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Abstract

We propose and test a theory of learning and informational hold-up in the venture capital
market. The model predicts that higher returns on the current fund increase the probability that
a VC will raise a follow-on fund, the size of the follow-on fund, and the performance fee investors
are charged in the follow-on fund. If learning is asymmetric, such that incumbent investors learn
more about fund manager skill than potential new investors, the model also predicts persistence
in returns, poor performance among first-time funds, persistence in investors from fund to fund,
and over-subscription in follow-on funds raised by successful fund managers. Our empirical
evidence is consistent with these predictions. The model provides a unified framework for
understanding a series of empirical facts about the venture capital industry.
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Performance in venture capital (VC) funds appears highly persistent across a sequence of funds

managed by the same manager (Kaplan and Schoar (2005)). This contrasts with evidence for

mutual funds (Malkiel (1995)), and raises an interesting question: Why do successful VCs not

raise their fees, effectively auctioning off the stakes in their follow-on funds to the highest bidder?

Alternatively, why do successful funds not grow to the point where their return on fund capital

equals investors’ outside option, thus increasing fund managers’ dollar fees?

We propose and test a model of learning and informational hold-up in the VC market which

provides a rationale for VC performance persistence and generates a rich set of empirical predictions

concerning fund returns and fund-raising patterns. The model formalizes the interaction between

fund managers, known in the industry as general partners (GPs), and the investors in their funds,

known as limited partners (LPs). It exploits logic similar to that used in the relationship-banking

literature (Sharpe (1990), Rajan (1992), von Thadden (2004)): LPs who invest in a GP’s fund learn

more about the GP’s skill than do other investors. In particular, they can distinguish between skill

and luck. This asymmetric evolution of information enables ‘incumbent’ LPs to hold up the GP

when he next raises a fund, because other potential investors will interpret failure to reinvest by

incumbent LPs as a negative signal about the GP’s skill.

Our informational assumptions are consistent with the importance the literature attaches to

‘soft’ information in the VC industry. Lerner, Schoar, and Wongsunwai (2007) note that “Reinvest-

ment decisions by LPs are particularly important in the private equity industry, where information

about the quality of different private equity groups is more difficult to learn and often restricted to

existing investors.” VC fund investors typically require wide-ranging information rights which en-

able them to monitor a fund’s performance, primarily in order to inform the reinvestment decision

(Lerner and Schoar (2004)).
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The existence of asymmetric information between incumbent LPs and potential new investors is

the key difference between our model of VC performance and models of mutual fund performance,

such as Berk and Green (2004). It is the reason why arguments in such models against performance

persistence in the mutual fund industry do not apply to the VC industry.

In a setting with learning about GP skill, we derive the optimal fund size and division of surplus

between GPs and LPs. We first derive a set of testable predictions that result from a setting with

symmetric learning by incumbent LPs and potential new LPs. We then introduce asymmetric

learning, assuming that incumbent LPs learn more about the GP’s skill. Asymmetric learning

generates informational hold-up of high-skill GPs which in turn can generate persistence in the

net-of-fees returns LPs earn, even when both fund size and the division of surplus are derived

endogenously. While the predictions of the symmetric learning model also hold with asymmetric

learning, we derive additional testable predictions that hold only under asymmetric learning.

We model GPs with a sequence of two funds. Each fund lasts one period. Whether the second

fund is raised depends on the first fund’s performance. GPs are heterogeneous in investment skill,

which is reflected in the expected payoff to LPs. For a given GP, cash flows for the first and second

funds are drawn independently from the same distribution. There is a continuum of GP types

(skill), and GPs are risk-neutral. We allow for a large set of risk-neutral potential investors (LPs)

so that at the beginning of the first period, the LP market is perfectly competitive.

At the end of period one, incumbent LPs learn the GP’s type. With symmetric learning, outside

LPs also learn the GP’s type perfectly, while with asymmetric learning, outside LPs can only update

their beliefs about GP skill based on observing the return of the GP’s first fund.

Under symmetric learning, the LP market is perfectly competitive in both periods, so the GP

receives the entire NPV in each fund. Similar to Berk and Green (2004), the GP chooses the
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NPV-maximizing fund size and share of the surplus (the carried interest, or “carry”) such that the

LP earns his outside option. This yields the following predictions. The probability of raising a

follow-on fund increases in the return to LPs in the GP’s first fund. GPs with higher LP returns in

their first fund should raise larger follow-on funds and receive a higher carry. Fund size and carry

should be more variable in follow-on funds than in first funds.

Under asymmetric learning, the LP market is perfectly competitive at t=0 but not at t=1. LPs

who invested in the GP’s first fund have an informational advantage when the follow-on fund is

raised, allowing them to extract part of the NPV in follow-on funds.1 This yields the following

additional predictions. Most importantly, there will be persistence in net-of-fee returns to LPs.

Intuitively, LPs earn higher expected returns in follow-on funds run by high-skill GPs (since they

extract part of the follow-on fund NPV, which is higher for high-skill GPs). Second, the average

return to LPs is lower in first-time funds than in follow-on funds. GPs receive funding on “too

good” terms in the first fund, but on average pay this back to the LPs in follow-on funds. Finally,

conditional on a follow-on fund being raised, LPs who invested in a GP’s first fund should also

invest in the GP’s follow-on fund. That is, there should be persistence in the LP composition

across funds, because LPs earn a return in excess of their opportunity cost of capital.

If we relax the assumption that incumbent LPs have sufficient capital to fully fund follow-on

funds, additional LPs are needed. Because all LPs in a fund earn the same return, LPs who get

follow-on fund allocations earn a return in excess of their opportunity cost of capital. Our model

thus provides a rational explanation for oversubscription in follow-on funds, especially in those

raised by GPs with high first-time fund returns.
1How much they extract depends on the GP’s and the incumbent LP’s relative bargaining power when raising

the follow-on fund. Without loss of generality, we assume a sequential-offer game. This results in symmetric Nash
bargaining, implying that LPs and GPs share equally in the NPV.
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Unlike in standard models of informational hold-up such as Sharpe (1990), asymmetric learning

is efficient in the VC setting, in the sense that it leads to a better investment outcome than would

emerge with symmetric learning. Because VC contracts specify both an investment level (fund

size) and the division of the fund’s surplus, first-best investment levels (i.e., NPV-maximizing

fund sizes) are possible. Moreover, it is likely that GPs strictly prefer asymmetric to symmetric

learning, because under certain conditions, first-time funds would only be funded under asymmetric

learning.2 Such a preference is consistent with the fact that GPs are willing to provide their LPs

with considerable amounts of soft information about fund strategies and performance which cannot

credibly be communicated to potential new LPs.

Using a large sample of U.S. VC funds raised between 1980 and 2006, we find support for the

predictions of our model, which suggests that asymmetric learning and informational hold-up play

a role in the venture capital industry. While parts of our empirical evidence overlap with published

and contemporaneous work, we believe we are the first to avoid look-ahead bias in conditioning

only on performance measures known ex ante.

In addition to the relationship-banking literature, our paper relates to the literature on VC per-

formance and the relationship between LPs and GPs. Kaplan and Schoar (2005) find evidence of

performance persistence in VC funds raised by the same GP and document a positive and concave

relation between performance and future fund-raising. Jones and Rhodes-Kropf (2003) provide

empirical evidence in support of the hypothesis that VCs need to be compensated through higher

expected returns for bearing idiosyncratic risk. Ljungqvist and Richardson (2003) analyze the

cash flow, return, and risk characteristics of private equity funds. Cochrane (2005) uses portfolio-

company level data to measure the mean, standard deviation, alpha, and beta of VC investments,
2Intuitively, the rents earned by LPs in follow-on funds make them willing to fund first-time funds even if they do

not earn their opportunity cost of capital on first funds.
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using a maximum-likelihood estimation method that corrects for survivorship bias. Korteweg and

Sørensen (2008) estimate a Bayesian model of risk and return for VC investments which corrects for

biases due to heteroskedasticity and sample selection. Using alternative assumptions and method-

ologies, Quigley and Woodward (2002) and Gottschalg and Phalippou (2007) report lower returns

for VC funds than for public equity. Lerner, Schoar, and Wongsunwai (2007) find large heterogene-

ity in the returns that different classes of institutional investors earn in private equity and suggest

that LPs vary in their level of sophistication.

Finally, in contemporaneous theoretical work, Glode and Green (2008) provide an alternative

explanation for performance persistence. In their model, incumbent LPs learn about the prof-

itability of a given GP’s strategy, which they are able to ‘steal’ by revealing it to another GP.

This increases the outside option of LPs who have invested in successful funds and enables them

to extract part of the follow-on fund surplus, generating performance persistence. We view our

explanation for persistence as complementary to that of Glode and Green. In our model, which

emphasizes the role of soft information, GPs cannot credibly reveal their type to outside LPs (and

may optimally set up funds specifically to avoid such revelation). In Glode and Green, GPs do not

want their type revealed for competitive reasons. Both elements are likely relevant in practice.

I. A Model of Learning About GP Skill

A. Setup

General partners and funds: At t=0, risk-neutral GPs raise funds of size I1 lasting one period.

