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1) VARs, SVARs, and the Identification Problem 
 

A classic question in empirical macroeconomics: what is the effect of 
a policy intervention (interest rate increase, fiscal stimulus) on 
macroeconomic aggregates of interest – output, inflation, etc? 

Let Yt be a vector of macro time series, and let r
tε  denote an 

unanticipated monetary policy intervention.  We want to know the 
dynamic causal effect of r

tε  on Yt: 

t h
r
t

Y
ε
+∂

∂
, h = 1, 2, 3,…. 

where the partial derivative holds all other interventions constant.  In 
macro, this dynamic causal effect is called the impulse response function 
(IRF) of Yt to the “shock” (unexpected intervention) r

tε . 

 The challenge is to estimate t h
r
t

Y
ε
+⎧ ⎫∂

⎨ ⎬∂⎩ ⎭
 from observational macro data. 

Revised July 23, 2008 7-3 



Revised July 23, 2008 7-4 

Two conceptual approaches to estimating dynamic causal effects (IRF) 
1) Structural model (Cowles Commission) 

a) tightly parameterized (many restrictions): FMP,…, DSGE 
b) Structural vector autoregressions (SVARs) 

2) Natural experiments 
 
The identification problem 
Consider a 2-variable system of linear simultaneous equations:  Let ε1t 
and ε2t be uncorrelated structural shocks, where E(εt|Yt–1, Yt–2,…) = 0: 
Y1t = B0,12Y2t + B1,12Y2t–1 + … + Bp,12Y2t–p + B1,11Y1t–1 +… + Bp,11Y1t–p + ε1t 
Y2t = B0,21Y1t + B1,21Y1t–1 + … + Bp,21Y1t–p + B1,22Y2t–1 +… + Bp,22Y2t–p + ε2t 
Given the B’s, we could compute structural impulse responses from this 
system (formulas below).  But the coefficients of this system are not 
identified.  To identify them, we either need an instrument Zt, or a 
restriction on the parameters.
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VAR background and notation: 
Y1t = B0,12Y2t + B1,12Y2t–1 + … + Bp,12Y2t–p + B1,11Y1t–1 +… + Bp,11Y1t–p + ε1t 
Y2t = B0,21Y1t + B1,21Y1t–1 + … + Bp,21Y1t–p + B1,22Y2t–1 +… + Bp,22Y2t–p + ε2t 
 
This simultaneous equations system can be written, B(L)Yt = εt, where 

B(L) = B0 – B1L – B2L2 – … – BpLp 
and in general B0 is not diagonal.  εt are the structural shocks. 
The system B(L)Yt = εt is called a structural VAR (SVAR). 
 
This SVAR has a reduced form (Sims (1980)), which is identified: 
Reduced form VAR(p):  Yt = A1Yt–1 + … + ApYt–p + ut 
or        A(L)Yt = ut,  
where       A(L) = I – A1L – A2L2 – … – ApLp 
innovations:     ut = Yt – Proj(Yt|Yt-1,…, Yt–p) 

Eutut′ = Σu 



Reduced form to structure: 
Suppose: (i)   A(L) is finite order p (known or knowable) 

(ii)  ut spans the space of structural shocks εt, that is, εt  = Rut, 
where R is square (implicitly this is assuming that Yt is 
linear in the structural shocks) 

(iii) A(L), Σu , and R are time-invariant, e.g. A(L) is invariant 
 to policy changes over the relevant period 

 
Then IRFs can be obtained from the SVAR, RA(L)Yt = Rut or B(L)Yt = εt: 

SVAR:      B(L)Yt = εt,  
where     B(L) = RA(L) and Rut = εt 

Reduced form VAR:  A(L)Yt = ut 
MA representation:  Yt = D(L)εt, D(L) = B(L)–1 = A(L)–1R–1 

Impulse response:   t h

t

Y
ε
+∂
′∂

 = Dh 
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Summary of VAR and SVAR notation 
 

Reduced form VAR Structural VAR 
A(L)Yt = ut B(L)Yt = εt 

Yt = A(L)–1ut = C(L)ut Yt = B(L)–1εt = D(L)εt 
A(L) = I – A1L – A2L2 – … – ApLp B(L) B0 – B1L – B2L2 – … – BpLp = 

 
Eutut′ = Σu (unrestricted) 

 
Eεtεt′ = Σε = 

2
1

2

0

0 k

σ

σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Rut = εt 

B(L) = RA(L)   (B0 = R) 
D(L) = C(L)R–1 

 
• Note the assumption that the structural shocks are uncorrelated 
• D(L) is the structural IRF of Yt w.r.t. εt. 
• variance decompositions w.r.t. εt are computed from D(L) and Σε 
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 Identification of R and identification of shocks 
Two takes on identification: 

1. Identification of R.  In population, we can observe A(L).  If we can 
identify R, we can obtain the SVAR coefficients, B(L) = RA(L). 

