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Abstract

We consider an environment where ex-ante symmetric potential buyers of an indi-
visible good have liquidity constraints, i.e. they cannot pay more than their ‘budget’
regardless of their valuation. A buyer’s valuation for the good as well as her budget
are her private information. We derive the symmetric constrained-efficient and revenue
maximizing auctions for this setting. We show how to implement these via a standard
auction (all pay) with a modified winning rule. In general, the optimal auction requires
‘pooling’ both at the top and in the middle despite the maintained assumption of a
monotone hazard rate. Further, the auctioneer will never find it desirable in terms of
revenue or social welfare to subsidize bidders with low budgets.
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1 Introduction

This paper considers the sale of a single good to buyers whose valuations and budgets are

their private information. We provide an analysis of both the revenue maximizing and

constrained efficient symmetric auctions. Our analysis is for the case where the solution

concept is Bayes-Nash. Individual rationality is imposed in an interim sense. In other

words, we only require the auction to offer each buyer a non-negative expected surplus. We

then show how our analysis can be applied when the auction is required to be dominant

strategy implementable or ex-post individually rational.

Incorporating budget constraints allows one to relax a standard assumption in the auction

literature that conflates a buyer’s willingness to pay with her ability. The assumption is

untenable in a variety of situations. For instance, in government auctions (privatization,

license sales etc.), the sale price may well exceed a buyers’ liquid assets, and she may need

to rely on an imperfect (i.e. costly) capital market to raise funds. These frictions limit

her ability to pay, but not her valuation (how much she would pay if she had the money).

Indeed, these financial constraints are more palpable to bidders than valuations, which are

relatively amorphous.

Here we assume that buyers have ‘hard’ budget constraints: no buyer can pay more than

her budget regardless of her valuation.1 We do not model the source of these constraints.

The reader is referred to Che and Gale [8] for a discussion of possible explanations.

1.1 Why Budget Constraints Matter in Optimal Auction Design

It is natural to ask why not run an auction where agents simply report the minimum of the

valuation v and budget b, min(v, b). We claim such a mechanism will be strictly suboptimal

in terms of revenue. This is because it will (i) pool types ‘too much’ and, (ii) discourage

competition. To see why, it is helpful to examine the behavior of a ‘natural’ mechanism

where bidders report min(v, b).

For simplicity, suppose two buyers whose budgets are common knowledge. Buyer A has

a budget of a 1. Buyer B is not budget constrained (or alternately has a large budget). Both

bidders have valuations that are i.i.d. draws from a uniform distribution over [0, 2].

Consider a standard sealed bid second price auction. In in this mechanism it is a dominant

strategy for each bidder to bid min(v, b). Therefore, bidder 2 will bid his valuation; while A

will bid his valuation if it is less than a 1, and 1 otherwise. However when A bids 1, he pays

less than 1 when he wins.

By contrast consider a first price auction. In equilibrium, an A with value more than 1

will bid higher than A with a value of a 1 (but still below the budget of 1). The second price

1The literature also considers the case of ‘soft’ budget constraints, where bidders may be able to get
additional funds from the market at some cost.
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mechanism is pooling bidders ‘too much,’ depressing revenues. Switching to a mechanism

that causes A to bid closer to this expected payment is a better idea in terms of revenue.

As a result, intuitively, first price auctions are better than second price auctions, and all pay

mechanisms are better still.

However, a standard sealed bid all-pay auction (with a reserve) will not be revenue

maximizing. There is no reason for the optimal mechanism to give the good to the agent

with the highest bid. The intuition springs from the following idea: In the sealed bid

second price auction, B’s bids will be distributed uniformly over [0, 2], while A’s bids will be

distributed uniformly over [0, 1) with probability 1
2
, and be 1 with probability 1

2
. If we treat

this distribution over bids as the distribution over buyer valuations, the revenue maximizing

mechanism as characterized in Myerson [19] will not allocate the good to the agent with

the highest valuation. In particular, a A with value 1 will be allotted the good over B who

announces a value slightly larger than 1. This is because such A has a higher virtual valuation

than B. The revenue maximizing auction will therefore require a modified winning rule.

We, show how to implement the optimal mechanism as a (modified) sealed bid all pay

auction. Therefore, it is possible to design the auction so that in equilibrium each buyer

has to report a single number. The constrained efficient mechanism will need a similar

modification to the winning rule, where the highest bidder may win the good.

Further, it will be clear from our analysis that:

1. The revenue maximizing bayesian incentive compatible (IC) and Ex-post individually

rational (IR) mechanism can be implemented by a similarly modified first price auction.

2. The revenue maximizing dominant strategy IC and Ex-post IR mechanism can be

implemented by a similarly modified second price auction.

The modified all-pay auction will have a higher expected revenue than the (modified) first

price auction. In turn, the modified first price auction will have a higher expected revenue

than the (modified) second price auction.

1.2 Discussion of Main Results

In this section we describe the main qualitative features of the revenue maximizing auction

subject to budget constraints.2 In particular, we contrast with the optimal auction when

buyers have no budget constraints (Myerson [19]). Our discussion is for the case where the

distribution satisfies the monotone hazard rate condition.

When buyers are not budget constrained, the type of an agent is just her valuation, and

Myerson [19] applies. In this case we know that at each realized profile of types, the optimal

allocation rule allots to the highest valuation above the reserve v. The reserve is the lowest

2The constrained efficient auction is similar but has no reserve price.
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valuation with a non-negative ‘virtual valuation.’ Assuming 2 bidders and valuations to be

uniform in [0, 1], the resulting interim allocation probabilities are as graphed in Figure 1(a).

The optimal auction could be implemented as any standard auction (first price, second price,

or all pay) with the appropriately chosen reserve.

Common Knowledge Common Budgets Now suppose all buyers have the same (com-

mon knowledge) budget constraint b. The type of an agent is still just her valuation. Laffont

and Robert showed that the revenue maximizing auction will ‘pool’ some types at the top.

All types above some v̄ will be treated as if they had valuation exactly v̄: the budget con-

straint binds for precisely these types.

Laffont and Robert argued that the optimal allocation rule would allot the good to the

highest valuation subject to this ‘pooling’, and subject to it being higher than an appropri-

ately chosen reserve v. They showed that the reserve was lower than the one in Myerson.

The resulting interim allocation probabilities are as graphed in Figure 1(b). The optimal

auction could be implemented as an all pay auction with appropriately chosen reserve. In

equilibrium, all types v̄ and above would bid exactly b and therefore get pooled.

However, the interim allocation probabilities displayed in Figure 1(b) are optimal only

under an additional condition: the density function of the valuations must be (weakly)

decreasing.3 If this condition is violated, our analysis shows that there can be additional

pooling in the middle as displayed in Figure 1(c).

Private Bdugets Finally, suppose bidders have one of 2 budgets bH > bL. Here, the

type of a bidder is 2 dimensional- his valuation, and his budget. As in Laffont and Robert,

there will be pooling at the top. However there will be two cutoffs, v̄H ≥ v̄L. All high budget

bidders with valuation at least v̄H will be pooled and all low budget bidders with valuation

at least v̄L will be pooled. A bidder with valuation v < v̄L will get the same allocation

whether he is of a high budget or low budget type.

Our key finding is the additional distortion the optimal allocation rule produces for high

budget bidders with valuation only slightly higher v̄L. High budget bidders whose valuations

are in the range [v̄L, v̄L + ∆] will be pooled with lower budget bidders with valuation in

[v̄L, 1]. The resulting interim allocation probabilities are graphed in Figure 1(d). The case

of k > 2 possible budgets will involve k− 1 such intervals in which the outcome is distorted,

and k cutoffs corresponding to the budget constraints.

The auction is once again implemented as an all pay auction, but with a modified winning

rule. As before there will be (an appropriately chosen) reserve price. Further the auction

will commit to treating all bids between [bL, bL + δ) as bL. In the resulting equilibrium, all

buyers with a high budget and a valuation in [v̄L, v̄L + ∆] will bid bL and be pooled low

3This was overlooked in the original papers by Laffont and Robert, and Maskin.
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(a) No Budget Constraints (b) Common Budget Constraint, Decreasing Density

(c) Common Budget Constraint (d) Private Budgets

Figure 1: Optimal Interim Allocation Probability a(v) plotted against v.

budget bidders with valuation larger than v̄L. As in the common knowledge budget case,

buyers with low budget and valuation larger than v̄L bid bL and get pooled. Similarly, buyers

with a high budget and valuation larger than v̄H bid bH and get pooled.

1.2.1 Subsidies

Budget constraints depress revenues because low budget bidders cannot put competitive

pressure on high budget bidders. Therefore, it is natural to inquire into instruments to

foster competition. In other settings where some bidders are disadvantaged relative to others,

subsidies have been suggested. 4

4In the FCC spectrum auctions, Ayres and Cramton [3] argued that subsidizing women and minority
bidders actually increased revenues since it induced other bidders to bid more aggressively. Their argument
was based on the assumption that minority bidders would typically assign lower valuations to the asset than
large bidders. In a procurement context, Rothkopf et al [22] find that subsidizing inefficient competitors can
be desirable. Zheng [24] studies a stylized setting where bidders are subject to a ‘soft’ budget constraint
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A subsidy is not the only instrument for encouraging competition. For this reason an

analysis of the optimal auction is useful: it may suggest other instruments that are more

effective. We find that the optimal mechanism rules out subsidies that are type dependent.

In particular, we show that loosening the budget constraints with a lump-sum transfer does

not improve revenue. Rather, as we described above, the optimal mechanism favors bidders

with small budgets with a higher probability of winning, by distorting the allocation rule in

their favor.

Given our symmetry assumption this no-subsidy result may not be surprising. However,

our result applies also to the case when bidders valuations are private but budgets common

knowledge and non-identical. In this case, one can distinguish between bidders.5

The method of analysis yields another insight regarding the design of auctions in such

settings. Where prior work suggested there may be gains to subsidizing low budget bidders,

our analysis shows that the auctioneer would decline to subsidize bidders if he was running

the optimal auction. Thus, arguments in favor of subsidies depend on the analysis of specific

(i.e. sub-optimal) auction mechanisms.

1.3 Related Literature

Revenue Ranking ‘Standard’ Auctions Theoretical investigations of auctions with

budget constraints have mainly been confined to analyzing ‘standard’ auction formats when

bidders are financially constrained. Che and Gale [8], for example, consider the revenue

ranking of first price, second price and all pay auctions under financial constraints. Benoit

and Krishna [4] look into the effects of budget constraints in multi-good auctions, and they

compare sequential to simultaneous auctions. Brusco and Lopomo [7] study strategic demand

reduction in simultaneous ascending auctions and show that inefficiencies can emerge even

if the probability of bidders having budget constraints is arbitrarily small. This summary is

by no means complete and for illustrative purposes only.

Optimal Design Research focused on optimal design is more limited. Laffont and Robert

[14] as well as Maskin[18] offer an incomplete analysis of the case when valuations are private

information but budgets are common knowledge and identical. Malakhov and Vohra [15]

consider the case when one bidder has a known budget constraint and the other does not.

