
Re�ning Equilibria in Counterfactual
Simulations: An Application to Corporate

Average Fuel Economy Standards

Hunt Allcott and Erich Muehlegger Harvard University

July 16, 2008

Abstract

We simulate how automotive manufacturing �rms will respond to the
more stringent Corporate Average Fuel Economy standard passed in 2007.
We use Bayesian methods to estimate a random coe¢ cients discrete choice
model of new automobile demand, introducing a new procedure to exploit
both individual-level and market-level data. We then simulate the game
in which automakers set prices and characteristics in Nash equilibrium,
maximizing pro�ts subject to demand and the new regulation. To se-
lect between multiple possible equilibria, we employ a myopic partial best
response algorithm, which we argue to be a reasonable stylized represen-
tation of new product development in the auto industry.
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1 Motivation

Perhaps the two principal occupations of the empiricist in Industrial Organi-
zation are demand system estimation and simulation of counterfactuals. Es-
pecially when simulating the behavior of multiproduct �rms in di¤erentiated
products oligopolies, there is rarely a unique Nash equilibrium, and there is
surprisingly little discussion of appropriate equilibrium selection devices. Cru-
cial to such analyses are realistic substitution patterns from a demand model
that includes unobserved consumer heterogeneity, but there is substantial recent
concern about identi�cation and robustness of estimation results using classical
methods. This paper explores promising solutions to these two central problems
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in the context of one of today�s most important policy issues, the strengthening
of the Corporate Average Fuel Economy (CAFE) standards.
Ariel Pakes (2008) frames multiple equilibria in counterfactual analysis as

one of the most "troubling" problems in the analysis of imperfectly competitive
markets. This results from the analyst�s fundamental inability to observe an
industry well enough to impose a stronger selection mechanism. Our solution is
thus to examine our agents�behavior - automakers developing new vehicles - and
utilize a tractable equilibrium selection mechanism that captures that process
in a stylized but realistic way. Our preferred mechanism is myopic partial best
response, in which automakers "propose" new vehicles that best respond to
other �rms� proposals from the previous iteration; the eventual steady state
actions are the equilibrium actions in our game. We illustrate the importance
of the multiple equilibria problem by comparing our preferred equilibrium to
Nash equilibria selected through other mechanisms.
Authors such as Chib and Greenberg (1998), Train (2003), and Athey and

Imbens (2005) have argued that Bayesian estimation methods for random co-
e¢ cients models have substantial advantages over classical maximization-based
routines such as Generalized Method of Moments and Maximum Likelihood.
Crucial for identi�cation of this unobserved heterogeneity in any setting is vari-
ation in the choice set, which often can come from the addition of market-level
cross-sections of aggregate quantities sold. This paper presents an algorithm,
based on the standard Gibbs sampler for random coe¢ cients multinomial logit,
that allows Bayesian estimation with both micro and macro data. This tech-
nique views macro data simply as extensive microdata without individual co-
variates and nests data augmentation in the Gibbs sampler to impute the dis-
tribution of those covariates.
Our application is the response by automotive manufacturing �rms to Cor-

porate Average Fuel Economy standards, one of today�s most important policy
issues due to climate change, energy security concerns, and rising energy prices.
In December 2007, President Bush signed the Energy Independence and Secu-
rity Act, which set a target fuel economy of 35 miles per gallon for the �eet of
vehicles sold in 2020. We study the most recent proposed implementation, which
would require automakers to improve average fuel economy to 31.6 miles per gal-
lon by 2015. Our applied research question is, "What will be the e¤ects of the
new CAFE standards on new vehicle characteristics and �rm pro�ts in 2015?"
Our answer to this question requires us to address the above two methodological
issues, which we believe are more broadly generalizable to applied problems in
Industrial Organization.
Because of its economic and environmental importance and the unusual

availability of consumer, product, and sales data, the automotive industry has
been extensively studied. Papers such as Bresnahan (1987), Berry, Levinsohn,
and Pakes (1995, "BLP"), Goldberg (1998), Petrin (2002), Berry, Levinsohn,
and Pakes (2004, "MicroBLP"), and numerous others have made important
methodological contributions and analyzed questions related to industry struc-
ture, entry and exit, or government regulation. An additional set of analyses
are speci�cally focused on fuel economy policies, including Davis et al (1995),
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National Research Council (2002), Feng, Fullerton, and Gan (2005), Austin and
Dinan (2005), Greene, et al, (2005), and the US Energy Information Admin-
istration�s National Energy Modeling System (2007). Perhaps most notable
are papers by Jacobsen (2008) and Bento, Goulder, Jacobsen, and von Haefen
(2006), which analyze CAFE standards and gasoline taxes while simultaneously
incorporating a number of methodological advances. In particular, they use a
discrete-continuous model for vehicle choice and gasoline demand, estimate the
shadow cost of the CAFE standard for constrained automakers, and simulate
new and used car markets in equilibrium.
One of the most consistent and compelling stylized facts from this body of

work is that the response to fuel economy regulation will depend heavily on
the introduction of new models. Greene, et al, and Davis, et al, both �nd that
approximately 90 percent of the change in average new vehicle fuel economy
results from changes in vehicle attributes as opposed to changes in relative sales
of di¤erent vehicle classes. Pakes, Berry, and Levinsohn (1993) �nd that the
average fuel economy of vehicles within each of their six classes increased by
�ve to 21 percent in response to the gasoline price shock of the early 1970s. In
an extension to his simulations, Jacobsen shows that the welfare costs of the
CAFE standard per gallon of gasoline saved are 64% lower if the model allows
automakers to adjust the fuel economy of their vehicles along with the prices. It
seems that any realistic analysis of fuel economy regulation must allow vehicle
characteristics to be modi�ed along a production function.
This desire for realism is at odds with what the present economic theory

allows. Although Caplin and Nalebu¤ (1991) prove that there is a unique equi-
librium in prices in di¤erentiated products oligopolies with single-product �rms,
there may be multiple Nash equilibria in a game such as ours where multiprod-
uct �rms set prices and characteristics. In studies of the auto industry and
elsewhere, this problem has rarely been addressed directly. Berry, Levinsohn,
and Pakes (2004) do not allow competing �rms to best respond in prices or
attributes in their simulations of the exit of Oldsmobile and the introduction
of the luxury Sport Utility Vehicle. In simulating responses to fuel economy
regulation, Austin and Dinan (2005) choose an "equilibrium" that maximizes
the sum of all automakers�pro�ts. The US National Energy Modeling System
models only two aggregated �rms and does not require them to best respond
in equilibrium. Jacobsen (2008), while adopting a counterfactual equilibrium
computation approach that appears to be in principle similar to ours, highlights
other methodological issues instead of this one.
Pakes (2008) and Lee and Pakes (2008) propose two types of solutions to the

multiple equilibrium problem in applied counterfactual simulations. The �rst is
to compute all possible equilibria, but in many applications the size of the action
space may be too large or the set of equilibria too diverse to draw any qualitative
conclusion. The second is to select an equilibrium using a learning mechanism
such as those discussed in Fudenberg and Levine (1998) and the works cited
therein; ideally, this selection mechanism would re�ect agents�actual behavior.
We simulate a game in which the six largest automakers maximize pro�ts

in Nash equilibrium, subject to consumer demand and the CAFE regulation,

3



by changing prices and attributes along an exogenous production function. An
examination of the industry�s product development process suggests that �rms
propose the important attributes of vehicles - powertrain technology, horse-
power, size - several years before they are sold. These "proposals" are public -
presented at auto shows and industry conferences - and iterative. The public
and iterative nature of this process, combined with the computational tractabil-
ity of myopia, motivates our use of a myopic partial best response algorithm to
select the equilibrium set of attributes and prices.
Simulating equilibrium sales and markups requires an estimate of the new

vehicle demand system and substitution patterns. Since BLP (1995), discrete
choice models in characteristics space have typically generated more realistic
substitution patterns by modeling unobserved heterogeneity in consumer pref-
erences through random coe¢ cients. More recent work, such as Knittel and
Metaxoglou (2008), has shown that, because of �at regions of the objective
function and local extrema, classical optimization-based methods for estimat-
ing random coe¢ cients models are sensitive to di¤erent starting values and
optimization methods. As Athey and Imbens (2005) also point out, classical
asympotic con�dence intervals have poor properties in �nite samples with irreg-
ular likelihood functions.
Bayesian methods, whose posterior parameter estimates have fundamentally

the same interpretation as classical parameters (Geweke 1989), are increasingly
popular because they do not require maximization and are thus robust to lo-
cal extrema. When applied to random coe¢ cients discrete choice models, they
are also often more computationally e¢ cient, especially as the number of pa-
rameters rises. Since random coe¢ cients are identi�ed from variation in the
choice set, however, it is often helpful to exploit more than a single cross section
of microdata. This additional data often comes only in the form of repeated
cross-sections of market-level quantities sold. Imbens and Lancaster (1994) and
Hellerstein and Imbens (1999) show the usefulness of such additional data using
classical estimation strategies, in settings other than discrete choice. Unfortu-
nately, there is no Bayesian equivalent of MicroBLP (2004) that provides an
algorithm for computing the posterior parameter distribution of a random co-
e¢ cients discrete choice model using both micro and macro data.
Our new procedure follows very naturally from two Bayesian Markov Chain

