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5) Classical IV regression IV: Estimation 
 
Estimation is much harder than testing or confidence intervals 
• Uniformly unbiased estimation is impossible (among estimators with 

support on the real line), uniformly in μ2 
• Estimation must be divorced from confidence intervals 

 
Partially robust estimators (with smaller bias/better MSE than TSLS): 
Remember k-class estimators? 

ˆ( ) = [Y′(I – kkβ MZ)Y]–1[Y′(I – kMZ)y] 

TSLS:  k = 1,        

LIML:  k = ˆ
LIMLk  = smallest root of det(Y⊥′Y⊥ – kY⊥′MZY⊥) = 0 

Fuller:  k = ˆ
LIMLk – c/(T–k–#included exog.), c > 0  
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Comparisons of k-class estimators 
 
Anderson, Kunitomo, and Morimune (1986) – using second order theory 
Hahn, Hausman, and Kuersteiner (2004) – using MC simulations 
 
LIML 
•  median unbiased to second order 
• HHK simulations – LIML exhibits very low median bias 
• no moments exist! There can be extreme outliers 
• LIML also can be shown to minimize the AR statistic: 
 

ˆ LIMLβ : minβ AR(β) = 0 0

0 0

( ) ( ) /
( ) ( ) / ( )
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y Y y Y
y Y y Y

 

so LIML necessarily falls in the AR confidence set if it is nonempty 
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Comparisons of k-class estimators, ctd. 
Fuller 

• With c = 1, lowest RMSE to second order among a certain class 
(Rothenberg (1984)) 

• In simulation studies (m=1), Fuller performs very well with c = 1  
Others  

• (Jacknife TSLS; bias-adjusted TSLS) are dominated by Fuller, LIML 
 
Summary and recommendations 
• Under strong instruments, LIML, TSLS, k-class will all be close to 

each other. 
• under weak instruments, TSLS has greatest bias and large MSE  
• LIML has the advantage of minimizing AR – and thus always falling 

in the AR (and CLR) confidence set.  LIML is a reasonable (good) 
choice as an alternative to TSLS. 



What about the bootstrap or subsampling? 
The bootstrap is often used to improve performance of estimators and tests 
through bias adjustment and approximating the sampling distribution. 
 
A straightforward bootstrap algorithm for TSLS: 

yt = β′Yt + ut 

Yt = Π′Zt + vt 

ˆi) Estimate β, Π by , TSLSβ Π̂  
ii) Compute the residuals ,  ˆtu ˆtv

iii) Draw T “errors” and exogenous variables from { , , Zt}, and 
construct bootstrap data 

ˆtu ˆtv

,  using , tY ˆTSLSβ Π̂  ty

iv) Compute TSLS estimator (and t-statistic, etc.) using bootstrap data 
v) Repeat, and compute bias-adjustments and quantiles from the 

boostrap distribution, e.g. bias = bootstrap mean of ˆ  – ˆ  
using actual data 

TSLSβ TSLSβ
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Bootstrap, ctd. 
• Under strong instruments, this algorithm works (provides second-order 

improvements). 
• Under weak instruments, this algorithm (or variants) does not even 

provide first-order valid inference 
• The reason the bootstrap fails here is that Π̂  is used to compute the 

bootstrap distribution.  The true pdf depends on μ2, say fTSLS( ˆ ;μ2) 
(e.g. Rothenberg (1984 exposition above, or weak instrument 
asymptotics).  By using ˆ

TSLSβ

Π , μ2 is estimated, say by 2μ̂ .  The bootstrap 
correctly estimates fTSLS( ˆTSLSβ ; 2μ̂ ), but fTSLS( ;ˆTSLSβ 2μ̂ ) ≠ fTSLS( ;μ2) 
because 

ˆTSLSβ
2μ̂  is not consistent for μ2. ‘ 
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Bootstrap, ctd. 
• This is simply another aspect of the nuisance parameter problem in 

weak instruments.  If we could estimate μ2 consistently, the bootstrap 
would work – but we if so wouldn’t need it anyway (at least to first 
order) since we would have operational first order approximating 
distributions! 

• This story might be familiar – it is the same reason the bootstrap fails 
in the unit root model, and in the local-to-unity model, which led to 
Hansen’s (1999) grid bootstrap, which has been shown to produce 
valid confidence intervals for the AR(1) coefficient by Mikusheva 
(2007). 

• Failure of bootstrap in weak instruments is related to failure of 
Edgeworth expansion (uniformly in the strength of the instrument), see 
Hall (1992) in general, Moreira, Porter, and Suarez (2005a,b) in 
particular. 
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Bootstrap, ctd. 
• One way to avoid this problem is to bootstrap test statistics with null 

distributions that do not depend on μ2.  Bootstrapping AR and LM 
does result in second order improvements, see Moreira, Porter, and 
Suarez (2005a,b). 