2. Identification of shocks.  If you knew (or could estimate) one of the 
shocks, you could estimate the structural IRF of Y w.r.t. that shock.  
Partition Yt into a policy variable rt and all other variables: 

Yt = 
⎟
 , ut = 

( 1 1)

(1 1)

k

t

t

X

r

− ×

×

⎛ ⎞
⎜ ⎟
⎜
⎝ ⎠

X
t
r
t

u

u

⎛ ⎞
⎜ ⎟
⎝ ⎠

 , εt = 
X
t
r
t

ε

ε

⎛ ⎞
⎜ ⎟
⎝ ⎠

,  

The IRF/MA form is Yt = D(L)εt, or 

Yt = ( )( ) ( )YX YrD L D L
X
t
r
t

ε

ε

⎛ ⎞
⎜
⎝ ⎠

⎟ = DYr(L) r
tε  + vt,  

where vt = DYX(L) X
tε . Because E r

tε vt = 0, the IRF of Yt w.r.t. r
tε , DYr(L) 

is identified by the population OLS regression of Yt onto r
tε . 
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The natural experiment approach 
Romer and Romer (1989, 2004, 2008); Ramey and Shapiro (1998); Ramey 
(2008). 
Suppose you have an instrumental variable Zt (not in Yt) such that 

(i) EZt  ≠ 0 (relevance) r
tu

(ii) EZt
X
tε  = 0 (exogeneity) 

Then you can identify (estimate) r
tε .  To show this, again, partition Yt: 

Yt = 
⎟
 , ut = 

( 1 1)

(1 1)

k

t

t

X

r

− ×

×

⎛ ⎞
⎜ ⎟
⎜
⎝ ⎠

X
t
r
t

u

u

⎛ ⎞
⎜ ⎟
⎝ ⎠

 , εt = 
X
t
r
t

ε

ε

⎛ ⎞
⎜
⎝ ⎠

⎟, and R = XX X

rX rr

rR R
R R

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

so Rut = εt becomes: RXX
X
tu  = –RXr  + r

tu X
tε  

Rrr  = –RrX
r
tu X

tu  + 
r
tε          

or 
      X

tu  = – 1
XXR− RXr  + r

tu 1
XXR− X

tε  
r
tu  = – 1

rrR− RrX
X
tu  + 

1
rrR− r

tε     where Rrr is a scalar 
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The natural experiment approach, ctd. 
     X

tu  = – 1
XXR− RXr  + r

tu 1
XXR− X

tε       (1) 
r
tu  = – 1

rrR− RrX
X
tu  + 

1
rrR− r

tε       (2) 
 
Suppose Zt (not in Yt) is such that 

(i) EZt  ≠ 0 (relevance) r
tu

(ii) EZt
X
tε  = 0 (exogeneity) 

 
Then Zt can be used as an instrument for  in r

tu (1): 
(i) Estimate – 1

XXR− RXr by IV estimation of (1) 

(ii) Estimate X
tε  = 1

XXR− X
tε  as ˆ X

tε  = X
tu  + 1

XX XrR R− ur
t  

(iii) Use ˆ X
tε  as an instrument for X

tu  in (2) to estimate – 1
rrR− RrX 

(iv) Estimate r
tε  = 1

rrR− r
tε  as  + r

tu 1
rr rXR R− X

tu : this delivers r
tε  up to scale. 

(v) Impulse responses can be computed by regressing Yt on r
tε , 1

r
tε − ,…  
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The natural experiment approach, ctd. 
 
Comments 

1.The IV approach outlined above needs one IV to identify one shock.  
More than one Zt per shock yields over identification. 

 
2.The papers that use this approach don’t actually do IV, they report 

reduced-form regressions of variables of interest onto Zt (Romer and 
Romer (1989, 2004, 2008); Ramey and Shapiro (1998); Ramey 
(2008)).  In general the reduced form regressions don’t give you the 
structural coefficients of interest.  On the other hand one reason for 
choosing reduced form over IV is that there might be heterogeneity in 
“treatment effects” of different types of shocks.  In this case the IV 
estimator using Zt would have the additional complication that the  
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The natural experiment approach, ctd. 
local average treatment effect (LATE) for the Zt used in the study 
would differ from the average treatment effect, or from the LATE 
using a different instrument.  This set of issues has received a lot of 
attention in the “program evaluation” literature but almost no attention 
in empirical macro. 

