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1) What is weak identification, and why do we care? 
 
1a) Four examples 
Example #1 (cross-section IV): Angrist-Kreuger (1991),  
 What are the returns to education? 
 Y = log(earnings) 
 X = years of education 
 Z = quarter of birth; k = #IVs = 3 binary variables or up to 178 

 (interacted with YoB, state-of-birth) 
 n = 329,509 

ˆA-K results:  = .081 (SE = .011) TSLSβ
Then came Bound, Jaeger, and Baker (1995)… 
 
⇒ The problem is that Z (once you include all the interactions) is weakly 
correlated with X 
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Example #2 (time-series IV):  Estimating the elasticity of 
intertemporal substitution, linearized Euler equation 
 
e.g. Campbell (2003), Handbook of Economics of Finance 
 

Δct+1 = consumption growth, t to t+1 
ri,t+1 = return on ith asset, t to t+1 

 
linearized Euler equation moment condition: 

  Et(Δct+1 – τi – ψri,t+1) = 0 
 
Resulting IV estimating equation: 

  E[(Δct+1 – τi – ψri,t+1)Zt] = 0  
 
(this ignores temporal aggregation concerns) 
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EIS estimating equations: 
Δct+1 = τi + ψri,t+1 + ui,t+1       (a) 

or    ri,t+1 = μi + (1/ψ)Δct+1 + ηi,t+1      (b) 
 
Under homoskedasticity, standard estimation is by the TSLS estimator in 
(a) or by the inverse of the TSLS estimator in (b). 
 
Findings in literature (e.g. Campbell (2003), US data): 
• regression (a):  95% TSLS CI for ψ is (-.14, .28) 
• regression (b):  95% TSLS CI for 1/ψ is (-.73, 2.14) 

What is going on? 
Reverse regression: 

ri,t+1 = μi + (1/ψ)Δct+1 + η 
Can you forecast Δct+1 using Zt? 
⇒ Zt is weakly correlated with Δct+1 
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Example #3 (linear GMM):  New Keynesian Phillips Curve 
e.g. Gali and Gertler (1999), where xt = labor share; see survey by 
Kleibergen and Mavroeidis (2008).  Hybrid NKPC with shock ηt: 
 

πt = λxt + γfEtπt+1 + γbπt–1 + ηt 
 
Rational expectations:   Et–1(πt – λxt – γfπt+1 – γbπt–1) = 0 
GMM moment condition:  E[(πt – γfπt+1 – γbπt–1 – λxt)Zt] = 0 
Instruments:     Zt = {πt–1, xt–1, πt–2, xt–2,…} (GG: 23 total) 
Issues: 
• Zt needs to predict πt+1 – beyond πt–1 (included regressor) 
• But predicting inflation is really hard!  Atkeson-Ohanian (2001) found 

that, over 1985-1999 quarterly sample, it is difficult to outperform a 
year-over-year random walk forecast at the 4-quarter horizon 



Example #4 (nonlinear GMM):  Estimating the elasticity of 
intertemporal substitution, nonlinear Euler equation 
 
With CRRA preferences, in standard GMM notation, 
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where Rt+1 is a G×1 vector of asset returns and ιG is the G-vector of 1’s. 
GMM moment conditions (Hansen-Singleton (1982)): 
 

E[h(Yt,θ) ⊗ Zt] = 0 where Zt = Δct, Rt, etc. 
 

⇒ Same problem as example 2, but now nonlinear: Zt must predict 
consumption growth (and stock returns) using past data 
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1b)  Identification and Weak Identification 
 
Let θ be a parameter vector, Θ be the parameter space, and Y be the vector 
of data. 
 