What about subsampling?  
Politis and Romano (1994), Politis, Romano and Wolf (1999) 
 
Subsampling uses smaller samples of size m to estimate the parameters 
directly.  If the CLT holds, the distribution of the subsample estimators, 
scaled by /m T , approximates the distribution of the full-sample 
estimator. 
 
A subsampling algorithm for TSLS:   

(i) Choose subsample of size m and compute TSLS estimator 
(ii) Repeat for all subsamples of size m (in cross-section, there 

are 
T
m
⎛ ⎞
⎜ ⎟
⎝ ⎠

 such subsamples; in time series, there are T–m) 

(iii) Compute bias adjustments, quantiles, etc. from the rescaled 
empirical distribution of the subsample estimators. 
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Subsampling, ctd. 
• Subsampling works in some cases in which bootstrap doesn’t (Politis, 

Romano, and Wolf (1999)) 
• However, it doesn’t work (doesn’t provide first-order valid 

approximations to sampling distributions) with weak instruments 
(Andrews and Guggenberger (2007a,b)). 

• The subsampling distribution estimates fTSLS( ˆTSLSβ ; 2
mμ ), where 2

mμ  is the 
concentration parameter for m observations.  But this is less (on 
average, by the factor m/T) than the concentration parameter for T 
observations, so the scaled subsample distribution does not estimate 
fTSLS( ˆ ; ). TSLSβ 2

Tμ

• Subsampling can be size-corrected (in this case) but there is power 
loss relative to CLR; see Andrews and Guggenberger (2007b) 
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6) GMM I: Setup and asymptotics 
 
GMM notation and estimator 
GMM “error” term (G equations):  h(Yt;θ);  θ0 = true value 

Errors times k instruments:    φt(θ) = 
1 1

0( , )
G k

t th Y Zθ
× ×

⊗  

Moment conditions - k instruments:  Eφt(θ) = E[
1 1

0( , )
G k

t th Y Zθ
× ×

⊗ ] = 0 

GMM objective function:   ST(θ) = 1/2 1/2

1 1

( ) ( )
T T

t T t
t t

T W Tφ θ φ θ− −

= =

′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑  

GMM estimator:       θ̂  minimizes ST(θ) 
Linear GMM:        h(Yt;θ) = yt – θ′Yt 

(linear GMM is the IV regression model, allowing for possible 
heteroskedasticity and/or serial correlation in the errors h) 
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Efficient GMM 

Centered sample moments: ΨT(θ) = ( )1/2

1

( ) ( )
T

t t
t

T Eφ θ φ θ−

=

−∑  

Efficient (infeasible) GMM: WT =  Ω–1, Ω = E[ΨT(θ)ΨT(θ)′] = 2π  ( ) (0)
t

Sφ θ

Feasible GMM 

Estimator of Ω:    )ˆ (θΩ  = HAC estimator of Ω  = )ˆ (
S

j j
j S

κ θ
=−

Γ∑ ,  

where    )ˆ (j θΓ  = ( )( )
1

1 ( ) ( ) ( ) ( )
T

t t t j t j
tT

φ θ φ θ φ θ φ θ− −
=

′− −∑  

      {κj} are kernel weights (e.g. Newey-West) 
Feasible GMM variants 
One-step      WT = fixed matrix (e.g. WT = I) 

ˆTwo-step efficient:    = I,  = ((1)
TW (2)

TW Ω (1)θ̂ )–1 

Iterated:      continue iterating, with ( )i
TW 1+  = Ω̂( ( )ˆ iθ )-1

 

CUE (Hansen, Heaton, Yaron 1996): WT = Ω̂(θ)–1 (evaluate Ω̂  at every θ!) 
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Standard asymptotics 
1)  Establish consistency by showing the minimum of ST will occur local 

to the true value θ0:   Pr[ST(θ) < ST(θo)] → 0 for |θ  – θ0| > ε 
ˆso by smoothness of the objective function, Pr[|θ   – θ0| > ε] → 0 

 
2)  Establish normality by making quadratic approximation to ST, based on 

consistency (which justifies dropping the higher order terms in the 
Taylor expansion): 

ST(θ̂ ) ≈ ST(θ0) + T (θ̂  – θ0)′
0

1 ( )TS
T θ

θ
θ

∂
∂

  