 
3.This “natural experiment approach” is not referred to by this term in 

the macro SVAR literature, it is typically called the “narrative 
approach” because it is based on turning text-based information into 
quantitative information Implementation.  The logic however is based 
on the logic in the natural experiment approach in microeconometrics. 
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The SVAR approach 
Bernanke (1986), Blanchard and Watson (1986), Sims (1986) 
System identification. In general, the SVAR is fully identified if  

RΣuR′ = Σε         (3) 
can be solved for the unknown elements of R and Σε.. 
• There are k(k+1)/2 distinct equations in (3), so the order condition says 

that you can estimate (at most) k(k+1)/2 parameters.  If we set Σε = I 
(just a normalization), it is clear that we need k2 – k(k+1)/2 = k(k–1)/2 
restrictions on R.   

• If k = 2, then k(k–1)/2 = 1, which is delivered by imposing a single 
restriction (commonly, that R is lower or upper triangular). 

• This ignores rank conditions, which matter!  
• This description of identification is via method of moments (equation 

(3)), however identification can equally be described via IV, e.g. see 
Blanchard and Watson (1986). 



The SVAR approach, ctd. 
 
Partial identification.  Many applications now take a limited information 
approach, in which only a row of R is identified.  Partition εt = Rut, and 
partition Yt so that: 
 

X
t
r
t

ε

ε

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = XX Xr

rX rr

R R
R R

⎛ ⎞
⎜ ⎟
⎝ ⎠

X
t
r
t

u

u

⎛ ⎞
⎜ ⎟
⎝ ⎠

          (4) 

 
If RrX and Rrr are identified, then (in population) r

tε  can be computed using 
just the final row of (4), and DYr(L) can be computed by the regression of 
Yt on r

tε , 1
r
tε − ,… as discussed above. 
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A word on invertibility:  Blaschke 
Recall the SVAR assumption: 

(ii)  ut spans the space of structural shocks εt, that is, εt  = Rut,  
where R is square  

 
• This is often called the assumption of invertibility: the VAR can be 

inverted to span the space of structural shocks.  If there are more 
structural shocks than ut’s, then condition (ii) will not hold.   

• One response is to add more variables so that ut spans εt.  This 
response is an important motivation of the FAVAR approach, which 
will be discussed in Lecture 12.   

• See Lippi and Reichlin (1993, 1994), Sims and Zha (2006b), 
Fernandez-Villaverde, Rubio-Ramirez, Sargent, and Watson (2007), 
and Hansen and Sargent (2007). 
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This talk 
• Early promise of SVARs and the critiques of the 1990s 
• Survey of new ideas about how to tackle the identification problem  
• Issues of inference, new and old, including some tools 

 
Comments and references 
• This is a mature literature – I will survey the developments in the past 10 

years or so on identification and inference, focusing on the econometric 
issues 

• Some general background references:  
Christiano, Eichenbaum, and Evans (1999) 
Lütkepohl (2005) 
Stock and Watson (2001) 
Watson (1994) 
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Outline 
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2) Identification by Short Run Restrictions 
 
This exposition follows CEE (1999).  Partition Yt as, 

Yt = 
St

t

ft

X
r

X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

The benchmark timing identification assumption is 

    

S
t
r
t
f

t

ε
ε
ε

⎛ ⎞
⎜ ⎟
⎜
⎜ ⎟
⎝ ⎠

⎟ = 
0 0

0
SS

rS rr

fS fr ff

R
R R
R R R

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

S
t
r
t
f

t

u
u
u

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

   

or 
slow-moving variables:  = S

tu 1
SSR− S

tε   
policy instrument:    = –r

tu 1
rrR− RrS  + S

tu 1
rrR− r

tε  
fast-moving variable:  f

tu  = – 1
ffR− RfS  + –S

tu 1
ffR− Rfr  + r

tu 1
ffR− f

tε  
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Identification by Short Run Restrictions, ctd. 
 
slow-moving variables:  = S

tu 1
SSR− S

tε   
policy instrument:    = –r

tu 1
rrR− RrS  + S

tu 1
rrR− r

tε  
fast-moving variable:  f

tu  = – 1
ffR− RfS  + –S

tu 1
ffR− Rfr  + r

tu 1
ffR− f

tε  

The space spanned by S
tε  is spanned by (is identified as) the residual from 

regressing  on . r
tu S

tu

 
Selected criticisms of timing restrictions (Rudebusch (1998), others) 

• the implicit policy reaction function doesn’t accord with theory or 
practical experience 

• Implementations often ignore changes in policy reaction functions 
• questionable credibility of lack of in-period response of Xst to rt 
• VAR information is typically far less than standard information sets 
• Estimated monetary policy shocks don’t match futures market data 
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Using high frequency data to estimate the monetary shock 

Recall,  Yt = ( )( ) ( )YX YrD L D L
X
t
r
t

ε

ε

⎛ ⎞
⎜
⎝ ⎠

⎟ = DYr(L) r
tε  + vt,  

where vt = DYX(L) X
tε , so if you observed r

tε  you could estimate DYr(L). 
 