Observational equivalence and identification 
Cowles terminology, e.g. Rothenberg (1973): 
• Two values of θ, θ1 and θ2, are observationally equivalent if they give 

rise to the same distribution of the data (i.e. fY(Y;θ1) = fY(Y;θ2) for all 
Y) 

• θ is identified at the point θ0 if there does not exist θ′ ∈ Θ such that 
(θ0, θ′) are observationally equivalent 

• θ is (globally) identified if θ is identified at all θ0 ∈ Θ 
 



Identification – objective function definition 
Let S(θ;Y) denote an objective function.  
• Two values of θ, θ1 and θ2, are observationally equivalent using S if 

S(θ1;Y) = S(θ2;Y) for all Y 
• θ is identified at the point θ0 using S if there does not exist θ′ ∈ Θ 

such that (θ0, θ′) are observationally equivalent 
• θ is (globally) identified using S if θ is identified at all θ0 ∈ Θ 

If S is the likelihood function, this is the same as the previous definition 
 
Identification and consistency 
Identification does not imply consistent estimability.  Consider the 
regression model, with T → ∞: 

Yt = β0Dt + β1(1 – Dt) + ut, where Dt = 
1,  1,...,10
0,  11,...,

t
t T
=⎧

⎨ =⎩
 

Both β0 and β1 are identified, but only β1 is consistently estimable. 
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Working definition of weak identification 
We will say that θ is weakly identified if the distributions of GMM or IV 
estimators and test statistics are not well approximated by their standard 
asymptotic normal or chi-squared limits because of limited information in 
the data. 
• Departures from standard asymptotics are what matters in practice 
• The source of the failures is limited information, not (for example) 

heavy tailed distributions, near-unit roots, unmodeled breaks, etc. 
• We will focus on large samples - the source of the failure is not small-

sample problems in a conventional sense.  In fact most available tools 
for weak instruments have large-sample justifications.  This is not a 
theory of finite sample inference (although it is closely related, at least 
in the linear model.) 

• Throughout, we assume instrument exogeneity – weak identification is 
about instrument relevance, not instrument exogeneity 
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Two ways to think about weak identification 
 
1) First order condition (estimating equation) interpretation: 

• In linear IV, instruments are (collectively) weakly correlated with 
the included endogenous regressor – Z doesn’t predict the included 
endogenous regressor 

• In GMM, Z doesn’t predict the deviation of the moment “residual” 
from the error term using the true value 

 
2) Objective function interpretation: 

• The objective function is not well approximated by a (possibly local) 
quadratic with curvature matrix that is (i) nonrandom and (ii) does 
not depend on θ 
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Some special cases: 
• Special cases we will come back to 

o θ is unidentified 
o Some elements of θ are strongly identified, some are weakly 

identified 
• A special cases we won’t come back to 

o θ  is partially identified, i.e. some elements of θ are identified and 
the rest are not identified 

• Not a special case  
o θ is set identified, i.e. the true value of θ is identified only up to a 

set within Θ.  Weak identification and set identification could be 
married in theory, but they haven’t been.   

o Inference when there is set identification is a hot topic in 
econometric theory.  Set identification will come up in Lecture 7. 
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Additional preparatory comments 
• The literature has differing degrees of maturity and completion: 

o Testing and confidence intervals in classical (cross-sectional) IV 
regression model with a single included endogenous regressor: a 
mature area in which the first order problems are solved 

o Estimation in general nonlinear GMM – little is known  
• These lectures focus on: 

o explaining how weak identification arises at a general level; 
o providing practical tools and advice (“state of the art”)  
o providing references to the most recent literature (untested methods) 

• Literature reviews:   
o Stock, Yogo, Wright (2002), Hahn and Hausman (2003), Dufour 

(2003) (all dated but idiosyncratic and therefore interesting) 
o Andrews and Stock (2007) (comprehensive but technical) 
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2) Classical IV regression I: Setup and asymptotics 
 
Classical IV regression model & notation 
Equation of interest:    yt = Ytβ  + ut,  m = dim(Yt) 
k exogenous instruments Zt:  E(utZt) = 0, k = dim(Zt) 
Auxiliary equations:    Yt = Π′ Zt + vt, corr(ut,vt) = ρ (vector) 
Sampling assumption    (yt, Yt, Zt) are i.i.d. 
 
