is at least the size of a 2-efficient allocation. This is not obvious

since there exist realizations for which the size of a maximum individually rational allocation

is smaller than the size of a 2-efficient allocation. For example when one may need to choose

a special 3-way exchange A-O,O-B,B-A over a couple of 2-way exchanges, one with A-B and

B-A pairs and one with A-O, O-A pairs (see e.g. Figure 5). As the theorem asserts, this is

very unlikely.

We want to bound the efficiency loss for any c. As we mentioned above values for critical

c’s are not small. In a hospital h with a large size c we expect to have more O-A pairs than

A-O and AB-O pairs together with high probability. These extra pairs will help “fixing” the

wrong asymmetry when deciding which pairs to match. We will call a hospital regular if it

has fewer A-O and AB-O pairs than O-A pairs and fewer B-O and AB-O pairs than O-B

pairs.
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The bound will follow from the following intuition. Recall that if h is a hospital of critical

size, then it may be possible to match more O-B (O-A) pairs than B-O (A-O) pairs. However

if h is regular, it has enough spare under demanded pairs of types O-A and O-A that can

be matched instead of those under demanded pairs. Thus if it has for example an internal

special exchange A-O,O-B,B-A then the idea would be to guarantee to match the A-O,B-A

and some other O-A pair. If a hospital is non-regular the allocation will match its nodes

from the special internal exchanges, by choosing those exchanges if it is of critical size, and

by just guaranteeing those nodes if it is not.

Denote by π(c) the probability that a hospital is not regular. Observe that π(c) → 0

as c approaches infinity. From Chernoff bounds (see Lemma 8.1) π(c) > 1 − e−βc for β ≥
µAB−O+µB−O+µO−B (the inequality follows by restricting attention to the subgraph induced

by only those three pair types).

Theorem 6.7. Suppose every hospital is of size c. In almost every graph D(m) there exist

an individually rational allocation using exchanges of size at most 3, which is at most (1 +

ε)(µAB-O+µAB-A+e−βc min(µA-O, µA-B))m smaller than the efficient allocation for any ε > 0.

Again simulating with approximated distributions we obtained that π(c) ∼ 0.22 for

c = 5, π(c) ∼ 0.19 for c = 10, and π(c) ∼ 0.14 for c = 20. In particular the term

e−βc min(µA-O, µA-B) is larger than the term µAB-O +µAB-A for already reasonably small c’s.

Consider the following stronger notion of individually rationality which guarantees every

hospital a maximum set of pairs that it can internally match:

Definition 6.8. Let Vh be the set of pairs of each hospital h and let M be an allocation in

V = ∪h∈HVh. M is strongly individually rational if for every h there exists an efficient

allocation Mh in Vh such that C(Vh,Mh) ⊆ C(Vh,M).

Under strongly individual rationality the “trading” we done for normal hospitals is not

valid, implying a larger bound.

Theorem 6.9. Suppose every hospital is of size c. In almost every graph D(m) there exist

a strong individually rational allocation using exchanges of size at most 3, which is at most

(1 + ε)(µAB-O +µAB-A + min(µA-O, µA-B)m smaller than the efficient allocation for any ε > 0.

See Table 2 (in the previous section) for simulations results; in these simulations we use

approximated blood type and tissue type distributions, and ran an exchange mechanism

which outputs a strong individually rational Pareto efficient allocations. The average loss is

very small for different sizes of graphs, for example, for 22 hospitals the average size of an

IR Pareto efficient allocation is 160.74 and the average size of an efficient allocation is 161.1.
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6.4 Mechanisms for Random Kidney Exchange Programs

As in the previous section hospitals are assumed to know their own compatibility graph

but not the entire underlying graph. To study hospitals’ incentives in a given mechanism

we consider a Bayesian game in which hospitals strategically report a subset of their set of

incompatible pairs, and the mechanism chooses an allocation. Thus a kidney exchange

game is now a Bayesian game Γ(f) = (H, (Th)h∈H , (uh)h∈H) where H is the set of hospitals,

uh is the utility function for hospital h, and Th is the set of possible types for each hospital,

where a type is drawn as in the compatibility graph generating process, that is the the

underlying graph is generated, and each hospital observes its own subgraph.