GPs may raise a second fund of size I2 at t=1, after the return of fund 1 is known. GPs differ

in their investment skill, and this heterogeneity affects expected payoffs. For a GP of type i, fund

5



k = 1, 2 returns a cash flow of Cik = eA
i
ln (1 + Ik) at t = k. The log function captures decreasing

returns to scale. For a given GP, the cash flows of funds 1 and 2 are drawn independently but from

the same distribution, with Ai ∼ N
(
µi − 1

2σ
2, σ2

)
. There is a continuum of GP types characterized

by µi. For simplicity, we assume that µi is distributed uniformly over the interval
[
µL, µH

]
.3

Limited partners: There is a large set of identical, risk-neutral investors. We assume each LP has

sufficient wealth so that each fund only requires one LP.4 We distinguish between the ‘incumbent’

LP who has invested in the GP’s first fund, and ‘outside’ LPs who have not. The LP market is

perfectly competitive at t=0. LPs can earn a (risk-adjusted) return of r outside the VC industry.

Learning about GP type: At t=0, no-one knows the GP’s type. At t=1, the GP and the

incumbent LP learn the GP’s type perfectly, and under symmetric learning, so do outside LPs.

Under asymmetric learning, outside LPs only observe the cash flows of the first fund, C1.5 Once

µi is known, the NPV of fund 2, as of t=1, is

(NPV2|µ = µi) =
E1

(
Ci2
)

1 + r
− I2 =

eµ
i
ln (1 + I2)
1 + r

− I2. (1)

Define µ∗ as the value of µi for which
(
NPV2|µ = µi

)
= 0. If the NPV is zero, the optimal investment

I2 is zero also, and thus µ∗ = ln (1 + r) . Assume that µL < µ∗ < µH .

Payoff functions: To characterize the division of a fund’s surplus, we assume a contractual

structure similar to that used in the VC industry. Typical contracts specify that the LP receives
3The log-normal distribution of cash flows and the uniform distribution of GP types allow us to solve the model

in closed form but do not drive our results. The more important choice is the functional form of the relation between
cash flows and investment. To generate performance persistence, we need a functional form where C2/I2 is increasing
in GP type even when I2 is chosen optimally to reflect GP skill.

4For simplicity, we assume that GPs have no investable wealth. In practice, LPs typically contribute 99% of a
fund’s capital, with GPs providing the remainder.

5This corresponds to ‘learning by lending’ (or ‘passive monitoring’, in Tirole’s (2005) terminology). We do not
incorporate a role for active monitoring, thus implicitly assuming that the GP always exerts effort. While active
monitoring could play a central role in the relationship between GPs and the entrepreneurs they back, we believe it
to be less important in the relationship between GPs and LPs given the fairly high-powered incentives provided to
the GPs via their carry. We discuss the nature of the GP-LP contract below.
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all cash flows up to the amount invested. Additional cash flows are divided according to a linear

sharing rule. The GP’s carry, denoted by f , is the fraction of the additional cash flows the GP

receives.6 For a fund of size I with carry f, the payoffs to the GP and the LP at the end of the

fund’s life are

XGP = max (0, f (C − I)) =
{

0 when C ≤ I
f (C − I) when C > I.

(2)

XLP = C −max (0, f (C − I)) =
{
C when C ≤ I
C − f (C − I) when C > I.

(3)

B. Symmetric Learning

Under symmetric learning, the LP market is perfectly competitive at both t=0 and t=1 so that the

GP receives the entire NPV of the fund. Thus, the GP chooses the NPV-maximizing investment

level I2 and sets the carry f2 such that the LP earns the outside option.

Investment in follow-on funds: For follow-on funds, assuming symmetric learning, the GP’s

type is known and a GP of type µi picks I2 to maximize NPV2|µ = µi:

max
I2

eµ
i
ln (1 + I2)
1 + r

− I2 ⇐⇒ I2
(
µi
)

=
eµ

i

1 + r
− 1. (4)

Only funds with µi ≥ µ∗ are raised.

Carry in follow-on funds: From the normality of Ai it follows that

ln (C2/I2) = ln
(
eAi ln (1 + I2) /I2

)
= Ai+ln

(
ln (1 + I2)

I2

)
∼ N

(
µi + ln

(
ln (1 + I2)

I2

)
− 0.5σ2, σ2

)

Using equations (18.30), (18.24), and (12.2a, 12.2b) in McDonald (2006), this implies that the GP’s
6Contracts typically specify a management fee, as a percent of fund size. For simplicity, we set this fee to zero.

For details of VC fees, see Metrick and Yasuda (2007).
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expected payoff for a given carry f2 equals

E
[
max

(
0, f2

(
C2 − I2

(
µi
)))
|µ = µi

]
= f2

(
E
[
C2|C2 > I2

(
µi
)
, µ = µi

]
P
(
C2 > I2

(
µi
)
|µ = µi

)
− I2

(
µi
)
P
(
C2 > I2

(
µi
)
|µ = µi

))
= f2

[
eµi ln

(
1 + I2

(
µi
))
N
(
d2

(
µi
))
− I2

(
µi
)
N
(
d2

(
µi
)
− σ

)]
(5)

where

d2

(
µi
)

=
µi + ln

(
ln(1+I2(µi))

I2(µi)

)
σ

+
1
2
σ. (6)

For notational simplicity, denote
[
eµi ln

(
1 + I2

(
µi
))
N
(
d2

(
µi
))
− I2

(
µi
)
N
(
d2

(
µi
)
− σ

)]
by g2

(
µi
)
.

The GP’s carry f2

(
µi
)

is set such that the LP earns the outside option:

E
(
XLP

2 |µ = µi
)

= (1 + r) I2
(
µi
)
⇐⇒

E
(
C2|µ = µi

)
− f2

(
µi
)
g2
(
µi
)

= (1 + r) I2
(
µi
)
⇐⇒

f2

(
µi
)

=
eµi ln

(
1 + I2

(
µi
))
− (1 + r) I2

(
µi
)

g2 (µi)
. (7)

LP return in follow-on funds: The LP’s realized return in a fund with a GP of type µi is

1 + r2 =
XLP

2 |µ = µi

I2 (µi)
(8)

while the LP’s expected return for a GP of type µi is given by

1 + E
(
r2|µ = µi

)
=
E
(
XLP

2 |µ = µi
)

I2 (µi)
= 1 + r. (9)

With symmetric learning, expected LP returns are equalized across all GP types in follow-on funds.
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Thus, there is no performance persistence in the cross-section of first-time and follow-on funds.

First-fund investment, carry, and expected returns are derived in the same way as for follow-on

funds except that the GP’s type is unknown and so expectations are taken over GP types i.

Investment in first-time funds: Each GP picks I1 to maximize Ei (NPV1|µ = µi) :

max
I1
Ei

[
eµ

i
ln (1 + I1)
1 + r

− I1

]
⇐⇒ Iopt1 =

Ei

(
eµ

i
)

1 + r
− 1 (10)

where, by the uniform distribution of GP types, Ei
(
eµ

i
)

= 1
µH−µL

[
eµ

H − eµL
]
.

If
Ei

(
eµ
i
)

ln(1+Iopt1 )
1+r − Iopt1 < 0, a GP cannot raise a first-time fund (nor any follow-on funds)

when learning is symmetric.

Carry in first-time funds: From the normality ofAi, ln (C1/I1) ∼ N
(
µi + ln

(
ln(1+I1)

I1

)
− 0.5σ2, σ2

)
and the GP’s expected payoff for a given value of the carry f1 equals

Ei

(
E
[
max

(
0, f1

(
C1 − Iopt1

))
|µ = µi

])
= f1Ei

[
eµi ln

(
1 + Iopt1

)
N
(
d1

(
µi
))
− Iopt1 N

(
d1

(
µi
)
− σ

)]
(11)

where

d1

(
µi
)

=
µi + ln

(
ln(1+Iopt1 )

Iopt1

)
σ

+
1
2
σ. (12)

Denote
[
eµi ln

(
1 + Iopt1

)
N
(
d1

(
µi
))
− Iopt1 N

(
d1

(
µi
)
− σ

)]
by g1

(
µi
)
.

The GP’s carry f1 is set such that the LP earns the outside option:

Ei
(
E
(
XLP

1 |µ = µi
))

= (1 + r) Iopt1 ⇐⇒

Ei
(
E
(
C1|µ = µi

))
− f1Ei

(
g1
(
µi
))

= (1 + r) Iopt1 ⇐⇒

f1 =
Ei (eµi) ln

(
1 + Iopt1

)
− (1 + r) Iopt1

Ei (g1 (µi))
. (13)
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LP return in first-time funds: The LP’s realized return in a fund with a GP of type µi is

1 + r1 =
XLP

1 |µ = µi

Iopt1

(14)

while the LP’s expected return (given that GP type is not known at t=0) is given by

1 + Ei
(
E
(
r1|µ = µi

))
=
Ei
(
E
(
XLP

1 |µ = µi
))

Iopt1

= 1 + r. (15)

B.1. Testable Implications under Symmetric Learning

The setting with symmetric learning thus has the following testable implications.

Implication 1: Fund-raising. The probability that a GP raises a follow-on fund is increasing in

the LP return of the GP’s first-time fund: P
(
µi > µ∗|r1

)
increases in r1.

Implication 2: Evolution of fund-size. In the cross-section of GPs with follow-on funds, a

high return to the LP in the first fund predicts a larger second fund: E (I2|r1) increases in r1.