Che and Gale [9] compute the revenue maximizing pricing scheme when there is a single

buyer whose budget constraint and valuation are both his private information.6 Borgs et

al [6] study a multi-unit auction and design an auction that maximizes worst case revenue

when the number of bidders is large. Nisan et al [10] show in a closely related setting that

and shows that if the auctioneer in this setting has access to cheaper funds, he may wish to subsidize some
bidders.

5We still require that buyers’ valuations be ex-ante symmetric, i.e. i.i.d. draws from the same distribution.
6Their definition of a financial constraint is akin to the soft constraints described earlier.
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no dominant strategy incentive compatible auction can be Pareto-efficient when bidders are

budget constrained. None of these papers considers the problem of design when budget and

valuation are private information.

Multi-dimensional Mechanism Design Ostensibly this paper is a contribution to the

literature on mechanism design when agents’ types are multidimensional. However, the

difficulties associated with multidimensional types (see for example Rochet and Choné [20])

do not arise because the extra dimension of private information does not influence valuations.

The difficulty here is that budget constraints render the associated incentive compati-

bility constraints non-differentiable, despite the standard assumption of quasi-linear utility.

Therefore the standard first-order techniques have no bite in this setting. We skirt this dif-

ficulty by considering a model of discrete types, i.e there are only a finite (if large) number

of possible valuations and budgets.7 This makes the problem of optimal design amenable

to the use of tools from linear programming, which is less involved than its continuum of

types counterpart. Regardless, a discussion characterizing the optimal mechanism in the

continuum of types case by considering successively finer discrete type spaces is provided in

Section 6.

1.4 Organization of this paper

In Section 2 we describe the model. In Section 3 we examine the special case when all bidders

have the same common knowledge budget constraint. This helps build intuition for the more

involved private information case. In Section 4 we examine the case when bidders’ budgets

are private information. In Section 5 we discuss the (im)-possibility of profitably subsidizing

bidders. Section 6 discusses the characterization of the optimal auction in the case when

bidder types are drawn from the continuum.

2 A Discrete Formulation

2.1 The Environment

There are N risk neutral bidders interested in a single indivisible good.

Space of Types Each has a private valuation for the good v in V = {ε, 2ε, . . . ,mε}. 8

For notational convenience we take ε = 1. Further, each bidder has a privately known budget

constraint b in B = {b1, b2, . . . , bk}, wlog b1 < b2 < . . . < bk. The type of a bidder is a 2-tuple

consisting of his valuation and his budget t = (v, b); and the space of types is T = V ×B.

7Readers with long memories will recall that the ‘original’ optimal auction paper by Harris and Raviv
[12] also assumed discrete types.

8The assumption that valuations are equally spaced is for economy of notation only.
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We assume that bidders’ types are i.i.d. draws from a commonly known distribution π

over T . We require that π satisfy a generalization of the monotone hazard rate condition.

Define fb(v) = π(v|b) > 0, i.e. the probability a bidder has valuation v conditional on her

budget being b. Further, define Fb(v) =
∑v

1 fb(v). We require that:

(v, b) ≥ (v′, b′) =⇒ 1− Fb(v)

fb(v)
≤ 1− Fb′(v′)

fb′(v′)

For notational simplicity only we assume that the valuation and budget components of a

bidder’s type are independent, and that all budgets are equally likely:9

P
(
t = (v, b)

)
= π(t) =

1

k
f(v). (1)

Buyer Preferences An agent of type t = (v, b) who is given the good with probability

a and asked to make a payment p derives utility:

u(a, p|(v, b)) =

{
va− p if p ≤ b,

−∞ if p > b.

In other words an agent has a standard quasi-linear utility up to his budget constraint, but

cannot pay more than his budget constraint under any circumstances.

2.2 Seller’s Problem

By the Revelation Principle, we confine ourselves without loss of generality to direct revela-

tion mechanisms. The seller must specify an allocation rule and a payment rule. The former

determines how the good is to be allocated as a function of the profile of reported types

and the latter the payments each agent must make as a function of the reported types. We

denote the implied interim expected allocation and payment for a bidder of type t as a(t)

and p(t) respectively.

To ensure participation of all agents we require interim individual rationality:

∀t ∈ T, t = (v, b) : va(t)− p(t) ≥ 0. (2)

The budget constraint and individual rationality require that no type’s ex-post payments

exceed their budget.

∀t ∈ T, t = (v, b) : p(t) ≤ b. (3)

The budget constraint as imposed is an interim budget constraint, i.e. expected pay-

ments cannot exceed the budget. Since our solution concept is Bayes-Nash, we impose only

9It will be clear from the proofs that these assumptions are not necessary.
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interim individual rationality and incentive compatibility constraints. Therefore if expected

payments do not exceed the budget, then there exists a profile-by-profile payment rule such

that these payments never exceed the budget ex-post. For example, the ‘all-pay’ payment

rule where type t pays p(t) regardless of other agents’ reports has the desired properties.

To ensure that agents truthfully report their types we require that Bayesian incentive

compatibility hold. However, due to the budget constraint, the incentive constraints will only

require that a type t = (v, b) has no incentive to misreport as types t′ such that p(t′) ≤ b.

We can write this as:

∀t, t′ ∈ T, t = (v, b) : va(t)− p(t) ≥ χ{p(t′) ≤ b}
(
va(t′)− p(t′)

)
, (4)

where χ is the characteristic function. Note that the presence of this characteristic function

renders the incentive compatibility constraints non-differentiable, and thus standard first

order conditions do not apply.

Feasible Interim Allocation Rules A key prior result we use in this paper is from

Border [5]. Border provides a set of linear inequalities which characterize the space of feasible

interim allocation probabilities given the distribution over types and the number of buyers.

In other words, they characterize which interim allocation probabilities can be achieved

by some feasible profile-by-profile allocation rule. These inequalities simplify our problem

significantly, since we now search over the (lower dimensional) space of interim allocation

probabilities, rather than concerning ourselves with the allocation rule profile by profile. The

Border inequalities state that a set of interim allocation probabilities {a(t)}t∈T is feasible if

and only if the a(t)’s are non-negative:

∀t ∈ T : a(t) ≥ 0, (5)

and:

∀T ′ ⊆ T :
∑
t∈T ′

π(t)a(t) ≤
1−

(∑
t6∈T ′ π(t)

)N
N

. (6)

The left hand side of (6) is the expected probability the good is allocated to an agent with a

type in T ′, which must be less than the probability that at least one agent has a type in T ′.

Equivalent Optimization Program Therefore, the problem of finding the revenue

maximizing auction can be written as:

max
{a(t),p(t)}t∈T

∑
t

π(t)p(t) (RevOpt)

Subject to: (2− 6).
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Similarly, the problem of finding the constrained efficient auction can be written as:

max
{a(t),p(t)}t∈T

∑
t

π(t)va(t) (ConsEff)

Subject to: (2− 6).

2.3 Strengthening Interim IC and IR

The optimal auction we identify is implementable as an all-pay auction with a modified

winning rule. All-pay auctions are generally considered ‘unappealing.’ In our opinion, this

is a critique of the interim individual rationality constraint. One can impose ex-post IR,

rather than interim IR. The optimal auction with this more stringent constraint can be

characterized using similar techniques to ours. The resulting implementation will be similar

to a first price auction, with a modified winning rule.This is because that any ex-post IR

and interim IC mechanism can be supported by an ex-post payment rule that requires the

bidder to pay some fixed price p (contingent on his report) if he wins, and 0 if he loses. The

resulting expected revenue from requiring the ex-post individual rationality will be less than

if we required interim individual rationality.

In a similar vein one can ask what the optimal auction is if one desires dominant strategy

implementability rather than Bayes-Nash (interim IC). An analogous argument shows that

the optimal auction can be implemented as a second price auction, with a similarly modified

winning rule. The resulting expected revenue will be lower still.

2.4 Overview of Linear Programming Approach

To orient the reader, we give an overview of the approach taken. First, by using a discrete

type space, we were able to formulate the problem of finding the revenue maximizing auction

as a linear program. Abstracting from this , it has the following form:

Z = max
x

mx

s.t. Cx ≤ d

Ax ≤ b

x ≥ 0

The first set of constraints, Cx ≤ d, corresponding to (2 - 4), are ‘complicated.’ The second

set, Ax ≤ b, correspond to the feasibility constraints (6).

This set is ‘easy’ in the sense that A is an upper triangular matrix. An upper triangular

matrix in a linear program is easy because the corresponding dual constraints will also have

a triangular component. Further, it is well known that a triangular system of equations is
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easy to solve by Gaussian elimination. As a result the solution of this linear program is easy

to characterize by complementary slackness.

Alternately,

Z(λ) = max
x

mx+ λ(d− Cx)

s.t. Ax ≤ b

x ≥ 0

For each λ ≥ 0, Z(λ) is easy to compute because A is upper triangular.

By the duality theorem of linear programming,

Z = min
λ≥0

Z(λ).

Thus our task reduces to identifying the non-negative λ that minimizes Z(λ). Now, Z(λ)

is a piecewise linear function of λ with a finite number of breakpoints. We find an indirect

way to enumerate the breakpoints without explicitly listing them. In this way we compute

the value Z.

In the auction context, the coefficients of the x variables in the function mx+λ(d−Ax),

i.e. (m− λA), have an interpretation as ‘virtual values’.

3 The Common Knowledge Budget Case

In this section, we analyze the case where all bidders have the same, commonly known budget.

This helps us build intuition and familiarity with the proof methods used subsequently to

analyze the general case. We examine the case of revenue maximization.

Since all bidders have the same budget constraint b, a bidder’s type is just her valuation.

Further, we can drop the characteristic function in the IC constraints since, by individ-

ual rationality, all types must have a payment of at most b. Given these simplifications,

problem(RevOpt) becomes:

max
{a(v),p(v)}v∈V

∑
f(v)p(v) (RevOptCK)

s.t.

∀v p(v) ≤ b

∀v, v′ va(v)− p(v) ≥ va(v′)− p(v′)
∀v va(v)− p(v) ≥ 0

∀V ′ ⊆ V
∑

v∈V ′ f(v)a(v) ≤ 1−
(∑

v 6∈V ′ f(v)
)N

N

∀v a(v) ≥ 0
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First, add a ‘dummy’ type 0 to the space of types, and define a(0) = p(0) = 0. We can

subsume the IR constraint, by requiring IC over the extended type space V ′ = V
⋃
{0}.

Standard arguments imply that an allocation rule a(·) can be part of an incentive compat-

ible mechanism if and only if a(v) is non-decreasing in v. Further, the payment rule that

maximizes revenue associated with this allocation rule is:

p(v) = va(v)−
v−1∑

1

a(v′). (7)

Note the absence of a constant. Implicitly, we have set this to zero, ruling out subsidies

in the form of lump-sum transfers. In effect therefore we will be computing the optimal

subsidy-free mechanism.10 In Section 5 we show that any lump-sum transfer will necessarily

reduce expected revenue.

Substituting (7) back into (RevOptCK), we can rewrite it as:

max{a(v)}v∈V

∑
f(v)ν(v)a(v) (8)

s.t.