The expected utility for hospital h at strategy profile σ is

E[uh(ϕ(σh(Vh), σ−h(Ṽ−h))]. (3)

Let σ be a strategy profile and let ε > 0. Strategy σh is an ε-best response against σ−h if for

no σ′h
E[u(ϕ(σ′h(Vh), σ−h(Ṽ−h))] ≥ E[u(ϕ(σh(Vh), σ−h(Ṽ−h))]− ε. (4)

σ is an ε-Bayes Nash equilibrium if every hospital h, σh is an ε best response against σ−h.

For ε = 0, σ is the standard Bayes Nash equilibrium.

A particular strategy which will interest us is the truth-telling strategy: a hospital

always reports its entire set of incompatible pairs. To analyze mechanisms for large random

exchange pools, it will be useful to consider a sequence of random kidney exchange games

(Γ1(ϕ),Γ2(ϕ), . . .), where Γn(ϕ) denotes a random kidney exchange game with |H| = n

hospitals.

We begin with analyzing current kidney exchange mechanisms.

6.4.1 The Status Quo

A stylized version of current kidney exchange mechanisms is the following:

Maximum Transplants mechanism (MT): for any V choose at random an efficient

allocation in V .

Theorem 6.10. In the sequence of games Γ1(MT ),Γ2(MT ), . . . ,Γn(MT ), . . . ... there exist

no ε(n) = o(1) such that the truth-telling strategy for hospital h is an ε(n) best response

against any strategy profile of all other hospitals in the kidney exchange game with n hospitals.

Consequently, there exist no ε(n) = o(1) such that reporting truthfully is an ε(n)-Bayes Nash

equilibrium in Γn(MT ).

Proof. It is enough to provide an example of a compatibility graph for some hospital in which

it is better off not reporting truthfully. Fix some hospital h and suppose Vh = {v1, v2} where
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v1 nd v2 are of blood type pairs O-B and B-O respectively and v1, v2 is an internal exchange.

Let q = µB-O

µO-B
. There exist a large enough n such that the set of reported pairs Tn by all n

hospitals satisfies the following: with probability at least 1 − o(1) every efficient allocation

matches all over demanded pairs B-O. Furthermore each pair of type O-B is matched with

probability q + o(1). Therefore if hospital h reports both pairs v1 and v2, then the expected

utility for h is 1 + q + o(1) and by not reporting both pairs h obtains a utility of 2.

One may suggest that although a hospital might be better off withholding some pairs,

efficiency would not be harmed. In the proof of Theorem 6.10 we showed that hospital

h is better off withholding an exchange that consists of one over demanded pair and one

under demanded pair. In a small exchange pool obviously such withholding can result in

less transplants, but even in a large exchange pool this can cause efficiency loss since the

over demanded pair can be part of a 3-way exchange rather than a 2-way exchange in the

optimal allocation as Theorem 6.3 suggests. If all hospitals withhold such exchanges, this

might lead to a substantial efficiency loss as will be illustrated below.

Essentially the asymmetry in blood type frequencies what gives Theorem 6.10. The MT

might might further deepen the asymmetry: consider hospitals that withhold internal special

3-way exchanges. Since the expected number of each of the two special exchanges is different,

either more A-B or more B-A pairs will be withheld by hospitals. If this difference is “large”,

one of these pair types in fact will play the role of a new over demanded type. Considering

future exchanges, one wishes to overcome asymmetries rather than create new ones.

We simulated the MT mechanism and examined two types of behavior for hospitals:

truth-telling, in which a hospital reports all of its incompatible pairs to the mechanism, and

a naive strategy called withhold internal matches, in which a hospital withholds a maximum

set of pairs it can match on itself. As depicted in Figure ??, withholding provides on average

more transplants than truth-telling for an arbitrary hospital given that all other hospitals

are truth-telling. The benefit becomes even higher when all other hospitals also withhold

internal matches (see Figure 6).

Following these findings we compared the efficiency achieved when hospitals use the

withhold internal matches strategy, to the efficiency achieved when hospitals report truthfully

to the existing (non IR) mechanism. The efficiency loss is about 10% in both k = 3 and

k = 2 (see Figure 7).

Consider the following mechanism.

Guarantee Mechanism (GM): Let V = (V1, . . . , Vh) be the profile of reported sets of

incompatible pairs.

Step 1: For each h choose randomly a Pareto efficient allocation Mh which:

(a) matches the largest number of under demanded pairs in Vh, and
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Figure 6: Withholding internal matches vs. reporting truthfully (k=3).

(b) matches the largest number of A-B or B-A pairs while satisfying (a).