MonteCarlo (MCMC) techniques, the Gibbs sampler for multinomial logit ran-
dom coe¢ cients models (Allenby and Lenk 1994) and data augmentation (Tan-
ner and Wong 1987). We pool microdata with observations lacking covariates
which represent the choices of consumers in the aggregate data. In each iter-
ation of the Gibbs sampler, we impute a distribution of the missing covariates
conditional on a vehicle purchased using the marginal population covariate dis-
tribution and draws from the current distribution of utility parameters.
We �nd that, even absent new regulation, high gasoline prices create an in-

centive for automakers to improve vehicle fuel economy. In our base case, which
omits the proposed CAFE standards, �eet fuel economy rises approximately 38
percent over the 2007 model-year, to approximately 31 miles per gallon. With
the CAFE standards, �eet fuel economy rises to 34.7 miles per gallon. Although
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the regulations do bind for American automakers, we estimate that overall �eet
fuel economy exceeds the 2015 target of 31.6 mpg.
Consistent with previous work, the vast majority of the change in fuel econ-

omy comes through vehicle fuel economy improvements, rather than consumer
vehicle selection. In addition, we �nd that allowing �rms to adjust the entire set
of vehicle attributes introduces important variation in how �rms comply with
CAFE regulations. Even absent CAFE, increased gasoline prices incentivize
Honda and Toyota to substantially increase fuel economy. While Honda and
Toyota introduce technology to improve vehicle fuel e¢ ciency, approximately
half of the increase in fuel economy comes from decreasing vehicle power. While
the American automakers also incorporate more fuel e¢ cient technology, ab-
sent the proposed CAFE standards the automakers increase power as well as
fuel economy, resulting in more modest fuel economy improvements. The ad-
dition of the proposed CAFE standards lead �rms furthest from compliance to
reallocate fuel e¢ ciency gains from power to fuel economy. Sacri�cing power
for fuel economy brings the �rms initially furthest from compliance either into
or very close to compliance - Ford slightly misses its 2015 CAFE target (by 0.3
mpg). Interestingly, while trading o¤ power for fuel economy does a¤ect the
attractiveness of the vehicle to consumers, it does not entail substantial addi-
tional investment in fuel e¢ ciency technology, beyond that automakers choose
to install absent CAFE regulations. This suggests that studies holding vehicle
attributes constant may overestimate the cost of CAFE compliance, as well as
the degree to which �rms investment in new engine technology.
Subsequent to this motivation, our paper has three central sections. In

Section 2, we estimate the auto market demand system using both micro and
macro data. In Section 3, we detail our model of the new vehicle development
game, including the production function estimate and the myopic partial best
response algorithm. Section 4 presents our estimates of how CAFE standards
will a¤ect the characteristics sold and automakers�pro�ts.

2 Demand

We eventually wish to simulate �rms maximizing pro�ts, which are the sum of
the products of quantities sold and markups for each products. The demand
system must therefore give reasonable estimates both of quantities sold and
substitution patterns, which automakers use to set Bertrand markups. In this
section, we thus must estimate the US new auto market demand system from
micro and aggregate data, using the Gibbs sampler. In the next four subsec-
tions, we present the data, set up the indirect utility function and identifying
assumptions, describe the estimation routine, and discuss results.
Our indirect utility function and the resulting likelihoods are standard, as

are our identi�cation assumptions. We depart from the traditional framework
as we include aggregate data in our individual-level likelihood functions. Our
approach can be thought of as a "glass is half empty" approach to macro data.
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Typically, one approaches such data as an extra opportunity and modi�es the
estimation strategy by adding additional moment conditions. In our framework,
we consider macrodata in the same Gibbs sampler with microdata, but we have a
missing data problem: although we observe the choices of every individual in the
population, we only observe covariates for those individuals in the microdata.
We thus add a data augmentation routine within the Gibbs sampler to impute
missing covariates for each observation from the macro data.
In many settings, there are limited cross sections of micro data but more

frequent cross sections of market-level price and quantity data featuring addi-
tional variation in the choice set. In these cases, the econometrician wishes
to identify utility function parameters on interactions between individual and
product attributes primarily using microdata, and then use additional variation
in aggregate data to help identify random coe¢ cients.
The combined use of both micro and macro data is particularly helpful in our

application. We will need to identify the mean and variance of heterogeneous
demand parameters for fuel economy, weight, and horsepower, the attributes
that �rms will modify in our simulated game. Figures 1 and 2 show these three
characteristics in three-dimensional space. Figure 1 illustrates that weight and
the inverse of fuel economy are highly collinear, and Figure 2 shows that weight
and horsepower have a similar, but less severe, problem. To aid the econometric
model, utility will thus be a function of weight (in tons), horsepower per ton of
weight, and dollars of gasoline cost per mile (the inverse of fuel economy times
the gasoline price) per ton of weight. The addition of any new choice sets helps
identify all the paramters, especially because there is little variation in the latter
variable in any particular year.
A natural way of identifying demand for fuel economy is to exploit time series

variation in gasoline prices1 . A complementary analysis by Allcott (2008) uses
both microdata and annual cross sections from 1976 to 2007 of prices, quantities,
and attributes of all new and used vehicles on the road to estimate the auto
market�s "implicit discount rate" for future fuel expenditures, in the spirit of
Hausman (1979). By modeling the new and used car markets in equilibrium over
several di¤erent gasoline price shocks, that complementary paper generates an
even more credible estimate of the utility function parameter on fuel economy.
This will later be incorporated into the present analysis; for the moment we
model only the new vehicle market and two years of additional macro data.

2.1 Data

There are especially rich sources of data on the automotive industry. In 1983,
1990, 1995, 2001, and 2008, the US Energy Information Administration admin-
istered the National Household Travel Survey (NHTS) - or its predecessor, the
National Personal Transportation Survey - a nationally-representative survey
of approximately 25,000 households. Market level data dating to the 1960s,

1Although there is cross-sectional variation in gas prices across cities and states in the U.S.,
this is likely to be correlated with unobserved factors.
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including prices, quantities, and product attributes, is available from multiple
sources.
Unfortunately, the microdata cross sections do not o¤er substantial variation

in the choice sets, especially in terms of fuel cost in dollars per mile. The
1983 NHTS has fewer data points and is considered to be anomalous, the 2008
data are still being gathered, and there is little variation in gas prices between
1990, 1995, and 2001. Using market-level data for years with gasoline price
variation but no microdata is thus potentially helpful for our identi�cation. In
this analysis, we use only the 2001 and 2005 quantities sold for new cars and
trucks, from market research company R.L. Polk; even this one additional year
generates useful additional variation in the choice set.
Our microdata is taken from the 2001 NHTS, the most recent public source

of individual-level data on household characteristics and vehicle ownership. We
observe 26 thousand households in the nationally representative core sample.
Each household reported total annual income and urban/suburban/rural status,
the age, gender, and education of each household member, and the make, model,
model year, Vehicle-Miles Traveled, and primary driver for each vehicle owned.
In total, the households in the sample own 53 thousand vehicles. We model a
choice occasion for each household member 16 years or older2 . Since we wish
to model one year of a new vehicle market, we consider all individuals who
had purchased a new vehicle within 12 months of being surveyed; all other
individuals are considered to have chosen the outside option of no new vehicle
purchase. Since the NHTS was administered over a period of months, there
were a total of 741 separate "new" models observed, of model years 2000, 2001,
and 2002. Table I shows individual-level descriptive statistics for the NHTS
microdata as well as the 2001 Current Population Survey (CPS), which along
with the 2005 CPS will be used in our econometric procedure.
For each vehicle, we take fuel economy, horsepower, and weight data from

Ward�s Automotive Yearbook. Importantly, retail prices average 15 percent be-
low list prices, and that discount varies by manufacturer. We use data from
CNW Marketing, an auto industry research �rm, to transform list prices into
average purchase prices. Table 2 shows descriptive statistics for vehicles ob-
served in the microdata and in the market-level data. Using this data, we can
now continue to a description of our model.

2.2 The Model and Identi�cation

Our indirect utility function and the derivation of the individual�s likelihood is
entirely standard. We model consumer i�s indirect utility from vehicle j as:

Vij = �iXij + �Pj + �j + "ij (1)

2Because a small number of households have more vehicles than choice occasions, we may
instead follow Jacobsen (2008) by modeling households with a number of choice occasions
equal to the number of members over 16, plus one.
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Where:
�i = Random utility parameters, �i � N(b;W )
Xij = Interactions of individual and vehicle characteristics
� = Price coe¢ cient
Pj = Log of vehicle price
�j = Vehicle-speci�c unobservable characteristic
"ij = Logit error, distributed iid Extreme Value

As in typical, our model includes a vehicle-level unobservable �j that enters
utility linearly and is constant across consumers3 . The standard concern in
demand estimation is that these unobservable features are correlated with price,
biasing b�. In a GMM setting, BLP (1995) introduced instruments for vehicle
prices based on the characteristics of all vehicles in the market. Their 2004
analysis (MicroBLP) compared those instruments to the assumption that the
aggregate price elasticity in the new car market was �1, as suggested by analysts
at General Motors. The MicroBLP instrumental variables estimates had high
variance, with point estimates that di¤ered from the industry analysts�belief by
several hundred percent. In this analysis, we thus follow microBLP and again
calibrate � to achieve an aggregate elasticity of �1.
Nearly all other discrete choice demand models assume that non-price prod-

uct and individual characteristics Xij are exogenous, i.e. that corr(�;X) = 0.
This is not particularly problematic in other applications where out-of-sample
market shares are predicted using the same product characteristics . This is
more awkward in this analysis given our simulations, in which automakers will
endogenously modify characteristics along with prices. Nonetheless, we main-
tain the (strong) assumptions that indirect utility is linear in X and that X is
exogenous.
Our likelihood function is also standard; we include a brief exposition for

clarity. Integrating up over the logit error gives the probability the consumer
i purchases vehicle j. This is the standard logit purchase probability, where k
indexes vehicles from 1 to J .