∀v va(v)−
v−1∑
v′=1

a(v′) ≤ b (9)

∀V ′ ⊆ V
∑
v∈V ′

f(v)a(v) ≤
1−

(∑
v 6∈V ′ f(v)

)N
N

(10)

∀v a(v)− a(v + 1) ≤ 0

∀v a(v) ≥ 0

Here ν(v) = v − 1−F (v)
f(v)

is type v’s ‘virtual valuation’, as in Myerson [19].

Monotonicity of the allocation rule makes many of the constraints in (10) redundant.

Proposition 1 (Border) Let a : T → [0, 1] be the interim probability of allocation for a

type space T . For each α ∈ [0, 1], set

Eα = {t : a(t) ≥ α}.

Then a is feasible if and only if for each Eα:

∑
t∈Eα

a(t)f(t) ≤
1−

(∑
T−Eα f(t)

)N
N

. (11)

Note that this makes the problem by decreasing the number of constraints we need

10Note that incentive compatibility rules out type dependent subsidies.
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consider exponentially. The original Border constraints would require constraints that are

exponential in the number of types. By Proposition 1, the number of constraints is at most

the number types. Since IC constraints normally imply some sort of monotonicity of the

allocation rule, the sets Eα are easy to characterize, and therefore these constraints are easy

to use. For instance, in this setting:

Corollary 1 If a(·) is monotonic, it is feasible if and only if, ∀v ∈ V :

m∑
v

f(v′)a(v′) ≤ 1− FN(v − 1)

N
(12)

For notational convenience define cv = 1−FN (v−1)
N

for each v.

The constraint matrix in (12) is upper triangular, which makes determining the structure

of an optimal solution easy. In addition, a straightforward calculation shows that if a(t) is

the efficient allocation then all of the inequalities in (12) bind.

By inspection, a(v+1) > a(v) =⇒ p(v+1) > p(v); a(v+1) = a(v) =⇒ p(v+1) = p(v).

Therefore, if the budget constraint (9) binds for some valuation v̄, it must bind for all

valuations v ≥ v̄. If the budget constraint does not bind in the optimal solution, the

solution must be the same as Myerson’s. Hence we assume the budget constraint binds in

the optimal solution. We summarize this in the following observation.

Observation 1 If a∗ is an optimal solution to (RevOptCK), the budget constraint must

bind for some types {v̄, v̄ + 1, . . . ,m}. Further,

a∗(v) = a∗(v̄) ∀v ≥ v̄.

Suppose the lowest type for which the budget constraint binds in the optimal solution a∗ is

v̄. Substituting into program (8); and dropping the redundant Border constraints by Lemma

1, we conclude that a∗ must be a solution to problem (RevOptCK):

max{a(v)}v∈V

( v̄−1∑
1

f(v)ν(v)a(v)

)
+ (1− F (v̄ − 1))v̄a(v̄)

s.t.

−
v̄−1∑

1

a(v′) + v̄a(v̄) = b

∀v ≤ v̄

v̄−1∑
v

f(v′)a(v′) + (1− F (v̄ − 1))a(v̄) ≤ cv

∀v a(v)− a(v + 1) ≤ 0

∀v a(v) ≥ 0
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Denote the dual variable for the budget constraint by η, the dual variable for the Border

constraint corresponding to type v by βv and the dual variable for the monotonicity constraint

corresponding to type v by µv. The dual program is:11

min
η,{βv}v̄1 ,{µv}

v̄−1
1

bη +
v̄∑
1

cvβv (DOPT)

v̄η + (1− F (v̄ − 1))
v̄∑
1

βv − µv̄−1 ≥ (1− F (v̄ − 1))v̄ (a(v̄))

∀v ≤ (v̄ − 1) − η + f(v)
v∑
1

βv′ + µv − µv−1 ≥ f(v)ν(v) (a(v))

∀v βv, µv ≥ 0

Let v be the lowest valuation for which a∗(v) > 0. Complementary slackness implies that:

v̄η + (1− F (v̄ − 1))
v̄∑
1

βv − µv̄−1 = (1− F (v̄ − 1))v̄ (13)

v ≤ v ≤ (v̄ − 1) − η + f(v)
v∑
1

βv′ + µv − µv−1 = f(v)ν(v) (14)

Re-writing (13,14) yields:

v̄∑
1

βv −
µv̄−1

1− F (v̄ − 1)
= v̄ − v̄ η

1− F (v̄ − 1)
,

v ≤ v ≤ (v̄ − 1)
v∑
1

βv′ +
µv
f(v)

− µv−1

f(v)
= ν(v) +

η

f(v)

Intuitively, these equations tell us that the ‘correct’ virtual valuation of a type v is ν(v)+ η
f(v)

,

where ν(v) is the Myersonian virtual valuation, and η
f(v)

corrects for the budget constraint:

allocating to lower types reduces the payment of the high types, and hence ‘relaxes’ the

budget constraint. As in Myerson, we require that the adjusted virtual valuation ν(v) + η
f(v)

be increasing in v. A sufficient condition for this is that f(v) is weakly decreasing and

satisfies the monotone hazard rate condition. By analogy with Myerson, the lowest type

that will be allotted is the lowest type (v) whose adjusted virtual valuation is non-negative.

Finally, the optimal allocation rule will be efficient between types v̄ − 1 and v.

Proposition 2 Suppose f(v) is weakly decreasing in v, and f(·) satisfies the monotone

11The primal variable associated with each dual constraint is displayed in brackets next to the constraint.
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hazard rate condition, i.e. 1−F (v)
f(v)

is decreasing in v. Then the solution of (RevOptCK) can

be described as follows: there will exist two cutoffs v̄ and v. No valuation less than v will

be allotted. All types v̄ and above will receive the same interim allocation probability, and

the budget constraint will bind for exactly those types. The allocation rule will be efficient

between types v̄ − 1 and v. Finally, v is the lowest type such that

ν(v) +
η

f(v)
≥ 0,

where

η =
(1− F (v̄ − 1))(1− F (v̄ − 2))

v̄f(v̄ − 1) + (1− F (v̄ − 1))
.

If f(v) is not weakly decreasing in v or does not satisfy the monotone hazard rate, the optimal

solution may require pooling in the middle.

Proof: The proof proceeds by constructing dual variables that complement the primal

solution described in the statement of the proposition.

Since a∗(v) = 0 for v < v and f(v) > 0 for all v, the corresponding Border constraints

(10) do not bind at optimality. Therefore βv = 0 for all v < v. Further 0 = a∗(v−1) < a∗(v)

by definition of v, and so, by complementary slackness, µv−1 = 0. Similarly, since v̄ is the

lowest type for which the budget constraint binds, a∗(v̄) > a∗(v̄−1), implying that µv̄−1 = 0.

Subtracting the dual constraints corresponding to types v̄ and v̄ − 1 and using the fact

that µv−1 = 0, we have:12

βv̄ +
µv̄−2

f(v̄ − 1)
= v̄ − v̄ η

1− F (v̄ − 1)
− ν(v̄ − 1)− η

f(v̄ − 1)
(15)

Subtracting the dual constraints corresponding to v and v − 1, where v + 1 ≤ v ≤ v̄ − 1, we

have:

βv +
µv
f(v)

− µv−1

f(v)
− µv−1

f(v − 1)
+

µv−2

f(v − 1)
= ν(v) +

η

f(v)
− ν(v − 1)− η

f(v − 1)
(16)

Finally, the dual constraint corresponding to type v reduces to:

βv +
µv
f(v)

= ν(v) +
η

f(v)
(17)

It suffices to identify a non-negative solution to the system (15-17) such that βv = 0 for all

v < v and µv−1 = 0.

12This step is where the upper triangular constraint matrix is helpful.
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Consider the following solution.

βv̄ = 0

v + 1 ≤ v ≤ v̄ − 1 βv = ν(v)− ν(v − 1) + η
( 1

f(v)
− 1

f(v − 1)

)
v ≤ v ≤ v̄ − 1 µv = 0

η =
(1− F (v̄ − 1))(1− F (v̄ − 2))

v̄f(v̄ − 1) + (1− F (v̄ − 1))

Direct computation verifies that the given solution satisfies (15-17). In fact it is the unique

solution to (15-17) with all µ’s equal to zero. All variables are non-negative. In particular,

βv for v + 1 ≤ v ≤ v̄ − 1 is positive. This is because f(·) satisfies the monotone hazard rate

and (weakly) decreasing density conditions, for any v, ν(v)− ν(v− 1) + η
(

1
f(v)
− 1

f(v−1)

)
> 0.

Furthermore, it complements the primal solution described in the statement of the propo-

sition. This concludes the case where our regularity condition on the distribution of types

(monotone hazard rate, decreasing density) are met.

Now suppose our sufficient condition is violated, i.e. ν(v)−ν(v−1)+η
(

1
f(v)
− 1

f(v−1)

)
< 0

for some v. The dual solution identified above will be infeasible since βv < 0. More generally,

there can be no dual solution that satisfies (15-17) with all µv = 0. Hence, there must be at

least one v between v and v̄−1 such that µv > 0. This implies, by complementary slackness,

that the corresponding primal constraint, a(v)− a(v + 1) ≤ 0 binds at optimality, implying

pooling. �

In fact one can further restrict the set of optimal dual solutions.

Lemma 1 In any solution to the primal problem (8), at most one of the Border constraint

(10) corresponding to type v, and the monotonicity constraint corresponding to type v − 1

can bind. Further, by complementary slackness:

∀v : βvµv−1 = 0 (18)

Proof: See Appendix B. �

The solution to the system of equations (15- 17), (18) constitutes the optimal dual solution. It

is easily seen that this solution is unique- therefore even in the case where ironing is required,

there is a unique solution. Further the µ’s in the solution are the ‘ironing’ multipliers a la

Myerson.

A comment on implementation of the revenue maximizing auction is in order. First

consider what one can call the regular case- i.e. that f satisfies both the monotone hazard

rate and weakly decreasing density conditions. In this case, the implementation will be as
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described by Laffont and Robert: the auction will be implemented as an all pay auction,

with an appropriately chosen reserve price.13 If f is not regular- i.e. it violates either

the monotone hazard rate or decreasing density conditions, then additional pooling may be

required. In particular the all-pay auction described above may not be optimal. The pooling

identified by the optimal auction must then be implemented by modifying the winning rule

in the all-pay auction.

We are also in a position to describe the constrained efficient auction for this setting.

The proof is very similar to that of Proposition 2, and therefore omitted.

Proposition 3 Suppose f(v) is weakly decreasing in v. Then the constrained efficient

auction in this setting can be described as follows: there will exist a cutoff v̄. All types v̄

and above will receive the same interim allocation probability, and the budget constraint will

bind for exactly those types. The allocation rule will be efficient for types below v̄− 1. If the

sufficient conditions are not met, the optimal solution may require pooling in the middle.

In other words, if the distribution of types has decreasing density, the constrained efficient

mechanism is an all-pay auction (with no reserve).