Implication 3: Evolution of GP carry. In the cross-section of GPs with follow-on funds, a

high first-fund return predicts a larger GP carry in the second fund: E (f2|r1) increases in r1.

Implication 4: Cross-fund standard deviation of fund size. The cross-fund standard devia-

tion of fund sizes is higher among follow-on than among first funds: SDi

(
I2|µi > µ∗

)
> SDi

(
Iopt1

)
.

Implication 5: Cross-fund standard deviation of GP carry. The cross-fund standard devia-

tion of GP carry is higher among follow-on than among first funds: SDi

(
f2|µi > µ∗

)
> SDi

(
fopt1

)
.

We verify Implications 1, 2, and 3 numerically as follows. We first simulate a set of returns r1,

fund sizes I2, and carries f2 from the model; see Appendix A. We then graph the fraction of funds

for which µi ≥ µ∗ in each of 25 r1-buckets. We set r = e0.14 − 1 (and thus µ∗ = 0.14), µL = 0.04,

µH = 0.4, and σ = 0.1; the qualitative results are not sensitive to the exact parameter values we
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chose. For comparison, for these values, I1 = 0.089 and f1 = 0.24. Consistent with Implication 1, in

Figure 1, Panel A, the probability of raising a follow-on fund increases in r1. Graphing mean fund

size I2 in Panel B, conditional on µi ≥ µ∗, confirms Implication 2 that follow-on fund size increases

in first-fund return. Finally, mean carry in Panel C increases in r1, consistent with Implication 3.

Implications 4 and 5 follow immediately from the fact that the cross-fund standard deviation

of both fund size and carry is zero in first-time funds and positive in follow-on funds.

C. Asymmetric Learning

Under asymmetric learning, the LP market is perfectly competitive at t=0 but not at t=1. When

outside LPs do not learn the GP’s type, incumbent LPs have an informational advantage in the

follow-on fund. This allows incumbent LPs to extract part of the follow-on fund’s NPV. How much

they extract depends on how GPs and LPs are assumed to bargain.

Investment and carry in follow-on funds: We assume the following bargaining structure for

follow-on funds. The GP and the incumbent LP take turns making offers consisting of a proposed

carry and fund size, (f2, I2) . The GP makes the first offer. In each round, if an offer is rejected,

negotiations break down with probability p.7 If negotiations break down, each party receives its

outside option. For the incumbent LP, this equals r (i.e., NPV=0). The GP’s outside option

depends on what outside LPs infer from a breakdown. We assume they infer that the GP’s type is

such that the follow-on fund NPV is non-positive and therefore refrain from making an offer. This

inference is rational if the incumbent LP is always allowed to counter any offer made by an outside

LP. In that case, whenever the outside LP’s offer implies that LP cash flows have positive NPV,

the incumbent LP can offer the GP a slightly larger fund size or carry and still have cash flows with
7This could represent the probability that the LP receives a liquidity shock and is unable to invest. The same

solution obtains if one instead assumes that the NPV to be shared shrinks by p percent between rounds of bargaining.
This could represent lost deal flow due to a delayed start of the fund.
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positive NPV. Furthermore, it will be in the GP’s best interest, ex post, to accept such an offer.

Intuitively, an outside LP might observe an attractive return on the GP’s first fund. However, the

outside LP knows that if she offers an investment and carry that is based on assuming the GP’s

type µi exceeds µ∗, the incumbent LP will counter with an offer that is more attractive to the GP

only when µi in fact exceeds µ∗. Thus, the outside LP never makes a positive NPV investment.

The following constitutes a set of equilibrium strategies.

Proposition 1: Sequential bargaining at t=1 for a given value of p.

1. All offers propose the NPV-maximizing investment level I2
(
µi
)

= eµi
1+r − 1.

2. For a GP of type µi, there exists a single pair of proposed carries, fLP2

(
µi
)
, fGP2

(
µi
)

such that

the incumbent LP is indifferent between the contract
(
fGP2

(
µi
)
, I2
(
µi
))

now and the contract(
fLP2

(
µi
)
, I2
(
µi
))

in the next round of bargaining and such that the GP is indifferent between

the contract
(
fLP2

(
µi
)
, I2
(
µi
))

now and the contract
(
fGP2

(
µi
)
, I2
(
µi
))

in the next round

of bargaining. These carries are given by fGP2

(
µi
)

=
p
[
eµ
i
ln(1+I2(µi))−(1+r)I2(µi)

]
/[1−(1−p)2]

g2(µi)

and fLP2

(
µi
)

= (1− p) fGP2

(
µi
)
.

3. The equilibrium strategies are that the GP always offers
(
fGP2

(
µi
)
, I2
(
µi
))

and always rejects

offers with f2 < fLP2

(
µi
)
, and the incumbent LP always offers

(
fLP2

(
µi
)
, I2
(
µi
))

and always

rejects offers with f2 < fGP2

(
µi
)
.

4. Since the GP makes the first offer, the equilibrium outcome is
(
fGP2

(
µi
)
, I2
(
µi
))
, agreed

to in the first round of bargaining. If the incumbent LP made the first offer, it would be(
fLP2

(
µi
)
, I2
(
µi
))

, agreed to in the first round of bargaining.

Proposition 2: Symmetric Nash bargaining results as p→ 0.
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As p→ 0, the equilibrium characterized in Proposition 1 converges to the equilibrium outcome of

Nash bargaining with equal bargaining power for the GP and the incumbent LP. This outcome has

a carry of f2

(
µi
)

=
1
2

[
eµ
i
ln(1+I2(µi))−(1+r)I2(µi)

]
g2(µi)

.

Proofs: See Appendix B.

In what follows, we focus on the case where p→ 0.

LP return in follow-on funds: The LP’s realized return for a GP of type µi is still given by

equation (9) while with asymmetric learning, the LP’s expected return becomes

1 + E
(
r2|µ = µi

)
=

E
(
XLP

2 |µ = µi
)

I2 (µi)

=
eµi ln

(
1 + I2

(
µi
))
− 1

2

[
eµi ln

(
1 + I2

(
µi
))
− (1 + r) I2

(
µi
)]

I2 (µi)

=
1
2e
µi ln

(
1 + I2

(
µi
))

+ 1
2

[
(1 + r) I2

(
µi
)]

I2 (µi)
. (16)

This implies expected LP returns are no longer equalized across GP types in follow-on funds, unlike

under symmetric learning. Furthermore, the average expected LP return in follow-on funds is

1 + Ei (E (r2|µ = µi) |µi > µ∗) =
1

µH − µ∗

∫ µH

µ∗

(
1 + E

(
r2|µ = µi

))
dµi. (17)

Investment and carry in first-time funds: With asymmetric learning, the LP market remains

perfectly competitive at t=0 (as no learning has taken place yet). The GP can therefore offer any

LP a contract
(
f1, I

opt
1

)
where Iopt1 is the NPV-maximizing investment derived in the symmetric

learning case (equation (10)) and where f1 is such that the LP earns a fair return (i.e., a zero overall

NPV) across the current fund and the follow–on fund that will be raised if µi ≥ µ∗. We thus solve

for f1 as the value which sets the LP’s overall NPV across the two funds to zero:

13



0 =

(
Ei
(
E
(
XLP

1 |µ = µi
))

1 + r
− Iopt1

)
+

(
Ei
(
E
(
XLP

2 |µ = µi
))

(1 + r)2
−
Ei
(
E
(
I2|µ = µi

))
1 + r

|µi > µ∗

)

=

Ei
(
eµ

i
)

ln
(

1 + Iopt1

)
− f1Ei

(
g1
(
µi
))

1 + r
− Iopt1


+

Ei
[

1
2e
µi
(
µi − ln (1 + r)

)
+ 1

2

(
eµ

i − (1 + r)
)
|µi > µ∗

]
(1 + r)2

−
Ei

(
eµ
i

1+r − 1|µi > µ∗
)

1 + r



=

Ei
(
eµ

i
)

ln
(

1 + Iopt1

)
− f1Ei

(
g1
(
µi
))

1 + r
− Iopt1


+

 1
2Ei

(
eµ

i
µi|µi > µ∗

)
(1 + r)2

−
1
2Ei

(
eµ

i |µi > µ∗
)

[ln (1 + r) + 1]

(1 + r)2
+

1
2

(1 + r)

 (18)

and thus

f1 =

[
Ei

(
eµ

i
)

ln
(

1 + Iopt1

)
− (1 + r) Iopt1 + 1

2

(
Ei

(
eµ
i
µi|µi>µ∗

)
(1+r) −

Ei

(
eµ
i |µi>µ∗

)
[ln(1+r)+1]

(1+r) + 1

)]
Ei (g1 (µi))

(19)

with Iopt1 =
1

µH−µL

[
eµ
H−eµL

]
1+r −1, µ∗ = ln (1 + r).8 Notice that since LPs earn positive NPV in follow-

on funds, it is possible that first-time funds will be funded even if
Ei

(
eµ
i
)

ln(1+Iopt1 )
1+r − Iopt1 < 0. This

8Furthermore, from the uniform distribution of GP types it follows that:

Ei
(
eµ

i

µi|µi > µ∗
)

=
1

µH − µ∗

∫ µH

µ∗
eµ

i

µidµi =
1

µH − µ∗
[
eµ

i
(
µi − 1

)]µH

µ∗

=
1

µH − µ∗
[
eµ

H
(
µH − 1

)
− eµ

∗
(µ∗ − 1)

]
(20)

Ei
(
eµ

i

|µi > µ∗
)

=
1

µH − µ∗
[
eµ

H

− eµ
∗]

(21)

Ei
(
g1
(
µi
))

=
1

µH − µL

∫ µH

µL

g1
(
µi
)
dµi. (22)
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will be the case if there is enough dispersion in skill to ensure that the expected surplus in follow-on

funds is sufficient to compensate LPs for the expected loss on first-time funds.