Equations in matrix form:   y = Yβ + u 
         Y = ZΠ + v 
Comments: 
• Included exogenous regressors have been omitted without loss of 

generality (all variables can be taken to be residuals from projections 
on included exogenous regressors) 

• Auxiliary is just the projection of Y on Z 



IV  regression with one Y and a single irrelevant instrument 
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If Z is irrelevant (as in Bound et. al. (1995)), then Y = ZΠ + v = v, so 
 

ˆTSLSβ  – β =  
′
′

Z u
Z v

 = 1

1

1

1

T

t t
t
T

t t
t

Z u
T

Z v
T

=

=

∑

∑
  

d
→ u

v

z
z

, where ⎟ ~ u

v

z
z
⎛ ⎞
⎜
⎝ ⎠

2

20, u uv

uv v

N
σ σ
σ σ

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
 

 
Comments: 

ˆ•  isn’t consistent (nor should it be!) 
ˆ

TSLSβ

• Distribution of  is Cauchy-like (ratio of correlated normals) TSLSβ
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• The distribution of ˆTSLSβ  is a mixture of normals with nonzero mean:  
write zu = δzv + η, η ⊥ z, where  δ = σuv/ 2

vσ .  Then  

u

v

z
z

 = v

v

z
z

δ η+  = δ +
vz
η , and 

vz
η |zv ~ N(0, 

2

2
vz
ησ ) 

so the asymptotic distribution of  – β0 is the mixture of normals, ˆTSLSβ

ˆTSLSβ  – (β0 + δ)  
d
→

2

2(0, ) ( )
vz v v
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v

N f z dzη

z
σ

∫  (1 irrelevant instrument) 

• heavy tails (mixture is based on inverse chi-squared) 
ˆ• center of distribution of  is β0 + δ.  But  TSLSβ

ˆOLSβ  - β0 = 
/
/
n
n

′
′

X u
X X

 = 
/
/

n
n

′
′

v u
v v

p
→  2

uv

v

σ
σ

 = δ, so plim( ˆOLSβ ) = β0 + δ 

Thus plim(ˆTSLSβ  is centered around ˆOLSβ ) 
 
This is one end of the spectrum; the usual normal approximation is the 
other.  If instruments are weak the distribution is somewhere in between…



TSLS with possibly weak instruments, 1 included endogenous regressor 
Suppose that Z is fixed and u, v are normally distributed.  Then the sample 
size enters the distribution of ˆ  only through the concentration 
parameter μ2, where 

TSLSβ

μ2 = Π ′Z′ZΠ/ 2
vσ  (concentration parameter). 

 

Calculation due to Rothenberg (1984).  Write   = ˆTSLSβ
P
P
′
′

Z

Z

Y y
Y Y

, where  

PZ = Z(Z′Z)-1Z′.  Then 

μ(  – β) = ˆTSLSβ
1/22

2 2
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where   ζu = Π ′Z′u/( 2

uσ Π ′Z′ZΠ)1/2, ζv = Π ′Z′v/( 2
vσ Π ′Z′ZΠ)1/2, 

Svu = v ′PZu/( 2
uσ

2
vσ )1/2, and Svv = v ′PZv/ 2

vσ  
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TSLS– estimating equation approach, ctd 
 

μ(  – β) = ˆTSLSβ
1/22

2 2

( / )
1 (2 / ) ( / )

u u vu

v v vv

S
S

σ ζ μ
σ ζ μ μ
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, 

 
With fixed instruments and normal errors, the distributions of ζu, ζv, Svu, 
and Svv do not depend on the sample size - the sample size enters the 
distribution of the TSLS estimator only through μ2 
 
• μ2 plays the role usually played by n 
• As μ2 → ∞, the usual asymptotic approximation obtains: 

as μ2 → ∞, μ(  – β)  N(0,ˆTSLSβ
d
→ 2

uσ / 2
vσ )  

(the  terms in μ and limiting variance cancel) 2
vσ

• for small values of μ2, the distribution is nonstandard 
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How important are these deviations from normality quantitatively? 
Nelson-Startz (1990a,b) plots of the distribution of the TSLS t-statistic: 

 
Dark line = irrelevant instruments; dashed light line = strong instruments; 
intermediate cases: weak instruments 
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Four approaches to computing distributions of IV statistics with weak IVs 
The goal: a distribution theory that is tractable; provides good 
approximations uniformly in μ2; and can be used to compare procedures  
 
1.Finite sample theory? 