Pij =
eVij

JP
k=1

eVik
(2)

The likelihood for consumer i that has purchased vehicle yi is thus:

Li(yi j �i; Xij) =
Y
k

PYikik = Piyi (3)

3As Athey and Imbens (2005) point out, the assumption that the product-level unobserv-
able enters all consumers�utility functions equally is stronger than needed, as microdata can
identify product-level unobservables that vary as a function of individual observables. This
issue, however, is not central to our analysis, so we make the standard, stronger assumption.

8



Where:
Yij = f1, yi = j; 0, otherwiseg

Since the distribution of the �i are determined by hyperparameters b and
W , the sample likelihood can be written as:

L(y j b;W;X) =
NY
i=1

Li(yi j b;W;Xi) (4)

2.3 Estimation

A classical strategy is to �nd the parameters b and W that maximize the above
likelihood function. In the Bayesian approach, we update di¤use prior beliefs,
denoted g, about parameters based on observed data, giving posterior distribu-
tions of b and W conditional on the data4 :

G(b;W j X; y) /
NY
i=1

Li(yi j b;W;Xi) � g(b;W ) (5)

The Gibbs sampler is a Markov Chain Monte Carlo (MCMC) method that
allows the econometrician to draw from posterior distribution G. This procedure
breaks parameters b , W , and � into disjoint sets and draws iteratively from
each set. After and initial "burn-in" period, the simulation reaches an ergodic
state, and draws of each parameter set will be in proportion to the parameters�
marginal distribution5 . Since the "glass is half empty" and we only observe
covariates Xi for the part of the population observed in the microdata, we must
impute the additional covariates. Fortunately, the MCMC framework is natural
for missing data problems. Using data augmentation, missing data are viewed
as additional parameters, and another step to the Gibbs sampler is added in
which their distributions are computed conditional on the most recent draws of
the other parameters.
Our procedure thus combines these two di¤erent MCMC methods to draw

from the posterior distribution of b and W: We begin by generating "observa-
tions" from the aggregate data; each vehicle sold is represented by s observa-
tions, each with frequency weight wj such that s �wj equals the quantity sold of
that vehicle. These observations, without covariates, are "stacked" on the com-
plete observations from the microdata. We then iterate through the following
four steps:

4As this is a new combination of two well-known procedures, our exposition follows Train
(2003) and Tanner (1996). These are excellent sources of additional detail.

5Casella and George (1992) provide an intuitive explanation of the process and why it
works.

9



1. Draw from f(b j �;W ). With a di¤use normal prior, b � N(� jW=N).

2. Draw from f(W j �; b). With an Inverse Wishart (IW ) prior on W that
is as di¤use as possible while still integrating to one, W � IW (Kb +
N; KbI+NS

Kb+N
)6 .

3. Impute missing covariates Xa for macro data, as detailed below.

4. For each individual, draw from f(�i j b;W;Xij ; yi). This is done via a
Metropolis-Hastings algorithm: a trial value of �i, labelled �i, is drawn
using e�i = �i + �Cr: Here, C is the Choleski factor of W , r is a vector of
draws from the standard normal distribution, and � is a scalar calibrated
to maximize the information content of the draws (see Rossi, Allenby,
and McCulloch 2005). The posterior is G(�i j b;W;Xij ; yi) / Li(yi j
�i; Xij) � �(�i j b;W ), where � denotes the normal probability density
function. The new draw is accepted if Li(yij

e�i;Xij)��(e�ijb;W )
Li(yij�i;Xij)��(�ijb;W ) is larger than

a random draw from U(0; 1).

The third step is the only departure from a very standard Gibbs sampler
for random coe¢ cients models, and it is this that allows us to incorporate both
macro and micro data. This step requires draws from the distribution of each
"macro" observation�s missing covariates, f(Xa

i j yai ; b;W ), conditional on the
most recent draws of hyperparameters b andW and vehicle choice yai . We imple-
ment this by using our approximation of the marginal population distribution
of X contained in the 2001 Current Population Survey (CPS). By projecting
b and W onto the covariates for each individual in the CPS, we predict each
CPS individual�s purchase probabilities bPCPSij j b;W;XCPS

i . For each observa-
tion in the macro data that has purchased vehicle j, we then generate our draw
Xa
i from the distribution of individual characteristics by sampling an individ-

ual from XCPS . The choice of the CPS individual is random, with probability
proportional to the chance that they purchased vehicle j, bPCPSij j b;W;XCPS

i .
More precisely, the subparts of step 3 are:

1. Using the most recent iteration of b and W , draw �CPSi for each observa-
tion in the CPS.

2. Compute each individual�s purchase probabilities PCPSij j �CPSi

3. Compute predicted sales of each vehicle, Sj =
NCPSP
i=1

PCPSij .

4. For each vehicle, compute the probability that it was purchased by each
individual, sij = PCPSij =Sj .

6 In the present analysis, we use a diagonal W , whose parameters are drawn through a
slightly di¤erent procedure.
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5. For each observation in the macro data that chose vehicle j, draw covari-
ates from an observation i in the CPS with probability sij .

Although one of the motivations for the Bayesian estimation strategy is com-
putational e¢ ciency, implementing this estimation algorithm with a relatively
large choice set required several simpli�cations for tractibility. Since aggregating
choices into larger classes reduces the exploitable variation in the choice set, we
focused on reducing the number of individuals over which choice probabilities
must be computed. First, since over 90 percent of the observations in both the
microdata and the macro data do not purchase a new vehicle, a subset of the
individuals who choose the outside option are randomly sampled for inclusion;
their frequency weights are adjusted appropriately. Second, since the CPS in-
cludes on the order of 100 thousand individuals (depending on the year), we also
subsampled from the CPS to generate our population distribution. Finally, the
data augmentation routine typically involves a number of imputations of each
Xa
i in each iteration, with subsequent likelihoods computed from the mixture

of distributions conditional on each imputation. Because we have s = 20 obser-
vations in the macro data of "individuals" purchasing each vehicle and those 20
imputations will form a distribution of Xa j ya, we impute each Xa

i only once.

2.4 Results

2.4.1 Simulated Data

We �rst present results from applying the procedure to simulated data. In this
simulation, utility is a function of �ve product characteristics and the interac-
tion of each product characteristic with one of �ve individual characteristics.
All individual and product characteristics are uncorrelated random draws from
U(0; 1) ; note that this eases identi�cation relative to the typical application
in which characteristics are correlated. The dataset was designed so that the
microdata alone could theoretically identify the parameters, but the additional
macro data would be especially useful. The number of products is 24 in the
microdata, while the macro data includes 48. The sample size is 300 in the
microdata, and 1500 simulated observations from the "CPS" are used in the
aggregate data.
Table 3 presents the results of the two runs: the mean and standard devi-

ation of the draws from the posterior distribution. The leftmost column is the
true utility parameter used in the data generating process. Even with only 300
observations, the microdata estimation gives reasonable estimates of the b para-
meters. The random coe¢ cients W , however, are extremely di¢ cult to identify
with such a limited choice set and sample size. The addition of aggregate data
aids in pinning down W , and the more precise estimate of W then helps in
estimating b.
Figure 3 shows the draws of the �rst �ve b parameters in the Gibbs sampler

with microdata only, which have "true" values f�2,�1,0,1,2g. The starting
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values were set to
�!
0 , and after about 20,000 iterations the simulation reaches

ergodicity. The micro-macro simulations burn in starting from the microdata-
only parameter estimates; Figure 4 shows this procedure, in which the inclusion
of macro data has substantially reduced the variance of the draws7 . Figures 5
and 6, which have very di¤erent y-axis scales, illustrate that these additional
data aid substantially in pinning down the variance W of two of the random
coe¢ cients; the other 8 look similar.
Having illustrated the procedure�s e¤ectiveness, we now continue to our ap-

plication to new vehicle demand.

2.4.2 Actual Data

To illustrate the data, we �rst run a simple �xed coe¢ cient representative con-
sumer logit estimated with the standard OLS equation:

log(Qj=Q0) = �Xj + �Pj + �j (6)

Table 4 reports the b� estimates in both the micro and combined years of
macro data. Within each regression, the relative parameter magnitudes are
meaningful, so the results are quite similar, and more precisely are not statisti-
cally di¤erent.
Table 5 shows the results of the Gibbs sampler with microdata; our micro-

macro results are still being �nalized. We �x � = �2:3 for all consumers, which
sets the market price elasticity to �1. All coe¢ cients have reasonable signs:
indirect utility decreases in dollars per mile, increases in HP (especially for non-
urban individuals), and increases in weight (especially for individuals in larger
households). Interestingly, the �rst W parameter indicates that wealthier indi-
viduals have stronger preferences for high fuel economy cars; this result (as well
as the signs and rough magnitudes of the other coe¢ cients) holds consistently
across alternative speci�cations.
Having modeled the new vehicle demand system, we can now continue on to

our simulations of automaker responses to fuel economy regulation.