LP return in first-time funds: The LP’s realized return in a fund with a GP of type µi is still

given by equation (14) while with asymmetric learning, the LP’s expected return (given that GP

type is unknown at t=0) becomes

1 + Ei
(
E
(
r1|µ = µi

))
=
Ei
(
E
(
XLP

1 |µ = µi
))

Iopt1

=
Ei

(
eµ

i
)

ln
(

1 + Iopt1

)
− f1Ei

(
g1
(
µi
))

Iopt1

. (23)

C.1. Testable Implications under Asymmetric Learning

Under asymmetric learning, Implications 1-5 continue to hold. Intuitively, Implications 1-5 derive

from the existence of learning about the GP’s type. Implications 1-5 do not hinge on how the

follow-on fund surplus is divided between GPs and LPs, and therefore hold regardless of whether

such learning is symmetric or asymmetric. In addition, we have the following testable implications:

Implication 6: Persistence. In the cross-section of GPs with follow-on funds, a high return to

the LP in fund 1 predicts a high return to the LP in fund 2, i.e., E (r2|r1) increases in r1.

Implication 7: Performance of first-time versus follow-on funds. The average return to

LPs is lower in first funds than in follow-on funds, i.e., Ei
(
E
(
r1|µ = µi

))
< Ei

(
r2|µi ≥ µ∗

)
.

Implication 8: Persistence in LPs. Conditional on a follow-on fund being raised, LPs who

invested in a GP’s first fund should invest in that GP’s follow-on fund.

We verify Implications 6 and 7 numerically using simulated data for returns r1, fund sizes

I2, and carries f2 as before.9 To verify Implication 6, Figure 2 graphs the mean of r2 within

a set of r1-buckets, using only those observations for which µi ≥ µ∗. The graph confirms that
9Implications 1-5 continue to hold. We omit the graphs to save space. The mean follow-on fund carry for a given

value of r1 is now lower than in the symmetric learning case. This is intuitive since GPs share part of the follow-on
fund NPV with LPs in the asymmetric learning case.
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performance is persistent.10 To verify Implication 7, we calculate the mean of r1 in the simulated

data, which is Ei
(
E
(
r1|µ = µi

))
= 0.078. This is lower than the mean of r2 for µi ≥ µ∗, which

is Ei
(
r2|µi ≥ µ∗

)
= 0.188. Implication 8 follows directly from the fact that LPs in follow-on funds

earn half of the fund’s NPV and thus earn a return in excess of their opportunity cost of capital.

C.2. Extending the asymmetric learning model

Extension 1 – Capital constraints/risk aversion: Our model assumes that incumbent LPs

have sufficient capital to fully fund follow-on funds. In practice, capital constraints or risk aversion

imply a need for additional LPs, since follow-on funds on average are larger than first funds. Since

all LPs in a fund earn the same return, LPs who get follow-on fund allocations will earn a return

in excess of their opportunity cost of capital, which rationally implies oversubscription:

Implication 9: Oversubscription in follow-on funds. Oversubscription is concentrated in

follow-on funds and is more severe for follow-on funds with higher first-fund returns.

This explanation for oversubscription is consistent with popular discussions of why successful

GPs such as Sequoia do not increase their carry to eliminate oversubscription. Metrick (2006, p.

86) states that if a firm were to increase its carry, “... [its] mix of LPs would be different, and some

of the long-serving LPs would be gone. The new LPs, lacking the long-standing relationship, are

less likely to remain loyal if the firm has a poor performing fund.” One way to interpret investor

loyalty is as a proxy for the LP’s information about the GP. Recall that new LPs only observe hard
10The spread in E(r2) is substantial, ranging from around 16% in the bottom bucket to 21% in the top. The range

of E(r2) (and thus the amount of performance persistence) is wider the wider is the range of GP types. To get a sense
of whether the assumed parameter values are reasonable, consider a simple calculation. The optimal investment at
the midpoint of the range of GP types (µ = 0.22) is I2 = 0.0833. At this level of investment, the lowest GP type
generates returns with a mean of E (C2/I2) = 1 and a standard deviation of

√
V (C2/I2) = 0.10. The highest GP

type generates E (C2/I2) = 1.43 with
√
V (C2/I2) = 0.14. The highest GP type is thus 43% more effective than

the lowest GP type for the same I2, with somewhat higher risk. While it is not possible to map our simple model
directly to the data (as GP types are unlikely to be uniformly distributed), this amount of dispersion in GP skill
seems reasonable and is sufficient to generate a wide spread in expected returns on follow-on funds.
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information, such as returns stated in a fundraising prospectus, while the incumbent LP additionally

observes soft information that cannot be credibly communicated to new LPs. Thus, if faced with

one bad fund return, the incumbent LP will update his belief of GP skill less than new LPs will.

In other words, while the incumbent LP’s informational advantage relative to potential new LPs

likely declines over time as more hard information is accumulated, Metrick’s quote suggests that

some informational advantage remains even for fund families as experienced as Sequoia.

Extension 2 – Adding further follow-on funds: Would performance persistence gradually

diminish over a sequence of more than two funds? The following simple example shows that it

need not, even as more hard information accumulates. Suppose a GP can raise up to four funds.

Incumbent LPs still learn the GP’s type after the first fund while outside LPs learn gradually

by observing fund cash flows, investment sizes, and carries.11 In this setting, the size, carry, and

expected return for funds 2, 3, and 4 are the same as in the baseline model. As long as outside LPs

remain (even marginally) less informed than the incumbent LP, and the incumbent can counter

any offer they make, they will not change their bidding strategy: Outside LPs will rationally act

as if the GP’s type is such that the fund being raised has non-positive NPV and therefore refrain

from making an offer. The GP’s outside option is therefore zero in funds 2, 3, and 4. In this

example, regressing fund 4 returns on fund 3 returns would lead to the same amount of persistence

as regressing fund 3 returns on fund 2 returns—even though outside LPs have more information

about GP type when funds 3 and 4 are raised than when fund 2 is raised. By implication, persistence

could be substantial even in the subset of funds raised by GPs with many prior funds.
11In our model, it would be possible for outside LPs to infer GP type from fund 2 investment size and carry. This

is only possible because cash flow technologies do not differ across funds. Rather than complicating the model to a
more realistic setting with technological differences across funds, we proceed by simply assuming that outside LPs
only gradually learn GP type, as opposed to fully inferring it from fund 2.
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D. Optimality of Asymmetric Learning

Unlike in standard models of informational hold-up such as Sharpe (1990), asymmetric learning may

be efficient in the VC setting, in the sense of leading to a better investment outcome than if learning

were symmetric. To see why, note first that in Sharpe’s (1990) model, as in ours, the market for

financing is competitive ex ante so the party seeking finance (here, the GP) in expectation earns the

full surplus (NPV). In other words, while incumbent financiers earn hold-up rents in later periods,

they give these up in the first period by providing financing at below-market cost. In Sharpe’s

setting, this leads to sub-optimal investment.12 VC contracts, however, specify both an investment

level (fund size) and the division of the fund’s surplus. We show above that this yields first-best

investment levels (i.e., NPV-maximizing fund sizes).

In fact, GPs likely strictly prefer asymmetric to symmetric learning. Under certain conditions,

first-time funds would only be funded with asymmetric learning.13 Intuitively, with symmetric

learning, LPs must earn their cost of capital in each fund. If GP skill is unobservable ex ante

and average GP skill is so low that the average first-time fund has negative NPV, first-time funds

cannot be raised if learning is symmetric. With asymmetric learning, on the other hand, first-time

fund-raising is possible, if the average GP skill in potential follow-on funds is sufficiently high. The

rents earned by LPs in follow-on funds then make them willing to fund first funds even if these do

not cover their opportunity cost of capital.14

12Sharpe focuses on the interaction between banks and entrepreneurs, in a two-period setting with debt financing
and asymmetric learning (the current bank learns more than other banks about the entrepreneur’s skill). Banks offer
a rate r and the entrepreneur chooses the investment size. Hold-up leads to an interest rate in period 2 that exceeds
the bank’s cost of capital, while ex ante competition among banks leads to a period 1 interest rate below their cost
of capital. This interest rate pattern leads to inefficient investment.

13GPs even prefer symmetric learning to no learning. Learning enables GPs who turn out to have high skill to
raise larger follow-on funds than low-skill GPs. Moreover, without learning, high-skill GPs who were unlucky in their
first fund may not receive funding for follow-on funds. Since GPs earn the combined NPV of their first and follow-in
funds, they gain from learning in expectation (i.e., averaging across GP types at t=0).