4 The General Case

Recall the original program (RevOpt). For economy of notation, we deal with the case where

a bidder’s valuation and budget are determined independently, and all budgets are equally

likely, i.e. for any type t = (v, b),

π(v, b) =
1

k
f(v).

maxa,p

k∑
j=1

m∑
v=1

1

k
f(v)p(v, bj)

∀(v, b) ∈ T va(v, b)− p(v, b) ≥ 0

∀(v, b) ∈ T p(v, b) ≤ b

∀(v, b), (v′, b′) ∈ T va(v, b)− p(v, b) ≥ χ{p(v′, b′) ≤ b}[va(v′, b′)− p(v′, b′)]

∀T ′ ⊆ T
∑
t∈T ′

π(t)a(t) ≤
1− (

∑
t6∈T ′ π(t))N

N

∀t ∈ T a(t) ≥ 0

The incentive compatibility constraints can be separated into 3 categories:

13The reserve price p will be the payment of type v in the auction described above.
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1. Misreport of value only:

va(v, b)− p(v, b) ≥ va(v′, b)− p(v′, b). (19)

2. Misreport of budget only:

va(v, b)− p(v, b) ≥ χ{p(v, b′) ≤ b}[va(v, b′)− p(v, b′)]. (20)

3. Misreport of both:

va(v, b)− p(v, b) ≥ χ{p(v′, b′) ≤ b}[va(v′, b′)− p(v′, b′)]. (21)

Standard arguments imply that the IC constraints corresponding to a misreport of value,

(19), can be satisfied by some pricing rule if and only if v ≥ v′ implies that a(v, b) ≥ a(v′, b).

Incentive compatibility and individual rationality imply

p(v, b) ≤ va(v, b)−
v−1∑

1

a(v′, b).

The difficulty stems from the IC constraints relating to misreport of budget, (20) and (21).

In particular, we need (further) constraints on the allocation rule such that there exists

an incentive compatible pricing rule. The following lemmata identify the space of interim

allocations such that each type’s payment is the maximum possible, i.e.

p(v, b) = va(v, b)−
v−1∑

1

a(v′, b). (22)

Lemma 2 For any budget b, an allocation rule a is incentive compatible only if:

p(v, b) = b =⇒ a(v′, b) = a(v, b) ∀v′ ≥ v. (23)

Proof: It is easy to see that for any v, b, incentive compatibility implies that:

a(v + 1, b) ≥ a(v, b) =⇒ p(v + 1, b) ≥ p(v, b).

Further, by observation, (22) implies that:

a(v + 1, b) > a(v, b) =⇒ p(v + 1, b) > p(v, b),

a(v + 1, b) = a(v, b) =⇒ p(v + 1, b) = p(v, b).
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Equation (23) follows. �

Lemma 3 Fix an allocation rule a such that a is incentive compatible and individually ra-

tional with pricing rule (22). Fix two budgets b′ > b. Let vb be the largest v such that

p(vb, b
′) ≤ b. Then,

∀v ≤ vb a(v, b′) = a(v, b).

Further, a(vb + 1, b′) > a(m, b).

Proof: By assumption, p(v, b′) ≤ b for any v ≤ vb. By individual rationality, p(v, b) ≤ b

for any v. Therefore the incentive compatibility constraints (20) corresponding to type (v, b)

misreporting as (v, b′) and type (v, b′) misreporting as (v, b) for any v ≤ vb imply that:

∀v ≤ vb va(v, b)− p(v, b) = va(v, b′)− p(v, b′)

=⇒ ∀v ≤ vb

v−1∑
1

a(v′, b) =
v−1∑

1

a(v′, b′)

=⇒ ∀v ≤ (vb − 1) a(v, b) = a(v, b′).

To see that a(vb, b) = a(vb, b
′), first consider the IC constraint corresponding to type (vb +

1, b) misreporting as type (vb, b
′). By assumption p(vb, b

′) ≤ b, therefore we can drop the

characteristic function and write the IC constraint as:

(vb + 1)a(vb + 1, b)− p(vb + 1, b) ≥ (vb + 1)a(vb, b
′)− p(vb, b′)

=⇒
vb∑
1

a(v, b) ≥
vb∑
1

a(v, b′)

=⇒ a(vb, b) ≥ a(vb, b
′).

The last inequality follows since
∑vb−1

1 a(v, b) =
∑vb−1

1 a(v, b′). Similarly one can show that

a(vb, b) ≤ a(vb, b
′).

Finally, we need to show that a(vb + 1, b′) > a(m, b). By assumption,

p(vb + 1, b′) > b ≥ p(m, b)

=⇒ (vb + 1)a(vb + 1, b′)−
vb∑
1

a(v, b′) > ma(m, b′)−
m−1∑

1

a(v, b)

=⇒ (vb + 1)a(vb + 1, b′) > ma(m, b′)−
m−1∑
vb+1

a(v, b)

> (vb + 1)a(m, b).
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The last inequality follows since for any v, a(v + 1, b) ≥ a(v, b). �

Lemma 2 shows that for each bi there is a cutoff v̄i ∈ V , the lowest valuation such that

p(v̄i, bi) = bi, and a(v, bi) = a(v̄i, bi) for all v ≥ v̄i. Lemma 3 shows that for each bi there

exists a cutoff vi, the highest valuation such that p(vi, bi+1) ≤ bi; and that a(v, bi) = a(v, bi+1)

for all v ≤ vi. We summarize this in the following definition:

Definition 1 Given an allocation rule a that is incentive compatible and individually ra-

tional with pricing rule (22), define cutoffs:

v̄i = arg min{v : p(v, bi) = bi} ∀i ≤ k,

vi = arg max{v : p(v, bi+1) ≤ bi} ∀i ≤ k − 1.

Note that vi < v̄i+1. Further, define :

V̄ = {v̄1, v̄2, . . . , v̄k},
V = {v1, v2, . . . vk−1}.

A word on our choice of notation is in order here. vi is the highest valuation with budget

greater than bi that pays at most bi. On the other hand vi is the lowest valuation with budget

bi for whom the budget constraint binds. In particular, we do not require that vi ≤ vi (nor

will this generally be true).

Lemmas 2 and 3 imply:

Observation 2 An allocation rule a : T → [0, 1] is consistent with cutoffs V̄ =

{v̄1, v̄2, . . . , v̄k} and V = {v1, v2, . . . vk−1}, where vi ≤ v̄i+1 for all i, and pricing rule (22),

incentive compatible and individually rational if and only if:

∀v, b a(v, b) ≤ a(v + 1, b) (24)

∀i a(v̄i − 1, bi) < a(v̄i, bi) (25)

∀i p(v̄i, bi) = bi (26)

∀i, v ≥ v̄i a(v, bi) = a(v̄i, bi) (27)

∀i, v ≤ vi a(v, bi) = a(v, bi+1) (28)

∀i p(vi + 1, bi + 1) > bi (29)

∀i a(vi + 1, bi + 1) > a(m, bi) (30)

Figure 2 depicts an incentive compatible allocation rule for a type space with 10 possible

valuations and 4 possible budgets. The blobs represent types that are pooled. The numbering

reflects decreasing allocations: i.e. the blob numbered 1 has the highest interim probability

of getting the good, 2 has the second highest and so on.
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Figure 2: An IC allocation rule

Given a collection of cut-offs we describe how to find an allocation rule consistent with

those cutoffs that maximizes revenue. By Observation 2 we can drop the individual ratio-

nality, budget, and incentive compatibility constraints in (RevOpt) and substitute instead

(24-30). Therefore, we have:

max
a

k∑
i=1

m∑
v=1

f(v)

k
ν(v)a(v, bi) (REVOPT)

s.t. (24− 30), (5), (6).

To ensure a well defined program the strict inequalities in (25) and (30) have to be relaxed

to a weak inequality. If for a given set of cutoffs, the optimal solution to (REVOPT) binds at

inequality (25) or (30), we know that the set of cutoffs being considered cannot be feasible.

Hence we can restrict attention to cut-offs where (the weak version of) the inequalities do

not bind at optimality.

Therefore, having fixed the cutoffs V , by (24) and (30), most of the Border constraints

are rendered redundant by Proposition 1. In particular consider type (v, bi); v ≤ v̄i. Then,

by Observation 2, E(v,bi), the set of all types t such that a(t) ≥ a(v, bi) is:

E(v,bi) =
k⋃

j=i+1

{(v′, bj) : v′ ≥ min(v, vi + 1, . . . , vj−1 + 1)}
⋃
{(v′, bi) : v′ ≥ v}.
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It follows from Proposition 1 that the relevant Border constraints to be considered are:

∀i, v ≤ v̄i
∑

t∈E(v,bi)

a(t)f(t) ≤
1−

(∑
T−E(v,bi)

f(t)
)N

N
. (31)

The next lemma further restricts the configurations of cutoffs in a revenue maximizing

rule.

Lemma 4 Let a∗ solve (REVOPT). Then the cutoffs V̄ , V as defined in Definition 1 must

satisfy:

∀i ≤ k − 1 vi ≥ v̄i − 1.

Sketch of Proof: Suppose instead that in some profit maximizing allocation rule a; for

some i, vi < v̄i − 1. We outline how to construct a rule a′ with cutoff v′i = vi + 1 that

achieves weakly more revenue. Since vi < v̄i − 1, a(vi + 1, bi+1) > a(v, bi) for all v. Consider

decreasing a(vi + 1, bi+1) by δ and increasing each a(v, bi), v ≥ v̄i by δ′. If δf(vi + 1) =

δ′(1−F (vi)), we will maintain feasibility with respect to the Border conditions. Pick δ such

that a(vi + 1, bi) = a(vi + 1, bi+1)− δ. This modified allocation rule corresponds to the cutoff

v′i = vi+1. The net change in revenue is (v̄i−ν(vi+1))δ
f(vi+1)

k
, which is clearly non-negative.

However this simple procedure will violate the budget constraints.

Appendix B.1 provides a formal proof, i.e. it shows that there exists a similar revenue

increasing construction, where the resulting allocation is feasible in (REVOPT). �

With this added restriction on cutoffs; the set of incentive compatible and individually

rational rules are summarized in Observation 3. Since vi ≥ v̄i− 1, (29) and (30) are satisfied

automatically; vi ≡ arg min{v : a(v + 1, bi+1) > a(v̄i, bi)}.
Lemma 4 further implies that the budget constraint corresponding to budget bi can bind

in an optimal solution only if the budget constraints corresponding to each bj < bi bind.

Therefore, in any optimal solution, there must be a largest budget bi such that the budget

constraints corresponding to b ≤ bi bind, and the budget constraints corresponding to b > bi
are slack. For notational simplicity we assume that in the optimal solution, all budget

constraints bind.