7There is a remaining issue with the "tuning" of � in the procedure, which determines the
"stickiness" of the parameter draws. We follow a rule of thumb discussed in Rossi, McCulloch,
and Allenby (2005), which is to set � such that the Metropolis-Hastings algorithm accepts 23%
of the �i draws. As they note, however, this is not actually the proper way to set �, and we
suspect that the addition of macro data may a¤ect this.
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3 Counterfactual Simulation and Equilibrium Se-
lection

The objective of our simulations is to estimate how automakers will adjust en-
dogenous vehicle attributes (technology, fuel economy, power, weight and price)
in response to regulation. We simulate vehicle and �eet attributes for four di¤er-
ent policy scenarios - the Corporate Average Fuel Economy standards proposed
by the National Highway Tra¢ c Safety Administration (�NHTSA�, 2008), an
incremental carbon-based gas tax, a feebate based on vehicle emission and a
base case, in which no new regulation is enacted. We focus speci�cally on the
2015 model-year - approximately one product cycle from current vehicles, as well
as the �nal year in which the NHTSA proposal de�nes fuel economy standards.
We �rst present a game in which automakers endogenously select vehicle

attributes for which many possible equilibria exist. In the second section, we
discuss an equilibrium re�nement, myopic partial best response, which reason-
ably approximates the iterative process by which automakers decide on future
vehicle attributes and which we use to iteratively select one of the many possible
equilibria. We then present the details of the four policy scenarios we consider,
followed by our policy results and results examining the e¤ect of alternative the
equilibrium selection criteria.

3.1 Model

We focus on the static Nash equilibria of a game of complete information,
in which six automakers, f 2 fChrysler; Ford;GM;Honda; Toyota;Otherg;
choose four attributes (fuel economy (mpg), power (hp), weight, and price) for
�ve classes of model-year 2015 vehicles, c 2 fCompact;Mid=FullSize; SUV; Truck;Minivan)g:
For computational tractability, we aggregate all automakers not explicitly mod-
eled into the category, �Other.� Used vehicles and non-purchasing are aggre-
gated into a generic outside good with utility, U0. For computational tractabil-
ity, we make the strong assumption that used vehicle markets do not a¤ect the
equilibrium in new vehicle markets, which we acknowledge will a¤ect our re-
sults. We denote the triplet of physical attributes for a particular vehicle and
automaker as xfc and denote the price as pfc.8

Letting xf denote the vector of attributes for �rm f, each �rm observes
demand and cost and chooses attributes and prices to maximize pro�ts given
by:

8We initially consider the case in which automakers choose price and attributes at the
same time - we are currently working on an extension in which automakers �rst �x the fuel
economy, power and weight of each vehicle, and then set Bertrand prices for all vehicles. In
this case, automakers announce only the triplet of physical attributes which maximize pro�ts
conditional on the physical attributes opponents� announced in the previous period. Prices
are then set optimally for all automakers, conditional on all vehicles�physical attributes.
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�f (xf ; pf ) =
X
c

[pfc �MC(xfc)]
Z
�

N(�)sfc(pf ; xf ; p�f ; x�f ; �̂; �)d�; (7)

where sfc is the market share of automaker f�s vehicle class c, � is a set of
characteristics of an individual drawn from the CPS, N(�) is the person-weight
used to scale the CPS record up a nationally representative sample, and �̂ are
the estimated structural coe¢ cients from our demand model.
Vehicle fuel economy, power and weight a¤ect consumer demand as well as

the marginal cost of production. Because data on production costs is limited in
this industry, we estimate production functions using an engineering approach
instead of the typical econometric approaches (e.g. Olley and Pakes 1996; Levin-
sohn and Petrin 2003). We decompose marginal cost additively into two parts:
the marginal cost for automaker f to produce vehicle class c, MCbasefc , derived
from the �rst-order conditions of the demand system, and the incremental cost
of the necessary fuel e¢ ciency9 improvement to achieve fuel economy, horse-
power and weight xfc10 :

MC(xfc) =MC
base
fc + e�c�FuelEff(xfc) (8)

We estimate class-speci�c incremental cost curves for fuel e¢ ciency based
on engineering estimates from National Research Council (2002). The NRC
study estimates the cost, fuel e¢ ciency improvement and availability of di¤er-
ent vehicle technologies for ten di¤erent vehicle classes. From the engineering
data, we construct cost curves for each of the ten vehicle class and estimate
a log-log relationship between fuel e¢ ciency and incremental marginal cost for
each of our �ve vehicle classes. Table 7 present the class-speci�c coe¢ cients
(�c) - generally, the larger the vehicle, the greater the number of technological
improvements exist and the lower the cost necessary to achieve a given fuel
e¢ ciency improvement.
Letting FEfc, HPfc and Wfc denote the fuel economy, horsepower and

weight of vehicle fc, and letting FE0fc, HP
0
fc and W

0
fc denote the physical at-

tributes of automaker f�s 2007 model-year vehicle in class c, we assume the
necessary percentage increase in fuel e¢ ciency is given by the following rela-
tionship11 :

9Fuel e¢ ciency is de�ned as amount of energy generated per unit of fuel. Fuel economy is
the distance traveled per unit of fuel. Engine, transmission and design improvements increase
fuel e¢ ciency - increased fuel e¢ ciency allows automoakers to improve a vehicle�s fuel economy,
power and/or weight.
10Note that new technology in this context does not shift out the production possibility

frontier - by investing in new technology, the automaker can build a vehicle with better
attributes at a higher cost.
11We assume that �FE = 1, �W = 1 - conditional on weight and power, a increase in

fuel e¢ ciency translates into an equivalent increase in fuel economy. Similarly, holding fuel
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�Efffc =

 
FEfc
FE0fc

!�FE  
HPfc
HP 0fc

!�HP
 
Wfc

W 0
fc

!�W
: (9)

The static Nash equilibria to the game are all sets of vehicle attributes
fxf ; pf8fg such that no �rm has the incentive to unilaterally devatiate.

3.2 Equilibrium Selection and Simulation

Many possible sets of attributes satisfy the equilibrium condition to the game
speci�ed above. In order to simulate counterfactuals, two approaches have been
taken in the literature. The �rst approach follows Lee and Pakes (2008) which
solves for all possible equilibria to the ATM entry game presented in Ishii(2006)
and then restricts the set of equilibria to those robust to cost shocks. In the case
of automaker attribute selection, the size of the action space is su¢ ciently large
to prevent a systematic search for all possible equilibria to the game. The second
approach, which we follow, is to choose a equilibrium re�nement reasonably
representing the automaker decision-making process and use the re�nement to
select one of the many possible equilibria to the game.
We consider an equilibrium re�nement, reinforcement learning, from Fuden-

berg and Levine (1988).12 Reinforcement learning de�nes a sequence of myopic
�announcements�converging to a unique equilibrium. At the beginning of the
game, each �rm f chooses the action which is a myopic best response to start-
ing actions of all other players, x0. In each subsequent round t, �rm f chooses
the action xf;t which is a myopic best response to some function of the actions
played by opponents in all previous rounds, fx�f;0; x�f;1x�f;t�1g. The optimal
choice of xf;t satis�es

xi;t = argmax�i(xi;t; f(x�i;t�1)) (10)

Depending on the starting point x0 and the function by which a �rm aggre-
gates opponents�actions in previous rounds, the reinforcement learning equi-
librium, x�, is the set of actions to which the sequence of actions converges -
that is x� = limt!1fxi;t; x�i;tg:We consider two speci�c types of reinforcement
learning: (1) myopic partial best response, in which each �rm only considers the
opponents�last actions, and plays the myopic best response to x�i;t�1, and (2)

economy and power constant, energy generated per unit of fuel is proportional to the weight
of the vehicle moved. Alternatively, we could estimate the relationship between fuel e¢ ciency
and the three attributes of interest from empirical data, if we could reliably observe fuel
e¢ ciency.
12 In our context, we are interested not in the learning dynamics, but in the game�s steady

state: the steady state of successive proposed actions is a Nash equilibrium. Rather than
focusing on the dynamic by which the new equilibrium is reached, we use the re�nement to
identify a speci�c equilibrium from the set of all possible equilibria.
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�ctitious play, in which each �rm averages each opponent�s sequence of actions,
and plays the myopic best response to the the set of average actions.13