• large literature in 70s and 80s under the strong assumptions that Z 
is fixed (strictly exogenous) and (ut, vt) are i.i.d. normal 

• literature died – distributions aren’t tractable, results aren’t useful 
2.Edgeworth expansions?  

• expand distn in orders of T–1/2 – requires consistent estimability 
• work poorly when instruments are very weak (Rothenberg (1984)) 

3.Bootstrap and subsampling?  
• Neither work uniformly (irrelevant to weak to strong) in general 
• We return to these later (recent interesting literature) 



4. Weak instrument asymptotics 
Adopt nesting that makes the concentration parameter tend to a 
constant as the sample size increases; that is, model F as not increasing 
with the sample size. 
This is accomplished by setting Π = C/ T   
• This is the Pitman drift for obtaining the local power function of 

the first-stage F. 

• Under this nesting, F  noncentral 
d
→ 2

kχ /k with noncentrality 
parameter μ2/k (so F = Op(1)) 

• Letting the parameter depend on the sample size is a common 
ways to obtain good approximations – e.g. local to unit roots 
(Bobkoski 1983, Cavanagh 1985, Chan and Wei 1987, and Phillips 
1987) 
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Weak IV asymptotics for TSLS estimator, 1 included endogenous vble: 
ˆTSLSβ  – β0 = (Y′PZu)/(Y′PZY) 

Now 

Y′PZY = 
1( ) ( )
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Similarly,  

Y′PZu = 
1( ) )

TT T
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v vλ λ′+ +
 

• Under weak instrument asymptotics, μ2  C′QZZC/
p
→ 2

vσ  = λ′λ/ 2
vσ  

• Unidentified special case:  – β0  ˆTSLSβ
d
→ v u

v v

z z
z z

′

′
 (obtained earlier) 

• Strong identification: λ λ′ (  – β0)  N(0,ˆTSLSβ
d
→ 2

uσ ) (standard limit) 
 



Summary of weak IV asymptotic results: 
• Resulting asymptotic distributions are the same as in the exact normal 

classical model with fixed Z – but with known covariance matrices. 
• IV estimators are not consistent (and are biased) under this nesting 

ˆ• IV estimators are nonnormal (  has mixture of normals with nonzero 

mean, where mean ∝ k/μ2) 

TSLSβ

• Test statistics (including the J-test of overidentifying restrictions) do not 
have normal or chi-squared distributions 

• Conventional confidence intervals do not have correct coverage 
(coverage can be driven to zero) 

• Provide good approximations to sampling distributions uniformly in μ2 
for T moderate or greater (say, 100+ observations). 

• Remember, μ2 is unknown – so these distributions can’t be used directly 
in practice to obtain a “corrected” distribution…. 
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3) Classical IV regression II: Detection of weak instruments 
 
Bound et. al. revisited 
• n = 329,509 (it is μ2, or μ2/k, not sample size that matters!)  
• for K = 3 (quarter of birth only), F = 30.53,  

o Recall that E(F) = 1 + μ2/k 
o Estimate of μ2/k is 29.53 
o Estimate μ2 as k(F–1) = 3×(30.53–1) = 88.6 

• for K = 178 (all interactions), F = 1.869 
o Estimate of μ2 = 178×(1.869–1) = 154.7 
o Estimate of μ2/k is 0.869 

• We will see that numerical work suggests that 
o μ2/k = 29.53: strong instruments 
o μ2/k = 0.869: very weak instruments 
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How weak is weak?  Need a cutoff value for μ2 
 
The basic idea is to compare F to some cutoff.  But how should that cutoff 
be chosen?  In general, this depends on the statistic you are using 
(different statistics have different sensitivities to μ2).  TSLS is among the 
worst (most sensitive) – and is also most frequently used.  So, it is 
reasonable to develop a cutoff for F assuming use of TSLS. 
 