14This efficiency argument is similar to Tirole’s (2005, section 9.4.5), though Tirole considers a setting where
profitability improves over time for a given borrower, while we consider a setting where average profitability improves
over time as low-skill GPs fail to raise follow-on funds.
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II. Sample and Data

We test the model using a sample of U.S. VC funds from Thomson Financial’s Venture Economics

(VE) and from Private Equity Intelligence (PREQIN). Both databases provide data on fund char-

acteristics (such as a fund’s vintage year and size) and, for a sub-sample, fund performance. Given

our focus on GP-LP relations, we screen out entities that are not structured as limited partnerships.

Using secondary sources such as Pratt’s Guide, CapitalIQ, Galante’s, and a web search, we exclude

universities, state or local pension plans, government-sponsored entities, and vehicles representing

angel or other individual investors. We also screen out funds of funds, buyout funds,15 hedge funds,

and evergreen funds (i.e., funds without a predetermined dissolution date).

Table 1 describes our sample. It contains 2,812 funds raised by 1,164 VC firms between 1980

and 2006. Of these, 782 funds are in both VE and PREQIN, 44 appear only in PREQIN, and the

remaining 1,986 appear only in VE. The number of funds raised per year averages 64 in the 1980s,

138 in the 1990s, and 121 between 2001 and 2006. The average (median) sample fund raised $124.5

million ($50.0 million) in nominal dollars. Average fund size increased from $30.1 million in 1980

to $44.3 million in 1990, $201.4 million in 2000, and $215.9 million in 2006.

VC funds are under no obligation to disclose performance data publicly. Based on cash flow

data disclosed voluntarily by GPs and/or LPs, VE and PREQIN calculate after-fee IRRs.16 VE

provides two types of IRRs. The first is a single number per fund, reflecting a fund’s performance as

measured from its inception to the earlier of the fund’s liquidation date or the date we downloaded

the data (summer 2007). As funds typically have a ten-year life, this single number will reflect
15We define as VC funds all funds listed in VE or PREQIN as focusing on start-up, early-stage, late-stage, or

expansion investments, as well as those listed as “venture (general)” or “balanced” funds. In cases where VE and
PREQIN classify a fund differently, we verify fund type using secondary sources.

16VE and PREQIN also report DVPI (the ratio of distributed to invested capital) and TVPI (the ratio of fund value
to invested capital, which is based on both realized cash returns and subjective valuations of unrealized investments).
Our results are qualitatively similar using these performance measures.
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ultimate, “ex post” performance in the case of funds raised between 1980 and 1996. For more

recent funds, the reported IRR is liable to change as investments are exited or written off. Thus,

whenever we use ex post IRRs, we restrict the sample to vintage years 1980-1996.

While PREQIN reports only this single ex post number, VE in addition reports annual IRRs

for each year between a fund’s inception and the earlier of its liquidation or 2006. This allows us to

track performance as it evolves over a fund’s life. We can thus avoid the look-ahead bias of relating

a VC firm’s ability to raise a follow-on fund in, say, year four of its current fund to that fund’s

ultimate, ex post performance. Instead, we can condition on “ex ante” available information.17

As Table 1 shows, we have ex post IRRs for 1,009 of the 2,812 funds. The average IRR is 14.2%.

However, this includes recent funds that have yet to switch from making investments to exiting

them. Focusing on the 601 funds from the 1980-1996 vintages, the average IRR is 18.8%. IRRs

vary considerably over time. Average IRRs were in the single digits for funds raised between 1981

and 1987, in the mid to high teens between 1988 and 1990, in the twenties between 1991 and 1994,

44.3% for 1995 vintage funds, and 63.8% in the 1996 vintage. For the 1980-1996 vintages, IRRs

average 15.3% for first-time funds and 20.4% for follow-on funds.

III. Testing the Theory’s Predictions

A. Implication 1: Fund-raising

Implication 1 states that the probability of raising a follow-on fund increases in the return the LPs

earned in the first fund. Column 1 of Table 2 presents a probit model where the dependent variable

equals one if the GP raises a second fund and zero otherwise. The main variable of interest is the
17As Ljungqvist and Richardson (2003) show, over a fund’s life, performance follows a ‘J-curve’, in the sense that

IRRs tend to be negative in the first few years as the fund is mainly in investment mode and then turn positive after
five or six years as the fund begins to exit its investments through IPOs or M&A transactions.
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ex post IRR of the GP’s first fund. Since we require ten years of data to measure ex post IRRs,

we restrict the sample to first funds raised in 1980-1996. Note that we allow the follow-on fund to

be raised at any point after the first fund, up until the end of 2006. Following Kaplan and Schoar

(2005), we also control for the log of the first fund’s size and for vintage-year fixed effects.18

The coefficient estimated for prior-fund IRR is reliably positive (p=0.001), consistent with

Implication 1. At the means of the other covariates, a one-standard deviation increase in first-fund

IRR increases the probability of raising a follow-on fund by 27 percentage points. In column 2, we

widen the sample to include all funds (not just first-time funds) to see if the performance-sensitivity

is attenuated for later funds. The results suggest that the most recent fund’s performance is less

important if the VC has a longer track record: While still statistically significant (p=0.043), the

coefficient estimated for prior-fund performance decreases, so that a one-standard deviation increase

in IRR is associated with only a nine point increase in the likelihood of raising another fund.

A potential shortcoming of using ex post IRRs, which we share with Kaplan and Schoar (2005)

and Gottschalg and Phalippou (2007), is that it implies perfect foresight, in the sense that LPs can

predict, when raising a fund, what the previous fund’s ultimate performance will be before the end

of its investment life. To condition only on information that is known ex ante, we estimate a Cox

hazard model with time-varying covariates. This relates the probability that a VC firm raises a

new fund in year τ to the interim (i.e., ex ante) IRR of its previous fund as reported at the end of

year τ − 1 and the log size of its previous fund.19 Since we use ex ante rather than ex post IRRs

in the estimation, we can include all available vintages through 2006. As VC firms have a non-zero
18The model does not address variation in first-time fund size. The variation we see in the data could reflect

investors having some (imperfect) ex ante knowledge about which GPs have higher skill or differences in optimal fund
size across industries or geographic areas, so we follow the literature and control for fund size.

19We ignore the first four years of IRR data as the IRR of a fund that is mainly investing and not yet generating
returns is not meaningful. In practice, this affects only first-time funds as VC firms with later funds nearly always
have a prior fund that is at least four years old. For the purposes of the hazard model, first-time funds are treated
as left-censored during their first four years, and the likelihood function is adjusted accordingly.
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probability of raising further funds after 2006, we adjust the likelihood function for right-censoring.

Column 3 of Table 2 reports the coefficient estimates. Controlling for the fact that VC firms

with larger funds are more likely to raise another fund, we find that higher LP returns on the

previous fund significantly increase the hazard of raising a new fund (p<0.001). A unit increase in

IRR in year τ − 1 (e.g., from 0 to 100%) is associated with a 25.9% higher likelihood of raising a

follow-on fund in year τ . This mirrors the probit results in columns 1 and 2.

B. Implication 2: Evolution of Fund Size

According to Implication 2, the size of a follow-on fund increases in the return LPs earned in the

previous fund. Table 3 provides evidence consistent with this implication. We use a Tobit estimator

to model the evolution of fund size, controlling for left-censoring in the size variable as a result of a

firm being unable to raise a follow-on fund (presumably due to poor performance). To code failure

to raise a follow-on fund, we identify 362 defunct VC firms in CapitalIQ.20 The dependent variable

equals the log fund size if the firm raises a follow-on fund and zero if it does not. Like Kaplan and

Schoar (2005), we regress this on the prior fund’s IRR and log size as well as vintage-year effects.

Controlling for the fact that GPs that have managed larger funds tend to raise larger funds in

the future, column 1 shows that fund size is positively related to the previous fund’s ex post IRR

(p=0.001). However, this specification assumes perfect foresight. In column 2, we instead condition

on the previous fund’s ex ante IRR measured as of the year-end prior to the GP raising the current

fund. Unlike in column 1, which restricts the previous fund to those raised in 1980-1996 to ensure

we have a final IRR, in column 2 we can include all funds with available data.21 The results are

virtually unchanged. At the means of the other covariates, a one-standard deviation increase in
20Defunct VC firms are those CapitalIQ labels “out of business”, “dissolved”, “liquidating”, “no longer investing”,

or “reorganizing.” We also assume that firms that haven’t raised a fund since 1996 are defunct.
21Again, we ignore data for the first four years of a fund’s life.

22



the ex ante performance of the previous fund is associated with a 35.3% or $20.6 million increase

in fund size, from the unconditional mean in the estimation sample of $58.3 million (p<0.001).

C. Implication 3: Evolution of GP Carry

Implication 3 states that GPs increase their carry following high returns on their previous funds. We

hand-collect carry data for 367 funds from GPs and public sources (including the Venture Capital

Journal, press reports in Factiva, and various Harvard Business School case studies). Consistent

with Gompers and Lerner (1999) and Litvak (2008), first-time funds in our data have a lower carry

(mean: 20.6%) than do follow-on funds (mean: 22.6%).

In Table 4, we relate the GP carry to the ex post (column 1) or ex ante (column 2) IRR of the

GP’s previous fund. Like Gompers and Lerner (1999) and Litvak (2008), we control for fund size

and vintage-year effects.22 In each case, carries increase significantly in the previous fund’s IRR.