+ ½ T (θ̂  – θ0)′
0

21 ( )TS
T θ

θ
θ θ

⎡ ⎤∂
⎢ ⎥

′∂ ∂⎢ ⎥⎣ ⎦
 T (θ̂  – θ0) 

so   T (θ̂  – θ0) ≈ 
0

1
21 ( )TS

T θ

θ
θ θ

−
⎡ ⎤∂
⎢ ⎥

′∂ ∂⎢ ⎥⎣ ⎦ 0

1 ( )TS
T θ

θ
θ

∂
∂
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If WT  W (say), then 
p
→

 

0

21 ( )TS
T θ

θ
θ θ

∂
′∂ ∂

  DWD′, where D = E
p
→

0

( )t

θ

φ θ
θ

∂
∂

 

0

1 ( )TS
T θ

θ
θ

∂
∂

  N(0,DWΩW′D′) 
d
→

so    T (θ̂  – θ0) ≈ 
0

1
21 ( )TS

T θ

θ
θ θ

−
⎡ ⎤∂
⎢ ⎥

′∂ ∂⎢ ⎥⎣ ⎦ 0

1 ( )TS
T θ

θ
θ

∂
∂

  

d
→  N(0,[DWD′]–1DWΩW′D′[DWD′]–1) 

Feasible efficient GMM 

For two-step, iterated, and CUE, WT Ω–1, so 
p
→  T (θ̂  – θ0) N(0, Σ) 

d
→  

where  Σ = (DΩ–1D′)–1 
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Estimator of variance matrix:      Σ̂  = [D̂(θ̂ )Ω̂(θ̂ )D̂(θ̂ )′]–1 



Weak identification in GMM – what goes wrong in the usual proof? 
Digression: 
• We will use the term “weak identification” because “weak 

instruments” is not precise in the nonlinear setting  
• In the linear case, the strength of the instruments doesn’t depend on θ 
• In nonlinear GMM, the strength of the instruments can depend on θ:  

they can be weak for some departures h(Yt,θ) - h(Yt,θ0), but strong for 
others 

 
When identification is weak, there are 3 problems with the usual proof: 

(a) The curvature, which reflects the amount of information, is small, so 
the maximum of ST might not be close to θ0. 

(b) The curvature matrix is not well-approximated as nonrandom 

(c) The linear term, 
0

( )TS
θ

θ
θ

∂
∂

, is not approximately normal with mean 0 
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Illustration: linear IV in the GMM framework 
The TSLS objective function (two-step GMM) is exactly quadratic: 

S(θ) = (y – Yθ)′PZ(y – Yθ) 
= [u – Y(θ – θ0)]′PZ[u – Y(θ – θ0)] 
= u′PZu + (2u′PZY)( θ – θ0) –  ½(θ – θ0)′(2Y′PZY)( θ – θ0) 

or   

ST(θ̂ ) = ST(θ0) + T (θ̂  – θ0)′
0

1 ( )TS
T θ

θ
θ

∂
∂

  

+ ½ T (θ̂  – θ0)′
0

21 ( )TS
T θ

θ
θ θ

⎡ ⎤∂
⎢ ⎥

′∂ ∂⎢ ⎥⎣ ⎦
 T (θ̂  – θ0) 

where       ST(θ0) = u′PZu 

    
0

1 ( )TS
T θ

θ
θ

∂
∂

 = 2u′PZY 

    
0

21 ( )TS
T θ

θ
θ θ

∂
′∂ ∂

 = 2Y′PZY
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Illustration: linear IV in the GMM framework, ctd. 
(a) The curvature is small (so estimator need not be local) 

0

21 ( )TS
T θ

θ
θ θ

∂
′∂ ∂

 = 2Y′PZY  

= 2 / / ( )
/ ( )

P k M T k
M T k

′
′ −

′ −
Z

Z
Z

Y Y Y Y
Y Y

 

= 2kF 2
vs , 

where F is the first-stage F and 2
vs  is the estimator of 2

vσ . 
(b)  The curvature is random – not well approximated by a constant 
   F/μ2 → 1 as μ2 → ∞, but for small μ2, F = μ2 +op(1) 
(c)  Under weak instrument asymptotics, the linear term is: 

   
0

1 ( )TS
T θ

θ
θ

∂
∂

 = 2u′PZY  2(λ + zv)′zu, 
d
→

which has a mixture-of-normals distribution with a nonzero mean 
(recall the distribution of TSLS under weak instrument asymptotics) 
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Alternative asymptotics for weak identification 
As in the linear case, we need asymptotics for GMM that are tractable; 
provides good approximations uniformly in strength of identification; and 
can be used to compare procedures. 
 