Let Sh be the set of pairs that are matched under Mh.

Step 2: Choose randomly an allocation with a maximum size for which matches all nodes in

Sh for every h.

Theorem 6.11. The truth-telling strategy profile is an ε(m)-Bayes Nash equilibrium for

ε(m) = O( 1
m

) in the game induced by the GM mechanism.

The proof will appear in the full version.

7 Post Allocation Deviations

Currently hospitals need not commit to exchanges chosen by the centralized exchange. In-

deed NEPKE reports show that hospitals withheld pairs after they have observed the allo-

cation. We consider the following three stage model:

1. The mechanism chooses an allocation in the compatibility graph induced by the sets

of reported pairs.

2. Each hospital chooses which incompatible pairs to withhold (in addition to those it

already haven’t reported in the first stage). All pairs in exchanges that at least one pair

has been withheld, are considered as not matched, and the mechanism chooses another

allocation in the graph induced by the set of reported pairs that are unmatched.
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Figure 7: Withholding internal matches vs. reporting truthfully.

3. Each hospital chooses an allocation in the graph induced by its own pairs that are

unmatched after the previous stage.

The third stage is similar to the second stage in the basic model. Intuitively, this model

provides the hospitals: “see what you get, and then decide”. To illustrate this model consider

the following example.

Example 1. Consider the compatibility graph in Figure 5 and assume a1 and a2 belong to

hospital a and b1, b2, b3 belong to hospital b. If the chosen allocation matches all nodes but b3

then if b withholds b1 and b2 in the second stage then the mechanism will match b3 and a2,

which increases the utility of b from 2 to 3.

a
1a

2
b
1

b
3

b
2

Figure 5.

Theorem 7.1. Let k = 2. Consider the game induced by the GM mechanism (the same rule

applies in both stages) and all hospital reports truthfully in the first stage. Then it is not

beneficial for any hospital h to withhold any pairs in the second stage regardless what other

hospitals withhold in that stage.

Proof. Suppose some hospital h reports truthfully in the first stage but benefits from with-

holding a set of pairs Xh ⊆ Vh in the second stage of the GM mechanism. Let Xh be a

set with smallest size cardinality for which h benefits from withholding. Denote by M the
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allocation after the 1st stage of the mechanism and let M̄ be the union of the allocations

chosen either by the mechanism or hospital h in the entire graph at the end of all stages. By

the minimality of Xh there is no exchange c in Xh such that c ∈ M , otherwise, if c = v1, v2

is such an exchange then h would benefit by withholding Xt \ {v1, v2}.
Since h benefits there exists a node v ∈ Vh that is matched by M̄ and not by M . Let

M∆M̄ = {(v, u) : (v, u) ∈ M \ M̄ or (v, u) ∈ M̄ \M} be the symmetric difference of M

and M̄ . Since h benefits there exist a sequence of distinct nodes v = v1, v2, . . . , vm for some

m ≥ 2 such that (v2i−1, v2i) ∈ M̄ and (v2i, v2i+1) ∈ M̄ and at least for one i, vi ∈ Xt. Choose

such a sequence with a largest possible m. Note that m must be odd, otherwise M is not

efficient: taking (v1, v2), (v3, v4), . . . , (vm−1, vm) to be in M instead of (v2, v3), . . . , vm−2, vm−1)

increases the size of M . By the minimality of Xh there are at most two nodes in the sequence

that belong to Xt. Therefore by the construction of the mechanism m ≤ 5, otherwise for

some 1 ≤ i ≤ m, vi, vi+1 /∈ Xh and (vi+1, vi+1) is an exchange in M . Thus either m = 3 or

m = 5. Suppose m = 3. If v2 ∈ Vh then v3 ∈ Vh otherwise this would contradict maximizing

on internal pairs. But this means hospital h does not benefit. If v2 /∈ Vh then v1 and v3

are both Vh which again means that h does not benefit. Finally suppose m = 5. Then

v3, v4 ∈ Xh and at least one of v2 and v5 are not in Vh. This contradicts that the mechanism

maximized on internal pairs: the allocation M ′ = M ∪ {(v1, v2), (v3, v4)} \ {(v2, v3), (v4, v5)}
is efficient and has more internal pairs than M .

Note that the RM mechanism which chooses randomly between all efficient IR matchings,

is manipulable in the second stage, as can be seen in Example 1.

