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1. Basic Issues and Quantities of Interest

∙ Let xit,yit : t  1, . . . ,T be a random draw

from the cross section. Typically interested in

Dyit|xit,ci     (1)

or some feature of this distribution, such as

Eyit|xit,ci, or a conditional median.

∙ In the case of a mean, how do we summarize the

partial effects? If xtj is continuous, then

jxt,c ≡
∂mtxt,c
∂xtj

,     (2)

or discrete changes. How do we account for

unobserved ci? If we know enough about the

distribution of ci we can insert meaningful values

for c. For example, if c  Eci, then we can

compute the partial effect at the average (PEA),
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PEAjxt  jxt,c.     (3)

Of course, we need to estimate the function mt and

c. We might be able to insert different quantiles,

or a certain number of standard deviations from the

mean.

∙ Alternatively, we can average the partial effects

across the distribution of ci:

APExt  Ecijxt,ci.     (4)

The difference between (3) and (4) can be

nontrivial. In some leading cases, (4) is identified

while (3) is not. (4) is closely related to the notion

of the average structural function (ASF) (Blundell

and Powell (2003)). The ASF is defined as

ASFxt  Ecimtxt,ci.     (5)

∙ Passing the derivative through the expectation in
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(5) gives the APE.

∙ How do APEs relate to parameters? Suppose

mtxt,c  Gxt  c,     (6)

where, say, G is strictly increasing and

continuously differentiable. Then

jxt,c  jgxt  c,     (7)

where g is the derivative of G. Then

estimating j means we can sign of the partial

effect, and the relative effects of any two

continuous variables. Even if G is specified, the

magnitude of effects cannot be estimated without

making assumptions about the distribution of ci

∙ Altonji and Matzkin (2005) define the local

average response (LAR) as opposed to the APE or

PAE. The LAR at xt for a continuous variable xtj is
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LARjxt   ∂mtxt,c
∂xtj

dHtc|xt,     (8)

where Htc|xt denotes the cdf of Dci|xit  xt.

“Local” because it averages out the heterogeneity

for the slice of the population described by the

vector xt. The APE is a “global” average response.”

∙ Definitions of partial effects do not depend on

whether xt is correlated with c. Of course, whether

and how we estimate them certainly does.

2. Exogeneity Assumptions

∙ As in linear case, cannot get by with just

specifying a model for Dyit|xit,ci.

∙ The most useful definition of strict exogeneity for

nonlinear panel data models is

Dyit|xi1, . . . ,xiT,ci  Dyit|xit,ci.     (9)

Chamberlain (1984) labeled (9) strict exogeneity
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conditional on the unobserved effects ci.

Conditional mean version:

Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci.     (10)

∙ The sequential exogeneity assumption is

Dyit|xi1, . . . ,xit,ci  Dyit|xit,ci.     (11)

Unfortunately, it is much more difficult to allow

sequential exogeneity in in nonlinear models.

∙ Neither (9) nor (10) allows for contemporaneous

endogeneity of one or more elements of xit, where,

say, xitj is correlated with unobserved, time-varying

unobservables that affect yit. (Later in control

function estimation.)

3. Conditional Independence

∙ In linear models, serial dependence of

idiosyncratic shocks is easily dealt with, either by
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robust inference or GLS extensions of FE and FD.

With strictly exogenous covariates, never results in

biased estimation, even if it is ignored or

improperly model. The situation is different with

nonlinear models estimated by MLE.

∙ The conditional independence assumption is

Dyi1, . . . ,yiT|xi,ci 
t1

T

Dyit|xit,ci     (12)

(where we also impose strict exogeneity). In a

parametric context, the CI assumption therefore

reduces our task to specifying a model for

Dyit|xit,ci, and then determining how to treat the

unobserved heterogeneity, ci.

∙ In random effects and correlated random effects

frameworks, CI plays a critical role in being able to

estimate the “structural” parameters and the
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parameters in distribution the of ci (and therefore,

PAEs). In a broad class of models, CI plays no role

in estimating APEs.

4. Assumptions about the Unobserved

Heterogeneity

Random Effects

Dci|xi1, . . . ,xiT  Dci.     (13)

Under (13), the APEs are nonparametrically

identified from

rtxt ≡ Eyit|xit  xt.     (14)

∙ In some leading cases (RE probit and RE Tobit

with heterogeneity normally distributed), if we

want PEs for different values of c, we must assume

more: strict exogeneity, conditional independence,
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and (13) with a parametric distribution for Dci.