Observation 3 An allocation rule a : T → [0, 1], consistent with the cutoffs V̄ = {v̄1 ≤
v̄2 ≤ . . . ≤ v̄k} and pricing rule (22) is incentive compatible and individually rational if and
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Figure 3: A Potentially Optimal IC Rule

only if there exist, x : V → [0, 1] and y : V̄ → [0, 1] such that:

∀i ≤ k, v ≥ v̄i a(v, bi) = y(v̄i), (32)

∀i ≤ k, v̄i−1 ≤ v ≤ v̄i − 1, j ≥ i a(v, bj) = x(v), (33)

∀i ≤ k v̄iy(v̄i)−
v̄i−1∑

1

x(v) = bi, (34)

∀v x(v) ≤ x(v + 1), (35)

∀i ≤ k x(v̄i − 1) < y(v̄i), (36)

∀i < k y(v̄i) ≤ x(v̄i). (37)

Figure 3 displays an allocation rule whose cutoffs satisfy Lemma 4. As before, the blobs

represent types that are pooled. The numbering reflects decreasing allocations: i.e. the blob

numbered 1 has the highest interim probability of getting the good, 2 has the second highest

and so on.
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Substituting (32) and (33) into (31), the Border constraints to be considered are:

∀i ≤ k, v̄i−1 + 1 ≤ v ≤ v̄i
v̄i−1∑
v′=v

k−i+ 1

k
f(v′)x(v′) +

k∑
j=i+1

v̄j−1∑
v̄j−1

k−j + 1

k
f(v′)x(v′) +

k∑
j=i

(1−F (v̄j−1))

k
y(v̄j) ≤ cv, (38)

∀i ≤ k

k∑
j=i+1

(1−F (v̄j−1)

k
y(v̄j) +

k∑
j=i+1

v̄j−1∑
v̄j−1

k−j + 1

k
f(v)x(v) ≤

1−(1− k−i
k

(1−F (v̄i−1)))N

N
. (39)

where the c’s are the right hand side of the appropriate Border inequality (31), i.e. for

(v̄i−1 + 1) ≤ v ≤ v̄i

cv =
1− (1− k−i

k
(1− F (v̄i − 1))− 1

k
(1− F (v − 1)))N

N
.

Making the appropriate substitutions, (REVOPT) becomes:

max
x,y

k∑
j=1

v̄j−1∑
v̄j−1

k − j + 1

k
f(v)ν(v)x(v) +

∑k
i=1 v̄i(1− F (v̄i − 1))y(v̄i)

k
(REVOPT2)

s.t. (5), (34− 39).

As before, we conjecture an optimal solution and verify optimality with a suitably chosen

dual solution. Hence we flip to the dual and examine its properties.

Let ηi be the dual variable associated with the budget constraint (34). Since we assume

constraint (36) does not bind at optimality, the corresponding dual variable will be 0, and

therefore is dropped. Let µv be the dual variable associated with the monotonicity constraint

(35), and µ̄v̄i the dual variable associated with the constraint (37). Denote by βv the dual

variable associated with (38), and β̄v̄i , the dual variable associated with (39). The dual
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program is:

min
η,µ,β

k∑
i=1

biηi +

v̄k∑
v=1

cvβv +
k∑
i=1

c̄v̄i β̄v̄i (DOPT2)

∀i ≤ k, (v̄i−1 + 1) ≤ v ≤ (v̄i − 1)

−
k∑
j=i

ηj +
k − i+ 1

k
f(v)(

v∑
1

βv +
i−1∑
j=1

β̄v̄j) + µv−µv−1 ≥
k−i+ 1

k
f(v)ν(v), (40)

∀i ≤ k −
k∑

j=i+1

ηj +
k−i
k
f(v)(

v̄i∑
1

βv +
i∑

j=1

β̄v̄j) + µv̄i−µ̄v̄i ≥
k−i
k
f(v̄i)ν(v̄i), (41)

∀i ≤ k v̄iηi +
(1− F (v̄i − 1))

k
((

v̄i−1∑
1

βv +
i∑

j=1

β̄v̄j) + µ̄v̄i ≥
(1− F (v̄i − 1))

k
v̄i, (42)

η, β, µ ≥ 0.

Here, (40) is the dual inequality corresponding to primal variable x(v) where (v̄i−1 + 1) ≤
v ≤ (v̄i − 1) , (41) the dual inequality corresponding to x(v̄i) and (42) the dual inequality

corresponding to y(v̄i). Fix an optimal primal solution(x∗, y∗) and let v be the lowest valua-

tion which gets allotted in that solution. Therefore any type (v, b) where v ≥ v gets allotted.

It is easy to see that v ≤ v̄1. Complementary slackness implies that the inequalities (40)

bind for all v ≥ v, as do (41, 42) for all i. Rewriting (40-42) as in the common knowledge

case:

(
v∑
1

βv +
i−1∑
j=1

β̄v̄j) +
k(µv − µv−1)

(k − i+ 1)f(v)
= ν(v) +

k
∑k

j=i ηj

(k − i+ 1)f(v)
, (43)

(

v̄i∑
1

βv +
i∑

j=1

β̄v̄j) +
k(µv̄i − µ̄v̄i)
(k − i)f(v̄i)

= ν(v̄i) +
k
∑k

j=i+1 ηj

(k − i)f(v̄i)
, (44)

(

v̄i−1∑
1

βv +
i∑

j=1

β̄v̄j) +
kµ̄v̄i

(1− F (v̄i − 1))
= v̄i −

kv̄iηi
(1− F (v̄i − 1))

. (45)

Subtracting the equation (43) corresponding to v − 1 from the equation corresponding to v

for v̄i−1 + 2 ≤ v ≤ v̄i − 1, we have:

βv +
k(µv−µv−1)

(k−i+ 1)f(v)
− k(µv−1−µv−2)

(k−i+ 1)f(v−1)
= ν(v)−ν(v−1) +

k
∑k

j=i ηj

k−i+ 1
(

1

f(v)
− 1

f(v−1)
). (46)

25



Subtracting the equation (44) corresponding to v̄i from equation (43) corresponding to v̄i+1,

we have:

βv̄i+1 +
k(µv̄i+1 − µv̄i)

(k−i+ 1)f(v̄i + 1)
−k(µv̄i−µ̄v̄i)

(k−i)f(v̄i)
= ν(v̄i + 1)−ν(v̄i) +

k
∑k

j=i ηj

k − i

(
1

f(v̄i + 1)
− 1

f(v̄i)

)
.

Similarly, subtracting the equation (45) corresponding to v̄i from (44) corresponding to v̄i
we have:

βv̄i +
k(µv̄i − µ̄v̄i)
(k − i)f(v̄i)

− kµ̄v̄i
(1− F (v̄i − 1))

= ν(v̄i)− v̄i +
k
∑k

j=i+1 ηj

(k − i)f(v̄i)
+

kv̄iηi
(1− F (v̄i − 1))

(47)

Finally, subtracting (43) corresponding to v̄i − 1 from (45) corresponding to v̄i, we have:

β̄v̄i +
kµ̄v̄i

(1−F (v̄i−1))
− kµv̄i−2

(k−i)f(v̄i−1)
= v̄i−ν(v̄i−1)− kv̄iηi

(1−F (v̄i−1))
−

k
∑k

j=i ηj

(k−i+ 1)f(v̄i−1)
(48)

If the optimal solution a∗ is strictly monotone, the inequalities (35-37) do not bind. Com-

plementary slackness implies all the µ’s are 0. As in the common knowledge budget case we

set β̄v̄i = 0 for all i since this will satisfy complementary slackness. Therefore, from (48), we

have that:

ηk =
1

k

(1− F (v̄k − 1))(1− F (v̄k − 2))

v̄kf(v̄k − 1) + (1− F (v̄k − 1))
,

ηi =
1

k

(1− F (v̄i − 1))(1− F (v̄i − 2))

(k − i+ 1)v̄if(v̄i − 1) + (1− F (v̄i − 1))
−

(1− F (v̄i − 1))
∑k

i+1 ηj

(k − i+ 1)v̄if(v̄i − 1) + (1− F (v̄i − 1))

It is easily verified that the η’s as specified are non-negative and therefore dual feasible.

Further, one can show that i ≤ j =⇒ ηi ≥ ηj, in other words, as one would suspect, smaller

budgets have larger shadow prices. Substituting into (46) we have, ∀v : v̄i−1 < v < v̄i,

βv = ν(v)− ν(v − 1) +
k
∑k

j=i ηj

k − i+ 1

(
1

f(v)
− 1

f(v − 1)

)
.

Note that βv for all v such that v̄i−1 < v < v̄i will be positive if f is weakly decreasing.

Finally, substituting the η’s into (47), we have:

βv̄i = ν(v̄i)− ν(v̄i − 1) +
k
∑k

i+1 ηj

(k − i)f(v̄i)
− k

∑k
i ηj

(k − i+ 1)f(v̄i − 1)
.
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Observe that βv̄i can be negative. The adjusted virtual value of valuation v̄i is ν(v̄i)+
k
∑k
i+1 ηj

(k−i)f(v̄i)

which may be larger than the adjusted virtual valuation of ν(v̄i − 1) +
k
∑k
i ηj

(k−i+1)f(v̄i−1)
even if

f is weakly decreasing and satisfies the monotone hazard rate. This is because allocating to

valuation v̄i − 1 also ‘relaxes’ the budget constraint corresponding to bi (in addition to the

budget constraints for larger budgets), which allocating to v̄i does not.

In this instance, therefore, the allocation rule for the revenue maximizing rule will require

ironing. As described in the introduction, for each budget bi there will be an additional cutoff

vi. Types (v, b) where v̄i ≤ v ≤ vi and b > bi will be pooled with the types (v, bi), v ≥ v̄i
(i.e. the types for whom the budget constraint binds). The allocation rule will be efficient

between vi and v̄i+1.

Finally, the lowest valuation to be allotted will be v0, which is the lowest valuation whose

adjusted virtual valuation is non-negative. To summarize:

Proposition 4 Suppose f(v) is weakly decreasing in v, and 1−F (v)
f(v)

is increasing in v. Then,

there is an optimal solution a∗(v, b) to (RevOpt) that can be described as follows: there will

exist cutoffs v̄1 ≤ v1 ≤ v̄2 ≤ . . . vk−1 ≤ v̄k and v0. No valuation less than v0 will be allotted.

The allocation rule will satisfy (32-37). The allocation will be efficient between each vi and

v̄i+1. Further, for all b > bi and v̄i ≤ v ≤ vi, a
∗(v, b) = y(v̄i). If the sufficient conditions are

not met, the optimal solution may require additional pooling in the middle.

To help understand the above proposition, we describe the implementation of the optimal

auction. Consider the ‘regular’ case, i.e. f satisfies the monotone hazard rate and decreasing

density conditions. The implementation is akin to an all-pay auction, the discreteness of

types makes it slightly convoluted.14

There will be a reserve price r, and a (finite) set of valid bids larger than r. As in a

standard all-pay auction, the highest bid will win, ties are broken randomly, and all bidders

pay their bid. The set of valid bids is exactly the set of p(v, b)’s, (v, b) ∈ T , identified in the

statement of Proposition 4.

To see how this corresponds to the description of the proposition, it is instructive to

consider the bids submitted by various types in equilibrium. The reserve price r is such that

no-type with a valuation less than v0 would find it profitable to submit a bid other than 0

in equilibrium. The type (v̄i, bi) is the lowest valuation with budget bi to bid her budget.

Critically, the lowest valid bid larger than bi is such that types with valuations v̄i through

vi − 1 and budgets larger than bi prefer to bid bi (and potentially be pooled with other

bidders), rather than bid higher and win the good outright. All other valid bids, i.e. bids

that are not equal to any of the budgets b1 through bk, are separating. In other words, for

any other valid bid, there is exactly one valuation that makes that bid in equilibrium.