Alternative approaches: 
1.Finite sample – good luck 
2.Edgeworth and related expansions – useful for developing partially 

robust procedures but won’t cover complete range through unidentified 
case 

3.Bootstrap & resampling – doesn’t work in linear IV special case 
4.Weak identification asymptotics – provide nesting (parameter sequence) 

that provides an approximation uniformly in strength of identification 



Weak ID asymptotics in GMM 
(Stock and Wright (2000)) 
Use local sequence (sequence of mean functions) to provide non-quadratic 
global approximation to ST(θ): 

 

ST(θ) = 1/2 1/2

1 1

( ) ( )
T T

t T t
t t

T W Tφ θ φ θ− −

= =

′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑  

 
Write  

1/2

1

(
T

t
t

T )φ θ−

=
∑  = [ ]1/2

1

( ) ( )
T

t t
t

T Eφ θ φ−

=

−∑ θ  + 1/2

1

( )
T

t
t

T Eφ θ−

=
∑  

      = ΨT(θ) + T Eφt(θ) 
      = ΨT(θ) + mT(θ) 
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Weak ID asymptotics in GMM, ctd. 
Applied to the linear IV regression model, this reorganization yields, 

1/2

1

(
T

t
t

T )φ θ−

=
∑  = 1/2

1

( )
T

t t t
t

T y Y Zθ−

=

′−∑  

=  ( )1/2
0

1

( )
T

t t t
t

T u Y Zθ θ−

=

′− −∑

= 1/2

1

T

t
t

T ζ−

=
∑   – E  1/2

0
1

( )
T

t t
t

T Y Zθ θ−

=

⎛ ⎞′−⎜ ⎟
⎝ ⎠

∑

= ΨT(θ) + mT(θ) 
where ζt = [ ]0( ) ( )t t t t t tu Z Y Z E Y Z0θ θ θ θ′ ′− − − − .  Now: 

• ΨT(θ) = 1/2

1

T

t
t

T ζ−

=
∑    N(0, Ω) (because ζt is mean zero and i.i.d. – 

instrument strength doesn’t enter this limit (subtracted out))  

d
→

• The mean function mT(θ) is a finite nonrandom (linear) function under 
the local nesting Π = T–1/2C 
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Weak ID asymptotics in GMM, ctd. 
1/2

1

(
T

t
t

T )φ θ−

=
∑  = )tE[ ]1/2 1/2

1 1

( ) ( ) (
T T

t t
t t

T E Tφ θ φ θ φ− −

= =

− +∑ ∑ θ  = ΨT(θ) + mT(θ) 

 
Suppose: 

1.mT  m uniformly in θ, where m(θ) is a limiting (finite continuous 
differentiable) function. 

p
→

This is the function extension of assuming Π = T–1/2C 
 
2.ΨT(•) ⇒ Ψ(•), where Ψ(θ) is a Gaussian stochastic process on Θ with 

mean zero and covariance function Ω(θ1,θ2) = EΨ(θ1)Ψ(θ2)′ 
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Weak ID asymptotics in GMM, ctd. 
2. ΨT ⇒ Ψ, where Ψ(θ) is a Gaussian stochastic process on Θ with 

 mean zero and covariance function Ω(θ1,θ2) = EΨ(θ1)Ψ(θ2)′ 
 
Digression on ΨT ⇒ Ψ:   

Item #2 is an extension of the FCLT.  Generally, the FCLT talks 
about convergence in distribution of a sequence of random  
functions, to a limiting function, which has a (limiting) 
distribution.  In the time series FCLT introduced in Lecture 2, the 
function is indexed by s = τ/T ∈ [0,1], and the limiting process has 
the covariance matrix of Brownian motion (it is Brownian motion).  
Here, the function is indexed by θ, and the limiting process has the 
covariance matrix Ω(θ1,θ2).  The proof of the FCLT entailed 
proving: 



Weak ID asymptotics in GMM, ctd. 
i. Convergence of finite dimensional distributions.  Here, this 

corresponds the joint distributions of ΨT(θ1), ΨT(θ2),…, ΨT(θr).  

But ΨT(θ) = E[ ]1/2

1

( ) ( )
T

t t
t

T φ θ φ−

=

−∑ θ , so it is a weak (standard) 

assumption that ΨT(θ1), ΨT(θ2),…, ΨT(θr) will converge jointly 
to a normal; the covariance matrix is filled out using Ω(θ1,θ2) 
(applied to all the points). 

ii. Tightness (or stochastic equicontinuity).  That is, for θ1 and θ2 
close, that ΨT(θ1) and ΨT(θ2) must be close (with high 
probability).  This allows going from the function evaluated at 
finitely many points, to the function itself.  Proving this is 
application specific (depends on h(Yt,θ)).  Proof in the linear 
GMM case is in Stock and Wright (2000). 
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Weak ID asymptotics in GMM, ctd. 
Back to main argument… 
 