Correlated Random Effects

A CRE framework allows dependence between ci

and xi, but restricted in some way. In a parametric

setting, we specify a distribution for

Dci|xi1, . . . ,xiT, as in Chamberlain (1980,1982),

and much work since. Can allow Dci|xi1, . . . ,xiT

to depend in a “nonexchangeable” manner.

(Chamberlain’s CRE probit and Tobit models.)

Distributional assumptions that lead to simple

estimation – homoskedastic normal with a linear

conditional mean — are restrictive.

∙ Possible to drop parametric assumptions with

Dci|xi  Dci|x̄i,     (15)

without restricting Dci|x̄i.

∙ As T gets larger, can allow ci to be correlated
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with features of the covariates other than just the

time average. Altonji and Matzkin (2005) allow for

x̄i in equation (15) to be replaced by other functions

of xit : t  1, . . . ,T, such as sample variances

and covariance. Non-exchangeable functions, such

as unit-specific trends, can be used, too. Generally,

assume

Dci|xi  Dci|wi.     (16)

Practically, we need to specify wi and then

establish that there is enough variation in

xit : t  1, . . . ,T separate from wi.

∙ Altonji and Matzkin use exchangeability and

other restrictions, such as monotonicity

Fixed Effects

The label “fixed effects” is used in different ways

by different researchers. One view: ci, i  1, . . . ,N
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are parameters to be estimated. Usually leads to an

“incidental parameters problem” (which attentuates

with large T.

∙ A second meaning of “fixed effects” is that

Dci|xi is unrestricted and we look for objective

functions that do not depend on ci but still identify

the population parameters. Leads to “conditional

maximum likelihood” if we can find a “sufficient

statistic” such that

Dyi1, . . . ,yit|xi,ci, s i  Dyi1, . . . ,yit|xi, s i.     (17)

∙ The CI assumption is usually maintained.

5. Nonparametric Identification of Average

Partial Effects

∙ Identification of PAEs can fail even under a

strong set of parametric assumptions. In the probit

model
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Py  1|x,c  x  c,     (18)

the PE for a continuous variable xj is jx  c.

The PAE at c  Ec  0 is jx. Suppose c|x

~Normal0,c
2. Then

Py  1|x  x/1  c
21/2,     (19)

so only the scaled parameter vector

c ≡ /1  c
21/2 is identified;  and jxare

not identified.

∙ The APE is identified from Py  1|x, and is

given by cjxc. (Attenuation bias?)

∙ Panel data example due to Hahn (2001): xit is a

binary indicator and

Pyit  1|xi,ci  xit  ci, t  1, 2.     (20)

 is not known to be identified in this model, even

under conditional independence and the random
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effects assumption Dci|xi  Dci. But the APE

is  ≡ E  ci − Eci and is identified by

a difference of means for the treated and untreated

groups, for either time period.

∙ As shown in Wooldridge (2005a), identification

of the APE holds if we replace  with an unknown

function G and allow Dci|xi  Dci|x̄i.

∙ Are we focusing too much on parameters? In

many cases, yes, but not always so clear cut. From

Wooldridge (2005c): y  1x  u  0 where u|x

~Normal0, exp2x (“heteroskedastic probit”). 

and  estimable by MLE. The APE for xj is not

obtained by differentiating

Py  1|x  exp−xx with respect to xj,

which can have a different sign from j. Instead,

for given x, it is consistently estimated as

13



APEjx  ̂j N−1∑
i1

N

exp−xi̂x̂ ,

which always has the same sign as ̂j.

∙We can establish identification of APEs in panel

data applications very under strict exogeneity along

with Dci|xi  Dci|x̄i. These two assumptions

identify the APEs. Write the average structural

function at time t as

ASFtxt  Ecimtxt,ci

 E x̄iEmtxt,ci|x̄i

≡ E x̄irtxt, x̄i,     (21)

Given a consistent estimator of r̂t, , the ASF can

be estimated as

ASFtxt ≡ N−1∑
i1

N

r̂txt, x̄i. ,     (22)
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∙ Equation (21) holds without strict exogeneity

Dci|xi  Dci|x̄i. But these assumptions allow us

to estimate estimate rt, :

Eyit|xi  EEyit|xi,ci|xi  Emtxit,ci|xi

 mtxit,cdFc|xi

 mtxit,cdFc|x̄i  rtxit, x̄i,     (23)

where Fc|xi denotes the cdf of Dci|xi Because

Eyit|xi depends only on xit, x̄i, we must have

Eyit|xit, x̄i  rtxit, x̄i,     (24)

and rt,  is identified with sufficient time

variation in xit.