Based on research and discussion with auto industry analysts, we believe that
myopic partial best response reasonably approximates the automaker decision
process. The sequence of actions we consider are a sequence of non-binding
announcements made by the automaker prior to setting the �nal attributes of
each vehicle. Although non-binding, the announcements provide information
about the characteristics and technology of future vehicles. In our simulations,
we select the limit of the announcements as the equilibrium.
Automakers begin to plan general characteristics of their entire line of vehi-

cles ten to �fteen years in advance as part of a �cycle plan.�In a cycle plan, �rms
begin to plan future models�powertrain technology (such as plug-in hybrids or
hydrogen vehicles) and other general attributes. Analogous to the actions cho-
sen in each round of the reinforcement learning equilibrium, automakers make
repeated non-binding announcements at auto shows and conferences which re-
veal information about the characteristics and technology of future vehicles.
In addition, trade press closely tracks and anticipates vehicle attributes and
technology. Binding vehicle attribute decisions begin approximately three years
prior to a particular model year. At this point, the automaker sets the attributes
and technology of a vehicle, including �market segment and competitive posi-
tioning, expected sales volume and price, and key vehicle attributes including
size, performance, drivetrain and other major technology options.�14 . Two years
in advance, the automaker engineers model-speci�c components and develops
the manufacturing capacity to produce the vehicle. In the �nal year, the au-
tomaker sets marketing and prices. The degree to which myopic partial best
response reasonably represents automotive new product development hinges on
four assumptions. First, automaker announcements must be observable to other
automakers, revealing the potential attributes of their future product lines. Sec-
ond, �rms must respond strategically and play a best response to the announce-
ments of competitors. Third, �rms must base their decisions on the most recent
�announcements� of competitors. Finally, �rms must behave myopically. We
consider each of these in order.
Automakers provide substantial information about future product attributes

years in advance of production. For example, GM and Ford currently provide
information about the attributes of the Volt and Edge HySeries, a plug in hy-
brid and fuel cell vehicle respectively. In addition, trade press closely tracks
future vehicle design - Motor Trend currently reports on attributes of vehicles
three model years into the future. In addition, automakers often announce new
technology prior to incorporating it in consumer vehicles. For example, Ford
has reported that it �intends to improve the e¢ ciency of its internal combustion
engines through the addition of direct-injection and turbocharging technologies,
resulting in a ten to twenty percent improvement in fuel economy and better

13Although in each case, convergence selects a particular equilibrium, the two re�nements
could select di¤erent equilibria. We examine this possibility in an extension of our simulation.
14Center for Automotive Research (2007)
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performance.� 15 Thus, while styling and appearance of new models may dif-
�cult to observe in advance of production, major changes in the underlying
characteristics that we model in a product line - fuel economy, power, weight
- can reasonably be observed in advance. Moreover, the vast majority of au-
tomaker announcement relate to active projects - there is little evidence that
automakers make non-binding announcement about products they do not in-
tend to pursue. Not only do many announcement incorporate some investment
costs, but automakers use the announcements to publically signal their future
product plans to �nancial markets.
Strategic, pro�t maximizing response should be uncontroversial, and the

industry literature supports this view.

A product�s attributes and sub-attributes are typically evaluated
against a de�ned set of competing products. Automakers closely
track what the competition is doing to have a good idea of likely
competing product pro�les several years down the road to determine
where their product�s pro�le needs to be in order to meet or exceed
its sales volume goals. 16

Moreover, the sequential nature of the announcements suggests that au-
tomakers pay most attention to recent attribute announcements rather than
initial announcements made early in the cycle-plan.17 The �nal assumption
which must hold is that �rms play myopically. While there is relatively little
evidence that automakers make non-binding announcements which they do not
plan to execute in order to in�uence competitor product development, we can-
not rule out the possibility that automakers act strategically in certain niche
vehicle markets. Strategic play dramatically complicates counterfactual simu-
lation - thus, for our purposes, we implicitly assume �rms do not anticipate
future rounds of announcements and act strategically to in�uence the future
announcements of other automakers.18

The pattern of successive announcement through the trade press, confer-
ences, auto shows and company press maps reasonably closely to the myopic
partial best response algorithm. Automakers successive disclosures about prod-
uct attributes well in advance of �nalized decisions about the attributes of a
particular model-year are roughly analogous to the iterative process by which
we select the equilibrium attributes. Through repeated disclosures, �rms adjust
the attributes of their vehicle lines so as to best compete with the anticipated

15Automotive Design and Production (2008)
16Center for Automotive Research (2007)
17As an robustness check, we simulate results using several �ctitious play selection criteria,

each of which discounts previous announcements to a di¤erent degree. While the actual point
of convergence depends to a small degree on the selection criterion, our policy implications
are unchanged.
18As a partial test of the importance of strategic play, we consider a model in which �rms

make sequential announcements rather than simultaneous announcements. Although �rms
still behave myopically, we �nd that changing the sequence of play does a¤ects the selected
equilibrium attributes, suggesting that incorporating strategic play may be a valuable exten-
sion for future work.
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attributes of other automakers. Following �nal selection of attributes for all
vehicles, �rms then choose retail prices, along with customer and dealer incen-
tives.
In the context of our simulation model, we select our equilibrium by assum-

ing that automakers make successive, simultaneous �announcements�about the
attributes of future vehicles. To form each set of announcements, automakers
determine the myopic best response to the attributes announced by opponents
in the previous round, analogous to the actions chosen in each round of the re-
inforcement learning equilibrium re�nement. To estimate each �rm�s announce-
ment in each round t, we numerically simulate demand using the estimates
from our demand system (�̂ and drawing individuals from the Current Popula-
tion Survey.19 We discretize the set of vehicle attributes and prices into single
percentage point increments relative to the base attributes of the model-year
2007 vehicles. In each round, we search the attribute space for the set or at-
tributes which maximizes automaker i�s payo¤ conditional on the con�gurations
chosen by other automakers in the previous iteration, the cost of innovation and
simulated demand. We iterate the process of announcements until the model
converges to the myopic partial best response equilibrium.

3.3 Policy Scenarios

We initially consider four counterfactual simulations of future policies: (1) the
recently proposed CAFE standards for passenger cars and light trucks, (2) a
carbon tax on gasoline, (3) a feebate based on carbon emissions and (4) a base
case, absent new CAFE standards or a carbon-based fuel tax or feebate. In each
case, we use our equilibrium re�nement to identify a particular set of equilibrium
vehicle attributes for the 2015 model-year, approximately one product cycle
away from the current production year.
The �rst scenario replicates the recent CAFE proposal made by NHTSA

(2008).20The proposed standard replace the existing CAFE standards, de�ning
more stringent requirements based on vehicle footprint. Speci�cally, the pro-
posal speci�es footprint-based fuel economy standards, where the footprint of
the vehicle is the product of the wheelbase and the track (distance between the
front and back axles). The footprint targets for 2011 to 2015 are designed to
raise passenger car fuel economy from 31.2 mpg to 35.7 mpg and light truck
fuel economy from 25.0 mpg to 28.6 mpg. The NHTSA estimates that �eet fuel

19We implicitly assume that the automakers� expectation of future demographics is accu-
rately captured by current demographics. In addition, we hold our sample of individuals
constant (including all randomly drawn coe¢ cients on vehicle attributes) throughout all iter-
ations to ensure convergence.
20Although the ultimate goal of the proposed CAFE standards is to de�ne a path by which

the fuel economy of the �eet of vehicles sold in 2020 will exceed the 35 miles per gallon objective
set forth in the Energy Independence and Security Act (�EISA�) of 2007, the rulemaking only
proposed de�ned fuel economy standard through 2015. Thus, we focus on estimating the
characteristics of �eet of 2015 model-year vehicles, although our methodology could easily be
extended to estimate hypothetical standards for 2020.
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economy will rise from 27.8 mpg in 2011 to 31.6 mpg in 2015. Ultimately, the
2015 targets are designed to ease industry transition to the �eet-wide 35 mpg
standard in the Energy Independence and Security Act of 2007. For each au-
tomaker, the relevant standard for an automaker is the harmonic average of the
footprint-based standards, weighted by the proportion of an automaker�s �eet
with each footprint. Automakers failing to meet the standards are subject to
current CAFE-violations �nes, adjusted for in�ation - speci�cally, an automaker
is �ned $55 per vehicle for each miles per gallon its �eet of vehicles falls below
the �eetwide CAFE standard.21

To estimate the footprint-based standards for each of our �ve relevant vehicle
classes, we estimate the footprint of each vehicle class based on 2007 model-year
vehicle dimensions in each of our �ve vehicle classes. We then calculate the rele-
vant standard for each class of vehicle based on the proposed footprint standard
for 2015. Our estimates for the 2015 standards for our �ve vehicle classes (Com-
pact, Mid/Full, SUV, Truck and Van) are approximately 39, 32.3, 31.3, 26.6,
and 28.3 miles per gallon respectively. As discussed in the previous sections,
automakers choose the degree to which they want to use more fuel e¢ cient tech-
nology in their vehicles, but are allowed to allocate fuel e¢ ciency gains towards
fuel economy, power or vehicle weight. Due to concern in the proposal that
footprint-based standards will incentivize safety-reducing downweighting by au-
tomakers, we constraint the degree to which automakers can reduce weight to
increase fuel economy.22

We simulate our second and third counterfactuals to compare the e¤ect of the
2015 CAFE standard to other policy mechanisms which primarily incentivize
consumer purchase of high fuel economy vehicles. Speci�cally, we consider a
carbon tax on gasoline and a feebate based on vehicle carbon emissions generated
during the �rst 60 thousand miles. In each case, we set the price of carbon to
$43 per ton, taken from Tol (2005)23 . Translating the tax on a per ton basis to
a tax on a per gallon of fuel, we estimate that a $43 per ton tax is equivalent
to approximately a $0.42 tax per gallon of gasoline. 24 As an alternative, we
calculate a feebate, based on the carbon emissions associated with the �rst �fty
thousand miles of vehicle ownership. We assume that the feebate is assessed as
an additional marginal cost of production on the automaker. The feebate varies
with the inverse of fuel economy - we assess feebates of $1050, $700, and $525
on vehicles with fuel economies of 20 mpg, 30 mpg and 40 mpg respectively.
Finally, we simulate a counterfactual absent the proposed CAFE standards,

as well as the carbon tax on gasoline or the feebates based on vehicle carbon

21The proposal allows automakers to trade CAFE credits, but speci�es a minimum fuel
economy for domestically produced passenger vehicles each automaker purchsing credits must
meet. In our simulations, we currently abstract away from interautomaker trade.
22We limit the reduction to 5 percent of the base weight for the relevant vehicle an automaker

produces for a particular class. In practice, the majority of vehicles are unconstrained by the
�oor on weight.
23Although many studies estimate the long-run marginal damages of carbon emissions, the

estimates in Tol(2005) are cited by the Working Group II in their contribution to the Fourth
Assessment Report of the IPCC
24 Implicitly, we assume that consumers bear the full burden of a carbon tax on fuel.
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emissions. The �base case�allows us to benchmark the policies relative to chang-
ing demand resulting from changing gasoline prices and vehicle preferences.