A variant on short-run timing identification is to estimate r

tε  directly from 
daily data on monetary announcements or policy-induced FF rate changes 
• Cochrane and Piazessi (2002)  

aggregates daily r
tε  (Eurodollar rate changes after FOMC 

announcements) to a monthly  series r
tε

• Faust, Swanson, and Wright (2003. 2004) 
estimates IRF of rt wrt r

tε  from futures market, then matches this to 
a monthly VAR IRF (results in set identification – discuss later) 

• Bernanke and Kuttner (2005) 
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3) Identification by Long Run Restrictions 
 
Reduced form VAR:  A(L)Yt = ut 
Structural VAR:   B(L)Yt = εt,   Rut = εt,  B(L) = RA(L) 
This approach identifies R by imposing restrictions on the long run effect 
of one or more ε’s on one or more Y’s. 

Long run variance matrix from VAR:  Ω = A(1)–1Σu A(1)–1′ 
Long run variance matrix from SVAR: Ω = B(1)–1Σε B(1)–1′ 

Digression: B(1)–1 = D(1) is the long-run effect on Yt of εt; this can be seen 
using the Beveridge-Nelson decomposition, 

      
1

t

s
s

Y
=
∑  = D(1) 

1

t

s
s

ε
=
∑  + D*(L)εt 

Notation:  think of Yt as being growth rates, e.g. ΔlnRGDPt; e.g. if Yt is 

employment growth, ΔlnNt, then 
1

t

s
s

Y
=
∑  is log employment, lnNt 
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Long run restrictions, ctd. 
From VAR:   Ω = A(1)–1Σu A(1)–1′ 
From SVAR:  Ω = B(1)–1Σε B(1)–1′ = RA(1)–1Σε A(1)–1′R′ 

 
System identification by long run restrictions. The SVAR is identified if  

RA(1)–1Σε A(1)–1′R′ = Ω       (5) 
can be solved for the unknown elements of R and Σε.. 
• There are k(k+1)/2 distinct equations in (5), so the order condition says 

that you can estimate (at most) k(k+1)/2 parameters.  If we set Σε = I 
(just a normalization), it is clear that we need k2 – k(k+1)/2 = k(k–1)/2 
restrictions on R.   

• If k = 2, then k(k–1)/2 = 1, which is delivered by imposing a single 
exclusion restriction (that is, R is lower or upper triangular). 

• This ignores rank conditions, which matter  
• This is a moment matching approach; an IV interpretation comes later 
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Long run restrictions, ctd. 
 
The long run neutrality restriction.  The main way long restrictions 

are implemented in practice is by setting Σε = I and imposing zero 
restrictions on D(1).  Imposing Dij(1) = 0 says that the effect the long-run 
effect on the ith element of Yt, of the jth element of εt is zero 

If Σε = I, the moment equation (5) can be rewritten, 
 

Ω = D(1)D(1)′          (6) 
 
where D(1) = B(1)–1.  Because RA(1) = B(1), R is obtained from D(1) as  
R = A(1)–1B(1), and B(L) = RA(L) as above. 
Comments: 
• If the zero restrictions on D(1) make D(1) lower triangular, then D(1) 

is the Cholesky factorization of Ω. 
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Long run restrictions, ctd. 
• Blanchard-Quah (1989) had 2 variables (unemployment and output), 

with the restriction that the demand shock has no long-run effect on 
the unemployment rate.  This imposed a single zero restriction, which 
is all that is needed for system identification when k = 2. 

• King, Plosser, Stock, and Watson (1991) work through system and 
partial identification (identifying the effect of only some shocks), 
things are analogous to the partial identification using short-run 
timing. 

• This approach has been at the center of a “spirited” debate about 
whether technology shocks lead to a short-run decline in hours, based 
on long-run restrictions (Gali (1999), Christiano, Eichenbaum, and 
Vigfusson (2004, 2006), Erceg, Guerrieri, and Gust (2005), Chari, 
Kehoe, and McGrattan (2007), Francis and Ramey (2005), Kehoe 
(2006), and Fernald (2007)) 



Long run restrictions, ctd. 
In this literature, Ω is estimated using the so-called VAR-HAC estimator, 

VAR-HAC estimator of Ω:  Ω̂  = 1 1ˆ ˆˆ(1) (1)uA A− − ′Σ  

D(1) and R are estimated as:   = Chol(ˆ (1)D Ω̂), R̂  = 
1ˆˆ (1) (1)D A
−

⎡ ⎤⎣ ⎦  

Comments: 
• A recurring theme is the sensitivity of the results to apparently minor 

specification changes, in Chari, Kehoe, and McGrattan’s (2007) example 
results are sensitive to the lag length.  It is unlikely that ˆ

uΣ  is sensitive to 
specification changes, but ˆ(1)A  is much more difficult to estimate. 