In column 2, for instance, a one-standard deviation increase in the previous fund’s ex ante IRR

is associated with a 1.98 percentage point increase in carry on the next fund (p<0.001). These

estimates could be biased to the extent that poor performance results in a VC firm being unable

to raise a follow-on fund (left-censoring). In column (3), we estimate a Tobit model where we set

the carry equal to zero if the firm fails to raise a follow-on fund. This increases the performance-

sensitivity of the GP carry to 4.2 percentage points (p<0.001).

D. Implications 4 and 5: Cross-fund Standard Deviation of Fund Size and Carry

There is no prior empirical evidence showing that fund size and carry are more variable for follow-on

funds than for first funds. Table 5 reports the results of tests comparing the standard deviation of
22Neither Gompers and Lerner (1999) nor Litvak (2008) condition on prior performance. Metrick and Yasuda (2007)

show that carry per individual partner increases in fund sequence number, which may proxy for prior performance.
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fund size and carry in three different samples: The full set of funds raised between 1980 and 2006;

the set of funds raised between 1980 and 1996; and the set of 1980-1996 funds for which we have

performance information. In each sample, we find statistically significant support for Implication

4; see Panel A. Panel B shows significantly greater variation in carry among more established VC

firms, as predicted, in the first two samples. (In the set of 1980-1996 funds for which we have IRR

data, we find no variation in first-fund carries, so the test statistic cannot be computed.)

E. Implication 6: Persistence in Returns to LPs

We first replicate Kaplan and Schoar’s (2005) persistence test. In column 1 of Table 6, we regress a

fund’s ex post IRR on log fund size, the ex post IRR of the VC firm’s previous fund, and vintage-

year effects. Like Kaplan and Schoar, we find that fund performance increases with fund size

and—consistent with Implication 6—prior performance (p<0.001). Kaplan and Schoar note that a

VC firm’s current and previous funds will tend to overlap in time, as they are usually raised fewer

than 10 years apart. To mitigate this problem, they suggest including the two prior funds’ IRRs.

When we do so, in column 2, we find that only the previous fund’s IRR is significantly related to

the current fund’s IRR (p<0.001). In column 3, we control for the performance of the second-prior

fund only, to reduce overlap. The persistence effect remains significant (p=0.042), suggesting that

Kaplan and Schoar’s result is not a spurious artifact of the overlapping nature of the data.

Since we have access to ex ante performance data, we can improve on Kaplan and Schoar’s (2005)

persistence test by conditioning on the previous fund’s IRR measured as of the year-end prior to

the year the GP raised the current fund. This yields a somewhat larger persistence coefficient

(p=0.036). At the means of the other covariates, a 1% increase in the ex ante IRR of the VC firm’s

previous fund is associated with a 0.948% increase in the ex post IRR of the next fund.
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F. Implication 7: Performance of First-time Funds

Implication 7 predicts that follow-on funds outperform first-time funds on average. For vintage

years 1980-1996, average IRRs among follow-on funds are 5.1 percentage points higher (at 20.4%)

compared to first funds (at 15.3%); see Table 1. Though consistent with Implication 7, the difference

is not statistically significant (t-stat = 1.49). Table 7 presents estimates from IRR regressions

that control for fund size and vintage-year effects. In column 1, a dummy identifying first-time

funds is not statistically significant, though we find that larger funds have higher IRRs, which is

consistent with Implication 7 insofar as follow-on funds tend to be larger. In column 2, we explore

an alternative way of splitting funds into ‘early’ and ‘later’ funds. Until a fund has liquidated

all its positions, its reported IRR includes unrealized capital gains and so contains a subjective

element. Many of the funds coded as follow-on funds in column 1 were, in practice, raised before

the tenth anniversary of the GP’s first fund. (In our sample, the average second fund is raised

after 3.2 years.) In column 2, we define follow-on funds as those raised at least 10 years after the

first fund. Such funds perform significantly better than earlier funds, by 9.5 percentage points on

average (p=0.031). In column 3, we regress IRRs on the VC firm’s age (measured in log years

since it raised its first fund). We find that IRRs increase over a VC firm’s lifetime, by about 3.7

percentage points for a one-standard deviation increase in VC firm age (p=0.046).

G. Implication 8: Exit of LPs

Implication 8 predicts that if a GP successfully raises a follow-on fund, investors in the first fund

should also invest in the follow-on fund. Using a large sample of LP data compiled from Venture

Economics and VentureOne,23 we find that on average, 42.4% of LPs in a first fund continue
23Neither VE nor VentureOne covers every LP, and even when combined do not provide a complete list of LPs in

a fund. This drawback is also noted by Lerner, Schoar, and Wongsunwai (2007), who use LP data from VE.
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to invest in the GP’s next fund, falling to 39.9% in later funds. This suggests that there is a

considerable amount of persistence in LP composition across funds.

H. Implication 9: Oversubscription in Follow-on Funds

There is no prior evidence regarding the concentration of oversubscription in follow-on funds and

its relation to prior-fund performance. We compile data on target and final fund sizes from January

issues of the Private Equity Analyst in the three years centered on a fund’s vintage year. These

data are available from 1991. The ratio of final to target fund size averages 101.4%, with a standard

deviation of 35.8% and a range from 6.67% to 310%. For first and follow-on funds, the subscrip-

tion ratio averages 94.9% and 103.1%, respectively, consistent with Implication 9. This difference

continues to hold when we regress the subscription ratio on a first-fund indicator, log target fund

size, and vintage-year effects; see column 1 of Table 8.

Column 2 tests whether oversubscription is related to prior fund performance. Restricting the

sample to follow-on funds, we regress the subscription ratio on the previous fund’s IRR measured as

of the year-end before the GP raised the current fund. Controlling for target size and vintage-year

effects, we find that a one-standard deviation increase in prior performance is associated with a 4.7

percentage point increase in subscription (p<0.001), consistent with Implication 9.

IV. Discussion and Conclusion

We propose and test a model of the interaction between VC fund managers (GPs) and their investors

(LPs) in a setting where investors learn about GP skill over time. We exploit logic similar to that

presented in the relationship-banking literature: LPs who invest in a GP’s fund learn more about

that GP’s skills than do other LPs who are not invested in the fund. This asymmetric evolution of
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information creates a hold-up problem, and this in turn leads to performance persistence.

Our empirical evidence is consistent with asymmetric learning. We find performance persis-

tence in after-fee returns across a GP’s funds (see also Kaplan and Schoar (2005)), even when we

depart from the literature by conditioning only on ex ante available information. Follow-on funds

outperform first funds after fees. There is persistence in LPs from fund to fund, and follow-on

funds are oversubscribed, especially following high returns. We also document empirical evidence

consistent with the predictions of both asymmetric and symmetric learning: The probability that

a GP raises another fund increases in the first fund’s return; better performing GPs raise larger

follow-on funds and charge higher performance fees; and the cross-fund standard deviation of fund

size and fees is higher in later funds.

It may be possible to extend our informational hold-up framework to explain other features of

the data. For example, suppose LPs differ in their ability to learn about GP skill. If there is a

shortage of LPs who are able to learn, and if learning is valuable (as it is in our model), then LPs who

are better at learning will in equilibrium be compensated by the GP for the services they provide.

This prediction is consistent with the large heterogeneity in the performance of different classes

of LPs shown in Lerner, Schoar, and Wongsunwai (2007). In particular, if university endowments

such as the Harvard Management Company or the Yale Investments Office are particularly good

at learning about a GP’s skill, the model can provide an explanation for the limited partner puzzle

presented in Lerner, Schoar, and Wongsunwai, who find that endowments earn higher returns from

VC investing than do other institutional investor types.
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Appendix A: Construction of a Simulated Dataset from the Model

The construction of a simulated dataset proceeds in the same fashion for both the symmetric-

learning setup and the asymmetric-learning setup.

Pick values for r, µL, µH , and σ. Define a grid of N equidistant µi values between µL and

µH . For each value of µi, draw a vector of M values of r1 and of r2, respectively, and define an

M×1 vector in which all elements are µi, an M×1 vector in which all elements are I2
(
µi
)
, and an

M × 1 vector in which all elements are f2

(
µi
)
.24 Stack the M r1-vectors on top of each other, and

do likewise for the r2-vectors, the µ-vectors, the I2-vectors, and the f2-vectors. Align the stacked

vectors to generate an NM × 5 dataset of values of r1, r2, µi, I2
(
µi
)

and f2

(
µi
)
.

We use the following parameter values: r = e0.14− 1 (i.e., µ∗ = 0.14), µL = 0.04, µH = 0.4, and

σ = 0.1. We use M = 10, 000 and N = 361, corresponding to a grid of GP types with grid size

0.001.

In the symmetric-learning setup, these parameters imply I1 = 0.089 and f1 = 0.24. In the

asymmetric-learning setup, I1 is still 0.089 while f1 increases to 0.59. While the value depends

on the parameters chosen for the simulation, the fact the f1 increases is general. Intuitively, the

first-time fund carry must be high enough that the GP earns the full NPV of both the first fund and

the follow-on fund (since the LP market is competitive ex ante). To temper the necessary increase

in carry, we could introduce a management fee. Alternatively, we could use another distribution of

GP types than the uniform distribution, or introduce asymmetric bargaining with a higher fraction

of follow-on fund NPV going to the GP.25 For simplicity, we prefer not to introduce additional

complications to the model since these would not change our qualitative conclusions.