14See also the description of the continuous case in 6.2 for further intuition.
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In the event that f violates either the monotone hazard rate or decreasing density con-

dition, the optimal auction may require further pooling (over and above the pooling already

required by the regular case). These extra pooling intervals can be identified by explicitly

constructing feasible solutions to the dual(REVOPT) and its dual (DOPT2) which comple-

ment each other, and also satisfy the constraints identified in Lemma 1.

Proof: As before, our proof proceeds by constructing a dual solution that complements

the primal solution described in the statement of the proposition. Since a∗(v, b) = 0 for all

v < v0, the corresponding Border constraints must be slack, and therefore βv = 0 for all

v < v0. Since x∗(vi + 1) > y∗(v̄i), µv = 0.

The βv for vi + 2 ≤ v ≤ v̄i+1 − 1 is as specified in (46), with the corresponding µ’s set

to 0. By Lemma 1, βv for v̄i ≤ v ≤ vi is 0 since, by the statement of the proposition,

a∗(v, b) = y(v̄i) for all b > bi. The relevant µ’s can be calculated from the relevant equations.

Instead of computing these µ’s, we can instead suppose that the types which have been

ironed, {(v, bi) for v ≥ v̄i}
⋃
{(v, bj) for j > i, v̄i ≤ v ≤ vi}, all correspond to one ‘artificial’

type, ti. The probability of ti is

π(ti) =
(k − i)
k

(F (vi)− F (v̄i − 1)) +
1

k
(1− F (v̄i − 1)).

Further, its adjusted virtual valuation is:

ν(ti) = v̄i −
(k − i)(vi − v̄i + 1)(1− F (vi))

kπ(ti)
+

(vi − v̄i + 1)
∑k

j=i+1 ηj

π(ti)
− v̄iηi
π(ti)

Since the budget constraint for budget bi binds at v̄i, analogous to the proof of Proposition

2, β̄v̄i is 0, and therefore we can solve for ηi from:

ν(ti)− ν(v̄i − 1)−
k
∑k

j=i ηj

(k − i+ 1)f(v̄i − 1)
= 0. (49)

Note that the adjusted virtual valuation of v̄i − 1 can be written as:

ν(v̄i − 1) +
k
∑k

j=i+1 ηj

(k − i+ 1)f(v̄i − 1)
+

kηi
(k − i+ 1)f(v̄i − 1)

.

To see that the ηi that solves (49) is positive, we need to show that:

ν(v̄i − 1) +
k
∑k

j=i+1 ηj

(k − i+ 1)f(v̄i − 1)
< v̄i −

(k − i)(1− F (vi))

kπ(ti)
+

(vi − v̄i + 1)
∑k

j=i+1 ηj

π(ti)
(50)
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The right hand side of this inequality equals

1

π(ti)

(
v̄i

(1− F (v̄i − 1))

k
+

vi∑
v=v̄i

(
(k − i)f(v)

k
ν(v) +

k∑
j=i+1

λj)
)
.

However,

ν(v̄i − 1) +
k
∑k

j=i+1 ηj

(k − i+ 1)f(v̄i − 1)
< v̄i,

since
∑k

j=i+1 ηj is appropriately small (see Proposition 6). Further, for v̄i ≤ v ≤ vi,

ν(v̄i − 1) +
k
∑k

j=i+1 ηj

(k − i+ 1)f(v̄i − 1)
< ν(v) +

k
∑k

j=i+1 ηj

(k − i)f(v)
,

follows from the monotone hazard rate and decreasing density conditions. (50) follows since

its right hand side is a weighted average of the right hand side of the latter two inequalities.

Further, we have that:

βvi+1 = ν(vi + 1) +
k
∑k

j=i+1 ηj

(k − i)f(vi + 1)
− ν(ti). (51)

To ensure that βvi+1 ≥ 0 it suffices by inequality (49) that cutoffs v̄i and vi satisfy:

ν(vi + 1) +
k
∑k

j=i+1 ηj

(k − i)f(vi + 1)
≥ ν(v̄i − 1) +

k
∑k

i ηj
(k − i+ 1)f(v̄i − 1)

.

Finally, note that v0 will be the lowest valuation such that ν(v) +
∑k

1 ηj
f(v)

≥ 0; and

βv0
= ν(v) +

∑k
1 ηj

f(v)
.

The partial solution identified above, with all other dual variables set to 0, is an optimal

dual solution. Since βv > 0 for all vi + 1 ≤ v ≤ v̄i+1 − 1, by complementary slackness, the

corresponding Border constraints (10) bind. This concludes the case where our regularity

condition on the distribution of types (monotone hazard rate, decreasing density) are met.

If the monotone hazard rate or decreasing density assumptions are not satisfied then the

dual solution identified may be infeasible, and therefore additional pooling will be required

due to Lemma 1. �

We can also describe the constrained efficient auction for this setting. The proof is similar,

and omitted.
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Proposition 5 Suppose f(v) is decreasing in v. Then the solution of (ConsEff) can be

described as follows: there will exist cutoffs v̄1 ≤ v1 ≤ v̄2 ≤ . . . vk−1 ≤ v̄k and v0 = 0. The

allocation rule will satisfy (32-37).The allocation will be efficient between each vi and v̄i+1.

Further, for all b > bi and v̄i ≤ v ≤ vi, a(v, b) = y(v̄i). If the sufficient conditions are not

met, the optimal solution may require additional pooling in the middle.

5 Subsidies

Since budget constrained bidders are unable to effectively compete in the auction, this will

depress auction revenues. To get around this problem, prior work has examined various

kinds of subsidies (lump sum transfer, discounts) and their effect in a particular auction

setting.

In our setting, there is only one possible (incentive compatible) means of subsidy- a lump

sum transfer from the auctioneer to the agents. This is because, given an allocation rule,

incentive compatibility determines prices up to a constant:

p(v, b) = va(v, b)−
v−1∑

1

a(v′, b) + c.

Let us consider a subsidy via lump sum payment of some amount ε. This costs the

auctioneer ε per agent. The effect of this subsidy is to relax the budget constraints by ε.

Therefore the gain in revenue is (at most) ε
∑

i ηi.
15 We show below that

∑
i ηi ≤ 1 , and thus

ε
∑

i ηi ≤ ε. As a result, if the auctioneer were running the optimal auction, he should not

offer subsidies. This result remains true even when bidders’ budgets are common knowledge.

Proposition 6 For all i,

k∑
i

ηj ≤
(k − i+ 1)

k
(1− F (v̄i − 1)). (52)

Proof: We prove by induction on i. For i = k, we know that

ηk =
1

k

(1− F (v̄k − 1))(1− F (v̄k − 2))

v̄kf(v̄k − 1) + (1− F (v̄k − 1))

=
(1− F (v̄k − 1))

k

(1− F (v̄k − 2))

(v̄k − 1)f(v̄k − 1) + (1− F (v̄k − 2))

≤ (1− F (v̄k − 1))

k
.

15Recall that ηi is the shadow price of the budget constraint.
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For the induction hypothesis, assume that

k∑
i+1

ηj ≤
(k − i)
k

(1− F (v̄i+1 − 1)).

Therefore we are left to show (52).

Recall from the proof of Proposition 4 that at optimality, ηi, the dual variable corre-

sponding to the budget constraint corresponding to bi, solves

ν(ti)− ν(v̄i − 1)−
k
∑k

j=i ηj

(k − i+ 1)f(v̄i − 1)
= 0,

where

ν(ti) = v̄i −
(vi − v̄i + 1)

π(ti)

(
k − i
k

(1− F (vi))−
k∑
i+1

ηj

)
− v̄i
π(ti)

ηi,

and,

π(ti) =
1

k
(1− F (v̄i − 1)) +

k − 1

k
(F (vi)− F (v̄i − 1)).

By the induction hypothesis,

ν(ti) ≤ v̄i −
v̄i
π(ti)

ηi,

and therefore

v̄i − ν(v̄i − 1) ≥ v̄i
π(ti)

ηi +
k
∑k

j=i ηj

(k − i+ 1)f(v̄i − 1)

=⇒ 1− F (v̄i − 2)

f(v̄i − 1)
≥ v̄i
π(ti)

ηi +
k
∑k

j=i ηj

(k − i+ 1)f(v̄i − 1)
.

Rearranging terms, we have

k − i+ 1

k

(1− F (v̄i − 2))π(ti) + v̄if(v̄i − 1)
∑k

i+1 ηj
k−i+1
k

v̄if(v̄i − 1) + π(ti)
≥

k∑
i

ηj. (53)

Once again, by the induction hypothesis,

k∑
i+1

ηj ≤
k − i
k

(1− F (vi)) =
k − i+ 1

k

(
1− F (v̄i − 1)

)
− π(ti). (54)
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Substituting (54) into (53),

k∑
i

ηj ≤
(
k − i+ 1

k

)(1− F (v̄i − 2))π(ti) + v̄if(v̄i − 1)

(
k−i+1
k

(
1− F (v̄i − 1)

)
− π(ti)

)
k−i+1
k

v̄if(v̄i − 1) + π(ti)

≡ φ(v̄i, π(ti)).

Observation 4 in Appendix B shows that φ(·) is decreasing in its second argument. Given

v̄i, the lowest possible value for π(ti) is 1
k
(1− F (v̄i − 1)), at which the left hand side of the

bound will be maximized. Therefore, substituting π(ti) = 1
k
(1− F (v̄i − 1)),

k∑
i

ηj ≤
k − i+ 1

k

(1− F (v̄i − 2))(1− F (v̄i − 1)) + (k − i)v̄if(v̄i − 1)(1− F (v̄i − 1))

(k − i+ 1)v̄if(v̄i − 1) + (1− F (v̄i − 1))

≤ k − i+ 1

k
(1− F (v̄i − 1))

�

How then does the optimal auction encourage competition? Recall that for each i, types

{(v, bi) for v ≥ v̄i}
⋃
{(v, bj) for j > i, v̄i ≤ v ≤ vi} are pooled. The pooling serves to allot

the good to disadvantaged bidder types (v, bi), v ≥ v̄i even in profiles where there are bidders

with higher valuations and budgets present. Intuitively, favoring bidders in this way is better

than lump-sum transfers because there are more degrees of freedom: a lump-sum transfer

must be given to a bidder regardless of his type in order to maintain incentive compatibility.

6 Continuous Valuations

Our analysis in the previous sections has concerned the case of discrete types. This has

allowed us to use directly the tools of linear programming, without concerning ourselves with

technical asides such as dual measures and various caveats that apply to LP duality when

there are an infinite number of variables and/or constraints. However, since the standard

models in mechanism design concern themselves with the case when bidder types are drawn

from a continuum, there may be interest in how our characterization applies to this case

when bidder types. We shed some light on this. The development mirrors the development

of our main results- we first show that our results when bidders have common, commonly

known budgets converge to the Laffont-Robert/Maskin characterizations. We then sketch

the structure of the solution for the private budget case.
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6.1 Common Knowledge Budgets

Suppose bidders all have a common knowledge budget b. Their valuations belong to the

interval [0, V ], and are drawn i.i.d. from a distribution with density f and cumulative

distribution F . Further, assume that f satisfies the decreasing density and increasing hazard

rate conditions.