For k ≥ 3, IR and efficiency do not hold together. However even by requiring only Pareto

efficiency Theorem 7.1 does not hold for k ≥ 4:

Theorem 7.2. For any k ≥ 4 there exist no IR efficient mechanism that makes it a dominant

strategy for every hospital to not withhold any pair in the second stage.

Proof. The proof is given for k = 4. The proof is similar proof for any k > 5. Consider the

compatibility graph in Figure 6. Suppose that for each i = 1, 2, 3, ai belongs to hospital h,

and bi belong to hospital h′. Exactly one of the 4 length cycles will be chosen. If the left

exchange is chosen then h′ is better off withholding b1 and if the right one is chosen h is

better off withholding a3.

Whether Theorem 7.1 holds under (requiring only Pareto efficiency) for k = 3 remains

an open problem. k = 3 is in particular interesting for the kidney exchange since in practice

mechanisms for kidney markets allow exchanges to be of size at most 3.
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8 Open Questions and Conclusion

We leave some interesting open questions: 1. Can the upper bounds we establish on the

worst-case efficiency of individually rational kidney exchange mechanisms be achieved? (i.e.

are these tight upper bounds?) 2. In addition to cycles of length k, there has been growing

use of various kinds of chains in kidney exchange, and it remains an open question how the

relative importance of chains and cyclic exchanges will change as the size of the pool (and

the number of non-directed donors) grow large. It seems likely that, even in large markets,

chains will be especially helpful to the most highly sensitized patients. It seems possible that

in very large markets such patients can receive transplants with reduced cost to the total

number of transplants.

Fewer than 1,000 transplants from kidney exchanges have been accomplished since the

first kidney exchange in the United States in the year 2000, but well over half of those

completed in the decade 2000-2009 were in 2008 and 2009, so kidney exchange is growing

rapidly. As it grows, it faces new problems.

When kidney exchange was just beginning, most exchanges were conducted in single hos-

pitals, or in closely connected networks of hospitals like the fourteen New England transplant

centers organized by the New England Program for Kidney Exchange (Roth et al. (2005a)).

But today exchanges typically involve multiple hospitals that may have relatively little re-

peated interaction outside of kidney exchange. The present paper is meant to help establish

a framework to study the kinds of problems that can be anticipated as the United States

moves in the direction of nationally organized exchange.

This paper concerns the growing problem of giving hospitals the incentive to participate

fully, in order to achieve the gains that kidney exchange on a large scale makes possible. The

results suggest that, if care is taken in how kidney exchange mechanisms are organized, the

problems of participation may be less troubling in very large exchange programs than they

are observed to be in multi-hospital exchanges on the scale of those presently operating.
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Appendix A

8.1 Preparations

The following bounds will be useful in our proofs.

Lemma 8.1 (Chernoff bounds). Let X1, X2, . . . , Xn be independent bernoulli random trials

with Pr(Xi = 1) = p for every i = 1, . . . , n and let X =
∑n

i=1 Xi.

(i) For any δ ∈ (0, 1]

Pr (X < (1− δ)np) < e
−npδ2

2 . (5)
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(ii) For any δ < 2e− 1

Pr (X > (1 + δ)np) < e
−npδ2

4 . (6)

Proof of Lemma 6.2:

Let D(m) be a random compatibility graph and let δ > 0. By Lemma 8.1 for every type

X-Y

Pr [ZX-Y /∈ ((1− δ)mµX-Y, (1 + δ)mµX-Y)] < e
−mµX-Yδ

2

4 + e
−mµX-Yδ

2

2 = o(m−1).

Therefore

Pr [for all X-Y ∈ P , (1− δ)mµX-Y < ZX-Y < (1 + δ)mµX-Y] =

1− Pr [for some type X-Y ∈ P : ZX-Y /∈ ((1− δ)mµX-Y, (1 + δ)mµX-Y)] ≥

1−
∑

X-Y∈P

Pr [ZX-Y /∈ ((1− δ)mµX-Y, (1 + δ)mµX-Y)] = 1− o(m−1),

where the last inequality follows since there are a finite number of pair types. 2

Let 0 ≤ δ < 1 and m0,m1, . . . ,ml−1 be positive integers. For any integer l ≥ 0, let

F
(m0,m1,...,ml−1)
δ be a distribution over l-tuples of integers that belong to [(1 − δ)m0, (1 +

δ)m0] × [(1 − δ)m1, (1 + δ)m1] × · · · × [(1 − δ)ml−1, (1 + δ)ml−1] and by H
(m0,m1,...,ml−1)
δ a

distribution over l-tuples of integers that belong to [0, δm0]× [(1− δ)m1, (1 + δ)m1]× · · · ×
[(1− δ)ml−1, (1 + δ)ml−1]. We will write Fm

δ = F
(m)
δ .