Under 1 and 2,  )1/2

1

(
T

t
t

T φ θ−

=
∑  ⇒ Ψ(θ) + m(θ) 

3.WT(θ)  W(θ) uniformly in θ, where W(θ) is psd, continuous in θ 
p
→

 

Under 1, 2, and 3,    ST(θ) = 1/2 1/2

1 1

( ) ( ) ( )
T T

t T t
t t

T W Tφ θ θ φ− −

= =

′
θ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑   

⇒ S(θ) = [ψ(θ) + m(θ)]′W[ψ(θ) + m(θ)] 
and 
      θ̂  ⇒ θ*, where θ* = argmin S(θ) 
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Weak ID asymptotics in GMM, ctd. 
θ̂  ⇒ θ* = argmin {S(θ) = [Ψ(θ) + m(θ)]′W[Ψ (θ) + m(θ)]} 

Comments 
• With φt(θ) = (yt – θ′Yt)Zt and WT = (Z′Z/T)–1, this yields the weak IV 

asymptotic distribution of TSLS obtained earlier. 
• ST(θ) is not well approximated by a quadratic (is not quadratic in the 

limit) with a nonrandom curvature matrix that gets large – instead, 
ST(θ) is Op(1) 
ˆ• θ  is not consistent in this setup 
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• θ̂  has a nonstandard limiting distribution 
ˆ• Standard errors of θ  aren’t meaningful (±1.96SE isn’t valid conf. int.) 

• J-statistic doesn’t have chi-squared distribution 
ˆ• Well-identified elements of θ  have the usual limiting normal 

distributions, under the true values of the weakly identified elements 
• Extensions and proofs are in Stock and Wright (2000) 
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7) GMM II:  Detection of weak identification 
 
This is an open area of research with no best solution.  Some thoughts: 

 
1.In linear GMM, the noncentrality parameter of the first-stage F and 

the concentration parameter are no longer the same thing if there is 
heteroskedasticity and/or serial correlation in h(Yt,θ).  With 
heteroskedasticity, the first-stage F still provides a reasonable guide 
(MC findings) but with serial correlation the first stage F isn’t very 
reliable. 

 
2.Wright (2003) provides a test for weak instruments, based on the 

extension of the Cragg-Donald (1993) using the estimated curvature of 
the objective function.  The test is a test of non-identification (contrast 
with Stock-Yogo, testing whether μ2 exceeds a critical cutoff; in  
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Wright (2003), the cutoff is taken to be μ2 = 0 in linear IV case).  The 
test is conservative, which gives it low power against weak 
identification – a benefit in this instance.  Important drawback is that it 
is only local (multiple peak problem). 

 
3.Some symptoms of weak identification: 

• CUE, two-step, and interated GMM converge to quite different 
values (see Hansen, Heaton, Yaron (1996) MC results) 

• for two-step and iterated, the normalization matters 
• multiple valleys in the CUE objective function 
• Significant discrepancies between GMM-AR confidence sets 

(discussed below) and conventional Wald confidence sets 
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8) GMM III:  Hypothesis tests and confidence intervals 
 
Extensions of methods in linear IV: 
 
(1) The GMM-Anderson Rubin statistic 
(Kocherlakota (1990); Burnside (1994), Stock and Wright (2000))  The 
extension of the AR statistic to GMM is the CUE objective function 
evaluated at θ0: 

   )0(CUE
TS θ  = 1/2 1 1/2

0 0 0
1 1

ˆ( ) ( ) ( )
T T

t t
t t

T Tφ θ θ φ θ− − −

= =

′⎡ ⎤ ⎡ ⎤Ω⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑  

      ψ(θ0)′Ω(θ0)–1Ψ(θ0) ~ 
d
→  2

kχ

• Thus a valid test of Η0: θ = θ0 can be undertaken by rejecting if ST(θ0) 
> 5% critical value of 2

kχ . 