24I2
(
µi
)

and f2
(
µi
)

are not defined and not needed for µi < µ∗, so just plug in zeros in I2
(
µi
)
-vectors and

f2
(
µi
)
-vectors corresponding to µi < µ∗.

25Binmore, Rubinstein, and Wolinsky (1986) provide alternating-offer bargaining games that converge to Nash
bargaining with unequal bargaining powers. One of their settings assumes that one party is faster at making counter-
offers than the other party. Another setting assumes that the parties have different beliefs about the probability of
a breakdown in negotiations.
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Appendix B: Proofs of Propositions 1 and 2

We derive fLP2

(
µi
)
, fGP2

(
µi
)

both for general p and for p→ 0. We omit the proof that the proposed

equilibrium is the unique perfect equilibrium; it follows Rubinstein (1982) and Binmore, Osborne,

and Rubinstein (1992), section 2.1. The indifference conditions for the GP and the LP are

fLP2

(
µi
)
g2
(
µi
)

= p0 + (1− p) fGP2

(
µi
)
g2
(
µi
)
⇐⇒ fLP2

(
µi
)

= (1− p) fGP2

(
µi
)

(24)

E
(
C2|µ = µi

)
− fGP2

(
µi
)
g2
(
µi
)

1 + r
−I2

(
µi
)

= p0+(1− p)

[
E
(
C2|µ = µi

)
− fLP2

(
µi
)
g2
(
µi
)

1 + r
− I2

(
µi
)]
.

(25)

Combining the two expressions we get

E
(
C2|µ = µi

)
− fGP2

(
µi
)
g2
(
µi
)

1 + r
− I2

(
µi
)

= (1− p)

[
E
(
C2|µ = µi

)
− (1− p) fGP2

(
µi
)
g2
(
µi
)

1 + r
− I2

(
µi
)]
. (26)

Rewrite to get

p

[
E
(
C2|µ = µi

)
1 + r

− I2
(
µi
)]

= fGP2

(
µi
) g2 (µi)

1 + r

[
1− (1− p)2

]

fGP2

(
µi
)

=
p

[
E(C2|µ=µi)

1+r − I2
(
µi
)]
/
[
1− (1− p)2

]
g2(µi)
1+r

=
p
[
eµ

i
ln
(
1 + I2

(
µi
))
− (1 + r) I2

(
µi
)]
/
[
1− (1− p)2

]
g2 (µi)

.(27)

Taking p to zero, and using l’Hôpital’s rule:

fGP2

(
µi
)
→

1
2

[
eµ

i
ln
(
1 + I2

(
µi
))
− (1 + r) I2

(
µi
)]

g2 (µi)

and fLP2

(
µi
)

= fGP2

(
µi
)
. Thus, the GP’s expected payoff, fGP2

(
µi
)
g2
(
µi
)
, equals half the fund’s

NPV, which is the same as what results from Nash bargaining with equal bargaining power and

outside options of zero. �
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Figure 1. Symmetric Learning – Probability of Follow-On Fund, Mean Size of
Follow-On Fund, and Mean Carry of Follow-On Fund

The figures illustrate Implications 1, 2 and 3 in the case with symmetric learning. Panel A shows the probability
that a follow-on fund is raised as a function of the realized return on the first-time fund, P (µi > µ∗|r1). Panel B
shows expected (i.e. mean) size of the follow-on fund as a function of the realized return on the first-time fund,
E(I2|r1, µ

i > µ∗). Panel C shows the expected (i.e. mean) size of the carry in follow-on funds as a function of the
realized return on the first-time fund, E(f2|r1, µ

i > µ∗). The model parameters used are r = e0.14 − 1 (and thus
µ∗ = 0.14), µL = 0.04, µH = 0.4, and σ = 0.1.

Panel A. Probability of Raising a Follow-On Fund

Panel B. Mean Size of Follow-On Fund

Panel C. Mean Carry of Follow-On Fund



Figure 2. Asymmetric Learning – Performance Persistence

The figure illustrates Implication 6. It plots the expected (i.e. mean) return in follow-on funds as a function of the
realized return on the first-time fund. The model parameters used are r = e0.14 − 1 (and thus µ∗ = 0.14), µL = 0.04,
µH = 0.4, and σ = 0.1.



Table 1. Descriptive Statistics. 
 

  Number of sample funds         Ex post performance 
  of which  Fund size ($m)  All funds  First-time funds  Follow-on funds 

vintage all 
only 

in VE 
only in 

PREQIN 
in 

both   mean median   

no. of funds 
with IRR 

data 

mean 
IRR 
(%)   

no. of funds 
with IRR 

data 

mean 
IRR 
(%)   

no. of 
funds with 

IRR data 

mean 
IRR 
(%) 

1980 40 34 4 2  30.1 20.0  17 13.0  10 10.9  7 16.1 
1981 47 40 1 6  22.6 19.6  18 7.8  8 6.3  10 9.1 
1982 66 57 0 9  23.5 15.1  29 3.1  19 2.9  10 3.3 
1983 78 66 1 11  31.4 20.1  42 8.6  20 9.3  22 7.9 
1984 90 79 0 11  30.4 22.0  52 4.4  23 5.5  29 3.6 
1985 62 45 1 16  40.1 20.0  33 9.7  9 9.9  24 9.6 
1986 57 39 0 18  52.5 21.6  34 6.8  16 5.2  18 8.3 
1987 84 67 1 16  36.1 24.2  57 7.1  21 4.5  36 8.6 
1988 57 36 2 19  66.2 32.8  39 13.7  7 11.4  32 14.2 
1989 77 46 1 30  66.3 30.5  51 16.3  10 26.2  41 13.9 
1990 50 37 2 11  44.3 35.0  20 16.2  2 -0.8  18 18.1 
1991 35 24 1 10  40.6 30.0  15 21.9  3 27.8  12 20.4 
1992 50 29 0 21  75.3 44.0  26 23.6  4 2.7  22 27.4 
1993 71 44 2 25  55.8 35.7  37 26.4  8 15.8  29 29.4 
1994 75 43 0 32  83.5 45.0  42 23.5  6 7.6  36 26.2 
1995 118 82 1 35  71.0 43.0  51 44.3  16 34.6  35 48.8 
1996 100 74 0 26  69.2 50.0  38 63.8  10 98.5  28 51.4 
1997 165 110 1 54  85.6 56.7  64 42.7  16 35.0  48 45.3 
1998 169 111 1 57  136.5 70.5  73 23.9  7 16.9  66 24.7 
1999 259 179 2 78  173.0 100.0  72 -6.7  12 16.5  60 -11.4 
2000 338 234 5 99  201.4 97.5  93 -7.0  12 -0.9  81 -7.9 
2001 177 125 2 50  215.8 69.1  47 -4.3  3 -19.9  44 -3.2 
2002 77 45 4 28  138.6 49.3  22 -1.4  3 -10.0  19 -0.1 
2003 70 39 5 26  127.9 36.6  19 -0.7  3 1.5  16 -1.2 
2004 113 80 1 32  137.6 50.0  16 -0.8  4 3.7  12 -2.2 
2005 133 98 1 34  248.0 107.7  2 -19.3  1 -7.0  1 -31.5 
2006 154 123 5 26  215.9 107.0            

                  
1980-2006 2,812 1,986 44 782  124.5 50.0  1,009 14.2  253 14.7  756 14.0 
1980-1996 1,157 842 17 298  51.3 28.1  601 18.8  192 15.3  409 20.4 

                                  



Table 2. Fund-raising. 
In columns (1) and (2), we estimate probit models with vintage-year fixed effects. The dependent variable is an 
indicator variable set equal to one if the VC firm raises another fund, and zero otherwise. The variable of interest is the 
previous fund’s ex post IRR. As this can only be measured once the fund’s ten-year life is over, we include only funds 
from the 1980-1996 vintages. Column (1) restricts the sample to first-time funds and thus asks what determines whether 
the VC firm raises a second fund. In column (2), we widen the sample to include all funds (not just first-time funds) to 
see if the performance-sensitivity is attenuated for later funds. In column (3), we estimate a Cox semi-parametric hazard 
model with time-varying covariates using annual data. This models the hazard (i.e., the instantaneous probability) that a 
VC firm raises a new fund in year t. We allow a VC firm to raise multiple funds in succession (i.e., we estimate a 
“multiple-failure” hazard model). The hazard model conditions not on the ex post IRR of the previous fund, but on the 
interim (i.e., ex ante) IRR as reported at the end of year t-1. (Where a VC firm operates multiple funds in parallel as of 
the prior year-end, we use the maximum IRR.) Thus, unlike the probit models in columns (1) and (2), the hazard model 
uses only information that was available at the time of fund-raising. We ignore the first four years of reported IRRs over 
a fund’s life as the IRR of a fund that is mainly investing and not yet generating returns is not meaningful. Practically, 
this affects only first-time funds as VC firms with later funds nearly always have a prior fund that is at least four years 
old. For the purposes of the hazard model, first-time funds are treated as left-censored during their first four years, and 
the likelihood function is adjusted accordingly. Since we do not require ex post IRRs for estimating the hazard model, 
we can include all available vintages through 2006. Since VC firms have a non-zero probability of raising further funds 
after our data end in 2006, the hazard model adjusts for right-censoring. Heteroskedasticity-consistent standard errors 
are shown in italics. We use ***, **, and * to denote significance at the 1%, 5%, and 10% level (two-sided), respectively. 
 