Various procedures: 
• First stage F > 10 rule of thumb 
• Stock-Yogo (2005a) bias method 
• Stock-Yogo (2005a) size method 
• Hahn-Hausman (2003) test 
• Other methods (R2, partial R2, Shea (1997), etc.) 



TSLS bias cutoff method (Stock-Yogo (2005a)) 
 
Let 2

10%biasμ  be the value of μ2 such that, if μ2 ≤ 2
10%biasμ , the maximum bias 

of TSLS will be no more than 10% of the bias (inconsistency) of OLS. 
Stock-Yogo (2005a): decision rule of the form:  
 

if   F  κ.10(k),  conclude that instruments are 
≤⎛ ⎞
⎜ ⎟>⎝ ⎠

weak
strong
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

where F is the first stage F-statistic* and κ.10(k) is chosen so that P(F > 
κ.10(k); μ2 = 2

10%biasμ ) = .05 (so that the rule acts like a 5% significance test 

at the boundary value μ2 = 2
10%biasμ ). 

 
*F = F-statistic testing the hypothesis that the coefficients on Zt = 0 in the 
regression of Yt on Zt, Wt, and a constant, where Wt = the exogenous 
regressors included in the equation of interest. 
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TSLS bias cutoff method (Stock-Yogo (2005a)), ctd 
Some background:  
 The relative squared normalized bias of TSLS to OLS is, 
  

     = 2
nB

IV IV

OLS OLS

ˆ ˆ( β β) 'Σ ( β β)
ˆ ˆ( β β) 'Σ ( β β)

YY

YY

E E
E E

− −
− −

 

 
The square root of the maximal relative squared asymptotic bias is: 

 
Bmax =  maxρ: 0 < ρ′ρ ≤ 1 limn→∞|Bn|, where ρ = corr(ut,vt) 

 
This maximization problem is a ratio of quadratic forms so it turns into a 
(generalized) eigenvalue problem; algebra reveals that the solution to this 
eigenvalues problem depends only on μ2/k and k; this yields the cutoff 

2
biasμ . 
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Value of cutoff 2
biasμ /k to ensure indicated maximal bias   
(Stock-Yogo, 2005) 
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Critical values 
 
One included endogenous regressor 

The 5% critical value of the test is the 95% percentile value of the 
noncentral 2

kχ /k distribution, with noncentrality parameter 2
biasμ /k 

 
Multiple included endogenous regressors 

The Cragg-Donald (1993) statistic is: 
 

gmin = mineval(GT), where GT = ′Y′PZY /k, 1/2Σ̂−
VV

1/2Σ̂−
VV

 
• GT is essentially a matrix first stage F statistic 
• Critical values are given in Stock-Yogo (2005a) 

 
Software 
 STATA (ivreg2),… 
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5% critical value of F to ensure indicated maximal bias  
(Stock-Yogo, 2005a) 

 
To ensure 10% maximal bias, need F < 11.52; F < 10 is a rule of thumb
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5% critical values for Weak IV test statistic gmin ,  
for 10% maximal TSLS Bias (Stock-Yogo (2005), Table 1) m = dim(Yt) 

 
k m = 1 m = 2 m = 3 
3 9.08 – – 
4 10.27 7.56 – 
5 10.83 8.78 6.61 
6 11.12 9.48 7.77 
7 11.29 9.92 8.50 
8 11.39 10.22 9.01 
9 11.46 10.43 9.37 
10 11.49 10.58 9.64 
15 11.51 10.93 10.33 
20 11.45 11.03 10.60 
25 11.38 11.06 10.71 
30 11.32 11.05 10.77 
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Other methods for detecting weak instruments 
 
Stock-Yogo (2005a) size method 
• Instead of controlling bias, control the size of a Wald test of β = β0 
• Less frequently used 
• Not really relevant (any more) since fully robust methods for testing 

exist 
 

Hahn-Hausman (2003) test 
1) Idea is to test the null of strong instruments, under which the TSLS 

estimator, and the inverse of the TSLS estimator from the “reverse” 
regression, should be the same (recall the Campbell linearized 
CCAPM results) 
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Other methods for detecting weak instruments, ctd. 
 