Definition 8.2 (Uniformly Bounded Directed Random Graphs). A uniformly bounded

directed random graph (UBDG) denoted by D(m, p, δ) and associated with a distribution

Fm
δ is generated as follows: first the number of nodes is realized according to Fm

δ . Then for

every two realized nodes v, w a directed edge is generated from v to w with probability at least

p (note that for δ = 0 the number of nodes is fixed).

A l-partite random graph (l-UBDG), denoted by D(m0,m1, . . . ,ml−1, p, δ) and asso-

ciated with distribution F = F
(m0,m1,...,ml−1)
δ is generated as follows: First l ≥ 2 distinct sets

of nodes V0, V1, . . . , Vl−1 are generated whose sizes are distributed according to F . Then for

each i = 0, 1, . . . , l − 1, and each two nodes v ∈ Vi, w ∈ Vi+1 (i is taken modulo l) there is a

directed edge from v to w with probability at least p, and between every two other nodes there

exist no edge (again for δ = 0, the size of each set Vi is deterministic).

Finally a quasi uniformly bounded directed l-partite random graph (l-QBDG),

denoted by D̄(m0,m1, . . . ,ml−1, p, δ) is defined similarly to an l-UBDG only it is associated

with a distribution H
(m0,m1,...,ml−1)
δ rather then a distribution F

(m0,m1,...,ml−1)
δ .
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For clarity and brevity when there is no harm we will just refer to an l-UBDG and an

l-QBDG by an l-partite graph. Note that in any l-partite graphs only exchanges of size

k = ql for positive integers q are feasible.

An allocation in D(m, p, δ) (for any k ≥ 2) is perfect if it matches all but at most one

node. Similarly an allocation in an l-partite graph D(m0, . . . ,ml−1, p, δ) is perfect if it

matches all nodes in some set Vi for some i ∈ {0, . . . , l − 1}. Note that if there is a perfect

allocation in D(m0,m1, . . . ,ml−1, p, 0) then it must match all nodes in a set Vi whose size is

minimal.

Finally, almost every D(m, p, δ) has property Q if P (Q) → 1 whenever m → ∞ for

any infinite sequence of distributions F 1
δ , F

2
δ , . . .. For l-UBDG and l-QBDG graphs we use a

similar definition requiring that for each i = 0, . . . , l − 1, mi →∞.

Lemma 8.3. Let 0 < p < 1 and let 0 ≤ δ < 1.

1. Almost every D(m, p, δ) contains a perfect allocation with k = 2 and an allocation that

matches all nodes for any k ≥ 3.

2. Let 0 < c0 ≤ c1 ≤ · · · ≤ cl−1 ≤ 1. Almost every D(c0m, c1m, . . . , cl−1m, p, δ) contains

a perfect allocation which matches all nodes in some set Vi. Furthermore, if not all c′i
equal, j′ ≥ 1 is the least index for which cj′ − cj′−1 > 0 and δ <

cj′−cj′−1

cj′+cj′−1
then every

perfect allocation matches all nodes in some Vi for some i < j′.

3. Let 0 < c1 ≤ · · · ≤ cl−1 ≤ 1 and let δ < c1
1+c1

. Almost every D̄(m, c1m, . . . , cl−1m, p, δ)

contains a perfect allocation which matches all nodes in V0.

Proof. First not that it is sufficient to prove the result for exact p rather than at least p (if

the result holds for p than increasing the probability for the existence of some edges can only

increase the probability of a perfect allocation). We begin with the first part. The proof for

both k = 2 and k ≥ 3 follows by applying the Erdos-Renyi Theorem to non-directed random

graphs. We begin with k = 2. Let

pm = Pr
[
there exists a perfect allocation in G(m, p2)

]
.

Let D(m, p, 0) be a UBDG. Since a cycle of length 2 has probability p2 and because k = 2

Pr [there exist a perfect allocation in D(m, p, 0)] = pm.