• These observations are closely linked to the critiques by Faust and 
Leeper (1997), Pagan and Robertson (1998), Sarte (1997), Cooley and 
Dwyer (1998), Watson (2006), and Gospodinov (2008); we return to this 
below. 

• An alternative is to use medium-run restrictions, see Uhlig (2004) 
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4) Identification by Sign Restrictions 
 
Consider restrictions of the form:  a monetary policy shock… 
• does not decrease the FF rate for months 1,…,6 
• does not increase inflation for months 6,..,12 

These are restrictions on the sign of elements of D(L). 
 
Sign restrictions can be used to set-identify D(L).  Let D denote the set of 
D(L)’s that satisfy the restriction. There are currently three ways to handle 
sign restrictions:  

1.Faust’s (1998) quadratic programming method 
2.Uhlig’s (2005) Bayesian method 
3.Uhlig’s (2005) penalty function method 

 
I will describe #2 (the first steps are the same as #3) 



Sign restrictions, ctd. 
SVAR identification:     RΣuR′ = Σε 
Normalize Σε = I; then     Σu = R–1R–1′ 
 
One statement of the SVAR identification problem is that, without 
additional restrictions, R is identified only up to a rotation.  Let 1

cR−  = 
Chol(Σu) so 1

cR− 1
cR− ′ = Σu.  Then it is also true that 

 
       Σu = 1

cR− HH′ 1
cR− ′ 

 
for any orthonormal matrix H.  Let R–1 = 1

cR− H, or 
 

R = H–1Rc.       
 
Then R is also a solution to RΣuR′ = Σε. 
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Sign restrictions, ctd. 
Uhlig’s algorithm (slight modification): 

(i)   Draw  randomly from the space of orthonormal matrices H
(ii)  Compute R  = 1H − Rc 
(iii) Compute the IRF ) = C(L)(D L 1R−  = A(L)–1 1

cR− H  
(iv) If ) ∉ D, discard this trial (D L R  and go to (i).  Otherwise, if  

(D L) ∈ D, retain R  then go to (i) 

(v) Compute the posterior (using a prior on A(L) and Σu, plus the 
retained R ’s) and conduct Bayesian inference, e.g. compute 
posterior mean (integrate over A(L), Σu, and the retained R ’s), 
compute credible sets (Bayesian confidence sets), etc. 

 
This algorithm implements Bayes inference using a prior proportional to 

π(A(L), Σu)×1( ) ∈ D)μ(H) (D L

where μ(H) is the distribution from which H is drawn. 
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Sign restrictions, ctd. 
Sign restriction prior:   π(A(L), Σu)×1( ) ∈ D)μ(H) (D L

Comments: 
• This procedure results in set identification.  This raises difficult issues 

for inference and is an active area of research in econometric theory. 
• From a frequentist perspective, the identified set is estimated by the 

collection of nonrejected impulse responses, 
ˆ ˆ
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• { ) = (D L ( )C L 1
cR− H (D L

• This set is readily computed by saving the ’s that result in 
nonrejected ˆ )’s. 

: ) ∈ D} ˆ

H

(D L

• The nonrejected ˆ ( )D L ’s are not draws that can be used to compute 
frequentist confidence bands – they all fall in the set of point 
estimates! 

• From a Bayes perspective, the choice of μ matters (is μ informative?) 



Sign restrictions, ctd. 
• Frequentist inference about estimation of the set is difficult – it 

requires imagining what the set would have been, had different ( )ˆ(A L , 
ˆ )’s been realized. uΣ

• A confidence set for the identified set is a set-valued function of the 
data that contains the true identified set in 95% of all realizations. 

• Methodologically related example – set identification.   Faust, 
Swanson, and Wright (2004) have a related identification scheme – 
not sign restrictions – that also gives set identification (they require 
selected SVAR IRFs to match IRFs based on high frequency asset 
data).  Their approach also delivers set identification.  They take a stab 
at performing inference about the identified set itself.  As an 
illustration look first at their estimates of the identified set (figure 3), 
then their confidence intervals for the identified set: 
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Estimates of identified sets (Faust, Swanson, Wright (2003), Fig 3) 
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Confidence sets for identified sets (Faust, Swanson, Wright (2003) , Fig 4) 
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5) Identification from Heteroskedasticity 
Suppose: 

(a) The structural shock variance breaks at date s: Σε,1 before, Σε,2 after 
(b) R doesn’t change between variance regimes 
(c) normalize R to have 1’s on the diagonal, but no other restrictions; 

thus the unknowns are: R (k2–k); Σε,1 (k), and Σε,2(k). 
 