2) Unfortunately the HH test is not consistent against weak 
instruments (power of 5% level test depends on parameters, is 
typically ≈ 15-20% (Hausman, Stock, Yogo (2005)) 

 
Examination of R2, partial R2, or adjusted R2 
• None of these are a good idea, more precisely, what needs to be 

large is the concentration parameter, not the R2.  An R2 = .10 is 
small if T = 50 but is large if T = 5000. 

• The first-stage R2 is especially uninformative if the first stage 
regression has included exogenous regressors (W’s) because it is 
the marginal explanatory content of the Z’s, given the W’s, that 
matters. 
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7) GMM II:  Detection of weak identification 
8) GMM III:  Hypothesis tests and confidence intervals 
9) GMM IV:  Estimation 
10) Many instruments 
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4) Classical IV regression III: 
Hypothesis tests and confidence intervals 

 
There are two approaches to improving inference (providing tools): 
Fully robust methods: 
• Inference that is valid for any value of the concentration parameter, 

including zero, at least if the sample size is large, under weak 
instrument asymptotics 

o For tests: asymptotically correct size (and good power!) 
o For confidence intervals: asymptotically correct coverage rates 
o For estimators: asymptotically unbiased (or median-unbiased) 

Partially robust methdos: 
• Methods are less sensitive to weak instruments than TSLS – e.g. bias 

is “small” for a “large” range of μ2 
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Fully Robust Testing 
• The TSLS t-statistic has a distribution that depends on μ2, which is 

unknown 
• Approach #1: use a statistic whose distribution depends on μ2, but use 

a “worst case” conservative critical value 
o This is unattractive – substantial power loss 

• Approach #2: use a statistic whose distribution does not depend on μ2 
(two such statistics are known) 

• Approach #3: use statistics whose distribution depends on μ2, but 
compute the critical values as a function of another statistic that is 
sufficient for μ2 under the null hypothesis. 

o Both approaches 2 and 3 have advantages and disadvantages – we 
discuss both  



Approach #2:  Tests that are valid unconditionally  
(that is, the distribution of the test statistic does not depend on μ2) 
 
The Anderson-Rubin (1949) test 
Consider H0: β = β0 in  y = Yβ + u,   

Y = ZΠ + v 
 
The Anderson-Rubin (1949) statistic is the F-statistic in the regression of 
y – Yβ0 on Z. 

 

AR(β0) = 0 0

0 0
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AR(β0) = 0 0

0 0

( ) ( ) /
( ) ( ) / ( )

P k
M T k
β β

β β
′− −

′− − −
Z

Z

y Y y Y
y Y y Y

 

 
Comments 
• AR( ) = the J-statistic  ˆTSLSβ
• Null distribution doesn’t depend on μ2: 

Under the null, y – Yβ0 = u, so 

AR = /
/ ( )

P k
M T k

′
′ −

Z

Z

u u
u u

 ~ Fk,n–k   if ut is normal 

  AR  
d
→ /k   if ut is i.i.d. and Ztut has 2 moments (CLT) 2

kχ

• The distribution of AR under the alternative depends on μ2 – more 
information, more power (of course) 
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The AR statistic if there are included endogenous regressors 
 
Let W denote the matrix of observations on included exogenous 
regressors, so the structural equation and first stage regression are, 
 
   y = Yβ + Wγ + u 
   Y = ZΠ + WΠW  + v 
 
Then the AR statistic is the F-statistic testing the hypothesis that the 
coefficients on Z are zero in the regression of y – Yβ0 on Z and W. 
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Advantages and disadvantages of AR 
 