Let δ be such that δ < 1. We define a sequence (xm)m≥1 by choosing arbitrarily

xm ∈ arg min
x∈N∩[(1−δ)m,(1+δ)m]

Pr [there exist a perfect allocation in D(x, p, 0)] . (7)
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Note that the minimum is attained in some value since it is taken over a finite set. Therefore,

for any distribution Fm
δ the graph D(m, p, δ) is associated with the following inequality holds:

Pr [there exist a perfect allocation in D(m, p, δ)] ≥
Pr [there exist a perfect allocation in D(xm, δ, 0)] = pxm .

Finally since p is a constant, by the Erdos-Renyi Theorem pxm → ∞ completing the proof

for k = 2.

We proceed to k ≥ 3. Let m̃ be the realized number of nodes. Given that m̃ is even

a perfect allocation can be found using only 2-way exchanges with probability 1 − o(1).

Suppose m̃ is odd. Pick arbitrarily m̃-1 nodes and find an efficient allocation only with 2-

way exchanges. Again, this can be found with probability 1−o(1). Given such an allocation

an efficient allocation exist if one can find a pair of nodes w and z that are matched to each

other such that the single unmatched node can form a 3-way exchange with w, z. Such a

pair of nodes v, z cannot be found with probability at most (1 − p2)m. This completes the

first part.

The second part will follow from a reduction to a bipartite random graph and applying

the Erdos-Renyi Theorem. Note that it is enough to prove the result for k = l, i.e. that

there exist an efficient allocation using exchanges of at most (hence exact) size l.

Let be D(m,m, . . .m, p, 0) be an l-UBDG and let V0, V1, . . . , Vl−1 be the sets of nodes in

the graph as in Definition 8.2. For each i = 0, . . . , l− 1 and j = 1, . . . ,m let vi,j be the j-th

node in set Vi. We construct a bipartite graph B(m, pl) (with sets of nodes V and W ) as

follows. Let V = V0 and for every j = 1, . . .m, let the tuple (v1,j, v2,j, . . . , vl−1,j) be a node

in W . (see Figure 8).

Figure 8: The graph on the left is a directed 3-partite graph and a the cycle corresponds to

the non-directed edge on the bipartite graph on the right.
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Let

qm = Pr
[
there exists a perfect allocation in B(m, pl)

]
.

Fix some 1 ≤ j ≤ m and some v ∈ V0. Observe that the probability that D(m,m, . . . ,m, p, 0)

contains the cycle v, v1,j, v2,j, . . . , vl−1,j is pl. Moreover the probability that there exist an

edge between (v1,j, v2,j, . . . , vl−1,j) and v is also pl (see Figure 2). Therefore

Pr [there exist a perfect allocation in D(m,m, . . . ,m, p, 0)] ≥ qm.

By only adding more nodes adding more nodes to sets of nodes while keeping the size of

the smallest set

Pr [there exist a perfect allocation in D(c0m, c1m, . . . , cl−1m, p, 0)] ≥
Pr [there exist a perfect allocation in D(c0m, c0m, . . . , c0m, p, 0)] .

We define a sequence (xm)m≥1 by choosing arbitrarily

xm ∈ arg min
x∈N∩[(1−δ)m,(1+δ)m]

Pr [there exist a perfect allocation in D(x, x, . . . , x, p, 0)] . (8)

Therefore, for any F
(c0m,c1,...,cl−1m)
δ the graph D(c0m, c1m, . . . , cl−1m, p, 0) is associated

with the following inequality holds:

Pr [there exist a perfect allocation in D(c0m, . . . , cl−1m, p, δ)] ≥
Pr [there exist a perfect allocation in D(xc0m, . . . , xc0m, p)] ≥ qxc0m .

As in part one, qxc0m → 1 as m→∞ by the Erdos-Renyi Theorem. We obtained that almost

every graph D(c0m, c1m, . . . , cl−1m, p, δ) contains a perfect allocation.

Finally, if c0 = c1 = · · · = cl−1 we are done. Otherwise let j′ be as in the hypothesis.

Since δ <
cj′−cj′−1

cj′+cj′−1

(1− δ)cj′m > (1− δ)cj′−1m.

Therefore since each exchange contains exactly l pairs in every perfect allocation, for some

j ≤ j′ all pairs in Vj are matched.

We proceed to the third part. Observe that if a l-partite graph contains a a perfect

allocation then it also contains one after removing some nodes from the smallest set Vi.