6. Dynamic Models

∙ Nonlinear models with only sequentially

exogenous variables are difficult to deal with. More

is known about models with lagged dependent
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variables and otherwise strictly exogenous

variables:

Dyit|zit,yi,t−1, . . . ,zi1,yi0,ci, t  1, . . . ,T,     (25)

which we assume also is

Dyit|zi,yi,t−1, . . . ,yi1,yi0,ci. Suppose this

distribution depends only on zit,yi,t−1,ci with

density ftyt|zt,yt−1,c;. The joint density of

yi1, . . . ,yiT given yi0,zi,ci is


t1

T

ftyt|zt,yt−1,c;.     (26)

∙ How do we deal with ci along with the initial

condition, yi0? Approaches: (i) Treat the ci as

parameters to estimate (incidental parameters

problem). (ii) Try to estimate the parameters

without specifying conditional or unconditional
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distributions for ci (available in some special

cases). Generally, cannot estimate partial effects.).

(iii) Approximate Dyi0|ci, zi and then model

Dci|zi. Leads to Dyi0,yi1, . . . ,yiT|ziand MLE

conditional on zi. (iv) Model Dci|yi0,zi. Leads to

Dyi1, . . . ,yiT|yi0,zi and MLE conditional on

yi0,zi. Wooldridge (2005b) shows this can be

computationally simple for popular models.

∙ If mtxt,c, is the mean function Eyt|xt,c for a

scalar yt, the APEs are easy to obtain.

7. Applications to Specific Models

Binary and Fractional Response

∙ Unobserved effects (UE) probit model:

Pyit  1|xit,ci  xit  ci, t  1, . . . ,T.     (27)

Assume strict exogeneity (as always, conditional on

ci) and use Chamberlain-Mundlak device under
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conditional normality:

ci    x̄i  ai,ai|xi ~Normal0,a
2.     (28)

If we still assume conditional serial independence

then all parameters are identified and MLE (RE

probit) can be used. ̂c  ̂  N−1∑i1
N x̄i ̂ and

̂c
2 ≡ ̂

′ N−1∑i1
N x̄i

′x̄i ̂  ̂a
2. ci is not generally

normally distributed unless x̄i is. But can evaluate

PEs at, say, ̂c  k̂c.

∙ The APEs are identified from the ASF, which is

consistently estimated as

ASFxt  N−1∑
i1

N

xt̂a  ̂a  x̄i̂a     (29)

where, for example, ̂a  ̂/1  ̂a
21/2.

∙ APEs are identified without the conditional serial

independence assumption. Use the marginal
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probabilities to estimate scaled coefficients:

Pyit  1|xi  xita  a  x̄ia.     (30)

(Time dummies have been supressed for

simplicity.)

∙ Can used pooled probit or minimum distance or

“generalized estimating equations.”

∙ Because the Bernoulli log-likelihood is in the

linear exponential family (LEF), exactly the same

methods can be applied if 0 ≤ yit ≤ 1 – that is, yit

is a “fractional” response – but where the model is

for the conditional mean:

Eyit|xit,ci  xit  ci. Full MLE difficult.

∙ A more radical suggestion, but in the spirit of

Altonji and Matzkin (2005), is to just use a flexible

model for Eyit|xit, x̄idirectly, say,
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Eyit|xit, x̄i  t  xit  x̄i 

x̄i ⊗ x̄i  xit ⊗ x̄i.

Just average out over x̄i to get APEs.

∙ Can use same idea with logit. But, if we have a

binary response, start with

Pyit  1|xit,ci  xit  ci,     (31)

and assume conditional independence assumption,

we can estimate  without restricting Dci|xi.

∙ Because we have not restricted Dci|xi in any

way, it appears that we cannot estimate average

partial effects. See table in notes for the tradeoffs in

using CRE models and conditional MLE.

∙ Example from notes. Estimated APEs for number

of small children on women’s labor force

participation: linear, −. 0389 (.0092); probit
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(pooled), −. 0660 (.0048); CRE probit (pooled)

−. 0389 (.0085); CRE probit (MLE), −. 0403 (.104),

FE logit, coefficient  −. 644 (.125).

∙What would CMLE logit estimate in the model

Pyit  1|xit,ci  ai  xitbi,     (32)

where  ≡ Ebi?