Advantages 
• Easy to use – entirely regression based 
• Uses standard F critical values 
• Works for m > 1 (general dimension of Z) 

 
Disadvantages 
• Difficult to interpret:  rejection arises for two reasons: β0 is false or Z 

is endogenous 
• Power loss relative to other tests (we shall see) 
• Is not efficient if instruments are strong – under strong instruments, 

not as powerful as TSLS Wald test (power loss because AR(β0) has k 
degrees of freedom) 



Kleibergen’s (2002) LM test 
 
Kleibergen developed an LM test that has a null distribution that is 2

1χ  - 

doesn’t depend on μ2. 
 
Advantages 
• Fairly easy to implement 
• Is efficient if instruments are strong 

 
Disadvantages 
• Has very strange power properties (we shall see) 
• Its power is dominated by the conditional likelihood ratio test 
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Approach #3: Conditional tests 
Conditional tests have rejection rate 5% for all points under the null (β0, 
μ2) (“similar tests”) 
 
Recall your first semester probability and statistics course… 
• Let S be a statistic with a distribution that depends on θ 
• Let T be a sufficient statistic for θ 
• Then the distribution of S|T does not depend on θ 

 
Here (Moreira (2003)): 
• LR will be a statistic testing β = β0 (LR is “S” in notation above) 
• QT will be sufficient for μ2 under the null (QT is “T”) 
• Thus the distribution of LR| QT does not depend on μ2 under the null 
• Thus valid inference can be conducted using the quantiles of LR| QT – 

that is, critical values that are a function of QT 



Moreira’s (2003) conditional likelihood ratio (CLR) test 
LR = maxβ log-likelihood(β) – log-likelihood(β0) 

 
After lots of algebra, this becomes: 

 
LR = ½{  –  + [(  – )2 + 4 ]1/2} ˆ

SQ ˆ
TQ ˆ

SQ ˆ
TQ 2ˆ

STQ

 
where 
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CLR test, ctd. 
 
Implementation: 
• QT is sufficient for μ2 (under weak instrument asymptotics) 
• The distribution of LR|QT does not depend on μ2 
• LR proc exists in STATA (condivreg), GAUSS 
• STATA (condivreg), Gauss code for computing LR and conditional p-

values exists 
 



Revised July 22, 2008 3-48 

Advantages and disadvantages of the CLR test 
Advantages 
• More powerful than AR or LM 
• In fact, effectively uniformly most powerful among valid tests that are 

invariant to rotations of the instruments (Andrews, Moreira, Stock 
(2006) – among similar tests; Andrews, Moreira, Stock (2008) – 
among nonsimilar tests) 

• Implemented in software (STATA,…) 
 
Disadvantages 
• More complicated to explain and write down  
• Only developed (so far) for a single included endogenous regressor 
• As written, the software requires homoskedastic errors; extensions to 

heteroskedasticity and serial correlation have been developed but are 
not in common statistical software 
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Web link: 
Some power comparisons: AR, LM, CLR 
 
Local link: 
Some power comparisons: AR, LM, CLR 
 
Full results on power for various tests are in Andrews, Moreira, Stock 
(2006) and on Stock’s Harvard Econ Web site

http://ksghome.harvard.edu/%7EJStock/ams/websupp/index.htm


Confidence Intervals 
(a) A 95% confidence set is a function of the data contains the true value 

in 95% of all samples 
(b) A 95% confidence set is constructed as the set of values that cannot 

be rejected as true by a test with 5% significance level 
 
Usually (b) leads to constructing confidence sets as the set of β0 for which  

–1.96 < 0
ˆ

ˆ( )SE
β β

β
−  < 1.96.  Inverting this t-statistic yields β̂  ± 1.96SE( β̂ ) 

• This won’t work for TSLS – tTSLS isn’t normal (the critical values of 
tTSLS depend on μ2) 

• Dufour (1997) impossibility result for weak instruments: unbounded 
intervals must occur with positive probability. 