Therefore using similar arguments as in the second part one can show that almost every

D̄(m, c1m, . . . , cl−1m, p, δ) contains a perfect allocation, and since δ < 1
c1

, V0 is the smallest

set and all its nodes will be matched.
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8.2 Proofs

Proof of Theorem 6.3:

Let D(m) be a random compatibility graph. Let Bδ be the event that (1 − δ)mµX-Y ≤
ZX-Y ≤ (1 + δ)mµX-Y for every type X-Y∈ P and let Q be the event in which ZA−B ≥
ZB−A, i.e. there are more A-B pairs than B-A pairs. Fix δ to be some constant 0 < δ <

min{µ3
AB,

1−2.5γ̄
1+2.5γ̄

}.
Given that Q occurs an upper bound on the size of an efficient allocation in D(m) consists

of the following two events (see also Roth et al. (2007)).

E1: there exists an allocation at which every self demanded pair is matched either through

a 2-way or through a 3-way exchange containing only self demanded pairs, and

E2: there exist an allocation that matches every B-A pair in a 2-way exchange to a A-B

pair; every other A-B pair is matched in 3-way exchange using a B-O pair and a O-A pair;

every AB-O pair is matched in a 3-way exchange using a O-A pair and a A-AB pair; all

remaining over-demanded pairs X-Y are matched in a 2-way exchange to a Y-X pair.

If Q does not occur then a similar then an upper bound for the size of an efficient

allocation in D(m) consists of similar sequence of events only each B-A pair that is not

matched in a 2-way exchanges with a A-B pair is matched in a 3-way exchange together

with a A-O and a O-B pair.

It is sufficient to show that Pr (E1, E2|Q) = 1− o(1); a similar argument will imply that

Pr
(
E1, E2|Q̄

)
= 1− o(1) which completes the proof.

Let Qδ be the event that 0 ≤ ZA-B − ZB-A < 2mδ. Note that Qδ ⊆ Q. By Lemma 6.2

Pr(Bδ, Qδ) = 1− o(m−1). Therefore it is sufficient to show that

Pr (E1, E2|Bδ, Qδ) .

Therefore throughout the entire proof we will assume that both event Bδ and Qδ occur

(the probability that at least one of these events does not occur is very low). Observe that

the event E1 and E2 are independent. Fix some self demanded type X-X. The graph induced

by only X-X pairs is a UBDG graph D(µX-Xm, δ). Therefore

Pr (E1|Bδ) = Pr [there exist a perfect allocation in D(µX-Xm, δ)] ,

which equals 1− o(1) by the first part of Lemma 8.3.

It remains to show that Pr (E2|Bδ, Qδ) = 1 − o(1). Our proof will be constructive. We

will consider a sequence of subgraphs and show that each one them contains a desired perfect

allocation (see Figure 3).

The following partitions will be useful for the subgraphs to be considered. Partition the

set of O-A pairs into two sets, WO-A, VO-A, such that |WO-A| = (1 + δ)µAB-Om; the set of
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A-AB pairs into the sets WA-AB and VA-AB such that |WA-AB| = (1 + δ)µAB-Om; and finally

the set of O-A pairs into the sets WO-A and VO-A such that |WO-B| = (1 + δ)µB-Om. The

feasibility of these partitions follows from the following claim:

Claim 1

1. |ZO-A| ≥ (1 + δ)m(µA-O + µAB-O).

2. |ZA-AB| ≥ (1 + δ)m(µAB-A + µAB-O).

3. |ZO-B| ≥ (1 + δ)µB-Om.

Proof: Observe that

µO-A(1− δ)m = ρµOµA(1− δ)m > ρµOγ̄(µA + µAB)(1 + δ)m,

where the last inequality follows since µAB < µA and δ < 1−2.5γ
(1+2.5γ)

< 1−2γ
2(1+2γ)

, completing the

first part. Note that

µA−AB(1− δ)m = ρµAµAB(1− δ)m > ρµABγ̄(µO + µA)(1 + δ)m,

where the last inequality follows since µO+µA < 2.5µA and δ < 1−2.5γ
(1+2.5γ)

, implying the second

part. Similarly the third part follows since

µO−A(1− δ)m = ρµOµA(1− δ)m > ρµOγ̄(µA + µB)(1 + δ)m.