Revised July 22, 2008 4-32 



The GMM-Anderson Rubin statistic, ctd 
• The statistic above tests all elements of θ.  If some elements are 

strongly identified, they can be concentrated out (estimated under the 
null) for valid subset inference.  Specifically, let θ = (α, β), and let α 
be weakly identified and β be strongly identified.  Fix α at the 
hypothesized value α0 and let ˆGMMβ  be an efficient GMM estimator of 
β, at the given value of α0.  Then construct the CUE objective 
function, using the hypothesized value of α and the estimated value of 
β: 

0
ˆ( ,CUE GMM

TS α β ) =  1/2 1 1/2
0 0 0

1 1

ˆ ˆ ˆˆ( , ) ( , ) ( , )
T T

GMM GMM GMM
t t

t t

T Tφ α β α β φ α β− − −

= =

′⎡ ⎤ ⎡ ⎤Ω⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑

 
The statistic ) has a 0

ˆ( ,CUE GMM
TS α β 2

dim( )k βχ −  distribution under H0: α = 

α0, and is a weak-identification robust test statistic for H0: α = α0. 
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In the homoskedastic linear IV model, the GMM-AR statistic simplifies to 
the AR statistic (up to a degrees of freedom correction): 

0(CUE
TS )θ  = 1/2 1 1/2

0 0 0
1 1

ˆ( ) ( ) ( )
T T

t t
t t

T Tφ θ θ φ θ− − −

= =

′⎡ ⎤ ⎡ ⎤Ω⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑  

= 
1

1/2 2 1/2
0 0

1 1

'( ) ( )
T T

t t t v t t t
t t

T y Y Z s T y Y Z
T

θ θ
−

− −

= =

′⎡ ⎤ ⎡ ⎤⎛ ⎞′ ′− −⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦
∑ ∑Z Z  

= 0 0

0 0

( ) ( )
( ) ( ) / ( )
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P
M T k
θ θ

θ θ
′y − −

′
Y

− −
Z

Z

y
−

Y
y Y y Y

 = k × AR(θ0) 

Comments: 
• The statistic, 0( )CUE

TS θ , is called various things in the literature, 
including the S-statistic, the CUE objective function statistic, the 
nonlinear AR statistic, and the GMM-AR statistic.  I think GMM-AR 
is the most descriptive and we will use that term here. 



Revised July 22, 2008 4-35 

GMM-Anderson-Rubin, ctd. 
 
• The GMM-AR statistic has the same issues of interpretation issues as 

the AR, specifically, the GMM-AR rejects because of endogenous 
instruments and/or incorrect θ 

• With little information, the GMM-AR can fail to reject any values of θ 
(remember the Dufour (1997) critique of Wald tests) 
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(2) GMM-LM 
Kleibergen (2005) – develops score statistic (based on CUE objective 
function – details of construction matter) that provides weak-
identification valid hypothesis testing for sets of variables 

(3) GMM-CLR 
Andrews, Moreira, Stock (2006) – extension of CLR to linear GMM 
with a single included endogenous regressor, also see Kleibergen 
(2007).  Very limited evidence on performance exists; also problem of 
dimension of conditioning vector 

(4) Other methods 
Guggenberger-Smith (2005) objective-function based tests based on 
Generalized Empirical Likelihood (GEL) objective function (Newey 
and Smith (2004)); Guggenberger-Smith (2008) generalize these to 
time series data.  Performance is similar to CUE (asymptotically 
equivalent under weak instruments) 



Revised July 22, 2008 4-37 

Confidence sets 
• Fully-robust 95% confidence sets are obtained by inverting (are the 

acceptance region of) fully-robust 5% hypothesis tests 
• Computation is by grid search in general: collect all the points θ which, 

when treated as the null, are not rejected by the GMM-AR statistic. 
• Subsets by projection (see Kleibergen and Mavroeidis (2008) for an 

application of GMM-AR confidence sets and subsets) 
• Valid tests must be unbounded (contain Θ) with finite probability with 

weak instruments 
Bottom line recommendation 

Work is under way in this area, but the best thing for now is to use the 
GMM-AR statistic to test θ = θ0, and to invert the GMM-AR statistic 
to construct the GMM version of the AR confidence set.  The GMM-
AR statistic must in general be inverted by grid search.  The GMM-
AR confidence set, if nonempty, will contain the CUE estimator. 
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Outline 
 
1) What is weak identification, and why do we care? 
2) Classical IV regression I: Setup and asymptotics 
3) Classical IV regression II: Detection of weak instruments 
4) Classical IV regression III: hypothesis tests and confidence intervals 
5) Classical IV regression IV: Estimation 
6) GMM I: Setup and asymptotics 
7) GMM II:  Detection of weak identification 
8) GMM III:  Hypothesis tests and confidence intervals 
9) GMM IV:  Estimation 
10) Many instruments 



9) GMM IV:  Estimation 
 
• Impossibility of a (data-based) fully robust estimators are available – 

just just as in linear case 
• The challenge is to find partially robust estimators – estimators that 

improve upon 2-step and iterated GMM (which perform terribly – just 
like TSLS) 

 
(a) The continuous updating estimator (CUE) 