∙ There are methods that allow estimation, up to

scale, of the coefficients without even specifying

the distribution of uit in

yit  1xit  ci  uit ≥ 0.     (33)

under strict exogeneity.conditional on ci. Arellano

and Honoré (2001).

∙ Simple dynamic model:

Pyit  1|zit,yi,t−1,ci  zit  yi,t−1  ci.     (34)

A simple analysis is available if we specify
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ci|zi,yi0  Normal  0yi0  zi,a
2     (35)

Then

Pyit  1|zi,yi,t−1, . . . ,yi0,ai 

zit  yi,t−1    0yi0  zi  ai,     (36)

where ai ≡ ci −  − 0yi0 − zi. Because ai is

independent of yi0,zi, it turns out we can use

standard random effects probit software, with

explanatory variables 1,zit,yi,t−1,yi0,zi in time

period t. Easily get the average partial effects, too:

ASFzt,yt−1  N−1∑
i1

N

zt̂a  ̂ayt−1

 ̂a  ̂a0yi0  zi̂a,     (37)

Example in notes: dynamic labor force partication.

The APE estimated from this method is about .259.

If we ignore the heterogeneity, APE is . 837.
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∙ For estimating parameters, Honoré and

Kyriazidou (2000) extend an idea of Chamberlain.

With four four time periods, t  0, 1, 2, and 3, the

conditioning that removes ci requires zi2  zi3. HK

show how to use a local version of this condition to

consistenty estimate the parameters. The estimator

is also asymptotically normal, but converges more

slowly than the usual N -rate.

∙ The condition that zi2 − zi3 have a distribution

with support around zero rules out aggregate year

dummies. By design, cannot estimate magnitudes

of effects.

Count and Other Multiplicative Models

∙ Several options are available for models with

conditional means multiplicative in the

heterogeneity. The most common is
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Eyit|xit,ci  ci expxit     (38)

where ci ≥ 0. If we assume strict exogeneity,

Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci,     (39)

a particular quasi-MLE is attractive as it does not

restrict Dyit|xi,ci, Dci|xi, or serial dependence:

the “fixed effects” Poisson estimator. It is the

conditional MLE derived under a Poisson

distributional assumption and the conditional

independence assumption. But it is fully robust,

even if yit is not a count variable! It turns out that

there is no incidental parameters problem in this

case. Fully robust inference is easy to obtain

(Wooldridge (1999)).

∙ Estimation under sequential exogeneity has been

studied by Chamberlain (1992) and Wooldridge
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(1997). In particular, they obtain moment

conditions for models such as

Eyit|xit, . . . ,xi1,ci  ci expxit.     (40)

Under this assumption, it can be shown that

Eyit − yi,t1 expxit − xi,t1|xit, . . . ,xi1  0,     (41)

and, because these moment conditions depend only

on observed data and the parameter vector , GMM

can be used to estimate , and fully robust

inference is straightforward.

∙Wooldridge (2005b) shows how a dynamic

Poisson model with conditional Gamma

heterogeneity can be easily estimated.

8. Estimating the Fixed Effects

∙ Except in special cases (linear and Poisson),

treating the ci as parameters to estimate leads to

25



inconsistent estimates of the population parameters

. But are there ways to adjust the “fixed effects”

estimate of  to at least partially remove the bias?

Second, could it be that estimates of the APEs,

based on

N−1∑
i1

N
∂mtxt, ̂,ĉ i

∂xtj
,     (42)

where mtxt,,c  Eyt|xt,c, are better behaved

than the parameter estimates, and can their bias be

removed?

∙ Hahn and Newey (2004) propose both jackknife

and analytical bias corrections and show that they

work well for the probit case. The jackknife FE

estimator is
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̃  T̂ − T − 1T−1∑
t1

T

̂t,     (43)

where ̂ is the FE estimate using all time periods

and ̂t is the estimate that drops time period t. The

asymptotic bias of ̃ is on the order of T−2.

∙ Practical limitations of the jackknife. First,

aggregate time effects are not allowed, and they

would be difficult to include because the analysis is

with T → . Also, heterogeneity in the distributions

across t changes the bias terms and so (43) does not

remove the bias. Hahn and Newey assume

independence across t conditional on ci. Even

relaxing this, the “leave-one-out” method does not

apply to dynamic models.

∙ Fernández-Val (2007) shows that in a model with

time series dependence in strictly exogenous
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regressors, the APEs based on the fixed effects

estimator have bias of order T−2 in the case that

there is no heterogeneity.
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