• However, you can compute a valid, fully robust confidence interval by 
inverting a fully robust test! 
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(1) Inversion of AR test: AR Confidence Intervals 
 

95% CI = {β0: AR(β0) < Fk,T–k;.05} 
 
Computational issues: 
• For m = 1, this entails solving a quadratic equation: 

AR(β0) = 0 0

0 0

( ) ( ) /
( ) ( ) / ( )

P kβ
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M T k
β

β β
′− −

′− −
Z

Z −
y Y y Y

y Y y Y
 < Fk,T–k;.05 

 
• For m > 1, solution can be done by grid search or using methods in 

Dufour and Taamouti (2005) 
 
• Sets for a single coefficient can be computed by projecting the larger 

set onto the space of the single coefficient (see Dufour and Taamouti 
(2005)), also see recent work by Kleibergen (2008) 
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AR confidence intervals, ctd. 
 
95% CI = {β0: AR(β0) < Fk,T–k;.05} 

  
Four possibilities: 
• a single bounded confidence interval 
• a single unbounded confidence interval 
• a disjoint pair of confidence intervals 
• an empty interval 

 
Note: 
• Difficult to interpret 
• Intervals aren’t efficient (AR test isn’t efficient) under strong 

instruments 
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(2) Inversion of CLR test: CLR Confidence Intervals 
 

95% CI = {β0: LR(β0) < cv.05(QT)} 
 
where cv.05(QT) = 5% conditional critical value 
 
Comments: 
• Efficient GAUSS and STATA (condivreg) software 
• Will contain the LIML estimator (Mikusheva (2005)) 
• Has certain optimality properties:  nearly uniformly most accurate 

invariant; also minimum expected length in polar coordinates 
(Mikusheva (2005)) 

• Only available for m = 1 
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Example #2: Consumption CAPM and the EIS 
 
Yogo (2004) 
 

Δct+1 = consumption growth, t to t+1 
ri,t+1 = return on ith asset, t to t+1 

 
Moment conditions:     Et(Δct+1 – τi – ψri,t+1) = 0 
 
EIS estimating equations:  Δct+1 = τi + ψri,t+1 + ui,t+1 
or        ri,t+1 = μi + (1/ψ)Δct+1 + ηi,t+1 
 
Under homoskedasticity, standard estimation is by TSLS or by the inverse 
of the TSLS estimator (remember Hahn-Hausman (2003) test?); but with 
weak instruments, the normalization matters 



First stage F-statistics for EIS (Yogo (2004)): 
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Various estimates of the EIS, forward and backward 
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AR, LM, and CLR confidence intervals for ψ: 
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What about stock returns – should they “work”? 
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Summary: EIS and CCAPM 
 
• a-priori reason for thinking that instruments are weak 
• Empirical pathologies evident from TSLS: strongly different 

estimators for different instrument lists, reverse and forward estimators 
strikingly different (HH intuition) 

• First-stage F’s confirm that instruments are weak 
• Point estimation is difficult but LIML and Fuller are more reliable than 

TSLS 
• AR and CLR confidence intervals are reliable and give similar 

answers: not much precision, but EIS appears to be small (<1) 
• Yogo (2004) is a template for how to proceed (1 endogenous 

regressor) 
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• Usually the extension to higher dimensions is easy – standard normal 
t-ratios, chi-squared F-tests, etc. 

• CLR exists in theory, but unsolved computational issues because the 
conditioning statistic has dimension m(m+1)/2 (Kleibergen (2007)) 

• That extension all rests on normality.  Once normality of estimators 
and chi-squared tests are gone, the extensions are not easy.  

• Can test joint hypothesis H0: β = β0 using the AR statistic: 
 

AR(β0) = 0 0
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under H0, AR  
d
→ 2

kχ /k  

Extensions to >1 included endogenous regressor 

 

 