Hansen, Heaton, Yaron (1996).  The CUE minimizes, 
 

(CUE
TS )θ  = 1/2 1 1/2

1 1

ˆ( ) ( ) ( )
T T

t t
t t

T Tφ θ θ φ− − −

= =

′
θ⎡ ⎤ ⎡ ⎤Ω⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑  

 
Basic idea: “same θ in the numerator and the denominator”. 
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Comments 
• The CUE might seem arbitrary but actually it isn’t.  In fact, it was 

shown above that in the linear model with spherical errors, the CUE 
objective function is the AR statistic, ( )CUE

TS θ  = AR(θ).  It was stated 
above (without proof) that LIML minimizes the AR statistic.  So in the 
special case of linear GMM when there is no heteroskedasticity or 
serial correlation, the CUE estimator is LIML (asymptotically under 
weak instrument asymptotics if Ω is estimated). 

• CUE will always be contained in the GMM-AR set 
• The CUE seems to inherit median unbiasedness of LIML (MC result; 

for some theory see Hausman, Menzel, Lewis, and Newey (2007)) 
• CUE (like LIML) exhibits wide dispersion in MC studies 

(Guggenberger 2005) 
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(b) Other estimators 
• Generalized empirical likelihood (GEL) family.  Interestingly, GEL 

estimators are asymptotically equivalent to CUE under weak 
instrument asymptotics (Guggenberger and Smith (2005)) 

• Fuller-k type modifications explored in Hausman, Menzel, Lewis, and 
Newey (2007), with some simulation evidence. 

• These alternative estimators are promising but preliminary and their 
properties, including the extent to which they are robust to weak 
instruments in practice, are not yet fully understood. 



Revised July 22, 2008 4-42 

Example #3 (linear GMM):  New Keynesian Phillips Curve 
References: Gali and Gertler (1999); Mavroedis (2005), Nason and Smith 
(2007), Dufour, Khalath, and Kichian (2006), Kleibergen and Mavroeidis 
(2008) 
 
Hybrid NKPC:    πt = λxt + γfEtπt+1 + γbπt–1 + ηt 
 
Rational expectations:   Et(πt – λxt – γfπt+1 – γbπt–1) = 0 
GMM moment condition:  E[(πt – γfπt+1 – γbπt–1 – λxt)Zt] = 0 
Instruments:     Zt = {πt–1, xt–1, πt–2, xt–2,…} 
 
m = 2, so AR sets are needed. Confidence intervals can be computed by 
projecting the sets to the axes – see the example from Kleibergen and 
Mavroeidis (2008) below:  



Anderson-Rubin confidence sets for NKPC parameters from Dufour, 
Khalath, and Kichian (2006) (2-dim confidence sets computed by grid 
search as nonrejection region of AR(β) test) 

 
 
• Confidence set isn’t an ellipse (it could be disjoint!) 
• Set is obtained by trying lots of values – over the grid 
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Kleibergen-Mavroedis confidence sets using S-sets (GMM-AR sets) (left) 
and also by inverting a bivariate linear GMM extension of the CLR 
statistic (right).  Confidence intervals are computed by projecting the set 
onto the axes: 
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Example #4:  Nonlinear CCAPM 
Stock and Wright (2000), Neely, Roy, Whiteman (2001) 
 

h(Yt,θ) = 
1

1
1

G
t

t G
t

C R
C

γ

δ ι
−

×
+

+

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 

 
where Rt+1 is a G×1 vector of asset returns and ιG is the G-vector of 1’s. 
GMM moment conditions (Hansen-Singleton (1982)): 
 
Specific illustration (Stock and Wright (2005)) – AR sets 
Annual data, 1871-1993 
Two equations: stock returns & bond returns 
Instruments:  SRt–2, BRt–2, Δct–2 (2nd lag because of temporal aggregation) 
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Outline 
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10) Many Instruments 
 
The appeal of using many instruments 
• Under standard IV asymptotics, more instruments means greater 

efficiency. 
• This story is not very credible because 

(a) the instruments you are adding might well be weak (you already 
have used the first two lags, say) and  
(b) even if they are strong, this requires consistent estimation of 
increasingly many parameter to obtain the efficient projection – hence 
slow rates of growth of the number of instruments in efficient GMM 
literature. 