Suppose we now discretize this space- we assume that all bidder valuations belong to the

set {ε, 2ε, . . . ,mε}, where mε = V . The ‘density’ of any type, kε is f ε(kε) =
∫ kε

(k−1)ε
f(v)dv.

The cumulative distribution F ε is defined analogously. Note that f ε will satisfy both the

decreasing density and monotone hazard rate conditions.

Our solution in this discrete type space can be summarized thus: there will exist two

cutoffs v and v̄. No valuation less than v will be allotted. Types v̄ and above will be pooled,

and the budget constraint will bind for those types. The allocation rule will be efficient

between v and v̄ − 1. Therefore the optimal allocation rule a(v) satisfies: 16

v̄a(v)− ε
k̄−1∑
j=1

a(jε) = b, k̄ε = v̄,

and v is the lowest type such that:

v − ε1− F
ε(v)

f ε(v)
+
εη

f ε
≥ 0,

where

η =
(1− F (v̄ − ε))(1− F (v̄ − 2ε))

v̄ f(v̄−ε)
ε

+ (1− F (v̄ − ε))
.

Note that as ε→ 0:

p(v)→ va(v)−
∫ v

0

a(v′)dv′

η → (1− F (v̄))2

v̄f(v̄)− (1− F (v̄))
.

As a result as we go to finer and finer discretizations, the solution identified in Proposition

2 will converge to the solution identified in Laffont and Robert.

16To see this, note that the payment rule will be p(v) = va(v)− ε
∑
v′<v a(v′), and virtual valuations etc.

must be updated accordingly.

33



6.2 Private Information Budgets

On the basis of this we are now able to identify the structure of the optimal solution in the

case where valuations and budgets are both private information. Suppose valuations are

from some interval [0, V ], while budgets are one of a finite number b1, . . . bk. Valuations and

budgets are independently determined, and each bidder’s valuation is an i.i.d. draw from

some distribution F with density f , and the budget is drawn i.i.d. according to a uniform

distribution. Further suppose f satisfies the decreasing density and increasing hazard rate

conditions.

The problem of maximizing the revenue in the continuous case can be written as:

max
a,p

k∑
i=1

1

k

∫ V

0

p(v, bi)f(v)dv (Cont Rev Opt)

s.t. Incentive Compatibility

Individual Rationality

p(v, bi) ≤ bi

a feasible

Standard arguments imply that Incentive compatibility and individual rationality pin

down the pricing rule to the standard rent extraction formula, i.e. :

p(v, b) = va(v, b)−
∫ v

0

a(x, b)dx (55)

Therefore, substituting (55) into Cont Rev Opt, we can eliminate the variables p, leading

to:

max
a∈C

k∑
i=1

1

k

∫ V

0

ν(v)a(v, bi)f(v)dv. (Cont Rev Opt2)

Once again, we can discretize this space- we assume that all bidder valuations belong to

the set {ε, 2ε, . . . ,mε}, wheremε = V . The ‘density’ of any type, kε is f ε(jε) =
∫ jε

(j−1)ε
f(v)dv.

The cumulative distribution F ε is defined analogously. Note that f ε will satisfy both the

decreasing density and monotone hazard rate conditions if f does.

This discretization can be thought of as an extra constraint, i.e. that each type v ∈
[(k−1)ε, kε) must be pooled for all k = 1, 2, . . .m. Let us denote the feasible region with this

extra constraint as Cε. Consider the revenue maximizing mechanism for this discretization(as

identified in Proposition 4), let us denote it (aε, pε). Note that aε solves:

max
a∈Cε

k∑
i=1

1

k

∫ V

0

ν(v)a(v, bi)f(v)dv,

34



and pε is then defined by (55).

Note that Cε ⊆ C, and that both are compact subsets of the L1 space defined by the

measure f . Further, the operator T (a) =
∑k

i=1
1
k

∫ V
0
ν(v)a(v, bi)f(v)dv is a bounded linear

operator from the L1-space of allocation rules to <. Therefore T achieves its maximum on

each set Cε and C.

Since Cε ↑ C pointwise, it must be that:

lim
ε→0

max
a∈Cε

k∑
i=1

1

k

∫ V

0

ν(v)a(v, bi)f(v)dv

= max
a∈C

k∑
i=1

1

k

∫ V

0

ν(v)a(v, bi)f(v)dv

Finally, recalling that T (a) is a bounded linear operator: 17

limε→0a
ε ∈ {arg max

a∈C

k∑
i=1

1

k

∫ V

0

ν(v)a(v, bi)f(v)dv}.

We can now describe (the qualitative features of) an implementation of limε→0(aε, pε).

Akin to the discrete case, the implementation will be an all-pay auction with a modified

winning rule. There will be a reserve price r. Further for each budget bi < bk,there will be

a 4i > 0. 18 If there are multiple bids in the interval [bi, bi +4i), and no bid exceeding

bi +4i, the auctioneer will award the good randomly to one of these bidders(rather than to

the highest bid). In all other cases, the good will be awarded to the highest bidder.

As in the discrete case, due to the extra pooling being implemented, there will be 2 sorts

of bidders who bid bi in equilibrium:

1. Types with budget bi and valuation larger than a cutoff valuation v̄i- these are the type

for whom the budget constraint binds.

2. Types with a budget larger than bi, and valuation in the interval [v̄i, vi): these types

would prefer to bid bi and risk being pooled, rather than bid bi +4i and win the good

outright if at all.

17Technically we should also formally show that the sequence {aε} has a pointwise limit, but this follows
by inspection of the aε’s characterized by Proposition 4.

18These can be computed by solving the continuous versions of the appropriate equations in the proof of
Proposition 4.
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A Counterexamples

A.1 Laffont and Robert’s Solution

In this section, we examine the classical formulation, with a continuum of types. We show

by counterexample that the Laffont and Robert solution is not optimal for all distributions

that meet the monotone hazard rate condition.

Suppose that, as in the original Laffont and Robert paper (herein LR), we have val-

uations belonging to the continuum, say interval [0, 1]; distributed with density f(v),

F (v) =
∫ v

0
f(v)dv. Their virtual valuation is defined as ν(v) = v − 1−F (v)

f(v)
.

Further, suppose we have (as per their solution) 2 cutoffs, v1,v2. The allocation rule does

not allot types below v1; and pools all types above v2. This will make the allocation rule:

a(v) =


1−FN (v2)
N(1−F (v2))

v ≥ v2

FN−1(v) v ∈ [v1, v2]

0 o.w.

(56)
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At the optimal solution, the budget constraint must bind for all types v2 and above, 19

v2a(v2)−
∫ v2

v1

a(v)dv = b. (57)

Choose v1 and v2 to solve:

max
v1,v2

a(v2)(1− F (v2))v2 +

∫ v2

v1

ν(v)f(v)a(v)dv

s.t. v2a(v2)−
∫ v2

v1

a(v)dv = b

The first order conditions for optimality imply

f(v1)ν(v1) +
(1− F (v2))2

(1− F (v2)) + v2f(v2)
= 0. (58)

Therefore v1 and v2 are the solutions to (58) and the budget equation (57). Further note

that this is the L-R solution. We are now in a position to state without proof the ‘correct’

version of Laffont-Robert’s theorem.

Theorem 1 Suppose the distribution on types is such that the density is decreasing. Further,

suppose that the monotone hazard rate condition is met. The allocation described by (56),

where v1, v2 jointly satisfy (57) and (58), and the associated pricing rule

p(v) = v.a(v)−
∫ v

v

a(v)dv,

constitute the expected revenue maximizing mechanism.

A proof of this theorem requires taking the dual of an infinite dimensional linear program

(see for example Anderson and Nash [1]), and defining the appropriate measure on the dual

space. We can now use the intuition gleaned from Section 3 to identify a flaw in the L-R

solution in the event that densities are not decreasing. Pick a v3 ∈ (v1, v2); and ‘iron’ some

small interval of types [v3, v3 + ε]. The new allotment rule is therefore:

a′(v) =


1−FN (v2)
N(1−F (v2))

v ≥ v2

FN (v3+ε)−FN (v3)
N(F (v3+ε)−F (v3))

v ∈ [v3, v3 + ε]

FN−1(v) v ∈ [v1, v3)
⋃

(v3 + ε, v2]

0 o.w.

(59)

19If not, the solution of the overall program would be the same as Myerson’s solution [19].
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By Lemma 5 (see Appendix A.3), if f(v) is increasing in the interval; then

gε ≡ ε
FN(v3 + ε)− FN(v3)

N(F (v3 + ε)− F (v3))
−
∫ v3+ε

v3

FN−1(v)dv > 0.

Let us assume that f(v) is increasing in the range [0, 1]. As a result, the budget constraint

is now slack. We can now potentially improve on the revenue by ‘un-pooling’ v2 to v2 + δ.

First, δ solves the implicit equation:

δ
FN(v2 + ε)− FN(v2)

N(F (v2 + ε)− F (v2))
−
∫ v2+δ

v2

FN−1(v)dv = gε. (60)

The change in revenue from ironing types [v3, v3 + ε] is:

∆(v3, ε) ≡
∫ v3+ε

v3

ν(v)f(v)

[
FN(v3 + ε)− FN(v3)

N(F (v3 + ε)− F (v3))
− FN−1(v)

]
dv.

Similarly, the change in revenue from ‘un-pooling’ [v2, v2 + δ] is:

∆(v2, ε) ≡ −
∫ v2+δ

v2

ν(v)f(v)

[
FN(v2 + δ)− FN(v2)

N(F (v2 + δ)− F (v2))
− FN−1(v)

]
dv.

Therefore the total change in revenue is:

∆ = ∆(v3, ε) + ∆(v2, ε)

Since ν(·) and f(·) are both increasing; ∆(v2, ε) ≥ 0 ≥ ∆(v3, ε). Potentially, ∆ ≥ 0 for

some suitable parameter choices. In other words, our perturbation of the L-R solution can

increase expected revenue, therefore the L-R solution is not optimal. We flesh out a numerical

example below.

A.1.1 An Example

There are 2 bidders, i.e. N = 2. Both have valuations in the interval [0, 1] which are drawn

i.i.d. with density f(v) = 2v; F (v) = v2. Both have a common budget constraint b = 0.5.

The ‘virtual value’ of a bidder of valuation v, ν(v) = 3v2−1
2v

, which is increasing on the interval

[0, 1]. If there was no budget constraint, the optimal auction would be a second price auction

with reserve price v0 = 1√
3
, i.e. ν(v0) = 0.

Recall that the L-R solution would require us to compute v1 and v2 which jointly solve
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(57) and (58). Making appropriate substitutions, v1 and v2 solve:

v2

2
+
v3

2

6
+
v3

1

3
= 0.5

3v2
1 +

(1− v2
2)2

1 + v2
2

= 1

Solving, we get v1 = 0.5415 and v2 = .7523. Therefore; v1 < v0 < v2. For the perturbation

we outlined above, select v3 = 1√
3
(= v0); and ε = 10−4. Our functional forms lend themselves

to easy analytic calculation. It can be shown that:

gε =
ε3

6
δ = ε

∆(v3, ε) = −(3v2
3 + 1)ε3

6
− v3ε

4

2
+ ε5

∆(v2, ε) = +
(3v2

2 + 1)ε3

6
+
v2ε

4

2
− ε5

Substituting we see that net change in revenue

∆ ≈ (v2
2 − v2

3)ε3

2
> 0

where the final inequality follows from the fact that v2 > v3.