First period:  RΣu,1R′ = Σε,1 k(k+1)/2 equations, k2 unknowns 
Second period: RΣu,2R′ = Σε,2 k(k+1)/2 equations, k more unknowns 
 
Number of equations = k(k+1)/2 + k(k+1)/2 = k(k+1) 
Number of unknowns = k2 + k = k(k+1) 
 
Rigobon (2003), Rigobon and Sack (2003, 2004) 
ARCH version by Sentana and Fiorentini (2001) 
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Identification from Heteroskedasticity,ctd. 
 
Comments: 
1. There is a rank condition here too – for example, identification will not 

be achieved if Σε,1 and Σε,2 are proportional. 
2. The break date need not be known as long as it can be estimated 

consistently 
3. Different intuition: suppose only one structural shock is homoskedastic.  

Then find the linear combination without any heteroskedasticity! 
4. This idea also can be implemented exploiting conditional 

heteroskedasticity (Sentana and Fiorentini (2001)) 
5. But, some cautionary notes: 

a. R must remain constant despite change in Σε (think about it…) 
b.Strong identification will come from large differences in variances 
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6) DSGE Priors 
 
Use priors based on a DSGE towards which to shrink the VAR 
parameters. For example compute the approximate VAR(p) implied by the 
DSGE, use these as point estimates for B(L), and center conjugate prior at 
those.  More on this in Lecture 8. 
 
Selected references 

Ingram and Whiteman (1994) 
Del Negro and Schorfheide (2004) 
Del Negro, Schorfheide, Smets, and Wouters (2004) 
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7) Identification from Regional/Multicountry Restrictions 
 
The idea is to impose restrictions arising from country boundaries: 

(a) distinguish between country-specific and common shocks, e.g. 
using a factor structure; 

 (b) impose additional restrictions arising from transmission via  
trade shares 

 
Selected references 

Canova and Ciccarelli (2008) 
Dees, di Mauro, Pesaran, and Smith (2007) (many other 
Pesaran/Smith) 
Elliott and Fatás (1996) 
Norrbin and Schlagenhauf (1996) 
Stock and Watson (2005)  
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8) Inference: Challenges and Recently Developed Tools 
 

Two topics: 
(a) Inference using long-run restrictions  
(b) Inference about IRFs 

 
Inference using long-run restrictions  
Recall the estimator of R under the long-run neutrality condition with 
lower triangular restrictions on D(1): 

R̂  = ( ) 1ˆˆ (1)Chol A
−

⎡ ⎤Ω⎣ ⎦  = ( )
1

1 1ˆ ˆ ˆˆ(1) (1) (1)uChol A A A
−

− −⎡ ⎤′Σ⎢ ⎥⎣ ⎦
 

Conventional inference requires that R̂  be consistent with a sampling 
distribution that is well-approximated by a normal.  However, inference 
about Ω is difficult.  There are two ways to think about these inference 
issues:  as a HAC estimator (Lecture 9) and as an IV estimator (now). 
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IV interpretation of LR restrictions 
Shapiro and Watson (1988); Pagan and Robertson (1998), Sarte (1997), 
Cooley and Dwyer (1998); Watson (2006), Gospodinov (2008) 
 
Preliminaries 
(i) Restrictions on D(1) mean restrictions on B(1): 
SVAR:    B(L)Yt = εt 

D(1) = B(1)-1 
Consider 2-variable VAR: 

 

11 12

21 22

(1) (1)
(1) (1)

D D
D D
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
1

11 12

21 22

(1) (1)
(1) (1)

B B
B B

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 22 12

21 11

(1) (1)
det( (1))

(1) (1)
B B

B
B B

−⎛ ⎞
⎜ ⎟−⎝ ⎠

 

 
so D12(1) = 0 is equivalent to B12(1) = 0.  Estimation of D(1) with D12(1) = 
0 is equivalent to estimation of B(1) with B12(1) = 0. 
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IV interpretation of LR restrictions, ctd. 
 
(ii) Lag manipulation. Recall the Beveridge-Nelson decomposition for a 
lag polynomial of degree p: 

 

c(L) = c(1) + c*(L)Δ, where *
jc  =  

1

p

i
i j

c
= +

−∑
 
This is not unique; you can load c(1) on any lag, in particular, lag p: 

 

c(L) = c(1)Lp + c+(L)Δ, where jc+ =  
1

j

i
i

c
=
∑

 
Call this the “reverse BN decomposition.” 
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IV interpretation of LR restrictions for a 2-variable SVAR 

Let   B(L) =  11 12

21 22

1 ( ) ( )
( ) 1 ( )

b L b L
b L b L
− −⎛ ⎞

⎜ ⎟− −⎝ ⎠

so B(L)Yt = εt becomes, 
Y1t = b12(L)Y2t  + b11(L)Y1t–1 + ε1t  

Y2t = b21(L)Y1t   + b22(L)Y2t–1 + ε2t 
 
Apply the “reverse BN decomposition”: 