 First-time  All  All 
 funds  funds  funds 

  (1)   (2)   (3) 
      
log fund size  -0.012 0.266*** 0.389*** 
 0.137 0.518 0.042 
fund IRR  5.861*** 1.392** 0.230*** 
 1.770 0.687 0.065 
    
Vintage year FE yes yes n.a. 
Wald test: all coeff. = 0 30.4*** 44.8*** 131.2*** 
Pseudo-R2 32.6% 11.6% 2.7% 
No. of observations 191 598 3,721 
No. of VC firms   262 
No. of funds raised   620 
            



Table 3. Evolution of Fund Size. 
The dependent variable in each column is the log of the size of the follow-on fund (in $m) if the firm raises a follow-on 
fund and zero if it does not. To code failure to raise a follow-on fund, we identify 362 defunct VC firms in CapitalIQ. 
Performance data is available for 71 and 126 funds raised by defunct VC firms in columns (1) and (2), respectively. The 
models are estimated using Tobit. The variable of interest in column (1) is the ex post IRR of the previous fund, which 
can either be a first-time and or a follow-on fund. As this can only be measured once the fund’s ten-year life is over, we 
include only data for previous funds from the 1980-1996 vintages. In column (2), we replace this variable with the 
interim IRR of the previous fund measured as of the year-end prior to the year the GP raises the current fund. (Where a 
VC firm operates multiple funds in parallel as of year-end prior, we take the maximum IRR.) If no follow-on fund is 
raised, the IRR of the previous fund is measured ex post (i.e., as of year ten.) In column (2), it is not necessary to restrict 
the vintages. Standard errors are shown in italics. We use ***, **, and * to denote significance at the 1%, 5%, and 10% 
level (two-sided), respectively. Note that the Tobit estimator does not support a heteroskedasticity correction. 
 

Performance: ex post ex ante 
  (1) (2) 
   
log size of previous fund 0.844*** 0.892*** 
 0.069 0.068 
IRR of previous fund 0.553*** 0.593*** 
 0.172 0.156 
   
Vintage year FE yes yes 
Wald test: all coeff. = 0 222.2*** 322.8*** 
Pseudo-R2 10.4% 10.2% 
No. of observations 534 726 
      



Table 4. Evolution of GP Carry. 
The dependent variable in each column is the GP’s carried interest (“carry”). The variable of interest in column (1) is 
the ex post IRR of the previous fund. As this can only be measured once the fund’s ten-year life is over, we include only 
data for previous funds from the 1980-1996 vintages. In column (2), we replace this variable with the interim IRR of the 
previous fund measured as of the year-end prior to the year the GP raises the current fund. (Where a VC firm operates 
multiple funds in parallel as of year-end prior, we take the maximum IRR.) In this case, it is not necessary to restrict the 
vintages. Since we condition on the performance of the previous fund, the estimation samples in columns (1) and (2) are 
restricted to follow-on funds and the models are estimated using OLS. The OLS results could be biased to the extent 
that poor performance results in a VC firm being unable to raise a follow-on fund (left-censoring). In column (3), we 
estimate a Tobit model where we set the dependent variable equal to zero if the firm fails to raise a follow-on fund. To 
code failure to raise a follow-on fund, we identify 362 defunct VC firms in CapitalIQ. Performance data is available for 
81 raised by defunct VC firms. Standard errors are shown in italics; in the case of the OLS specifications, they are 
heteroskedasticity-consistent. We use ***, **, and * to denote significance at the 1%, 5%, and 10% level (two-sided), 
respectively. 
 

Performance: ex post  ex ante 
 OLS  OLS Tobit 
  (1)   (2) (3) 
     
log size of current fund -0.001 0.000 0.054*** 
 0.003 0.003 0.000 
IRR of previous fund 0.013** 0.037*** 0.085*** 
 0.005 0.006 0.000 
    
Vintage year FE yes yes yes 
Wald test: all coeff. = 0 1.8* 8.1*** 163.1*** 
Adjusted R2 7.2% 21.5% n.a. 
No. of obs 86 197 272 
          



Table 5. Cross-fund Standard Deviation of Fund Size and GP Carry. 
The table reports the results of variance ratio tests comparing the standard deviation of fund size (Panel A) or fund carry 
(Panel B) for first and follow-on funds. We use three different samples: The full set of funds raised between 1980 and 
2006; the set of funds raised between 1980 and 1996; and the set of 1980-1996 funds for which we have performance 
information. We use ***, **, and * to denote significance at the 1%, 5%, and 10% level (two-sided), respectively. 
 

 All funds raised in 1980-2006  All funds raised in 1980-1996  

All funds raised in 1980- 
1996 with IRR 

information 
 No. of    No. of    No. of   
  funds   St.dev.  funds   St.dev.   funds   St.dev. 
            
Panel A: Fund size ($m) 
First-time funds 901  81.0  400  63.6  191  40.7 
            
Follow-on funds 1,906  344.1  751  127.1  407  159.0 
            
F-statistic   18.0***    4.0***    15.2*** 
            
            
Panel B: GP carry (%)                     
First-time funds 50  1.6  14  1.5  8  0.0 
            
Follow-on funds 317  4.0  59  3.2  47  3.0 
            
F-statistic   6.6***    4.5***    n.a. 
            



Table 6. Persistence in Returns to LPs. 
The dependent variable in each column is a fund’s ex post IRR, net of fees, measured over its ten-year life. 
Accordingly, the sample is restricted to funds raised between 1980 and 1996. To test for persistence of performance 
across funds managed by the same VC firm, we regress the ex post IRR of fund N on the ex post IRR of fund N-1 
(column 1), the ex post IRRs of funds N-1 and N-2 (column 2), and the ex post IRR of fund N-2 (column 3). In column 
(4), we use the interim IRR of fund N-1 measured as of the year-end prior to the year the GP raises the current fund. 
(Where a VC firm operates multiple funds in parallel as of year-end prior, we take the maximum IRR.) All models are 
estimated using OLS. Heteroskedasticity-consistent standard errors are shown in italics. We use ***, **, and * to denote 
significance at the 1%, 5%, and 10% level (two-sided), respectively. 
 

Performance: ex post  ex ante 
  (1) (2) (3)   (4) 
      
log size of previous fund 0.056*** 0.061*** 0.053** 0.117*** 
 0.013 0.018 0.025 0.036 
IRR of fund -1 0.799*** 0.738***   
 0.149 0.188   
IRR of fund -2  0.177 0.677**  
  0.267 0.330  
ex ante IRR of fund -1 as of previous year    0.948** 
    0.448 
     
Vintage year FE yes yes yes yes 
Wald test: all coeff. = 0 5.4*** 5.8*** 6.3*** 2.6** 
Adjusted R2 32.3% 25.2% 16.4% 12.1% 
No. of observations 318 163 177 189 
            



Table 7. Performance of First-time Funds Relative to Follow-on Funds. 
We test for differences in average performance by first-time versus follow-on funds using OLS regressions of fund IRR 
that control for log fund size and vintage-year fixed effects. The dependent variable in each column is a fund’s ex post 
IRR, net of fees, measured over its ten-year life. Accordingly, the sample is restricted to funds raised between 1980 and 
1996. Heteroskedasticity-consistent standard errors are shown in italics. We use ***, **, and * to denote significance at 
the 1%, 5%, and 10% level (two-sided), respectively. 
 

Dependent variable: ex post IRR  
  (1) (2) (3)  
     
log size of fund 3.792* 2.423 2.487 
 2.250 2.292 2.338 

dummy for follow-on fund -1.174   
 3.586   

dummy for funds raised at least 10 years   9.471**  
after VC firm’s first fund  4.379  

log years since VC firm raised its first fund   3.762** 
   1.878 
    
Vintage year FE yes yes yes  
Wald test: all coeff. = 0 6.7*** 6.8*** 6.5*** 
Adjusted R2 15.1% 15.9% 15.7% 
No. of observations 598 598 598 
         

 



Table 8. Oversubscription. 
We obtain data on target fund sizes and final amounts raised per fund by searching January issues of the Private Equity 
Analyst in the three years centered on each fund’s vintage year, as reported by VE or PREQIN. The Private Equity 
Analyst provides this information from 1991, so the sample is restricted to the 1991-2006 vintages. The dependent 
variable is the subscription ratio, that is, the ratio of the final amount raised and the original target fund size. These 
models are estimated as OLS regressions with vintage-year fixed effects. Column (1) uses all funds for which data on 
actual and target fund size can be found in the Private Equity Analyst. Column (2) restricts the sample to follow-on 
funds. Heteroskedasticity-consistent standard errors are shown in italics. We use ***, **, and * to denote significance at 
the 1%, 5%, and 10% level (two-sided), respectively. 
 

 
Amount raised / target 

amount 
  (1) (2) 
   
log target fund size 0.030** 0.006 
 0.013 0.023 
dummy =1 if first-time fund -0.069**  
 0.033  
ex ante IRR of fund -1 as of previous year  0.125*** 
  0.035 
   
Vintage year FE yes yes 
Wald test: all coeff. = 0 5.0*** 3.4*** 
Adjusted R2 6.2% 8.0% 
No. of obs 908 367 
      