A.2 Maskin

Recall that Maskin [18] considered the same environment as Laffont and Robert, the only

difference being he was interested in specifying the constrained efficient auction for this

setting. Analogous to our analysis for Laffont and Robert, we can state the correct version

of Maskin’s main theorem:

Theorem 2 Suppose the distribution on types is such that the density is decreasing. The

allocation described by (56), where v1 = 0 and v2 satisfies (57), and the associated pricing

rule

p(v) = v.a(v)−
∫ v

v

a(v)dv,

constitute the expected revenue maximizing mechanism.

40



A.2.1 A Counter-example

There are 2 bidders, i.e. N = 2. Both have valuations in the interval [0, 1] which are drawn

i.i.d. with density f(v) = 2v; F (v) = v2. Both have a common budget constraint b = 0.5.

The Maskin solution would require us to pick a cutoff v̄ to solve:

v̄

2
+
v̄3

6
= 0.5,

i.e. v̄ = 0.8177. Let us now pick ε � 1, and iron [0, ε]. It can be shown that the budget

constraint for type v̄ is relaxed by ε3

6
. Therefore we can now have the efficient allocation for

types [v̄, v̄ + ε) and still satisfy the budget constraint. Further, one can show the expected

loss of efficiency from ironing the interval [0, ε] is O(ε5), while the gain in efficiency from

unpooling the types [v̄, v̄ + ε) is roughly 1
3
v2

1ε
3.

A.3 Ironing

Let f(.) be the density function for some distribution on <, and let F (.) be the associated

cumulative distibution function.

Lemma 5 If f(.) is (strictly) increasing on some interval [v1, v2], then for any N > 1, we

have:

(v2 − v1)
FN(v2)− FN(v1)

N(F (v2)− F (v1))
>

∫ v2

v1

FN−1(v)dv

Proof: Rewriting, we have to show that∫ v2

v1
f(v)F n−1(v)dv∫ v2

v1
f(v)dv

>

∫ v2

v1
F n−1(v)dv∫ v2

v1
dv

This is true if and only if∫ v2

v1

dv

∫ v2

v1

f(v)F n−1(v)dv >

∫ v2

v1

F n−1(v)dv

∫ v2

v1

f(v)dv

Note that both sides are equal (to zero) at v2 = v1. Therefore we have the desired inequality if

the derivative w.r.t v2 of the left hand side is greater than the right hand side. Differentiating

both sides w.r.t. v2 and rearranging we have that this is true if and only if:

FN−1(v2)
[
f(v2)(v2 − v1)−

∫ v2

v1

f(v)dv
]

+

∫ v2

v1

(f(v)− f(v2))FN−1(v)dv > 0
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The inequality now follows by observing that f(v) is increasing in v, therefore∫ v2

v1

(f(v)− f(v2))FN−1(v)dv > FN−1(v2)

∫ v2

v1

(f(v)− f(v2))dv

�

B Miscellaneous Proofs

B.1 Cutoffs

This section provides a proof of Lemma 4. The Lemma states that in any solution to

(REVOPT), the cutoffs as defined in Definition 1 are such that

vi ≥ v̄i − 1 ∀i ≤ k − 1. (61)

As the intuition outlined in the main body points out, this result is not surprising- if this

condition is violated for some i, roughly speaking, decrease the allocation of types (vi+1, bi+1)

(and types pooled with it); and increase the allocation of types {(v̄i, bi), . . . , (m, bi)}. This

will clearly increase revenue since the virtual valuation of the latter is v̄i > ν(v̄i) ≥ ν(vi)

which is the virtual valuation of the former. The trouble is that this simple change can

violate the budget constraints.

Below we show how to perturb allocation rules not satisfying (61). This particular con-

struction relies critically on the assumption that the distribution over types is such that

valuation and budget are independent- the assumption that all budgets are equally likely

is however only for notational convenience. It will be clear, however, that as long as the

distribution f satisfies the generalized monotone hazard rate condition identified in (2.1), a

similar construction will be feasible.

Proof: Suppose not, i.e. suppose that allocation rule a solves (REVOPT), with cutoffs V̄

and V such that vi < v̄i − 1 for some i.

To this end, let j ≡ max{i : vi < v̄i − 1}. Therefore vi ≥ v̄i − 1 for all i > j. We show

how to construct an allocation rule a′ is feasible in (REVOPT) that achieves weakly more

revenue, such that v′i ≥ v̄′i − 1 for all i > j − 1.

For ease of notation assume that vj−1 ≤ vi and define v̂ ≡ vj + 1. Consider the following

perturbation of a∗:

1. Reduce the allocation of all types (v̂, bj+1), . . . , (v̂, bk) by ε each.

2. Reduce the allocation of all types in {(v, b) : v > v̂ , b ≥ bj+1} by ε/(v̂ + 1) each.

3. Increase the allocation of type (v̂, bj) by (k − j)ε.
4. Increase the allocation of types in {(v, bj) : v > v̂} by (k − j)ε/(v̂ + 1).
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Firstly note that this perturbation is revenue neutral. Next we show that the resulting

allocation is feasible in the optimization program. Feasibility with respect to the Border

constraints is clear by construction. Next note that the payment of type (v, b), v > v̂,

b > bj+1 changes by

−v ε

v̂ + 1
+

v−1∑
v̂+1

ε

v̂ + 1
+ ε = 0.

Similarly the payment of type (v, bj), v > v̂ changes by

v
(k − j)ε
v̂ + 1

−
v−1∑
v̂+1

(k − j)ε
v̂ + 1

+ (k − j)ε = 0.

Therefore the budget constraints for all types are still satisfied. Further, the payment of

type (v̂ + 1, bj+1),

p′(v̂ + 1, bj+1) = p(v̂ + 1, bj+1) (By Construction)

> bj (By definition of v̂)

≥ p′(m, bj) (By budget constraint)

Finally, set ε such that

a(v̂, bj+1)− ε = a(v̂, bj) + (k − j)ε,

.

Let us assume that a′(v̂, bj) ≤ a′(v̂ + 1, bj). We show that a′ is incentive compatible and

individually rational. By Observation 2 it is enough to show that a′ satisfies (24- 29) (with

v′i = vi + 1).

Recall that a would have satisfied (24- 29). Verifying that (25- 29) are satisfied with the

new cutoff is straightforward. Inequality (24), i.e. that a′(v, b) ≥ a′(v − 1, b) for all v, b,

for b < bj follows from the fact that a(v, b) ≥ a(v − 1, b). For b = bj, it follows from our

assumption that a′(v̂, bj) ≤ a′(v̂, bj). For b > bj we are done if a′(v̂, b) ≥ a′(v̂ − 1, b). But

note that a′(v̂, b) = a′(v̂, bj) ≥ a′(v̂− 1, bj) = a′(v̂− 1, b) ( here the first equality follows from

our choice of ε, the second by construction, and the third since a(v̂ − 1, b) = a′(v̂ − 1, b) for

any b).

Now suppose instead that a′(v̂, bj) > a′(v̂ + 1, bj). In this case our perturbation of a

proceeds in two steps: the first step is the same as before with ε such that

a(v̂, bj) + (k − j)ε = a(v̂ + 1, bj) + (k − j) ε

v̂ + 1
.

Call the resulting allocation rule a′′. Clearly, this perturbation will be revenue neutral; and

will satisfy (25- 28) with the same cutoffs as a. Further a′′(v̂, bj+1) > a′′(v̂, bj) = a′′(v̂+1, bj).
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Next consider the following perturbation of a′′ :

1. Reduce the allocation of all types (v̂, bj+1), . . . , (v̂, bk) by ε each.

2. Reduce the allocation of all types in {(v, b) : v > v̂ , b ≥ bj+1} by ε/(v̂ + 1) each.

3. Increase the allocation of type (v̂, bj) and (v̂ + 1, bj) by (k − j)ε′.

4. Increase the allocation of types in {(v, bj) : v > v̂} by (k − j)ε/(v̂ + 1).

Pick ε, ε′ to jointly solve:

ε′(f(v̂) + f(v̂)) = (k − j)εf(v̂)

a′′(v̂, bj+1)− ε = a′′(v̂, bj) + (k − j)ε′

Denote the resulting allocation rule a′. By construction, a′ feasible with respect to the

Border conditions and (weakly) revenue increasing. Further, given the decreasing density

assumption; as long as a′(v̂+1, bj) ≤ a′(v̂+2, bj), a
′ will satisfy (24- 29) with cutoff v′j = vj+1.

If a′(v̂+ 1, bj) > a′(v̂+ 2, bj), this second perturbation will have to be analogously modified-

it should be clear how this can be done.

Note that this construction will increase vj, and (weakly) decrease v̄j. Therefore it can

be continued until vj ≥ v̄j − 1, and therefore vi ≥ v̄i − 1 for all i > j − 1. �

B.2 Subsidies

This section proves a technical result needed in the proof of Proposition 6

Observation 4 The function

φ(π) =
(1− F (v − 2))π + vf(v − 1)(k−i+1

k
(1− F (v − 1))− π)

k−i+1
k

vf(v − 1) + π

is decreasing in π.

Proof: We are done if we can show that φ′(π) ≤ 0. Writing φ(π) = N(π)
D(π)

with N(·), D(·)
appropriately defined,

φ′(π) =
N ′(π)D(π)−D′(π)N(π)

D2(π)
.

Therefore we are done if we can show that N ′(π)D(π)−D′(π)N(π) < 0. Note that

D′(π) = 1,

N ′(π) = (1− F (v − 2))− vf(v − 1).
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Therefore

N ′(π)D(π)−D′(π)N(π)

=((1− F (v − 2))− vf(v − 1))

(
k − i+ 1

k
vf(v − 1) + π

)
−
(

(1− F (v − 2))π + vf(v − 1)

(
k − i+ 1

k
(1− F (v − 1))− π

))
=((1− F (v − 2))− vf(v − 1))

(
k − i+ 1

k
vf(v − 1)

)
− k − i+ 1

k
vf(v − 1)(1− F (v − 1))

=(−(v − 1)f(v − 1))
(k − i+ 1

k
vf(v − 1)

)
≤0.

�

45


	1 Introduction
	1.1 Why Budget Constraints Matter in Optimal Auction Design
	1.2 Discussion of Main Results
	1.2.1 Subsidies

	1.3 Related Literature
	1.4 Organization of this paper

	2 A Discrete Formulation
	2.1 The Environment
	2.2 Seller's Problem
	2.3 Strengthening Interim IC and IR
	2.4 Overview of Linear Programming Approach

	3 The Common Knowledge Budget Case
	4 The General Case
	5 Subsidies
	6 Continuous Valuations
	6.1 Common Knowledge Budgets
	6.2 Private Information Budgets

	A Counterexamples
	A.1 Laffont and Robert's Solution
	A.1.1 An Example

	A.2 Maskin
	A.2.1 A Counter-example

	A.3 Ironing

	B Miscellaneous Proofs
	B.1 Cutoffs
	B.2 Subsidies