Y1t = b12(1)Y2t–p + )12 (b L+ ΔY2t  + b11(L)Y1t–1 + ε1t  

Y2t = b21(1)Y1t–p  + )21(b L+ ΔY1t  + b22(L)Y2t–1 + ε2t 
 
Impose the long-run neutrality restriction D12(1) = 0, i.e. b12(1) = 0: 

Y1t =      )12 (b L+ ΔY2t  + b11(L)Y1t–1 + ε1t  

Y2t = b21(1)Y1t–p  + )21(b L+ ΔY1t  + b22(L)Y2t–1 + ε2t 
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IV interpretation of LR restrictions for a 2-variable SVAR, ctd 
 
Y1t =  b12(1)Y2t–p + )12 (b L+ ΔY2t  + b11(L)Y1t–1 + ε1t   (7) 

Y2t = b21(1)Y1t–p  + )21(b L+ ΔY1t  + b22(L)Y2t–1 + ε2t   (8) 
 
The long-run restriction b12(1)=0 implies an exclusion restriction: Y2t–p 
doesn’t appear in (7), but it does appear in (8).  Thus:  

• the coefficient 12,0b+  on ΔY2t in (7) can be estimated by IV, using Y2t–p 

as an instrument for ΔY2t.   
 
Because ΔYt–1,…, ΔYt–p+1 appear as regressors in (7), this is equivalent to: 

• the coefficient 12,0b+  on ΔY2t in (7) can be estimated by IV, using Y2t–1 

as an instrument for ΔY2t. 
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IV interpretation of LR restrictions for a 2-variable SVAR, ctd 
Weak instrument interpretation 

Is Y2t–1 a weak or strong instrument? 
 
First-stage regression: 

regress ΔY2t on Y2t–1, ΔY2t–1, ΔY2t–2,…, Y1t–1, Y1t–2,… 
Back of the envelope calculation:  approximate Y2t as the AR(1), 
 
Approximation:    Y2t = αY2t–1 + ε1t       
or        ΔY2t = (α–1)Y2t–1 + ε1t      (9) 
In IV notation:     Y = ZΠ + v 
Concentration parameter:  μ2 = Π ′Z′ZΠ/ 2

vσ  
Translated to the approximate regression (9): 

Eμ2 = (α–1)2×var(Y2t–1)×T/
1

2
εσ  = ( )2

2

1
1

T
α

α
−
−
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IV interpretation of LR restrictions for a 2-variable SVAR, ctd 

Values of μ2 = ( )2

2

1
1

T
α

α
−
−

 for T = 100: 

α μ2 

0.5 33 
0.9 5.3 
0.95 2.6 

 
• These are probably best-case numbers, in higher order ARs and in 

VARs the marginal contribution of Y2t–1 given additional lags would 
be less 

• In the local to unit case (very persistent), μ2 = Op(1) random variable 
(Gospodinov (2008))  

• Some simulations from Pagan and Robertson (1998) of estimated 
long-run effects: 
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MC results of long run effects estimated by imposing LR neutrality 
restrictions, from Pagan and Robertson (1998) 
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IV interpretation of LR restrictions ctd 
Comments 
• The IV interpretation and the Ω estimation interpretation both suggest 

that (in some applications) there can be considerable sensitivity to 
sample period and especially lag length – which we would expect if 
identification is weak. 

• Whether this is an issue depends on the amount of persistence.  If 
persistence is small, Y2t will be a stronger instrument (and Ω will be 
easier to estimate) 

• Some practical advice: perform a MC simulation – and don’t trust 
boostrap SEs without checking in a MC 

• Francis, Owyang, and Roush (2005) change the infinite-run restriction to 
a finite long-run restriction using Faust’s algorithm – a sensible 
approach worth following up. 

• More work is still needed (especially tools for handling weak IVs) 



(b)  Confidence Intervals for IRFs 
 
The goal is to provide confidence intervals for IRFs that provide the 

stated coverage rate and are as tight as possible.  The natural starting point 
is first order asymptotic theory.  Remember the “delta method”?   
 

If T (θ̂  – θ0)  N(0, 
d
→

θ̂
Σ ) and if g(•) has continuous derivatives, then 

T [g(θ̂ ) – g(θ0)] ≈ T
0

g
θθ

∂
′∂

(θ̂  – θ0)  
d
→

0 0

ˆ0, g gN
θ

θ θθ θ

⎛ ⎞′∂ ∂⎜ ⎟Σ
′ ′⎜ ⎟∂ ∂⎝ ⎠

 

For this to provide a good approximation, θ̂  should be nearly normal to 
start with and g must be essentially linear over most of the mass of the 
sampling distribution of θ̂ . 
 