2

We are now ready to construct the efficient allocation. Consider first the subgraph

induced by all B-A pairs and all A-B pairs, and denote this graph by D1. Observe that D1

is a 2-UBDG graph. Denote by M1 a random efficient allocation in this graph and denote

by VA-B the random set of pairs that are not matched by M1. Similarly consider the random

graph (its edges are random) denoted by D2, induced by the set of pairs VA-B, B-O pairs and

by the set of pairs WO-A, and let M2 be a random efficient allocation in this graph.

We will show that the following probability is small:

Pr [M2 matches all pairs in VA-B | M1 matches all B-A pairs] Pr [M1 matches all B-A pairs] .

(9)

By Lemma 8.3 the second term in (9) equals 1 − o(1). Given that Qδ occurs and that

all B-A pairs are matched in M1, |VA-B| ≤ 2mδ. Therefore the graph D2 is a 3-QBDG

D̄(m,µB-Om,µB-Om, 1 − γH , δ) and since mδ < mµB-O(1 + δ) the first term in (9) equals

1− o(1) by Lemma 8.3. This implies that (9) = 1− o(1).
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Denote by VB-O the sets of B-O pairs that are not matched by M2. Consider the following

random graphs. Let D3 be the graph induced by the sets of pairs VB-O and VO-B; Let D4 be

the graph induced by all AB-O pairs and the sets WO-B and WB-AB; D5 be the graph induced

by A-O pairs and the set VO-A; Let D6 be the graph induced by the AB-B pairs and the set

VB-AB, and finally let D7 be the graph induced by AB-A pairs and A-AB pairs.

Observe that each of the graphs D3, . . . , D7 is either a 2-UBDG or 3-UBDG graph and

by Lemma 8.3 for each i = 3, . . . , 7 almost every Di contains a perfect allocation.

It remains to show that for k ≥ 4 one cannot obtain more transplants than for k = 3.

happens). Following Roth et al. (2007b), the only possible 4-way exchange that may possibly

increase the number of transplant is the one in Figure 4. Such an exchange uses an AB-O

pair and a A-B pair that is not matched to a B-A pair. Observe that all of these pairs are

matched in k = 3 in 3-way exchanges implying that using such a 4-way will result in less

transplants. 2

Proof of Theorem 6.6:

The proof is similar to the proof of Theorem 6.3. The main difference is that in this

proof we will need to choose more carefully the nodes of some of the induced subgraphs. For

simplicity we will assume that also hospitals exchanges are limited to size 3.

Let E1 and E2 be as in the proof of Theorem 6.3 with the following modifications: in

E2 we allow every AB-O pair to be either matched in a 3-way exchange as described or in a

2-way exchange with an AB-X pair for any X 6= O, and A-B and B-A pairs are matched only

in two way exchanges using another reciprocally type. It is sufficient to show that almost

every graph has an individually rational allocation allocation that satisfies both E1 and E2.

First we handle E1 similarly as in the proof of Theorem 6.3. We next deal with the

AB-O pairs. Let Mh be an efficient allocation in the graph induced by the pairs of hospital

h. Let VAB−O the set of all O-AB, O-A and O-B that are matched under ∪h∈HMh through

exchanges that do not involve either A-O or B-O pairs.18 If VAB−O is smaller than the

number of AB-O pairs then we add to this set O-AB pairs until we obtain the same number

as the AB-O pairs (note that this is possible with high probability 1− o(m−1). Consider the

graph induced by the set of AB-O pairs and the set VAB−O. This is a 2-UBDG graph and

there exist a perfect matching with probability 1− o(m−1).19

Next we find a perfect matching in the graph induced by only A-B and B-A pairs (again

as in the proof of Theorem 6.3). Denote by WO−A the set of all O-A pairs that are matched

under ∪h∈HMh and do not belong to VAB−O. Note that |WO−A| is smaller than the number

18Here we use use the assumption that hospitals have exchanges of size at most 3.
19Here we constructed in a worse case manner; one might match a large fraction (if not all) of AB-O pairs

using 3-way exchanges with where each exchange involves one pair from the set VAB−O and one A-AB pair

or one B-AB pair.
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of A-O pairs with high probability since the hospitals have a non-critical size. We add to

WO−A an arbitrarty set of nodes such that the size has the same cardinality as the number

of the set of A-O pairs. Consider the graph induced by the set of O-A pairs and WO−A. Note

that this is a 2-UBDG graph and contains with high probability a perfect matching.

The proof proceeds similarly with all over demanded pairs obtaining the desired result.

2
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