Example of problems with many weak instruments – TSLS 
Recall the TSLS weak instrument asymptotic limit: 

ˆTSLSβ  – β0  
d
→

(  )
(  ) (  )

v u

v vz z
z zλ

λ λ
′+

′+ +
 

with the decomposition, zu = δzv + η.  Suppose that k is large, and that 
λ′λ/k → Λ∞ (one way to implement “many weak instrument 
asymptotics”).  Then as k → ∞, 

λ′zv/k  0 and λ′zu/k  0 
p
→

p
→

zv′zv/k  1 and zv′η/k  0 (zv and η are independent by construction) 
p
→

p
→

 
Putting these limits together, we have, as k → ∞, 

(  )
(  ) (  )

v u

v vz z
z zλ

λ λ′+ +
′+   

p
→

1
δ

∞+ Λ
 

In the limit that Λ∞ = 0, TSLS is consistent for the plim of OLS! 
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Comments  
• Strictly this calculation isn’t right – it uses sequential asymptotics (T 
→ ∞, then k → ∞).  However the sequential asymptotics is justified 
under certain (restrictive) conditions on K/T (specifically, k4/T → 0) 

• Typical conditions on k are k3/T → 0 (e.g. Newey and Windmeijer 
(2004)) 

• Many instruments can be turned into a blessing (if they are not too 
weak! They can’t push the scaled concentration parameter to zero) by 
exploiting the additional convergence across instruments.  This can 
lead to bias corrections and corrected standard errors.  There is no 
single best method at this point but there is promising research, e.g. 
Newey and Windmeijer (2004), Chao and Swanson (2005), and 
Hansen, Hausman, and Newey (2006)) 
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Comments, ctd. 
• For testing, the AR, LM, and CLR are all valid under many 

instruments (again, slow rate: k → ∞ but k3/T → 0) in the classical IV 
regression model; the CLR continues to be essentially most powerful 
(the power of the AR deteriorates substantially because of the large 
number of restrictions being tested) 

• An important caveat in all of this is that the rates suggest that the 
number of instruments must be quite small compared to the number of 
observations.  (The specific rate at which you can add instruments 
depends on their strength – the stronger the instruments, the more you 
can add; see the discussion in Hansen, Hausman, and Newey (2006) 
for example.)  Consider the k3/T → 0 rate:  

with T = 200 and k = 6, k3/T =  1.08. 
with T = 329,509 and k = 178, k3/T = 17 (!) 
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Comments, ctd. 
 
• There is interesting recent work on many instruments using ideas of 

dynamic factor models – postpone discussion of this until the 
discussion of DFMs.  This is conceptually different (uses information 
in the instruments themselves to address the many instrument problem, 
without reference to Y) 
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Instrument selection 
• Donald and Newey (2001) provide an information criterion instrument 

selection method in the classical linear IV model that applies when 
some instruments are strong (θ strongly identified) and others possibly 
weak.  Problem with is that you need to know which are strong. 

• Unaware of instrument selection methods that are appropriate when all 
instruments are possibly weak. 

 
Final comments on many instruments 
• Strong instruments: more instruments, more efficiency 
• Weak instruments: more weak instruments, less reliable inference – 

more bias, size distortions (using standard estimators – two-step and 
iterated GMM) 



• Don’t be fooled by standard errors that get smaller as you add 

instruments.  Remember the result that  – ˆTSLSβ ˆOLSβ   0 as k → ∞ 
(and k3/T → 0) when all but a few instruments are irrelevant. 

p
→

• Some gains seem to be possible in theory (papers cited above) by 
exploiting the idea of many instruments but the theory is delicate: bias 
adjustments and size corrections that hold for rates such as k → ∞ but 
k3/T → 0, but break down for k too large.  Work needs to be done 
before these are ready for implementation 

• For now, the best advice is to restrict attention to relatively few 
instruments, to use judgment selecting the strongest (recent lags, not 
distant ones), and to use relatively well understood. 
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Bottom line recommendations 
 
• Weak instruments/weak identification comes up in a lot of 

applications 
• In the linear case, it is helpful to check the first-stage F to see if 

weak instruments are plausibly a problem. 
• TSLS and 2-step efficient GMM can give highly misleading 

estimates if instruments are weak. 
• TSLS and 2-step GMM confidence intervals, constructed in the 

usual way (± 1.96 standard errors) are highly unreliable (can have 
very low true coverage rates) if instruments are weak. 

• If you have weak instruments, the best thing to do is to get stronger 
instruments, but barring that you should use econometric procedures 
that are robust to weak instruments.  Robust procedures give valid 
inference even if the instruments are weak. 
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Bottom line recommendations, ctd. 
 
• In the linear case with m=1 and no serial correlation, the CLR and 

CLR confidence intervals are recommended.  Estimation by LIML is 
preferred to TSLS, but LIML can deliver very large outliers.  Fuller 
is also a plausible option (see above). 

• In the general nonlinear GMM case, GMM-AR confidence sets are 
recommended, but care must be taken in interpreting these (see 
discussion above).  If you must compute an estimator, CUE seems to 
be the best choice given the current state of knowledge. 