For SVAR IRFs, θ̂  = ( )ˆ(A L , R̂ ), and g(θ̂ ) = ) = )ˆ (D L ˆ(A L –1R̂ –1. 
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Confidence Intervals for IRFs, ctd. 
ˆ ˆ
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   θ  = ( )ˆ(A L , R̂ ), and g(θ ) = ) = )ˆ (D L ˆ(A L –1R̂ –1 

 
In SVAR applications there are two main problems with the delta method: 

ˆ1.The function g is very nonlinear so that even if ( )A L  were exactly 
normally distributed, the impulse response functions might not be.  Let 
α̂  ~ N(.25,.25), what is the distribution of 4α̂ ? 8α̂ ? 

 
2.Moreover, ˆ( )A L  is not well approximated by a normal.  It is well 

known that if the roots of A(L) are large, then ˆ( )A L  will exhibit 
substantial bias towards zero.  In fact, in the limit that the roots are 
local to unity, ˆ )(A L  will not have a normal asymptotic distribution. 

 
The problem of persistent roots complicating inference on D(L) is 
particularly important for medium and longer horizons… 



Confidence Intervals for IRFs, ctd. 
An example: the distribution of estimated IRF of an AR(1) at long 

horizons (Stock (1996, 1997), Phillips (1998)). 
Suppose 

      Yt = αYt–1 + εt 
and model α as local to unity: α = 1+c/T, where c is a constant.  The 
estimated IRF at horizon h is, 

α̂ h = (1+ /T)h ≈ ĉ
ˆh c

Te  
Suppose that h/T → κ (the horizon is a fraction of the sample size).  Then 
a direct application of local-to-unity asymptotic theory yields, 

α̂ h  ⇒ 
2

( )
exp

( )
cc

c

J s dWs
e

J s ds
κ κ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∫
∫

 

where Jc is an Ornstein-Uhlenbeck process.  The true IRF is eκc; the 
estimated IRF is that, times a nonnormal random factor. 
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Confidence Intervals for IRFs, ctd. 
 
The problem posed by large roots worsens as the horizon increases. The 
fraction of the sample at which problems for the normal approximation 
arise is surprisingly short, say 10%. 
 
Pesavento and Rossi (2005, 2006) provide one method for handling this 
(and provide an application to the LR technology shock debate).  Their 
procedure is theoretically justified – controls coverage rates – but is 
cumbersome and can produce wide intervals. 
 
The other methods in the literature (the methods we now turn to) do not 
handle large roots in theory, but some seem to work OK in Monte Carlo 
studies (and most certainly some are better than others). 
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Confidence Intervals for IRFs, ctd. 
 
Standard methods for constructing confidence intervals for D(L): 

1.Delta method (see Lütkepohl (2005)) 
2.Bootstrap methods (Runkle (1987), Kilian (1998a, 1998b, 2001)) 
3.Bayesian methods (Sims and Zha (1999)) 

 
Kilian and Chang (2000) results 

• MC simulation evidence comparing the delta method, the Sims-
Zha (1999) Bayesian method, the Runkle (1987) unadjusted 
bootstrap, Kilian (1998) adjusted bootstrap. 

• Results presented here are for the Bernanke-Gertler (1995) 
VAR(12), 4 variables, 348 monthly observations 
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Confidence Intervals for IRFs, ctd. 
 
Comments: 
• The coverage rates of IRFs depend on the VAR (the MC design). 
• The method that seems to work best (even though it technically isn’t 

valid when roots are local to unity) is Kilian’s bias-adjusted bootstrap.  
Here is Kilian’s algorithm: 

(i) Compute VAR estimates ˆ( )A L

(ii) Compute bias-adjusted VAR estimates (there are two ways to do 
this – using Pope’s (1990) bias formulas for VARs or by bootstrap 
simulation; see Kilian (1998b, 2001 appendix) for details) 

 

(iii) Bootstrap the foregoing (that is, the bias-adjusted estimates) 
(iv) Use percentiles of the bootstrap IRF draws, horizon by horizon, to 

compute confidence bands (i.e. use the percentile, not percentile-t, 
bootstrap method). 
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Concluding comments 
• Identification remains at the core of successful SVAR modeling  
• There have been some creative and promising developments (the DSGE, 

high frequency, IRF sign restrictions, and heteroskedasticity techniques 
all have plausibly valid applications) 

• There are also some subtle issues of inference which are not fully 
resolved – you need to be aware of these (at least): 

o Set identification issues and interpretation of “confidence bands” 
computed using sign restriction methods 

o Inference with long run restrictions: can be viewed either as a 
(possibly) weak instruments problem or a difficult HAC estimation 
problem – the problem is most serious when the data have 
substantial low frequency components. 

o Deterioration of IRF confidence bands at long horizons (and 
sometimes at short horizons); limitations of standard IRF bootstrap. 