4 Results

We present the results of the simulation in tables 8 and 9, which aggregate
vehicle characteristics in each simulation by class and automaker respectively.25

For each of the four simulations table 8 presents equilibrium attributes identi�ed
by the reinforcement learning selection criterion. In addition, we also include
the mean fuel economy, horsepower, weight and price for the 2007 model-year
of each vehicle class.
In each of the four counterfactuals, including the �base case� in which reg-

ulations are absent, the average fuel economy for the entire �eet of vehicles
exceeds the �eet-wide fuel economy goal of 31.6 mpg in the NHSTA proposed
rulemaking - mean �eet-wide fuel economy in the base case, CAFE simulation,
Feebate simulation and carbon gas tax simulation are 31.8, 34.7, 33.7 and 33.5
mpg respectively. Interesting, although the �eet-wide fuel economy exceeds the
rulemaking objective of 31.6 mpg, we �nd variation in vehicle class compliance
in all four simulations.
In the base case, automakers incorporate new technology to improve the

fuel economy of compact and mid/full size passenger cars - both categories, on
average, substantially overcomply with the footprint standards. Relative to the
2007 model year, we estimate that automakers improve the fuel economy of
the �eet of small and midsize vehicles by approximately 60 to 65 percent - to
achieve the fuel economy gains, automakers improve fuel e¢ ciency (through new
technology) approximately 40 percent and reduce power by approximately 20
percent. Automakers overcomply with the standards (even in the base case) to
target the subset of the consumers who place substantial value on fuel economy.
Automakers also invest in new technology to improve fuel economy of sport-

utility vehicles (SUVs), vans and trucks. In the base case, fuel e¢ ciency for
SUVs, vans and trucks rise 68 percent, 48 percent and 51 percent respectively.
Unlike Compact and Midsize sedans in which automakers focus the fuel e¢ ciency
gains on improving fuel economy, automakers increase fuel economy, power and
weight of SUVs, vans and trucks. We estimate that automakers increase fuel
economy in SUVs, trucks and vans by 25 percent, �ve percent and 14 percent
respectively, increase power by 16, 23 and 14 percent respectively and weight by
approximately 15 percent in all three cases. As a result in the base case, mean
SUV, truck and van fuel economy (23.6, 18.7 and 22.4 mpg, respectively) falls
substantially below the estimated footprint-based standards of 31.3, 26.6 and
28.3 mpg.

25When using myopic partial best response as our equilibrium selection mechanism, conver-
gence is reached after 5-6 sets of announcements. Using �ctitious play where �rms respond
to the vector of average opponents�actions in all previous periods, actions converge after 8-10
announcements.
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When we simulate the e¤ect of the 2015 CAFE standards, total �eet fuel
economy improves. Compact and Midsize vehicles continue to substantially
surpass footprint-based thresholds. For SUVs and vans, automakers facing non-
compliance reallocate fuel e¢ ciency technology towards fuel economy rather
than power. With the 2015 CAFE standards, average fuel economy for SUVs
and Vans improves 48 and 38 percent respectively - while the vehicle class
fuel economy averages still fail to meet the footprint-based thresholds (which
automakers meet by trading CAFE credits from Compact and Midsize vehicles),
reallocation of fuel e¢ ciency technology improves fuel economy 4.5 mpg for
SUVs and vans relative to the base case. Fuel economy for trucks is largely
unchanged in our CAFE simulation relative to the base case. Although fuel
economy for 2015 model-year truck �eet is slightly higher than the 2007 model-
year truck �eet, it still falls substantially short of the footprint-based CAFE
standard.
Table 9 presents similar summary statistics at the automaker-level. Variation

in compliance among automakers also provides insights as to how automakers
change vehicle attributes in response to the CAFE regulations. In the base case,
only Toyota and Honda exceed their automaker standards under the proposed
CAFE rulemaking. As in the 2007 model-year, Toyota and Honda tend to sell
vehicles with higher fuel economy and lower power and weight than American
automakers. In the 2015 model-year, Toyota and Honda further di¤erentiate
their vehicles along this dimension, tending to lower power and weight, while
increasing fuel economy across all vehicle classes. In the base case, Ford, GM and
�Other�automakers make more modest improvements to fuel economy (26, 37,
and 29 percent, respectively), in addition to increasing vehicle power. Ford and
the �Other�automakers fall particularly short of the proposed CAFE standards
in the base case. We estimate Ford�s �eet-wide fuel economy to be 25.3 mpg,
relative to a benchmark of 31.9 mpg and estimate the �Other�automakers��eet
fuel economy to be 28.6 mpg relative to a benchmark of 34.5 mpg.
With the introduction of the proposed CAFE standards, Ford and the �Other�

automakers optimize vehicle attributes - reducing vehicle power and increasing
fuel economy. In the CAFE simulation, �Other�automakers come into compli-
ance, while Ford comes very close to compliance with a �eet-wide fuel economy
of 31.6 (relative to a benchmark of 31.9 mpg) GM and Chrysler, on the other
hand, fail to come into compliance. We estimate that GM and Chrysler fall
approximately 4 and 1.8 mpg short of the standard, respectively. For GM,
in particular, part of the non-compliance arises from an increase in consumer
purchases of GM SUVs and vans, both of which fall short of their respective
footprint-based CAFE standards. As Ford and �Other� automakers increase
fuel economy of their SUVs and vans at the expense of power, consumers who
value power over fuel economy substitute to GM vehicles.
Examining the feebate and carbon gas tax simulations, we �nd evidence

that the programs create di¤erent incentives for automakers to change vehicle
attributes. Automakers respond to a carbon tax on gasoline by increasing fuel
economy for Compact cars from 46.4 mpg (in the base case) to 51.8 mpg, tar-
geted at consumers who place a high value on fuel economy, or alternatively
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experience substantially disutility from high gasoline prices. As expected the
change in fuel economy for compact cars, comes primarily through Honda and
Toyota, who o¤er the most fuel e¢ cient vehicles. Changing the characteristics
of the vehicles 26 With feebates, automakers increase fuel economy of SUVs
and vans, which otherwise incur $400-$500 higher �xed charges than Small and
MidSize sedans. Interestingly, the incremental feebate of $400-$500 vehicles is
large relative to potential CAFE non-compliance penalties of $55 per mpg per
vehicle - as a result, the feebate generates similar behavior to that generated by
CAFE for automakers with �eets with relatively low fuel economy.

5 Conclusion

This paper studies the 2015 CAFE standard, contributing to a growing policy
literature on fuel economy regulation by simulating how �rms will adjust vehicle
attributes and prices in equilibrium. We have also considered two alternative
policies: feebates based on a vehicles�anticipated carbon emissions and a carbon
tax levied on gasoline. We �nd that, even absent new regulation, automakers
have a strong existing incentive to improve the fuel economy of Compact and
Midsize sedans if consumers expect gasoline prices to stay relatively high. In
the base case, the incentive to improve fuel economy is su¢ ciently great to push
Honda and Toyota�s �eet fuel economy above their relevant CAFE standards.
The addition of the proposed CAFE standards increases the incentive for other
automakers not in compliance in the base case to improve fuel economy, rather
than power or vehicle weight. In total, we estimate �eet fuel economy to be
34.7 miles per gallon with the CAFE regulations. Although the regulations are
binding at the automaker-level, �eet fuel economy exceeds the proposed rule�s
stated goal of 31.6 mpg.
We emphasize that it is not possible to write a paper that advances all parts

of a literature as well-developed as the body of work on the economics of the
auto industry. Indeed, in making our two methodological advances, it became
necessary to abstract away from issues that other analyses of the auto industry
have done better. For example, we ignore the introduction of alternative fueling
stations, which the National Energy Modeling System covers in detail, causing
us to overstate the utility of new powertrain technologies. We also ignore the
equilibrium e¤ects on used car prices and scrappage, causing us to overstate
equilibrium demand for the smaller number of new low-fuel economy vehicles
being sold under the strengthened CAFE standard. We additionally assume a
myopic learning dynamic for computational tractibility. In making these and
other simpli�cations, we are modest about our contribution to literature on the
e¤ects of fuel economy regulation.

26The calculated CAFE standards for each automaker are based on predicted �eet sales
in each simulations. Thus, the fact that CAFE standards do not signi�cantly rise with the
addition of a carbon gas tax or feebate implies that consumers do not substantially change
their vehicle
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This applied problem, however, has motivated two contributions to the
econometrics and Industrial Organization literature on demand estimation and
counterfactual simulation. In estimating demand, we introduce a new proce-
dure to exploit variation in both consumer-level micro data and market-level
quantities and choice sets. While Bayesian strategies are increasingly popular
in demand estimation, there was no existing method for combining these two
types of data. In simulating counterfactuals, we address the problem of multiple
equilibria by using myopic partial best response as a selection mechanism, which
we argue to be a reasonably stylized model of the industry�s product develop-
ment process. We consider how the choice of equilibrium re�nement a¤ects the
seleted equilibrium by also considering the �ctitious play learning dynamic. Our
paper is one of the �rst to consider how the choice the equilibrium re�nement
a¤ects outcomes in counterfactual simulations.

23



6 Bibliography

Athey, Susan, and Guido Imbens (2005). "Discrete Choice Models with Multiple
Unobserved Choice Characteristics." Working Paper, Harvard University.

Automotive Design and Production (2007). �Going Green: The Challenges
and the Solutions.�January 1, 2008.

Allenby, Greg, and Peter Lenk (1994). "Modeling Household Purchase Be-
havior with Logistic Normal Regression." Journal of the American Statistical
Association, Vol. 88, pages 669-679.

Austin, David, and Terry Dinan (2005). "Clearing the air: The costs and
consequences of higher CAFE standards and increased gasoline taxes." Journal
of Environmental Economics and Management, Vol. 50, pages 562-582.

Bento, Antonio, Lawrence Goulder, Mark Jacobsen, and Roger von Hae-
fen (2006). "Distributional and E¢ ciency Impacts of Increased U.S. Gasoline
Taxes." Working Paper, Stanford University.

Berry, Steven (1994). "Estimating Discrete Choice Models of Product Dif-
ferentiation." RAND Journal of Economics, Vol. 23, No. 2, pages 242-262.

Berry, Steven, and Ariel Pakes (2005). "The Pure Characteristics Demand
Model." Working Paper, Harvard University.

Berry, Steven, James Levinsohn, and Ariel Pakes (1995). "Automobile Prices
in Market Equilibrium." Econometrica, Vol. 63, No. 4 (July), pages 841-890.

Berry, Steven, James Levinsohn, and Ariel Pakes (2004). "Di¤erentiated
Products Demand Systems from a Combination of Micro and Macro Data: The
New Car Market." Journal of Political Economy, Vol. 112, No. 1, pages 68-105.

Bresnahan, Tim (1987). "Competition and collusion in the American Au-
tomobile Industry: The 1955 Price War." Journal of Industrial Economics, Vol.
35, No. 4, pages 457-482.

Caplin, Andrew, and Barry Nalebu¤ (1991). "Aggregation and Imperfect
Competition: On the Existence of Equilibrium." Econometrica, Vol. 59, No. 1
(January), pages 25-59.

Casella, George, and Edward George (1992). "Explaining the Gibbs Sam-
pler." The American Statistician, Vol. 46, No. 3 (August), pages 167-174.

Center for Automotive Research (2007). �How Automakers Plan Their Prod-
ucts.�July 2007.

24



Chib, Siddhartha, and Edward Greenberg (1998). "Analysis of Multivariate
Probit Models." Biometrika, Vol. 85, No. 2, pages 347-361.

Davis, W.B., M.D. Levine, Kenneth Train, and K.G. Duleep (1995). "E¤ects
of Feebates of Vehicle Fuel Economy, Carbon Dioxide Emissions, and Consumer
Surplus." Working Paper, O¢ ce of Policy, US Department of Energy.

Energy Information Administration (2007). "Transportation Sector Module
of the National Energy Modeling System: Model Documentation 2007." United
States Departemtn of Energy. http://tonto.eia.doe.gov/FTPROOT/modeldoc/m070(2007).pdf

Espey, Molly, and Santosh Nair (2005). "Automotive Fuel Economy: What
is it Worth?" Contemporary Economic Policy, Vol. 23, No. 3 (July), pages
317-323.

Feng, Ye, Don Fullerton, and Li Gan. "Vehicle Choices, Miles Driven, and
Pollution Policies." National Bureau of Economic Research Working Paper No.
11553.

Fudenberg, Drew, and David Levine. "The Theory of Learning in Games."
Cambridge, MA: MIT Press.

Geweke, John (1989). "Bayesian Inference in Econometric Models Using
Monte Carlo Integration." Econometrica, Vol. 57, pages 1317-1339.

Goldberg, Pinelopi (1995). "Product Di¤erentiation and Oligopoly in Inter-
national Markets: The Case of the U.S. Automobile Industry." Econometrica,
Vol. 63 (July), pages 891-951.

Goldberg, Pinelopi (1998). "The E¤ects of the Corporate Average Fuel
Economy Standards in the US." Journal of Industrial Economics, Vol. 46, pages
1-33.

Greene, David, Philip Patterson, Margaret Singh, and Jia Li (2005). "Fee-
bates, rebates and gas-guzzler taxes: a study of incentives for increased fuel
economy." Energy Policy, Vol. 33., pages 757-775.

Hausman, Jerry (1979). "Individual Discount Rates and the Purchase and
Utilization of Energy-Using Durables." Bell Journal of Economics, Vol. 10, No.
1, pages 33-54.

Hellerstein, Judith, and Guido Imbens (1999). "Imposing Moment Restric-
tions from Auxiliary Data by Weighting." The Review of Economics and Sta-
tistics, Vol. 81, No. 1 (February), pages 1-14.

Hotelling, Harold (1929). "Stability in Competition." The Economic Jour-
nal, Vol. 39, No. 153 (March), pages 41-57.

25



Howarth, Richard B (2004). "Fuel Economy Standards." The Journal of
Economic Perspectives, Vol. 18, No. 2 (Spring), pages 272-273.

Imbens, Guido, and Tony Lancaster (1994). "Combining Micro and Macro
Data in Microeconometric Models." Review of Economic Studies, Vol. 61, No.
4 (October), pages 655-680.

Ishii, Joy (2006). "Interconnection Pricing, Compatibility, and Investment in
Network Industries: ATM Networks in the Banking Industry." Working Paper,
Stanford University.

Jacobsen, Mark (2008). "Evaluating U.S. Fuel Economy Standards In a
Model with Producer and Household Heterogeneity." Working Paper, University
of California at San Diego.

Ja¤e, Adam, and Robert Stavins. "The Energy Paradox and the Di¤usion
of Conservation Technology." Resource and Energy Economics, Vol. 16, pages
91-122.

Lee, Robin, and Ariel Pakes (2008). "Multiple Equilibria, Selection, and
Learning in an Applied Setting." Working Paper, Harvard University.

Levinsohn, James, and Amil Petrin (2003). "Estimating Production Func-
tions Using Inputs to Control for Unobservables." The Review of Economic
Studies, Vol. 70, pages 317-341.

Klier, Thomas, and Joshua Linn (2008). "The Price of Gasoline and the
Demand for Fuel E¢ ciency: Evidence from Monthly New Vehicles Sales Data."
Working Paper, University of Illinois at Chicago.

Knittel, Christopher, and Konstantinos Metaxoglou (2008). "Estimation of
Random Coe¢ cient Demand Models: Challenges, Di¢ culties, and Warnings."
Working Paper, University of California at Davis.

National Highway Tra¢ c Safety Administration. �Average Fuel Economy
Standards for Passenger Cars and Light Trucks Model Years 2011-2015.�Docket
No. NHTSA-2008-0089. April 21, 2008.

National Research Council (2002). "E¤ectiveness and Impacts of Corpo-
rate Average Fuel Economy (CAFE) Standards." Washington, DC: National
Academy Press.

Nevo, Aviv (1998). "A Research Assistant�s Guide to Random Coe¢ cients
Discrete Choice Models of Demand." National Bureau of Economic Research
Technical Working Paper 221.

26



Oak Ridge National Laboratory (ORNL) (2001). "The National Household
Travel Survey." http://nhts.ornl.gov/.

Olley, Steven, and Ariel Pakes (1996). "The Dynamics of Productivity in
the Telecommunications Equipment Industry." Econometrica, Vol. 64, No. 6
(November), pages 1263-1297.

Pakes, Ariel (2008). "Theory and Empirical Work on Imperfectly Competi-
tive Markets." Working Paper, Harvard University.

Petrin, Amil (2002). "Quantifying the Bene�ts of New Products: The Case
of the Minivan." Journal of Political Economy, Vol. 110, No. 4, pages 705-729.

Rossi, Peter, Robert McCulloch, and Greg Allenby (1996). "The Value of
Purchase History Data in Target Marketing." Marketing Science, Vol. 15, No.
4, pages 321-340.

Rossi, Peter, Greg Allenby, and Robert McCulloch (2005). "Bayesian Sta-
tistics and Marketing." Sussex, England: John Wiley & Sons.

Tanner, Martin (1996). "Tools for Statistical Inference: Methods for Explo-
ration of Posterior Distributions and Likelihood Functions." New York: Springer-
Verlag.

Tanner, Martin, and Wing Hung Wong (1987). "The Calculation of Poste-
rior Distributions by Data Augmentation." Journal of the American Statistical
Association, Vol. 82, pages 528-540.

Tol, Richard (2005), �The Marginal Damage Costs of Carbon Dioxide Emis-
sions: An Assessment of the Uncertainties.� Energy Policy, Vol. 33, pages
2064-2074.

Train, Kenneth (2003). "Discrete Choice Methods with Simulation." New
York: Cambridge University Press.

27



7 Graphs

7.1 Figure 1: Weight and Fuel Economy in Attribute Space
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7.2 Figure 2: Weight and HP in Attribute Space

0
5050 100 150 200 250 300 350 400 450

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
Attribute Space: Weight and Horsepower

Horsepower
MPG

W
ei

gh
t (

to
ns

)

29



7.3 Figure 3: Gibbs Sampler Mean Coe¢ cients: Micro-
data Only
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7.4 Figure 4: Gibbs Sampler Mean Coe¢ cients: Micro
and Macro Data
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7.5 Figure 5: Gibbs Sampler Variance Parameters: Micro-
data Only
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7.6 Figure 6: Gibbs Sampler Variance Parameters: Micro
and Macro Data
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8 Tables

8.1 Table 1: Individual-Level Descriptive Statistics

8.1.1 From NHTS Microdata

Obs Mean SD Min Max
HH Income (1000s) 6581 72.9 46.8 2.65 159
1(Urban) 6581 .273 .445 0 1
1(Suburban) 6581 .266 .441 0 1
Age 6581 48.3 17.2 16 88
Household Size 6581 2.77 1.33 1 14
Sample Weight 6581 89,902 89,452 3384 1,042,969

8.1.2 From CPS

Obs Mean SD Min Max
HH Income (1000s) 97,912 74.0 69.8 0 875
1(Urban) 97,912 .278 .417 0 1
1(Suburban) 97,912 .444 .461 0 1
Age 97,912 44.2 18.0 16 90
Household Size 97,912 2.96 1.63 1 16
Sample Weight 97,912 2165 1154 67.1 18578
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8.2 Table 2: Vehicle-Level Descriptive Statistics

8.2.1 From NHTS Microdata

Obs Mean SD Min Max
Quantity (1000�s) 741 31.1 55.8 0.43 643
Miles per Gallon 741 22.3 4.91 13.7 48.6
Dollars per Mile 741 .071 .015 .031 .111
Horsepower 741 188 48.9 67 368
Weight (tons) 741 1.75 .363 .958 2.79
Price (1000�s) 741 24.7 9.78 8.24 84.4

8.2.2 From Macro Data

Obs Mean SD Min Max
Quantity (1000�s) 454 68.6 87.2 158 798
Miles per Gallon 454 21.7 5.31 12.0 60.3
Dollars per Mile 454 .098 .028 0.033 .194
Horsepower 454 217 73.9 66 617
Weight (tons) 454 1.85 0.40 0.80 2.94
Price (1000�s) 454 30.9 27.8 8.38 368
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8.3 Table 3: Micro-Macro Procedure with Simulated Data
Microdata Only Micro and Macro

True Value Mean Std Dev Mean Std Dev
b Parameters
-2 -2.4 0.6 -1.7 0.4
-1 -1.4 0.5 -1.1 0.4
0 -1.0 0.6 -0.3 0.4
1 0.6 0.4 0.6 0.3
2 2.2 0.7 1.3 0.5

2 3.5 1.0 1.6 0.8
1 2.7 1.0 1.2 0.7
0 2.5 1.2 0.8 0.8
-1 -1.0 0.8 -0.6 0.7
-2 -0.4 1.2 0.2 0.9

W Parameters
2 5.1 3.6 3.9 1.1
1 1.8 2.1 6.2 1.4
0 3.2 3.1 2.7 0.8
1 3.3 3.7 4.8 1.2
2 9.2 6.3 5.6 1.3

2 6.9 8.1 2.1 0.7
1 15.1 10.9 2.4 1.0
0 17.8 14.7 2.9 1.1
1 3.6 5.6 2.6 0.9
2 4.3 5.9 2.9 0.9
Note: Results are calculated from every tenth draw in the sequence after a

burn-in of 50,000 iterations.
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8.4 Table 4: Aggregate Logit

Aggregate Micro
(1) (2)

log(Dollars per Mile/Weight) -2.517 -.620
(0.32)��� (0.506)

log(HP/Weight) 2.073 0.714
(0.398)��� (0.342)��

log(Weight) 2.909 1.257
(0.421)��� (0.346)���

log(Price) -2.584 -1.036
(0.221)��� (0.218)���

Const. -19.231 -10.639
(2.062)��� (2.357)���

Obs. 454 741
R2 0.413 0.028
F statistic 59.548 6.388
Robust standard errors.
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8.5 Table 5: Estimation Results
Microdata Only

Mean Std Dev
b Parameters
log(Dollars per Mile) -0.0584 0.5444
log(HP/Weight) 1.951 0.1714
log(Weight) 1.6979 0.2669
log(Price) -2.3 0

log(DPM/Weight)*log(Income) -0.3151 0.1354
log(HP/Weight)*1(Urban) -0.679 0.3078
log(Weight)*(Household Size) 0.3363 0.0779

W Parameters
log(Dollars per Mile) 1.0094 0.4098
log(HP/Weight) 0.2993 0.124
log(Weight) 0.3476 0.0867

log(DPM/Weight)*log(Income) 0.1998 0.0548
log(HP/Weight)*1(Urban) 0.7267 0.4254
log(Weight)*(Household Size) 0.1102 0.0382
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8.6 Table 6: Fuel E¢ ciency Investment Cost

Dep Var: Log(Incr. Cost)
Compact Mid/Fullsize SUV Truck/Van

Log(Incr. E¢ ciency) 1.76 1.723 1.725 1.713
(0.033)*** (0.031)*** (0.026)*** (0.030)***

Constant 0.802 0.872 0.866 0.876
(0.105)*** (0.102)*** (0.085)*** (0.101)***

Obs 56 58 85 84
R-squared 0.99 0.98 0.98 0.98
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Table 8: Simulated Vehicle Characteristics, by Vehicle Class

Fuel Economy 
Standard

Fuel Economy 
(mpg) Power (hp) Weight (tons) Price (000s)

Starting Point - Model-year 2007
Compact 27.84 181.60 1.51 20.57
Mid/Full 23.49 207.68 1.73 23.80
SUV 18.94 234.76 2.16 27.33
Truck 17.77 226.29 2.19 21.02
Van 19.62 216.36 2.25 23.54

2015 Base Case 
Compact 39.0 46.4 145.3 1.6 32.0
Mid/Full 32.3 38.0 166.1 2.0 37.2
SUV 31.3 23.6 273.0 2.5 42.6
Truck 26.6 18.7 277.6 2.5 32.7
Van 28.3 22.4 247.4 2.6 36.7

CAFEnew
Compact 39.0 50.96 145.32 1.46 32.5
Mid/Full 32.3 36.80 165.97 2.04 37.5
SUV 31.3 28.00 224.94 2.53 43.2
Truck 26.6 18.38 279.32 2.56 33.0
Van 28.3 27.02 196.58 2.64 37.0

Feebate
Compact 39.0 45.3 145.6 1.6 32.4
Mid/Full 32.3 37.6 166.0 2.0 37.0
SUV 31.3 28.2 218.7 2.5 42.6
Truck 26.6 18.3 279.0 2.5 32.8
Van 28.3 29.2 174.8 2.6 36.6

CarbonTax
Compact 39.0 51.8 145.1 1.5 32.5
Mid/Full 32.3 37.7 165.9 2.0 37.5
SUV 31.3 23.8 276.0 2.5 43.0
Truck 26.6 18.6 275.3 2.6 32.9
Van 28.3 24.7 226.4 2.6 37.0



Table 9: Simulated Vehicle Characteristics, by Automaker

Fuel Economy 
Standard

Fuel Economy 
(mpg) Power (hp) Weight (tons) Price (000s)

Starting Point - Model-year 2007
Ford 20.1 216.2 2.0 25.49
GM 20.9 228.2 2.0 25.01
Honda 26.8 195.5 1.7 23.03
Other 22.0 218.8 1.9 24.42
Toyota 25.1 198.0 1.8 23.38

2015 Base Case 
Chrysler 30.7 29.3 197.1 2.3 34.35
Ford 31.9 25.3 233.3 2.3 39.51
GM 32.3 28.8 251.7 2.3 39.76
Honda 35.2 46.4 174.5 1.8 35.69
Other 34.5 28.6 233.6 2.1 37.85
Toyota 32.5 40.9 171.6 2.0 36.25

CAFEnew
Chrysler 30.6 28.8 199.4 2.4 34.37
Ford 31.9 31.6 173.1 2.3 39.49
GM 32.3 28.0 255.8 2.3 40.04
Honda 35.2 47.8 156.6 1.8 35.72
Other 34.5 37.0 181.6 2.0 38.74
Toyota 32.5 40.9 171.2 2.0 37.12

Feebate
Chrysler 30.6 28.9 199.3 2.4 34.37
Ford 31.9 30.7 173.0 2.3 39.50
GM 32.4 29.7 240.2 2.2 38.79
Honda 35.2 48.0 156.3 1.8 35.66
Other 34.5 32.1 181.2 2.2 38.75
Toyota 32.5 40.7 171.1 2.0 36.24

Carbon Tax
Chrysler 30.7 29.7 196.8 2.3 34.38
Ford 31.9 25.2 240.3 2.3 39.53
GM 32.3 28.9 251.4 2.3 39.73
Honda 35.2 49.3 156.3 1.8 35.64
Other 34.5 32.8 235.8 2.1 38.88
Toyota 32.5 41.8 169.8 2.0 37.18
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